WO2021006220A1 - カチオン電着塗料組成物 - Google Patents

カチオン電着塗料組成物 Download PDF

Info

Publication number
WO2021006220A1
WO2021006220A1 PCT/JP2020/026266 JP2020026266W WO2021006220A1 WO 2021006220 A1 WO2021006220 A1 WO 2021006220A1 JP 2020026266 W JP2020026266 W JP 2020026266W WO 2021006220 A1 WO2021006220 A1 WO 2021006220A1
Authority
WO
WIPO (PCT)
Prior art keywords
parts
electrodeposition coating
resin
coating composition
pigment
Prior art date
Application number
PCT/JP2020/026266
Other languages
English (en)
French (fr)
Inventor
菜見子 坂井
誠之 小谷
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Priority to CN202080049719.8A priority Critical patent/CN114040947B/zh
Priority to MX2021015951A priority patent/MX2021015951A/es
Priority to EP20836845.6A priority patent/EP3998316A4/en
Priority to US17/624,404 priority patent/US20220332960A1/en
Publication of WO2021006220A1 publication Critical patent/WO2021006220A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • C09D5/4465Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/448Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4473Mixture of polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4488Cathodic paints
    • C09D5/4492Cathodic paints containing special additives, e.g. grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/46Block-or graft-polymers containing polysiloxane sequences containing polyether sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds

Definitions

  • the present invention relates to a cationic electrodeposition coating composition.
  • a plurality of coating films having various roles are formed on the surface of an object to be coated such as a metal base material.
  • the coating film protects the object to be coated and at the same time gives the object to be coated a beautiful appearance.
  • an electrodeposition coating film formed by electrodeposition coating is widely used as a coating film for imparting corrosion resistance to an object to be coated. According to electrodeposition coating, even an object to be coated having a complicated shape can be coated in detail. Further, according to electrodeposition coating, the object to be coated can be automatically and continuously coated. Therefore, electrodeposition coating has been widely put into practical use as an undercoat coating method for a large and complicated object to be coated, such as an automobile body. As such electrodeposition coating, electrodeposition coating using a cationic electrodeposition coating composition is widely used.
  • the coating film is also required to have a good surface condition.
  • One of the factors that reduce the smoothness of the coating film is, for example, a phenomenon called repellent.
  • the term "hajiki” as used herein refers to surface defects (dents / holes) on the surface of the coating film that occur in a series of coating / drying steps.
  • the components (causative substances) that cause these surface defects are often unintentionally brought into the coating composition from, for example, the raw materials of the coating composition, the manufacturing equipment, the container, the base material to be coated, and the like. And it is difficult to completely eliminate such causative substances from the coating composition.
  • Patent Document 1 describes a pigment dispersion paste for electrodeposition coatings, which contains a pigment dispersion resin (A), cellulose (B), extender pigment (C) and water.
  • the extender pigment (C) has a zeta potential in the range of -10 mV to +50 mV, and the pigment dispersion paste contains cellulose (B) and the extender per 100 parts by mass of the pigment dispersion resin (A) in terms of solid content.
  • the pigment dispersion paste is described according to claim 1, wherein the pigment (C) is contained in a ratio of 0.1 to 25 parts by mass and 80 to 800 parts by mass, respectively.
  • Patent Document 1 describes that the inclusion of this pigment-dispersed paste makes it difficult for defects such as repellents and lumps to occur when used after stirring, circulation, etc. have been stopped for a long period of time.
  • Patent Document 1 The invention described in Patent Document 1 is an invention that attempts to prevent the occurrence of cissing by using a specific extender pigment (C).
  • a specific pigment as an essential component, the design range such as the color tone and the physical characteristics of the coating film of the electrodeposition coating composition may be limited. Further, in recent years, there is a tendency that a higher level of repellency prevention performance is required.
  • An object of the present invention is to solve the above technical problems, and an object of the present invention is to provide an electrodeposition coating composition having a higher level of repellency prevention performance.
  • a cationic electrodeposition coating composition containing a coating film-forming resin (A), a metal compound (B) containing a trivalent metal element, and a silicone compound (C).
  • the content of the metal compound (B) is 0.03 parts by mass or more and less than 4 parts by mass in terms of metal elements with respect to 100 parts by mass of the resin solid content of the coating film-forming resin (A).
  • the content of the silicone compound (C) is 0.005 parts by mass or more and 4.5 parts by mass or less with respect to 100 parts by mass of the resin solid content of the coating film-forming resin (A).
  • the silicone compound (C) is at least one selected from the group consisting of a polyether-modified silicone compound (C-1), a polyester-modified silicone compound (C-2), and a polyacrylic-modified silicone compound (C-3).
  • the cationic electrodeposition coating composition according to any one of the above [1] to [3].
  • the cationic electrodeposition coating composition of the present invention has good anti-repellency performance.
  • a cured electrodeposition coating film having a good coating film appearance can be formed.
  • the cationic electrodeposition coating composition contains a coating film-forming resin (A), a metal compound (B) containing a trivalent metal element, and a silicone compound (C).
  • A coating film-forming resin
  • B metal compound
  • C silicone compound
  • the cationic electrodeposition coating composition contains a coating film forming resin (A).
  • the coating film-forming resin (A) contained in the cationic electrodeposition coating composition preferably contains a resin emulsion containing an aminized resin and a curing agent.
  • Amine resin is a coating film forming resin that constitutes an electrodeposition coating film.
  • an amine-modified epoxy resin obtained by modifying the oxylan ring in the resin skeleton with an organic amine compound is preferable.
  • an amine-modified epoxy resin is prepared by opening the oxylan ring in the starting material resin molecule by reaction with an amine such as a primary amine, a secondary amine or a tertiary amine and / or an acid salt thereof.
  • a typical example of a starting material resin is a polyphenol polyglycidyl ether type epoxy resin which is a reaction product of a polycyclic phenol compound such as bisphenol A, bisphenol F, bisphenol S, phenol novolac, and cresol novolac with epichlorohydrin.
  • a polycyclic phenol compound such as bisphenol A, bisphenol F, bisphenol S, phenol novolac, and cresol novolac with epichlorohydrin.
  • an oxazolidone ring-containing epoxy resin described in JP-A-5-306327 can be mentioned.
  • These epoxy resins can be prepared by reacting a diisocyanate compound or a bisurethane compound obtained by blocking the isocyanate group of the diisocyanate compound with a lower alcohol such as methanol or ethanol with epichlorohydrin.
  • the starting material resin can be used by extending the chain with a bifunctional polyester polyol, a polyether polyol, a bisphenol, a dibasic carboxylic acid, or the like before the ring-opening reaction of the oxylan ring with amines.
  • bisphenols may be used to extend the chain before the ring-opening reaction of the oxylan ring with amines.
  • 2-ethylhexanol, nonylphenol, ethylene for some oxylan rings for the purpose of adjusting the molecular weight or amine equivalent, improving the thermal flow property, etc. before the ring opening reaction of the oxylan ring with amines.
  • Monohydroxy compounds such as glycol mono-2-ethylhexyl ether, ethylene glycol mono n-butyl ether and propylene glycol mono-2-ethylhexyl ether, and monocarboxylic acid compounds such as octyl acid may be added.
  • Examples of amines that can be used to open the oxylan ring and introduce an amino group include butylamine, octylamine, diethylamine, dibutylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine, triethylamine. , N, N-dimethylbenzylamine, N, N-dimethylethanolamine and other primary amines, secondary amines or tertiary amines and / or acid salts thereof. Further, a ketimine block primary amino group-containing secondary amine such as aminoethylethanolamine methylisobutylketimine and diethylenetriamine diketimine can also be used. These amines need to react with the oxylan ring in at least equivalent amounts in order to open all the oxylan rings.
  • the number average molecular weight of the aminized resin is preferably 1,000 or more and 5,000 or less.
  • the number average molecular weight is 1,000 or more, the physical properties such as solvent resistance and corrosion resistance of the obtained cured electrodeposition coating film are improved.
  • the number average molecular weight is 5,000 or less, the viscosity of the aminated resin can be easily adjusted to enable smooth synthesis, and the emulsified dispersion of the obtained aminated resin can be easily handled.
  • the number average molecular weight of the aminized resin is more preferably in the range of 1,600 or more and 3,200 or less.
  • the number average molecular weight is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (GPC).
  • the amine value of the amination resin is preferably in the range of 20 mgKOH / g or more and 100 mgKOH / g or less.
  • the amine value of the aminized resin is 20 mgKOH / g or more, the emulsion dispersion stability of the aminated resin in the electrodeposition coating composition becomes good.
  • the amine value is 100 mgKOH / g or less, the amount of amino groups in the cured electrodeposition coating film becomes appropriate, and there is no possibility that the water resistance of the coating film is lowered.
  • the amine value of the amination resin is more preferably in the range of 20 mgKOH / g or more and 80 mgKOH / g or less.
  • the hydroxyl value of the aminized resin is preferably in the range of 50 mgKOH / g or more and 400 mgKOH / gmgKOH / g or less.
  • the hydroxyl value of the aminized resin is more preferably in the range of 100 mgKOH / g or more and 300 mgKOH / g or less.
  • the number average molecular weight is 1,000 or more and 5,000 or less
  • the amine value is 20 mgKOH / g or more and 100 mgKOH / g or less
  • the hydroxyl value is 50 mgKOH / g or more and 400 mgKOH /.
  • an aminized resin having a different amine value and / or hydroxyl value may be used in combination, if necessary.
  • the average amine value and average hydroxyl value calculated based on the mass ratio of the aminating resin used are within the above numerical range. preferable.
  • the aminating resin to be used in combination includes an amine resin having an amine value of 20 mgKOH / g or more and 50 mgKOH / g or less and a hydroxyl value of 50 mgKOH / g or more and 300 mgKOH / g or less, and an amine value of 50 mgKOH / g.
  • Aminated resins having g or more and 200 mgKOH / g or less and a hydroxyl value of 200 mgKOH / g or more and 500 mgKOH / g or less are preferable.
  • the core portion of the emulsion becomes more hydrophobic and the shell portion becomes hydrophilic, so that there is an advantage that excellent corrosion resistance can be imparted.
  • the aminized resin may contain an amino group-containing acrylic resin, an amino group-containing polyester resin, and the like, if necessary.
  • the resin emulsion contains a hardener.
  • a blocked isocyanate curing agent is preferably used.
  • the blocked isocyanate curing agent can be prepared by blocking the polyisocyanate with a blocking agent.
  • polyisocyanates examples include aliphatic diisocyanates such as hexamethylene diisocyanate (including trimer), tetramethylene diisocyanate and trimethylhexamethylene diisocyanate; and fats such as isophorone diisocyanate and 4,4'-methylenebis (cyclohexylisocyanate).
  • aliphatic diisocyanates such as hexamethylene diisocyanate (including trimer), tetramethylene diisocyanate and trimethylhexamethylene diisocyanate
  • fats such as isophorone diisocyanate and 4,4'-methylenebis (cyclohexylisocyanate).
  • Cyclic polyisocyanate aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate; modified products of these diisocyanates (urethane products, carbodiimide, uretdione, uretonimine, burette and / or isocyanurate modification Things, etc.).
  • aromatic diisocyanates such as 4,4'-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate
  • modified products of these diisocyanates urethane products, carbodiimide, uretdione, uretonimine, burette and / or isocyanurate modification Things, etc.
  • blocking agents are monohydric alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenolcarbinol, methylphenylcarbinol; ethylene glycol monohexyl.
  • Cellosolves such as ether, ethylene glycol mono2-ethylhexyl ether; polyether-type both-terminal diols such as polyethylene glycol, polypropylene glycol, polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol, 1,4-butanediol, etc.
  • Polyester-type double-ended polyols obtained from diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid; phenols such as para-t-butylphenol and cresol; dimethylketooxime and methylethylketooxime , Oxims such as methylisobutylketooxime, methylamylketooxym, cyclohexanone oxime; and lactams typified by ⁇ -caprolactam and ⁇ -butyrolactam are preferably used.
  • dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, and sebacic acid
  • phenols such as para-t-butylphenol and cresol
  • dimethylketooxime and methylethylketooxime Oxims such as methylisobutylketooxime, methylamy
  • the blocking rate of the blocked isocyanate curing agent is preferably 100%. This has the advantage that the storage stability of the electrodeposited coating composition is improved.
  • the blocked isocyanate curing agent it is preferable to use a curing agent prepared by blocking an aliphatic diisocyanate with a blocking agent and a curing agent prepared by blocking an aromatic diisocyanate with a blocking agent.
  • the blocked isocyanate curing agent preferentially reacts with the primary amine of the amination resin, and further reacts with the hydroxyl group to cure.
  • the curing agent at least one curing agent selected from the group consisting of organic curing agents such as melamine resin or phenol resin, silane coupling agents, and metal curing agents may be used in combination with the blocked isocyanate curing agent.
  • a resin emulsion is prepared by dissolving each of an aminized resin and a curing agent in an organic solvent to prepare a solution, mixing these solutions, and then neutralizing with a neutralizing acid.
  • the neutralizing acid include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid and acetic acid.
  • the content of the curing agent is sufficient to give a good cured coating by reacting with an active hydrogen-containing functional group such as a primary amino group, a secondary amino group or a hydroxyl group in the aminating resin during curing. Needed.
  • the content of the curing agent is preferably 90/10 to 50/50, more preferably 80/20 to 65/35 in terms of the solid content mass ratio (amined resin / curing agent) of the aminating resin and the curing agent. The range.
  • the solid content of the resin emulsion is usually 25% by mass or more and 50% by mass or less, and particularly preferably 35% by mass or more and 45% by mass or less with respect to the total amount of the resin emulsion.
  • the "solid content of the resin emulsion” means the masses of all the components contained in the resin emulsion that remain solid even after the removal of the solvent. Specifically, it means the total mass of the aminating resin, the curing agent and other solid components added as needed in the resin emulsion.
  • the neutralizing acid is preferably used in an amount of 10% or more and 100% or less, and is used in an amount of 20% or more and 70% or less as the equivalent ratio of the neutralizing acid to the equivalent of the amino group contained in the amine resin. Is more preferable.
  • the ratio of the equivalent of the neutralizing acid to the equivalent of the amino group of the aminated resin is defined as the neutralization rate.
  • the coating film-forming resin (A) when the coating film-forming resin (A) contains a resin emulsion containing an aminized resin and a curing agent, 100 parts by mass of the resin solid content of the coating film-forming resin means that the total of these resin solids is 100 mass by mass. It means that it is a department.
  • 100 parts by mass of the resin solid content contained in the coating film-forming resin (A) is the plurality of types of resin solids. Means that the total of is 100 parts by mass.
  • coating film-forming resin (A) examples include acrylic resin, polyester resin, urethane resin, butadiene resin, phenol resin, and xylene resin.
  • the cationic electrodeposition coating composition contains a metal compound (B) containing a trivalent metal element.
  • a metal compound (B) containing a trivalent metal element means a metal element that becomes a trivalent cation.
  • the trivalent metal element include Y, La, Ce, Nd, Pr, Yb, Bi and the like. These may be used alone or in combination of two or more. Examples of the form of the metal compound include metal oxides and metal hydroxides.
  • the metal element contained in the metal compound (B) is preferably one or more selected from the group consisting of Y, La, Ce, Nd and Bi.
  • the cationic electrodeposition coating composition contains the metal compound (B), there is an advantage that good rust prevention and curability can be obtained. Further, in the cationic electrodeposition coating composition, there is an advantage that good repellency prevention performance is achieved by using the metal compound (B) and the silicone compound (C) in combination.
  • the metal compound (B) contains a bismuth compound
  • good effect performance can be imparted to the cationic electrodeposition coating composition.
  • the bismuth compound in the cationic electrodeposition coating composition, it is not necessary to use a lead compound, an organic tin compound or the like as a curing catalyst. This makes it possible to prepare an electrodeposition coating composition that is substantially free of any tin compound or lead compound.
  • the content of the metal compound (B) is 0.03 parts by mass or more and less than 4 parts by mass in terms of metal elements with respect to 100 parts by mass of the resin solid content contained in the cationic electrodeposition coating composition. If the content of the metal compound (B) is less than 0.03 parts by mass, the balance between the appearance of the obtained cured electrodeposition coating film and the performance of preventing repellency may be lost. Further, when the content of the metal compound (B) is 4 parts by mass or more, the appearance of the obtained cured electrodeposition coating film may be inferior.
  • the content of the metal compound (B) is preferably 0.04 parts by mass or more and 3.8 parts by mass or less, and more preferably 0.05 parts by mass or more and 3.5 parts by mass or less.
  • Silicone compound (C) The cationic electrodeposition coating composition contains a silicone compound (C).
  • the SP value of the silicone compound (C) is preferably more than 10.5 and 15.0 or less.
  • the cationic electrodeposition coating composition contains both the metal compound (B) and the silicone compound (C) within a specific content range.
  • good repelling prevention property can be exhibited even when the mechanism in which the oil is present is different. Therefore, for example, good anti-repellency can be exhibited against oils derived from devices used in drying and curing steps such as indirect furnaces and drying furnaces, that is, oils that can be mixed after painting and before curing. ..
  • oils that may be mixed after painting and before curing may be mixed in a high temperature state such as near the baking temperature.
  • the coating composition contains oil, good anti-repellency can be exhibited even if the coating film is formed under the condition that the oil can remain on the object to be coated.
  • the obtained electrodeposition coating film can show a good appearance, and for example, the generation of lumps (small protrusion-like impurities) can be suppressed. Further, it can have a good coating film appearance such as having a uniform coating film surface and not causing coating unevenness.
  • the SP value of the silicone compound (C) is preferably more than 10.5 and 15.0 or less.
  • the SP value is more preferably 11.0 or more and 15.0 or less, and further preferably 12.0 or more and 15.0 or less.
  • the SP value is particularly preferably 12.3 or more and less than 15.0, and particularly preferably 12.5 or more and less than 15.0.
  • the SP value of the silicone compound (C) When the SP value of the silicone compound (C) is within such a range, the appearance of the obtained coating film is not impaired, and good anti-repellency can be obtained even if the oil invasion route is various conditions. There is an advantage to be. Further, for example, it can exhibit good adhesion to a top coat film and the like. Further, when the SP value of the silicone compound (C) is within such a range, there is an advantage that the repellency prevention performance can be satisfactorily secured, and moreover, good paint stability can be obtained. Although it should not be interpreted only in a specific theory, the SP value of the silicone compound (C) within such a range ensures good anti-repellency and appearance without impairing paint stability. It is considered that it is compatible with.
  • the SP value is an abbreviation for solubility parameter (solubility parameter), which is a measure of solubility.
  • solubility parameter is a measure of solubility. The larger the SP value, the higher the polarity, and conversely, the smaller the value, the lower the polarity.
  • the SP value can be measured by the following method [References: SUH, CLARKE, J. et al. P. S. A-1, 5, 1671 to 1681 (1967)].
  • an organic solvent is weighed in a 100 ml beaker, 10 ml of acetone is added using a whole pipette, and the mixture is dissolved by a magnetic stirrer.
  • a poor solvent is added dropwise to this sample at a measurement temperature of 20 ° C. using a 50 ml burette, and the point at which turbidity occurs is defined as the amount of addition.
  • the poor solvent ion-exchanged water is used as the high SP poor solvent, and n-hexane is used as the low SP poor solvent, and the turbidity point is measured.
  • the SP value ⁇ of the organic solvent is given by the following formula.
  • the SP value of the silicone compound (C) is the solid content mass ratio in the silicone compound (C) component using the SP value of each compound. It can be obtained by calculating the average value based on.
  • the cationic electrodeposition coating composition contains 0.005 parts by mass or more and 4.5 parts by mass or less of the silicone compound (C) with respect to 100 parts by mass of the resin solid content of the coating film forming resin (A).
  • the content of the silicone compound (C) is preferably 0.006 parts by mass or more and 4.0 parts by mass or less, and more preferably 0.008 parts by mass or more and 3.8 parts by mass or less.
  • the amount of the silicone compound (C) is within such a range, the appearance of the obtained coating film is not impaired, and various repellents having different mechanisms shown in the mixed oil repellent evaluation, the flowing oil repellent evaluation, etc. It also has good anti-repellency. Further, there is an advantage that good adhesion can be exhibited with various coating films such as a top coating film.
  • the silicone compound (C) having the above-mentioned predetermined SP value has advantages that it can exist stably in an aqueous system, can be dissolved or dispersed in an aqueous solvent, and can be easily dispersed in water by itself.
  • the fact that the silicone compound (C) can be dissolved or dispersed in an aqueous solvent means that the silicone compound (C) is mixed with the aqueous solvent in a predetermined amount shown in the present disclosure at room temperature. In the case, it means that it can be easily dissolved or uniformly dispersed.
  • the fact that it is easily dispersed in water by itself means that the silicone compound (C) can be uniformly dispersed in an aqueous solvent at room temperature without using a dispersant, a surfactant or the like.
  • the silicone compound (C) Since the silicone compound (C) has such properties, it can have good paint stability, for example, it has stability in an aqueous system. Moreover, in the production of the cationic coating composition, the silicone compound (C) can be dispersed in an aqueous solvent without being diluted with a solvent, so that the burden on the environment can be reduced.
  • the silicone compound (C) has a polysiloxane as the main skeleton.
  • polysiloxane has 3 or more and 20 or less Si atoms in the molecule, for example, 3 or more and 10 or less.
  • the silicone compound (C) has polydimethylsiloxane as the main skeleton.
  • the silicone compound (C) is at least selected from the group consisting of the polyether-modified silicone compound (C-1), the polyester-modified silicone compound (C-2) and the polyacrylic-modified silicone compound (C-3). There is one.
  • the cationic electrodeposition coating composition of the present disclosure may contain these modified silicone compounds alone or in combination. By including such a silicone compound (C), the cationic electrodeposition coating composition of the present disclosure can be provided with both better anti-repellency and better coating film appearance, and moreover. It can show good paint stability.
  • the silicone compound (C) is at least one selected from the polyether-modified silicone compound (C-1), the polyester-modified silicone compound (C-2) and the polyacrylic-modified silicone compound (C-3). And include.
  • the silicone compound (C) can have more stable hydration property.
  • the cationic electrodeposition coating composition of the present disclosure having such a silicone compound (C) can have excellent anti-repellency.
  • better paint stability can be exhibited.
  • the polyether-modified silicone compound (C-1) examples include compounds in which a polyether chain is introduced into the terminal and / or side chain of the polysiloxane.
  • the polysiloxane may further have a substituent other than the polyether chain.
  • the polyether-modified silicone compound (C-1) is a compound in which a polyether chain is introduced into a side chain of a polysiloxane, for example, polydimethylsiloxane.
  • the cationic electrodeposition coating compositions of the present disclosure have better anti-repellency, better coating appearance, eg, better coating smoothness and coating. It is possible to show effects such as no unevenness. It can also show better paint stability. Further, there is an advantage that the adhesion between the electrodeposition coating film formed from the cationic electrodeposition coating composition and the topcoat coating film or the like is improved.
  • polyester-modified silicone compound (C-2) examples include compounds in which a polyester chain is introduced into the terminal and / or side chain of the polysiloxane.
  • the polysiloxane may further have a substituent other than the polyester chain.
  • the polyester-modified silicone compound (C-2) is a compound in which a polyester chain is introduced into a side chain of polysiloxane, for example, polydimethylsiloxane.
  • Examples of the polyacrylic-modified silicone compound (C-3) include compounds in which a polyacrylic chain is introduced into the terminal and / or side chain of the polysiloxane.
  • the polysiloxane may further have a substituent other than the polyacrylic chain.
  • the polyacrylic modified silicone compound (C-3) is a compound in which a polyacrylic chain is introduced into a side chain of polysiloxane, for example, polydimethylsiloxane.
  • the cationic electrodeposition coating composition of the present disclosure can exhibit better anti-repellency and coating film appearance. It can also show better paint stability. Further, there is an advantage that the adhesion between the electrodeposition coating film formed from the cationic electrodeposition coating composition and the topcoat coating film or the like is improved.
  • the click electrodeposition coating composition may contain a pigment in addition to the above components.
  • the cationic electrodeposition coating composition contains a pigment
  • the pigment dispersion paste can be prepared by a method known to those skilled in the art.
  • Examples 1 of the preparation of such a pigment-dispersed paste include the following embodiments 1 to 3.
  • the pigment dispersion paste contains a metal compound (B), a pigment dispersion resin and a pigment;
  • the pigment dispersion paste is An embodiment prepared by mixing the metal compound (B) and the pigment-dispersed resin, and mixing the obtained mixture, the pigment-dispersed resin, and the pigment.
  • the pigment dispersion paste contains a metal compound (B), a pigment dispersion resin, a sequestering agent and a pigment;
  • the sequestering agent contains one or more selected from the group consisting of amine-modified epoxy resins having a hydroxyl value of 150 mgKOH / g or more and 650 mgKOH / g or less and an amine value of 30 mgKOH / g or more and 190 mgKOH / g or less and a polyhydric acid.
  • the above pigment dispersion paste An embodiment prepared by mixing the metal compound (B), the pigment-dispersed resin, and a sealing agent, and mixing the obtained mixture, the pigment-dispersed resin, and the pigment.
  • the pigment dispersion paste contains a metal compound (B), a pigment dispersion resin, an organic acid, a sequestering agent and a pigment;
  • the organic acid is one or more compounds selected from the group consisting of hydroxymonocarboxylic acids and sulfonic acids.
  • the sequestering agent contains one or more selected from the group consisting of amine-modified epoxy resins having a hydroxyl value of 150 mgKOH / g or more and 650 mgKOH / g or less and an amine value of 30 mgKOH / g or more and 190 mgKOH / g or less and a polyhydric acid.
  • Pigment-dispersed resin is a resin for dispersing a pigment, and is used after being dispersed in an aqueous medium.
  • a pigment dispersion resin having a cationic group such as a modified epoxy resin having at least one or more selected from a quaternary ammonium group, a tertiary sulfonium group and a primary amine group can be used.
  • aqueous solvent ion-exchanged water or water containing a small amount of alcohols is used.
  • an amine-modified epoxy resin having a hydroxyl value of 20 mgKOH / g or more and 120 mgKOH / g or less is preferably used.
  • An amine-modified epoxy resin having a hydroxyl value of 20 mgKOH / g or more and 120 mgKOH / g or less is prepared, for example, by reacting a half-block isocyanate with a hydroxyl group of an epoxy resin having a hydroxyl group to introduce a blocked isocyanate group. can do.
  • Polyepoxide is generally used as the epoxy resin. This epoxide has an average of two or more 1,2-epoxy groups in one molecule. A useful example of such a polyepoxy is the epoxy resin described above.
  • the half-blocked isocyanate used to react with the epoxy resin is prepared by partially blocking the polyisocyanate.
  • the reaction between the polyisocyanate and the blocking agent is carried out by cooling to 40 ° C. or higher and 50 ° C. or lower while dropping the blocking agent under stirring in the presence of a curing catalyst (for example, a tin-based catalyst) as required. Is preferable.
  • the above polyisocyanate is not particularly limited as long as it has two or more isocyanate groups on average in one molecule.
  • polyisocyanate that can be used in the preparation of the blocked isocyanate curing agent can be used.
  • Examples of an appropriate blocking agent for preparing the above-mentioned half-blocked isocyanate include lower aliphatic alkyl monoalcohols having 4 or more and 20 or less carbon atoms. Specific examples thereof include butyl alcohol, amyl alcohol, hexyl alcohol, 2-ethylhexyl alcohol and heptyl alcohol.
  • the reaction between the epoxy resin and the half-block isocyanate is preferably carried out at 140 ° C. for about 1 hour.
  • tertiary amine those having 1 or more and 6 or less carbon atoms can be preferably used.
  • tertiary amines include, for example, dimethylethanolamine, trimethylamine, triethylamine, dimethylbenzylamine, diethylbenzylamine, N, N-dimethylcyclohexylamine, tri-n-butylamine, diphenethylmethylamine, dimethylaniline, N- Methylmorpholine and the like can be mentioned.
  • the neutralizing acid used in combination with the above tertiary amine is not particularly limited, and specifically, it is an inorganic acid such as hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, lactic acid, or an organic acid. ..
  • the neutralizing acid is more preferably one or more acids selected from the group consisting of formic acid, acetic acid and lactic acid.
  • the reaction between the neutralizing acid salt of the tertiary amine thus obtained and the epoxy resin can be carried out by a conventional method.
  • the epoxy resin is dissolved in a solvent such as ethylene glycol monobutyl ether, the obtained solution is heated to 60 ° C. or higher and 100 ° C. or lower, and a neutralizing acid salt of a tertiary amine is added dropwise thereto to increase the acid value.
  • the reaction mixture is kept at 60 ° C. or higher and 100 ° C. or lower until the value becomes 1.
  • the amine-modified epoxy resin having a hydroxyl value of 20 mgKOH / g or more and 120 mgKOH / g or less preferably has an epoxy equivalent of 1000 or more and 1800 or less.
  • the epoxy equivalent is more preferably 1200 or more and 1700 or less.
  • the amine-modified epoxy resin having a hydroxyl value of 20 mgKOH / g or more and 120 mgKOH / g or less preferably has a number average molecular weight of 1500 or more and 2700 or less.
  • the amine-modified epoxy resin having a hydroxyl value of 20 mgKOH / g or more and 120 mgKOH / g or less preferably has a quaternary ammonium group of 35 mEq (milligram equivalent) or more and 70 mEq or less per 100 g, and a quaternary ammonium group of 35 mEq or more and 55 mEq or less per 100 g. It is more preferable to have an ammonium group.
  • the amount of the quaternary ammonium group is in the above range, there is an advantage that the pigment dispersion performance is improved and the coating workability of the electrodeposition coating composition is improved.
  • pigments usually used in electrodeposition coating compositions can be used.
  • pigments for example, commonly used inorganic and organic pigments, such as colored pigments such as titanium white (titanium dioxide), carbon black and red iron oxide; such as kaolin, talc, aluminum silicate, calcium carbonate, mica and clay.
  • Constituent pigments; iron phosphate, aluminum phosphate, calcium phosphate, aluminum tripolyphosphate, and rust preventive pigments such as aluminum phosphate, aluminum zinc phosphate, and the like.
  • the pigment is preferably used in an amount of 1% by mass or more and 30% by mass or less with respect to the resin solid content of the cationic electrodeposition coating composition.
  • Organic Acid it is more preferable to use an organic acid in the preparation of the pigment dispersion paste.
  • an organic acid used in the present invention, the above metal compound (B) and the organic acid are mixed in advance to prepare a mixture.
  • the solubility and dispersibility of the metal compound (B) are improved, thereby improving the catalytic activity and forming a coating film having excellent curability and corrosion resistance. There is an advantage that it can be done.
  • the organic acid is, for example, one or more compounds selected from the group consisting of hydroxymonocarboxylic acids and sulfonic acids.
  • hydroxycarboxylic acid include the following compounds; a) Monohydroxymonocarboxylic acids such as lactic acid and glycolic acid, which have a total carbon number of 2 or more and 5 or less, preferably 2 or more and 4 or less, particularly aliphatic monohydroxymonocarboxylic acids; b) Dihydroxymonocarboxylic acids such as dimethylolpropionic acid (DMPA) and glyceric acid having a total carbon number of 3 to 7 or less, preferably 3 or more and 6 or less, particularly aliphatic dihydroxymonocarboxylic acids.
  • DMPA dimethylolpropionic acid
  • glyceric acid having a total carbon number of 3 to 7 or less, preferably 3 or more and 6 or less, particularly aliphatic dihydroxymonocarboxylic acids.
  • the sulfonic acid is an organic sulfonic acid, and examples thereof include alkane sulfonic acids having a total carbon atom number of 1 or more and 5 or less, preferably 1 or more and 3 or less, such as methane sulfonic acid and ethane sulfonic acid.
  • organic acid it is more preferable to use one or more selected from the group consisting of lactic acid, dimethylol propionic acid and methanesulfonic acid.
  • the form of use of the organic acid is not particularly limited, and examples thereof include a solid form, a liquid form, and a solution form dissolved in a solvent (particularly an aqueous solution form).
  • the organic acid is preferably used in the form of an aqueous solution.
  • the solvent that can be used for preparing an aqueous solution of an organic acid include water such as ion-exchanged water, purified water, and distilled water, and an aqueous solvent containing water as a main component.
  • the aqueous solvent may contain, if necessary, an organic solvent (for example, a water-soluble or water-miscible organic solvent such as an alcohol, an ester, or a ketone).
  • the metal element contained in the metal compound (B) in the present invention is one or more metal elements selected from the group consisting of Y, La, Ce, Nd, Pr and Bi, all of which are trivalent cations. It is an element that becomes. Then, one or more compounds selected from the group consisting of hydroxymonocarboxylic acid and sulfonic acid, which are the organic acids, are all monovalent acids.
  • the total valence of anions produced by the organic acid is less than the total valence (that is, the number of moles of the metal element ⁇ 3).
  • the pigment dispersion paste contains the metal compound (B) and the organic acid in the above molar ratio, so that the appearance of the cured electrodeposition coating film obtained is not deteriorated.
  • excellent repellency prevention performance can be obtained.
  • the details of this mechanism are not always clear and are not bound by theory, but for the total valence of cations due to metal elements (that is, the number of moles of metal elements x 3), the number of anions due to organic acids Even when the metal compound (B) and the organic acid are contained in the electrodeposition coating composition due to the state where the total valence (the number of moles of the organic acid) is not satisfied, the electrodeposition coating composition This is thought to be because the conductivity is kept within an appropriate range.
  • a sealant is used in the preparation of the pigment dispersion paste.
  • the sequestering agent comprises one or more selected from the group consisting of amine-modified epoxy resins having a hydroxyl value of 150 mgKOH / g or more and 650 mgKOH / g or less and an amine value of 30 mgKOH / g or more and 190 mgKOH / g or less. Either one of the above may be used as the sequestering agent, or may be used in combination.
  • Amine-modified epoxy resin having a hydroxyl value of 150 mgKOH / g or more and 650 mgKOH / g or less and an amine value of 30 mgKOH / g or more and 190 mgKOH / g or less reacts an amine compound with an oxylane ring in the epoxy resin skeleton. It can be prepared by denaturing.
  • the amine-modified epoxy resin can be prepared in the same manner as the amine-modified epoxy resin of the amine-modified resin described above.
  • the amine-modified epoxy resin the amine-modified epoxy resin in the amine-modified resin may be used as it is. In the present invention, the same resin may be used or different resins may be used as the amine-modified epoxy resin and the amine-modified epoxy resin of the amine-modified resin.
  • the amine to be reacted with the oxylan ring of the epoxy resin contains 50% by mass or more of secondary amine. It is preferable that the secondary amine having 95% by mass or less and the blocked primary amine is 0% by mass or more and 30% by mass or less, and the primary amine is 0% by mass or more and 20% by mass or less.
  • the sealing performance is satisfactorily exhibited and the obtained pigment dispersion paste is obtained.
  • the dispersion stability of the epoxy is improved and an electrodeposition coating composition having excellent coating stability can be obtained.
  • the amine-modified epoxy resin having a hydroxyl value of 150 mgKOH / g or more and 650 mgKOH / g or less and an amine value of 30 mgKOH / g or more and 190 mgKOH / g or less preferably has a number average molecular weight in the range of 1,000 or more and 5,000 or less.
  • the number average molecular weight of the amine-modified epoxy resin is more preferably in the range of 2,000 or more and 3,500 or less.
  • the number average molecular weight of the amine-modified epoxy resin is 1,000 or more, the physical properties such as solvent resistance and corrosion resistance of the obtained cured electrodeposition coating film are improved.
  • the number average molecular weight of the amine-modified epoxy resin is 5,000 or less, the dispersibility and dispersion stability of the obtained pigment dispersion paste are improved.
  • the amine-modified epoxy resin having a hydroxyl value of 150 mgKOH / g or more and 650 mgKOH / g or less and an amine value of 30 mgKOH / g or more and 190 mgKOH / g or less has a milligram equivalent (mEq (B)) of a base with respect to 100 g of the resin solid content of 50 to 350. Is preferable.
  • mEq (B) of the amine-modified epoxy resin is within the above range, there is an advantage that good storage stability of the pigment-dispersed paste can be ensured.
  • the milligram equivalent (mEq (B)) of the base with respect to 100 g of the solid content of the amine-modified epoxy resin can be adjusted by the type and amount of the amine compound to be reacted in the preparation of the amine-modified epoxy resin.
  • mEq (B) is an abbreviation for mgEquivalent (base), which is the milligram equivalent of a base per 100 g of solid content of the resin.
  • base the milligram equivalent of a base per 100 g of solid content of the resin.
  • About 10 g of the solid content of the electrodeposition coating composition is precisely weighed and dissolved in about 50 ml of a solvent (THF: tetrahydrofuran), and then 7.5 ml of anhydrous acetic acid and 2.5 ml of acetic acid are added to obtain an automatic potentiometric titration.
  • solvent tetrahydrofuran
  • the base content in the amine-modified epoxy resin is quantified and measured by performing potentiometric titration with a 0.1N acetic acid perchlorate solution using a titrator (for example, manufactured by Kyoto Denshi Kogyo Co., Ltd., APB-410, etc.). be able to.
  • a titrator for example, manufactured by Kyoto Denshi Kogyo Co., Ltd., APB-410, etc.
  • an amine-modified epoxy resin having a hydroxyl value of 150 mgKOH / g or more and 650 mgKOH / g or less and an amine value of 30 mgKOH / g or more and 190 mgKOH / g or less is used, it is preferably prepared and used in the state of a resin emulsion. ..
  • One aspect of the method for preparing the resin emulsion is a method for preparing the resin emulsion in the same manner as the resin emulsion that can be used as the coating film-forming resin (A).
  • each of the amine-modified epoxy resin and the blocked isocyanate curing agent is dissolved in an organic solvent to prepare a solution, and these solutions are mixed and then dispersed in water using a neutralizing acid.
  • the amine-modified epoxy resin may be dissolved in an organic solvent to prepare a solution, which may be dispersed in water using a neutralizing acid.
  • Examples of the neutralizing acid that can be used in the preparation of the resin emulsion include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid and acetic acid.
  • organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid and acetic acid.
  • the neutralizing acid it is more preferable to use one or more acids selected from the group consisting of formic acid, acetic acid and lactic acid.
  • the amount of the amine-modified epoxy resin contained in the pigment-dispersed paste is the amount of the amine-modified epoxy resin solid content relative to 100 parts by mass of the resin solid content of the pigment-dispersed resin. It is preferably 0.02 parts by mass or more and 3 parts by mass or less, more preferably 0.03 parts by mass or more and 1 part by mass or less, and 0.06 parts by mass or more and 0.4 parts by mass or less. More preferred.
  • the amount of the amine-modified epoxy resin is within the above range, there is an advantage that the effect as a sealing agent and the curability can be ensured.
  • polyvalent acid refers to a compound having two or more monovalent acid groups or a compound having a divalent or higher acid group.
  • the polyhydric acid is preferably one or more selected from the group consisting of compounds having two or more carboxylic acid groups and compounds having phosphoric acid groups.
  • polyhydric acid for example, Compounds with 2 or more carboxylic acid groups and 2 to 6 carbon atoms, such as tartaric acid, grape acid, citric acid, malic acid, hydroxymalonic acid, malonic acid, succinic acid, glutanic acid, adipic acid, etc .; Polymers with two or more carboxylic acid groups, such as polyacrylic acid; Examples of compounds having a phosphoric acid group include phosphoric acid and condensed phosphoric acid (for example, diphosphoric acid, triphosphoric acid, polyphosphoric acid, cyclophosphoric acid, etc.).
  • condensed phosphoric acid means an inorganic compound having two or more phosphoric acid groups.
  • Condensed phosphoric acid can be prepared, for example, by a dehydration reaction of orthophosphoric acid (H 3 PO 4 ) or a similar reaction.
  • the polyvalent acid is preferably one or more selected from the group consisting of tartaric acid, citric acid, phosphoric acid, condensed phosphoric acid, malic acid and polyacrylic acid, and is preferably a group consisting of tartaric acid, citric acid and malic acid. It is more preferable that one or more selected from the above.
  • the amount of polyhydric acid contained in the pigment-dispersed paste is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.08 parts by mass or more and 5 by mass or less, based on 100 parts by mass of the resin solid content of the pigment-dispersed resin. It is more preferably less than parts by mass, and even more preferably 0.09 parts by mass or more and 3.5 parts by mass or less.
  • a sequestering agent containing the above is used.
  • the pigment dispersion paste is prepared by mixing the mixture obtained by mixing the metal compound (B) and the organic acid, the pigment dispersion resin, the sealing agent, and then the pigment. Will be done. As a result, the dispersion stability of the obtained pigment dispersion paste is improved, and an electrodeposition coating composition having excellent coating stability can be obtained.
  • the metal compound (B) is in a finely dispersed state by mixing the metal compound (B) and the organic acid in advance. Specifically, it is considered that some metal compounds (B) are dissolved in the organic acid, and some other metal compounds (B) are dispersed together with the organic acid (for example, chelate-like dispersion).
  • the organic acid for example, chelate-like dispersion.
  • the coating state of the metal compound (B) at this stage is not sufficient. Therefore, when a pigment is added, the pigment and the metal compound (B) may react with each other and the coating state may be disrupted. Therefore, it is considered that by using a sealing agent together with the pigment-dispersed resin, the pigment-dispersed resin is self-aggregated and the coating of the metal compound (B) with the loose pigment-dispersed resin becomes strong. Since this self-cohesive force is strong, there is an advantage that good dispersion stability can be obtained even if the amount of the pigment-dispersed resin is reduced by using the sealing agent together with the pigment-dispersed resin. That is, in the present specification, the sequestering agent means a component having an action of strengthening the coating performance of the pigment-dispersed resin that coats at least a part of the metal compound (B).
  • the pigment dispersion paste is prepared by a step of mixing a mixture obtained by mixing the metal compound (B) and the pigment dispersion resin, the pigment dispersion resin, and the pigment. To.
  • the metal compound (B) and the pigment dispersion resin that is, a part of the pigment dispersion resin contained in the electrodeposition coating composition
  • the pigment dispersion resin (that is, the rest of the pigment dispersion resin contained in the electrodeposition coating composition) and the pigment are mixed with the obtained mixture.
  • Mixing conditions such as temperature and stirring speed in mixing the metal compound (B) and the pigment-dispersed resin may be conditions usually performed in the production of a coating composition, for example, 10 ° C. or higher and 50 ° C. or lower, preferably 20 ° C. or higher.
  • the stirring speed can be such that a stirring flow capable of dispersing each component is generated at ° C. or higher and 40 ° C. or lower.
  • the stirring time can be arbitrarily selected depending on the scale of the reaction system, the stirring device, and the like.
  • the stirring time may be, for example, 5 minutes or more and 2 hours or less.
  • the mixture thus obtained is mixed with the pigment dispersion resin and the pigment.
  • the method for mixing the pigment-dispersed resin and the pigment may be any method.
  • the remaining pigment dispersion resin and pigment may be mixed in advance and then mixed with the mixture obtained from the above.
  • This mixing prepares a pigment-dispersed paste.
  • the conditions such as the temperature and the stirring speed in this mixing may be the conditions usually performed in the production of the coating composition, for example, the pigment is dispersed at 10 ° C. or higher and 50 ° C. or lower, preferably 20 ° C. or higher and 40 ° C. or lower.
  • the stirring speed can be such that a stirring flow is generated.
  • the stirring time is preferably, for example, until the dispersed particle size of the pigment is 10 ⁇ m or less.
  • the dispersed particle size of the pigment can be confirmed by measuring the volume average particle size of the pigment.
  • the pigment dispersion paste is a mixture obtained by mixing the metal compound (B), the pigment dispersion resin, and a sealing agent, and the pigment dispersion resin and the pigment are mixed. Prepared by the process.
  • the metal compound (B), the pigment dispersion resin (that is, a part of the pigment dispersion resin contained in the electrodeposition coating composition), and the sealing agent are mixed.
  • the sequestering agent is preferably added after mixing the metal compound (B) and the pigment-dispersed resin.
  • the pigment-dispersed resin (that is, the rest of the pigment-dispersed resin contained in the electrodeposition coating composition) and the pigment are mixed with the obtained mixture.
  • the method for mixing the pigment-dispersed resin and the pigment with respect to the obtained mixture may be any method.
  • the remaining pigment dispersion resin and pigment may be mixed in advance and then mixed with the mixture obtained from the above.
  • the mixing conditions such as the mixing temperature and the stirring speed in this embodiment may be the conditions normally performed in the production of the coating composition, and more specifically, the same conditions as those in the above-mentioned Example 1.
  • the pigment dispersion paste is prepared by first mixing the metal compound (B) and the organic acid in advance, and then the obtained mixture, the metal compound (B), and the pigment dispersion resin. It is prepared by a step of mixing the mixture obtained by mixing the sequestering agent, the pigment dispersion resin, and the pigment.
  • the metal compound (B) and the organic acid are mixed prior to other components to prepare a mixture.
  • the solubility and dispersibility of the metal compound (B) are improved.
  • the catalytic activity is improved, and a coating film having excellent curability and corrosion resistance can be formed.
  • the particles of the metal compound (B) are dispersed by stirring in an organic acid aqueous solution obtained by mixing the organic acid and a solvent (particularly an aqueous solvent). It can be done by letting.
  • the conditions such as the temperature and the stirring speed in the mixing may be the conditions usually performed in the production of the coating composition, for example, at a stirring speed of 10 ° C. or higher and 30 ° C. or lower, preferably at room temperature, so that a stirring flow is generated. It can be carried out.
  • the stirring time can be appropriately selected according to the size of the reaction system, and can be selected, for example, in the range of 0.1 hours or more and 24 hours or less.
  • the mixture thus obtained, the pigment dispersion resin, and the sequestering agent are mixed to prepare a dispersion.
  • the mixing order of the mixture, the pigment dispersion resin and the sealing agent may be arbitrary.
  • the above mixture, pigment dispersion resin and sequestering agent may be added and mixed at the same time, the sequestering agent may be added after mixing the mixture and the pigment dispersion resin, and the pigment dispersion resin may be added after the mixture and the sequestering agent are mixed. May be added.
  • Conditions such as temperature and stirring speed in this mixing may be conditions usually performed in the production of a coating composition, for example, at 10 ° C. or higher and 50 ° C. or lower, preferably 20 ° C. or higher and 40 ° C.
  • the stirring speed can be such that a stirring flow capable of dispersing the resin and the sequestering agent is generated.
  • the stirring time can be arbitrarily selected depending on the scale of the reaction system, the stirring device, and the like. The stirring time may be, for example, 5 minutes or more and 1 hour or less.
  • a pigment dispersion paste is prepared by mixing a pigment with a dispersion liquid prepared by mixing a metal compound (B), a pigment dispersion resin and a sealing agent.
  • the conditions such as the temperature and the stirring speed in this mixing may be the conditions usually performed in the production of the coating composition, for example, the pigment is dispersed at 10 ° C. or higher and 50 ° C. or lower, preferably 20 ° C. or higher and 40 ° C. or lower.
  • the stirring speed can be such that a stirring flow is generated.
  • the stirring time is preferably, for example, until the dispersed particle size of the pigment is 10 ⁇ m or less.
  • the dispersed particle size of the pigment can be confirmed by measuring the volume average particle size of the pigment.
  • the cationic electrodeposition coating composition can be prepared by mixing the coating film forming resin (A) and the pigment dispersion paste.
  • the solid content of the cationic electrodeposition coating composition is preferably 1% by mass or more and 30% by mass or less with respect to the total amount of the electrodeposition coating composition.
  • the pH of the cationic electrodeposition coating composition is preferably 4.5 or more and 7 or less.
  • the pH of the electrodeposition coating composition can be set in the above range by adjusting the amount of neutralizing acid used, the amount of free acid added, and the like.
  • the pH of the electrodeposition coating composition can be measured using a commercially available pH meter having a temperature compensation function.
  • the milligram equivalent (mEq (A)) of the acid with respect to 100 g of the solid content of the electrodeposition coating composition is preferably 40 or more and 120 or less.
  • the milligram equivalent of acid (mEq (A)) with respect to 100 g of the resin solid content of the electrodeposition coating composition can be adjusted by the amount of neutralized acid and the amount of free acid.
  • mEq (A) is an abbreviation for mgEquivalent (acid), which is the total of milligram equivalents of all acids per 100 g of solid content of paint.
  • This mEq (A) is obtained by precisely weighing about 10 g of the solid content of the electrodeposition coating composition, dissolving it in about 50 ml of a solvent (THF: tetrahydrofuran), and then performing potentiometric titration using a 1 / 10N NaOH solution. , The amount of acid contained in the electrodeposition coating composition can be quantified and measured.
  • the cationic electrodeposition coating composition is an additive generally used in the coating field, for example, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethylhexyl ether, propylene glycol monobutyl ether, dipropylene glycol mono.
  • Organic solvents such as butyl ether and propylene glycol monophenyl ether, surfactants such as anti-drying agents and antifoaming agents, viscosity modifiers such as acrylic resin fine particles, repellent inhibitors, vanadium salts, copper, iron, manganese, magnesium and calcium. If necessary, an inorganic rust preventive such as salt may be contained.
  • auxiliary complexing agents may be blended depending on the purpose.
  • These additives may be mixed at the time of preparing the coating film forming resin (A), may be mixed at the time of preparing the pigment dispersion paste, or may be a mixture of the coating film forming resin (A) and the pigment dispersion paste. It may be mixed at times or after mixing.
  • Electrodeposition coating and electrodeposition coating film formation can be performed on an object to be coated.
  • electrodeposition coating using a cationic electrodeposition coating composition an object to be coated is used as a cathode, and a voltage is applied between the cathode and the anode. As a result, the electrodeposition coating film is deposited on the object to be coated.
  • electrodeposition coating is performed by immersing the object to be coated in the electrodeposition coating composition and then applying a voltage of 50 V or more and 450 V or less.
  • the bath liquid temperature of the coating composition is usually adjusted to 10 ° C. or higher and 45 ° C. or lower.
  • the time for applying the voltage varies depending on the electrodeposition conditions, but can generally be 2 minutes or more and 5 minutes or less.
  • the film thickness of the electrodeposition coating film is such that the film thickness of the electrodeposition coating film finally obtained by heat curing is preferably 5 ⁇ m or more and 40 ⁇ m or less, and more preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the electrodeposited coating film obtained as described above is 120 ° C. or higher and 260 ° C. or lower, preferably 140 ° C. or higher and 220 ° C. or lower, and 10 minutes or longer and 30 minutes or shorter after the electrodeposition process is completed. By heating, a heat-cured electrodeposition coating film is formed.
  • objects to be coated that can be energized can be used.
  • objects to be coated include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy-based plated steel sheets, zinc-iron alloy-based plated steel sheets, and zinc-magnesium alloy-based plating.
  • the cationic electrodeposition coating composition has an advantage of exhibiting good anti-repellency by containing both the metal compound (B) and the silicone compound (C) within a specific content range.
  • the cationic electrodeposition coating composition also has an advantage that the appearance of the obtained cured electrodeposition coating film is also good.
  • IPDI isophorone diisocyanate 222.0 in a reaction vessel equipped with a stirrer, a cooling tube, a nitrogen introduction tube and a thermometer. Parts were added and diluted with 39.1 parts of methyl isobutyl ketone (MIBK), and then 0.2 parts of hedibutyltin dilaurate was added here.
  • MIBK methyl isobutyl ketone
  • pigment dispersion resin 710.0 parts of bisphenol A type epoxy resin (trade name: DER-331J, manufactured by Dow Chemical Co., Ltd.) and 289.6 parts of bisphenol A are charged in a reaction vessel, and 1 at 150 to 160 ° C. under a nitrogen atmosphere. Reacted for time. Then, after cooling to 120 ° C., 498.8 parts of the previously prepared 2-ethylhexanol half-blocked IPDI (MIBK solution) was added. The reaction mixture was stirred at 110-120 ° C. for 1 hour and 463.4 parts of ethylene glycol mono-n-butyl ether was added. The mixture was cooled to 85-95 ° C.
  • aminized resin (amine-modified epoxy resin). ..
  • the number average molecular weight of this resin is 2,560, the amine value (milligram equivalent of base to 100 g of resin solid content: mEq (B)) is 50 mgKOH / g (of which the amine value derived from primary amine is 14 mgKOH / g), and the hydroxyl group.
  • the valence was 240 mgKOH / g.
  • Production Example 3-2 Production of Block Isocyanate Hardener (2) 1340 parts of 4,4'-diphenylmethane diisocyanate and 277 parts of MIBK were charged into a reaction vessel and heated to 80 ° C. Then, 226 parts of ⁇ -caprolactam dissolved in 944 parts of butyl cellosolve was added dropwise at 80 ° C. over 2 hours. After further heating at 100 ° C. for 4 hours, it was confirmed by measurement of the IR spectrum that the absorption based on the isocyanate group had disappeared, and the mixture was allowed to cool. Then, 349 parts of MIBK was added to obtain a blocked isocyanate curing agent (2) (solid content 80%). The isocyanate base value was 251 mgKOH / g.
  • Production Example 4 Production of Amine-Modified Epoxy Resin Emulsion (1) 350 parts (solid content) of the amine-modified resin obtained in Production Example 2 and 75 parts (solid content) of the blocked isocyanate curing agent (1) obtained in Production Example 3-1. Minutes) and 75 parts (solid content) of the blocked isocyanate curing agent (2) obtained in Production Example 3-2 were mixed to add ethylene glycol mono-2-ethylhexyl ether to 3% (15 parts) of the solid content. It was added so as to become. Next, formic acid was added so that the amount of formic acid added was equivalent to a resin neutralization rate of 40% for neutralization. Then, ion-exchanged water was added to slowly dilute. Then, methyl isobutyl ketone was removed under reduced pressure so that the solid content became 40% to obtain an amine-modified epoxy resin emulsion (1).
  • Example 1 Production of pigment-dispersed paste 0.04 parts of 50% lactic acid aqueous solution and 0.05 parts of yttrium oxide were added to 125.7 parts of ion-exchanged water so that the solid content concentration of the dispersed paste was 47% by mass, and 1 at room temperature. Stir for hours and mix. To this, 81.4 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Example 2 Production of pigment-dispersed paste 0.04 parts of 50% lactic acid aqueous solution and 0.05 parts of lanthanum oxide were added to 125.7 parts of ion-exchanged water so that the solid content concentration of the dispersed paste was 47% by mass, and 1 at room temperature. Stir for hours and mix. To this, 81.4 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Example 3 Production of pigment-dispersed paste 0.04 parts of 50% lactic acid aqueous solution and 0.05 parts of cerium oxide were added to 125.7 parts of ion-exchanged water so that the solid content concentration of the dispersed paste was 47% by mass, and 1 at room temperature. Stir for hours and mix. To this, 81.4 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Example 4 Production of pigment-dispersed paste 0.04 parts of 50% lactic acid aqueous solution and 0.05 parts of neodymium oxide were added to 125.7 parts of ion-exchanged water so that the solid content concentration of the dispersed paste was 47% by mass, and 1 at room temperature. Stir for hours and mix. To this, 81.4 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Example 5 Production of pigment-dispersed paste 0.04 parts of 50% lactic acid aqueous solution and 0.05 parts of bismuth oxide were added to 125.7 parts of ion-exchanged water so that the solid content concentration of the dispersed paste was 47% by mass, and 1 at room temperature. Stir for hours and mix. To this, 81.4 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Example 6 Production of Pigment Dispersion Paste To make the solid content concentration of the dispersion paste 47% by mass, 0.006 part of a 50% lactic acid aqueous solution and 0.01 part of bismuth oxide were added to 130.4 parts of ion-exchanged water, and 1 part at room temperature. Stirred for hours. Further, 0.037 parts of a 50% aqueous lactic acid solution and 0.04 parts of lanthanum oxide were added thereto, and the mixture was stirred and mixed at room temperature for 1 hour. To this, 85.2 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Example 7 A cationic electrodeposition coating composition was produced in the same manner as in Example 1 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 8 A cationic electrodeposition coating composition was produced in the same manner as in Example 2 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 9 A cationic electrodeposition coating composition was produced in the same manner as in Example 3 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 10 A cationic electrodeposition coating composition was produced in the same manner as in Example 4 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 11 A cationic electrodeposition coating composition was produced in the same manner as in Example 5 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 12 A cationic electrodeposition coating composition was produced in the same manner as in Example 6 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 13 Examples except that 0.78 parts of a 50% lactic acid aqueous solution and 1 part of yttrium oxide were used in the production of the pigment dispersion paste, and 2.4 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 1.
  • Example 14 Examples except that 0.73 parts of a 50% lactic acid aqueous solution and 1 part of yttrium oxide were used in the production of the pigment dispersion paste, and 2.4 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 2.
  • Example 15 Examples except that 0.70 parts of a 50% lactic acid aqueous solution and 1 part of yttrium oxide were used in the production of the pigment dispersion paste, and 2.4 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 3.
  • Example 16 Examples except that 0.74 parts of a 50% lactic acid aqueous solution and 1 part of yttrium oxide were used in the production of the pigment dispersion paste, and 2.4 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 4.
  • Example 17 Examples except that 0.77 parts of a 50% lactic acid aqueous solution and 1 part of yttrium oxide were used in the production of the pigment dispersion paste, and 2.4 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 5.
  • Example 18 Production of pigment-dispersed paste 0.15 parts of 50% lactic acid aqueous solution and 0.2 parts of bismuth oxide were added to 130.1 parts of ion-exchanged water so that the solid content concentration of the dispersed paste was 47% by mass, and 1 at room temperature. Stirred for hours. Further, 0.88 parts of a 50% aqueous lactic acid solution and 0.8 parts of lanthanum oxide were added thereto, and the mixture was stirred and mixed at room temperature for 1 hour. To this, 85.2 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Example 19 A cationic electrodeposition coating composition was produced in the same manner as in Example 1 except that 2.34 parts of a 50% lactic acid aqueous solution and 3 parts of yttrium oxide were used in the production of the pigment dispersion paste.
  • Example 20 A cationic electrodeposition coating composition was produced in the same manner as in Example 2 except that 2.2 parts of a 50% lactic acid aqueous solution and 3 parts of lanthanum oxide were used in the production of the pigment dispersion paste.
  • Example 21 A cationic electrodeposition coating composition was produced in the same manner as in Example 3 except that 2.1 parts of a 50% lactic acid aqueous solution and 3 parts of cerium oxide were used in the production of the pigment dispersion paste.
  • Example 22 A cationic electrodeposition coating composition was produced in the same manner as in Example 4 except that 2.2 parts of a 50% lactic acid aqueous solution and 3 parts of neodymium oxide were used in the production of the pigment dispersion paste.
  • Example 23 A cationic electrodeposition coating composition was produced in the same manner as in Example 5 except that 2.3 parts of a 50% lactic acid aqueous solution and 3 parts of bismuth oxide were used in the production of the pigment dispersion paste.
  • Example 24 Production of Pigment Dispersion Paste Add 0.43 parts of 50% lactic acid aqueous solution and 0.6 parts of bismuth oxide to 128.1 parts of ion-exchanged water so that the solid content concentration of the dispersion paste becomes 47% by mass, and 1 at room temperature. Stirred for hours. To this, 2.6 parts of a 50% aqueous lactic acid solution and 2.4 parts of lanthanum oxide were further added, and the mixture was stirred and mixed at room temperature for 1 hour. To this, 85.2 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 13 hours at 1000 rpm.
  • Example 25 A cationic electrodeposition coating composition was produced in the same manner as in Example 19 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 26 A cationic electrodeposition coating composition was produced in the same manner as in Example 20 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 27 A cationic electrodeposition coating composition was produced in the same manner as in Example 21 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 28 A cationic electrodeposition coating composition was produced in the same manner as in Example 22 except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 29 A cationic electrodeposition coating composition was produced in the same manner as in Example 23, except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Example 30 A cationic electrodeposition coating composition was produced in the same manner as in Example 24, except that the amount of the silicone compound was changed to 7.4 parts in the production of the electrodeposition coating composition.
  • Comparative Example 1 Except for the fact that 0.019 parts of a 50% lactic acid aqueous solution and 0.025 parts of yttrium oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in Example 1.
  • Comparative Example 2 Except for the fact that 0.018 parts of a 50% lactic acid aqueous solution and 0.025 parts of lanthanum oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in Example 2.
  • Comparative Example 3 Except for the fact that 0.018 parts of a 50% lactic acid aqueous solution and 0.025 parts of cerium oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in Example 3.
  • Comparative Example 4 Except for the fact that 0.018 parts of a 50% lactic acid aqueous solution and 0.025 parts of neodymium oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in Example 4.
  • Comparative Example 5 Except for the fact that 0.019 parts of a 50% lactic acid aqueous solution and 0.025 parts of bismuth oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in Example 5.
  • Comparative Example 6 Production of Pigment Dispersion Paste Add 0.004 part of 50% lactic acid aqueous solution and 0.005 part of bismuth oxide to 131.1 parts of ion-exchanged water so that the solid content concentration of the dispersion paste becomes 47% by mass, and 1 at room temperature. Stirred for hours. Further, 0.021 parts of a 50% aqueous lactic acid solution and 0.02 parts of lanthanum oxide were added thereto, and the mixture was stirred and mixed at room temperature for 1 hour. To this, 85.2 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Comparative Example 7 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 1 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 8 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 2 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 9 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 3 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 10 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 4 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 11 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 5, except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 12 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 6 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 1.
  • Comparative Example 14 Examples except that 2.94 parts of a 50% lactic acid aqueous solution and 4 parts of lanthanum oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 2.
  • Comparative Example 15 Examples except that 2.10 parts of a 50% lactic acid aqueous solution and 4 parts of cerium oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 3.
  • Comparative Example 16 Examples except that 2.95 parts of a 50% lactic acid aqueous solution and 4 parts of neodymium oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 4.
  • Comparative Example 17 Examples except that 3.09 parts of a 50% lactic acid aqueous solution and 4 parts of bismuth oxide were used in the production of the pigment dispersion paste, and 0.008 parts of the silicone compound was used in the production of the electrodeposition coating composition.
  • a cationic electrodeposition coating composition was produced in the same manner as in 5.
  • Comparative Example 18 Production of Pigment Dispersion Paste Add 0.58 parts of 50% lactic acid aqueous solution and 0.75 parts of bismuth oxide to 127.1 parts of ion-exchanged water so that the solid content concentration of the dispersion paste becomes 47% by mass, and 1 at room temperature. Stirred for hours. To this, 3.49 parts of a 50% aqueous lactic acid solution and 3.25 parts of lanthanum oxide were further added, and the mixture was stirred and mixed at room temperature for 1 hour. To this, 85.2 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Comparative Example 19 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 13 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 20 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 14, except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 21 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 15 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 22 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 16 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 23 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 17, except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 24 A cationic electrodeposition coating composition was produced in the same manner as in Comparative Example 18 except that the amount of the silicone compound was changed to 9.72 parts in the production of the electrodeposition coating composition.
  • Comparative Example 25 Production of pigment-dispersed paste 0.6 parts of 50% lactic acid aqueous solution and 1 part of potassium hydroxide were added to 125.2 parts of ion-exchanged water so that the solid content concentration of the dispersed paste was 47% by mass, and the mixture was added at room temperature for 1 hour. Stirred and mixed. To this, 81.4 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Comparative Example 26 Production of Pigment Dispersion Paste Add 0.6 parts of 50% lactic acid aqueous solution and 1 part of calcium oxide to 125.2 parts of ion-exchanged water so that the solid content concentration of the dispersion paste becomes 47% by mass, and stir at room temperature for 1 hour. And mixed. To this, 81.4 parts (resin solid content equivalent amount) of the pigment-dispersed resin obtained in Production Example 1 was added, and the mixture was stirred at room temperature for 1 hour at 1000 rpm.
  • Electroplated Coating Composition A cationic electrodeposition coating composition was produced using the pigment dispersion paste obtained above by the same procedure as in Comparative Example 25.
  • SP 11.5, solid content 52%) composed of methyl methacrylate, n-butyl acrylate, and hydroxyethyl methacrylate as an anti-repellent agent.
  • a cationic electrodeposition coating composition was produced in the same manner as in Example 18 except that it was used.
  • a cold-rolled steel sheet (JIS G3141, SPCC-SD) was immersed in a surf cleaner EC90 (manufactured by Nippon Paint Surf Chemicals) at 50 ° C. for 2 minutes for degreasing.
  • Surf Fine GL1 manufactured by Nippon Paint Surf Chemicals
  • Surfdyne EC3200 manufactured by Nippon Paint Surf Chemicals, a zirconium chemical conversion treatment agent
  • a required amount of 2-ethylhexyl glycol was added to the cationic electrodeposition coating composition obtained above so that the film thickness of the electrodeposition coating film after curing was 20 ⁇ m. Then, after all the steel plates were embedded in the electrodeposition coating composition, the application of voltage was started immediately. An uncured electrodeposition coating film was deposited on the object to be coated (cold-rolled steel sheet) by applying a voltage under the condition that the voltage was increased for 30 seconds and held for 150 seconds after reaching 180 V. The obtained uncured electrodeposition coating film was heat-cured at 160 ° C. for 15 minutes to obtain an electrodeposition coating plate having a cured electrodeposition coating film having a film thickness of 20 ⁇ m.
  • repellency prevention (flowing oil repellency) A 10% -butyl cellosolve solution was prepared as the oil content. The above solution was added to ion-exchanged water to prepare an oil-containing aqueous solution containing 300 ppm of oil. Using the cationic electrodeposition coating compositions of the above Examples and Comparative Examples, electrodeposition coating was performed under the same voltage application conditions as above, and an uncured electrodeposition coating film was precipitated on the steel sheet. Next, a steel sheet having an uncured electrodeposition coating film was immersed in ion-exchanged water. A steel sheet having an uncured electrodeposition coating film was placed on an evaluation table having an inclination of 30 ° and allowed to stand for 3 minutes.
  • Number of repellents is 5 or less ⁇ Number of repellents is 6 or more and 15 or less ⁇ ⁇ Number of repellents is 16 or more and 30 or less and repellents are shallow and small ⁇ Number of repellents is 16 or more and 30 or less and repellents are deep and large ⁇ The number of repellents is 30 or more
  • a 10% -butyl cellosolve solution was prepared as the oil content.
  • the above solution was mixed into a 10 L electrodeposition coating composition so that the oil content was 200 ppm, and the mixture was stirred at 500 rpm for 24 hours.
  • the L-shaped steel sheet was arranged so that at least the horizontal portion (length 5 cm) of the L-shaped steel sheet obtained by bending the steel sheet into an L-shape was immersed in the electrodeposition coating composition. At this time, the L-shaped steel sheet was arranged so that the horizontal portion of the L-shaped steel sheet was horizontal to the liquid level of the electrodeposition coating composition and the vertical portion of the L-shaped steel sheet was perpendicular to the liquid level of the coating composition.
  • the dry coating film was electrodeposited to a size of 20 ⁇ m to form an uncured coating film.
  • the obtained uncured coating film was baked and cured at 160 ° C. for 15 minutes.
  • Other electrodeposition conditions are the same as the formation of the cured electrodeposition coating film prepared in the above appearance evaluation.
  • the evaluation of the repellency of the mixed oil is supposed to evaluate the repellency prevention property of the cationic electrodeposition coating composition before and during coating.
  • the surface of the coating film on the lower surface of the horizontal portion of the L-shaped steel sheet was visually observed, the number of repellents was counted, and the evaluation was performed according to the following evaluation criteria.
  • Evaluation criteria ⁇ No repellent ⁇ Number of repellents is 3 or less ⁇ ⁇ Number of repellents is 4 or more and 10 or less ⁇ Number of repellents is 11 or more and 15 or less ⁇ Number of repellents is 16 or more
  • Appearance evaluation With respect to the electrodeposition coating plate having the electrodeposition coating film obtained by the electrodeposition coating plate, the presence or absence of abnormality in the appearance of the coating film was visually evaluated.
  • the evaluation criteria are as follows. Evaluation Criteria ⁇ Has a uniform coating film appearance ⁇ ⁇ Although there are some parts that are visually recognized as uneven, it has an almost uniform coating film appearance as a whole ⁇ The coating film appearance is uneven ⁇ The appearance of the coating film is extremely uneven.
  • Comparative Examples 1 to 24 are examples in which the contents of the metal compound (B) and the silicone compound (C) are out of the above range. In these experimental examples, it was confirmed that one or both of the anti-repellency property and the appearance of the coating film were inferior.
  • Comparative Example 25 is an example in which a metal compound containing potassium (K), which is a monovalent metal element, is used.
  • Comparative Example 26 is an example in which a metal compound containing calcium (Ca), which is a divalent metal element, is used. In all of these comparative examples, it was confirmed that the repellency prevention property was inferior.
  • Comparative Example 27 is an experimental example in which an acrylic resin is used instead of the silicone compound. The SP value of the acrylic resin used in this comparative example is high, which is close to the SP value of the silicone compound used in the examples. However, in this comparative example, it was confirmed that anti-repellency could not be obtained.
  • the above cationic electrodeposition coating composition has good anti-repellency performance.
  • a cured electrodeposition coating film having a good coating film appearance can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Paints Or Removers (AREA)

Abstract

良好なハジキ防止性能を有するカチオン電着塗料組成物を提供すること。塗膜形成樹脂(A)、3価の金属元素を含む金属化合物(B)およびシリコーン化合物(C)を含むカチオン電着塗料組成物であって、上記金属化合物(B)の含有量は、上記塗膜形成樹脂(A)の樹脂固形分100質量部に対して、金属元素換算で0.03質量部以上4質量部未満であり、上記シリコーン化合物(C)の含有量は、上記塗膜形成樹脂(A)の樹脂固形分100質量部に対して0.005質量部以上4.5質量部以下である、カチオン電着塗料組成物。

Description

カチオン電着塗料組成物
 本発明はカチオン電着塗料組成物に関する。
 金属基材などの被塗物の表面には、種々の役割を持つ複数の塗膜が形成される。塗膜は、被塗物を保護すると同時に、被塗物に美しい外観を付与する。一般に、被塗物に防食性を付与する塗膜としては、電着塗装により形成される電着塗膜が広く用いられている。電着塗装によれば、複雑な形状を有する被塗物であっても細部にまで塗装を施すことができる。さらに、電着塗装によれば、被塗物に自動的かつ連続的に塗装することができる。そのため、電着塗装は、特に自動車車体などの大型で複雑な形状を有する被塗物の下塗り塗装方法として広く実用化されている。このような電着塗装として、カチオン電着塗料組成物を用いる電着塗装が広く用いられている。
 塗膜には、被塗物の防食性付与が求められることに加えて、その表面状態の良好さも求められる。塗膜の平滑性を低下させる要因の1つとして、例えばハジキと言われる現象が挙げられる。ここでいう「ハジキ」とは、一連の塗装・乾燥工程において生じる塗膜表面の表面欠陥(くぼみ・孔)を指す。これらの表面欠陥をもたらす成分(原因物質)は一般に、例えば塗料組成物の原材料、製造装置、容器、塗装する基材などから、意図せずに塗料組成物中に持ち込まれることが多い。そして、このような原因物質を塗料組成物から完全に排除することは困難である。
 例えば特開2012-092293号公報(特許文献1)には、顔料分散用樹脂(A)、セルロース(B)、体質顔料(C)及び水を含有する、電着塗料用顔料分散ペーストであって、体質顔料(C)が、-10mV~+50mVの範囲のゼータ電位を有し、前記顔料分散ペーストが、固形分換算で、顔料分散用樹脂(A)100質量部あたり、セルロース(B)及び体質顔料(C)を、それぞれ、0.1~25質量部及び80~800質量部の比率で含むことを特徴とする、前記顔料分散ペーストについて記載される(請求項1)。特許文献1には、この顔料分散ペーストが含まれることによって、攪拌、循環等が長期間に渡って停止した後に使用した際に、ハジキ、ブツ等の不具合が発生しにくくなると記載される。
特開2012-092293号公報
 上記特許文献1に記載された発明は、特定の体質顔料(C)を用いることによってハジキの発生を防ぐことを試みた発明である。一方で特定の顔料を必須成分とすることによって、電着塗料組成物の色調および塗膜物性などの設計範囲が制限される可能性もある。また近年においては、さらに高レベルのハジキ発生防止性能が求められる傾向にある。本発明は、上記技術的課題を解決することを目的とするものであり、より高レベルのハジキ発生防止性能を有する電着塗料組成物を提供することを課題とする。
 上記課題を解決するため、本発明は下記態様を提供する。
[1]
 塗膜形成樹脂(A)、3価の金属元素を含む金属化合物(B)およびシリコーン化合物(C)を含むカチオン電着塗料組成物であって、
 上記金属化合物(B)の含有量は、上記塗膜形成樹脂(A)の樹脂固形分100質量部に対して、金属元素換算で0.03質量部以上4質量部未満であり、
 上記シリコーン化合物(C)の含有量は、上記塗膜形成樹脂(A)の樹脂固形分100質量部に対して0.005質量部以上4.5質量部以下である、
カチオン電着塗料組成物。
[2]
 上記金属化合物(B)に含まれる金属元素は、Y、La、Ce、Nd、Pr、YbおよびBiからなる群から選択される1種またはそれ以上である、上記[1]に記載のカチオン電着塗料組成物。
[3]
 上記シリコーン化合物(C)のSP値は、10.5を超え15.0以下である、上記[1]または[2]に記載のカチオン電着塗料組成物。
[4]
 上記シリコーン化合物(C)は、ポリエーテル変性シリコーン化合物(C-1)、ポリエステル変性シリコーン化合物(C-2)及びポリアクリル変性シリコーン化合物(C-3)からなる群から選択される少なくとも1つである、上記[1]~[3]のいずれかに記載のカチオン電着塗料組成物。
[5]
 上記シリコーン化合物(C)が、水系溶媒中に溶解又は分散可能である、上記[1]~[4]のいずれかに記載のカチオン電着塗料組成物。
[6]
 上記[1]~[5]のいずれかに記載のカチオン電着塗料組成物に、被塗物を浸漬し、電着塗装を行い、未硬化の電着塗膜を形成すること、及び
上記未硬化の電着塗膜を加熱硬化させて、被塗物上に硬化電着塗膜を形成すること、
を包含する、硬化電着塗膜の形成方法。
 本発明のカチオン電着塗料組成物は、良好なハジキ防止性能を有する。上記カチオン電着塗料組成物を用いることによって、良好な塗膜外観を有する硬化電着塗膜を形成することができる。
 上記カチオン電着塗料組成物は、塗膜形成樹脂(A)、3価の金属元素を含む金属化合物(B)およびシリコーン化合物(C)を含む。以下、各成分について記載する。
塗膜形成樹脂(A)
 カチオン電着塗料組成物は塗膜形成樹脂(A)を含む。カチオン電着塗料組成物に含まれる塗膜形成樹脂(A)は、アミン化樹脂および硬化剤を含む樹脂エマルションを含むのが好ましい。
アミン化樹脂
 アミン化樹脂は電着塗膜を構成する塗膜形成樹脂である。アミン化樹脂として、樹脂骨格中のオキシラン環を有機アミン化合物で変性して得られるアミン変性エポキシ樹脂が好ましい。一般にアミン変性エポキシ樹脂は、出発原料樹脂分子内のオキシラン環を、1級アミン、2級アミンあるいは3級アミンおよび/またはその酸塩などのアミン類との反応によって開環して調製される。出発原料樹脂の典型例は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラックなどの多環式フェノール化合物とエピクロルヒドリンとの反応生成物であるポリフェノールポリグリシジルエーテル型エポキシ樹脂である。また他の出発原料樹脂の例として、特開平5-306327号公報に記載のオキサゾリドン環含有エポキシ樹脂を挙げることができる。これらのエポキシ樹脂は、ジイソシアネート化合物、またはジイソシアネート化合物のイソシアネート基を、メタノール、エタノールなどの低級アルコールでブロックして得られたビスウレタン化合物と、エピクロルヒドリンとの反応によって調製することができる。
 上記出発原料樹脂は、アミン類によるオキシラン環の開環反応の前に、2官能性のポリエステルポリオール、ポリエーテルポリオール、ビスフェノール類、2塩基性カルボン酸などにより鎖延長して用いることができる。特にビスフェノール類を、アミン類によるオキシラン環の開環反応前に用いて、鎖延長してもよい。
 また同じく、アミン類によるオキシラン環の開環反応の前に、分子量またはアミン当量の調節、熱フロー性の改良などを目的として、一部のオキシラン環に対して、2-エチルヘキサノール、ノニルフェノール、エチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノ-2-エチルヘキシルエーテルなどのモノヒドロキシ化合物、オクチル酸などのモノカルボン酸化合物を付加してもよい。
 オキシラン環を開環し、アミノ基を導入する際に使用し得るアミン類の例としては、ブチルアミン、オクチルアミン、ジエチルアミン、ジブチルアミン、メチルブチルアミン、モノエタノールアミン、ジエタノールアミン、N-メチルエタノールアミン、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルエタノールアミンなどの1級アミン、2級アミンまたは3級アミンおよび/もしくはその酸塩を挙げることができる。また、アミノエチルエタノールアミンメチルイソブチルケチミンなどのケチミンブロック1級アミノ基含有2級アミン、ジエチレントリアミンジケチミンも使用することができる。これらのアミン類は、全てのオキシラン環を開環させるために、オキシラン環に対して少なくとも当量で反応させる必要がある。
 アミン化樹脂の数平均分子量は、1,000以上5,000以下であるのが好ましい。数平均分子量が1,000以上であることにより、得られる硬化電着塗膜の耐溶剤性および耐食性などの物性が良好となる。一方で、数平均分子量が5,000以下であることにより、アミン化樹脂の粘度調整が容易となって円滑な合成が可能となり、また、得られたアミン化樹脂の乳化分散の取扱いが容易になる。アミン化樹脂の数平均分子量は1,600以上3,200以下の範囲であるのがより好ましい。
 なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量である。
 アミン化樹脂のアミン価は、20mgKOH/g以上100mgKOH/g以下の範囲内であるのが好ましい。アミン化樹脂のアミン価が20mgKOH/g以上であることにより、電着塗料組成物中におけるアミン化樹脂の乳化分散安定性が良好となる。一方で、アミン価が100mgKOH/g以下であることにより、硬化電着塗膜中のアミノ基の量が適正となり、塗膜の耐水性を低下させるおそれがない。アミン化樹脂のアミン価は、20mgKOH/g以上80mgKOH/g以下の範囲内であるのがより好ましい。
 アミン化樹脂の水酸基価は、50mgKOH/g以上400mgKOH/gmgKOH/g以下の範囲内であるのが好ましい。水酸基価が50mgKOH/g以上であることにより、硬化電着塗膜において硬化が良好となる。一方で、水酸基価が400mgKOH/g以下であることにより、硬化電着塗膜中に残存する水酸基の量が適正となり、塗膜の耐水性を低下させるおそれがない。アミン化樹脂の水酸基価は、100mgKOH/g以上300mgKOH/g以下の範囲内であるのがより好ましい。
 本発明の電着塗料組成物において、数平均分子量が1,000以上5,000以下であり、アミン価が20mgKOH/g以上100mgKOH/g以下であり、かつ、水酸基価が50mgKOH/g以上400mgKOH/g以下であるアミン化樹脂を用いることによって、被塗物に優れた耐食性を付与することができるという利点がある。
 アミン化樹脂としては、必要に応じて、アミン価および/または水酸基価の異なるアミン化樹脂を併用してもよい。2種以上の異なるアミン価、水酸基価のアミン化樹脂を併用する場合は、使用するアミン化樹脂の質量比に基づいて算出する平均アミン価および平均水酸基価が、上記の数値範囲であるのが好ましい。また、併用するアミン化樹脂としては、アミン価が20mgKOH/g以上50mgKOH/g以下であり、かつ、水酸基価が50mgKOH/g以上300mgKOH/g以下であるアミン化樹脂、および、アミン価が50mgKOH/g以上200mgKOH/g以下であり、かつ、水酸基価が200mgKOH/g以上500mgKOH/g以下であるアミン化樹脂が好ましい。このような組合わせを用いると、エマルションのコア部がより疎水となり、シェル部が親水となるため、優れた耐食性を付与することができるという利点がある。
 アミン化樹脂は、必要に応じて、アミノ基含有アクリル樹脂、アミノ基含有ポリエステル樹脂などを含んでもよい。
硬化剤
 上記樹脂エマルションは硬化剤を含む。硬化剤として、ブロックイソシアネート硬化剤が好適に用いられる。ブロックイソシアネート硬化剤は、ポリイソシアネートを、ブロック剤でブロック化することによって調製することができる。
 ポリイソシアネートの例としては、ヘキサメチレンジイソシアネート(3量体を含む)、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイシシアネートなどの脂肪族ジイソシアネート;イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)などの脂環式ポリイソシアネート;4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネートなどの芳香族ジイソシアネート;これらのジイソシアネートの変性物(ウレタン化物、カーボジイミド、ウレトジオン、ウレトンイミン、ビューレットおよび/またはイソシアヌレート変性物など)が挙げられる。
 ブロック剤の例としては、n-ブタノール、n-ヘキシルアルコール、2-エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノールなどの一価のアルキル(または芳香族)アルコール類;エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテルなどのセロソルブ類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールフェノールなどのポリエーテル型両末端ジオール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどのジオール類と、シュウ酸、コハク酸、アジピン酸、スベリン酸、セバシン酸などのジカルボン酸類から得られるポリエステル型両末端ポリオール類;パラ-t-ブチルフェノール、クレゾールなどのフェノール類;ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム類;およびε-カプロラクタム、γ-ブチロラクタムに代表されるラクタム類が好ましく用いられる。
 ブロックイソシアネート硬化剤のブロック化率は100%であるのが好ましい。これにより、電着塗料組成物の貯蔵安定性が良好になるという利点がある。
 ブロックイソシアネート硬化剤として、脂肪族ジイソシアネートをブロック剤でブロック化することによって調製された硬化剤と、芳香族ジイソシアネートをブロック剤でブロック化することによって調製された硬化剤とを併用することが好ましい。
 ブロックイソシアネート硬化剤は、アミン化樹脂の1級アミンと優先的に反応し、さらに水酸基と反応して硬化する。硬化剤としては、メラミン樹脂またはフェノール樹脂などの有機硬化剤、シランカップリング剤、金属硬化剤からなる群から選ばれる少なくとも一種の硬化剤を、ブロックイソシアネート硬化剤と併用してもよい。
樹脂エマルションの調製
 樹脂エマルションは、アミン化樹脂および硬化剤それぞれを、有機溶媒中に溶解させて溶液を調製し、これらの溶液を混合した後、中和酸を用いて中和することにより調製することができる。中和酸として、例えば、メタンスルホン酸、スルファミン酸、乳酸、ジメチロールプロピオン酸、ギ酸、酢酸などの有機酸が挙げられる。本発明においては、アミン化樹脂および硬化剤を含む樹脂エマルションを、ギ酸、酢酸および乳酸からなる群から選択される1種またはそれ以上の酸によって中和するのがより好ましい。
 硬化剤の含有量は、硬化時にアミン化樹脂中の1級アミノ基、2級アミノ基または水酸基などの活性水素含有官能基と反応して、良好な硬化塗膜を与えるのに十分な量が必要とされる。好ましい硬化剤の含有量は、アミン化樹脂と硬化剤との固形分質量比(アミン化樹脂/硬化剤)で表して90/10から50/50、より好ましくは80/20から65/35の範囲である。アミン化樹脂と硬化剤との固形分質量比の調整により、造膜時の塗膜(析出膜)の流動性および硬化速度が改良され、塗装外観が向上する。
 樹脂エマルションの固形分量は、通常、樹脂エマルション全量に対して25質量%以上50質量%以下であり、特に35質量%以上45質量%以下であるのが好ましい。ここで「樹脂エマルションの固形分」とは、樹脂エマルション中に含まれる成分であって、溶媒の除去によっても固形となって残存する成分全ての質量を意味する。具体的には、樹脂エマルション中に含まれる、アミン化樹脂、硬化剤および必要に応じて添加される他の固形成分の質量の総量を意味する。
 中和酸は、アミン化樹脂が有するアミノ基の当量に対する中和酸の当量比率として、10%以上100%以下となる量で用いるのが好ましく、20%以上70%以下となる量で用いるのがより好ましい。本明細書において、アミン化樹脂が有するアミノ基の当量に対する中和酸の当量比率を、中和率とする。中和率が10%以上であることにより、水への親和性が確保され、水分散性が良好となる。
 ある態様において、塗膜形成樹脂(A)がアミン化樹脂及び硬化剤を含む樹脂エマルションを含む場合、塗膜形成樹脂の樹脂固形分100質量部とは、これらの樹脂固形分の合計が100質量部であることを意味する。また、この例の他に、塗膜形成樹脂(A)が複数種の樹脂を含む場合、塗膜形成樹脂(A)に含まれる樹脂固形分の100質量部とは、複数種の樹脂固形分の合計が100質量部であることを意味する。
 塗膜形成樹脂(A)が含んでもよい他の塗膜形成樹脂成分として、例えば、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ブタジエン系樹脂、フェノール樹脂、キシレン樹脂などが挙げられる。
3価の金属元素を含む金属化合物(B)
 上記カチオン電着塗料組成物は、3価の金属元素を含む金属化合物(B)を含む。本明細書における「3価の金属元素」とは、3価の陽イオンとなる金属元素を意味する。3価の金属元素として、例えば、Y、La、Ce、Nd、Pr、Yb、Biなどが挙げられる。これらは1種のみを単独で用いてもよく、2種またはそれ以上を併用してもよい。上記金属化合物の形態として、金属酸化物、金属水酸化物などが挙げられる。
 金属化合物(B)に含まれる金属元素として、Y、La、Ce、NdおよびBiからなる群から選択される1種またはそれ以上であるのが好ましい。
 上記カチオン電着塗料組成物が上記金属化合物(B)を含むことによって、良好な防錆性および硬化性などが得られる利点がある。さらに、カチオン電着塗料組成物において、上記金属化合物(B)およびシリコーン化合物(C)が併用されることによって、良好なハジキ発生防止性能が達成される利点がある。
 例えば金属化合物(B)としてビスマス化合物を含む場合は、カチオン電着塗料組成物に対して良好な効果性能を付与することができる。カチオン電着塗料組成物にビスマス化合物が含まれることによって、硬化触媒としての鉛化合物、有機錫化合物などを用いる必要がなくなる。これにより、実質的に錫化合物および鉛化合物の何れも含まない電着塗料組成物を調製することができる。
 金属化合物(B)の含有量は、カチオン電着塗料組成物中に含まれる樹脂固形分100質量部に対して、金属元素換算で0.03質量部以上4質量部未満となる量である。金属化合物(B)の含有量が0.03質量部未満である場合は、得られる硬化電着塗膜の塗膜外観およびハジキ発生防止性能のバランスが崩れるおそれがある。また、金属化合物(B)の含有量が4質量部以上である場合は、得られる硬化電着塗膜の塗膜外観が劣るおそれがある。金属化合物(B)の含有量は、0.04質量部以上3.8質量部以下であるのが好ましく、0.05質量部以上3.5質量部以下であるのがより好ましい。
シリコーン化合物(C)
 上記カチオン電着塗料組成物は、シリコーン化合物(C)を含む。シリコーン化合物(C)のSP値は、10.5を超えて、15.0以下であるのが好ましい。
 上記カチオン電着塗料組成物は、上記金属化合物(B)およびシリコーン化合物(C)の両方を特定の含有量の範囲内で含む。これにより、例えば、後述するかけ流し油ハジキ評価および混入油ハジキ評価で示されるように、油分が存在するメカニズムが異なる場合であっても、良好なハジキ防止性を示すことができる。したがって、例えば、間接炉、乾燥炉など乾燥、硬化工程等で用いられる装置由来の油分、すなわち、塗装後、硬化前に混入し得る油分に対しても、良好なハジキ防止性を示すことができる。例えば、塗装後、硬化前に混入し得る油分は、焼き付け温度付近などの高温の状態で混入される場合がある。更に、塗料組成物に油分が混在する場合、被塗物に油分が残存し得るような条件で塗膜を形成しても、良好なハジキ防止性を示すことができる。
 その上、得られる電着塗膜は良好な外観を示すことができ、例えば、ブツ(小さな突起様の不純物)の発生も抑制することができる。更に、均一塗膜表面を有し、塗装ムラが生じない等、良好な塗膜外観を有することもできる。
 上記シリコーン化合物(C)のSP値は、10.5を超え、15.0以下であるのが好ましい。上記SP値は11.0以上15.0以下であるのがより好ましく、12.0以上15.0以下であるのがさらに好ましい。上記SP値は12.3以上15.0未満であるのが特に好ましく、12.5以上15.0未満であるのがとりわけ好ましい。
 シリコーン化合物(C)のSP値がこのような範囲内であることにより、得られた塗膜の外観を損ねず、油分の侵入経路が様々な条件であっても、良好なハジキ防止性が得られる利点がある。更に、例えば、上塗り塗膜等とも良好な密着性を示すことができる。また、シリコーン化合物(C)のSP値がこのような範囲内であることにより、ハジキ発生防止性能を良好に確保でき、その上、良好な塗料安定性を得ることができる利点がある。特定の理論に限定して解釈すべきではないが、シリコーン化合物(C)のSP値がこのような範囲内であることにより、塗料安定性を損ねることなく、良好なハジキ防止性と外観を高位に両立できるものと考えられる。
 SP値とは、solubility parameter(溶解性パラメーター)の略であり、溶解性の尺度となるものである。SP値は数値が大きいほど極性が高く、逆に数値が小さいほど極性が低いことを示す。
 例えば、SP値は次の方法によって実測することができる[参考文献:SUH、CLARKE、J.P.S.A-1、5、1671~1681(1967)]。
 サンプルとして、有機溶剤0.5gを100mlビーカーに秤量し、アセトン10mlを、ホールピペットを用いて加え、マグネティックスターラーにより溶解したものを使用する。このサンプルに対して測定温度20℃で、50mlビュレットを用いて貧溶媒を滴下し、濁りが生じた点を滴下量とする。貧溶媒は、高SP貧溶媒としてイオン交換水を用い、低SP貧溶媒としてn-ヘキサンを使用して、それぞれ濁点測定を行う。有機溶剤のSP値δは下記計算式によって与えられる。
δ=(Vml 1/2δml+Vmh 1/2δmh)/(Vml 1/2+Vmh 1/2
=V/(φ+φ
δ=φδ+φδ
Vi:溶媒の分子容(ml/mol)
φi:濁点における各溶媒の体積分率
δi:溶媒のSP値
ml:低SP貧溶媒混合系
mh:高SP貧溶媒混合系
 シリコーン化合物(C)が、複数種のシリコーン化合物(C)を含む場合、シリコーン化合物(C)のSP値は、各化合物のSP値を用いて、シリコーン化合物(C)成分中における固形分質量比を元に平均値を算出することによって、求めることができる。
 上記カチオン電着塗料組成物は、塗膜形成樹脂(A)の樹脂固形分100質量部に対して、シリコーン化合物(C)を0.005質量部以上4.5質量部以下で含む。シリコーン化合物(C)の含有量は、0.006質量部以上4.0質量部以下であるのが好ましく、0.008質量部以上3.8質量部以下であるのがさらに好ましい。
 シリコーン化合物(C)の量がこのような範囲内であることにより、得られた塗膜の外観を損ねず、混入油ハジキ評価、かけ流し油ハジキ評価などで示される、メカニズムの異なる種々のハジキに対しても、良好なハジキ防止性を有する。更に、例えば、上塗り塗膜等、種々の塗膜とも良好な密着性を示すことができる利点がある。
 上記所定のSP値を有するシリコーン化合物(C)は、水系で安定して存在でき、水系溶媒中に溶解又は分散可能であり、単体で水に容易に分散することができるなどの利点がある。本明細書において、シリコーン化合物(C)が水系溶媒中に溶解又は分散可能であるとは、上記シリコーン化合物(C)を、本開示で示される所定量で、常温にて、水系溶媒と混合した場合、容易に溶解又は均一に分散できることを意味する。また、単体で水に容易に分散するとは、分散剤、界面活性剤などを用いなくても、シリコーン化合物(C)が、常温で、水系溶媒に均一に分散できることを意味する。
 シリコーン化合物(C)がこのような性質を有することにより、良好な塗料安定性を有することができ、例えば、水系での安定性を有する。その上、カチオン塗料組成物の製造に際し、シリコーン化合物(C)を、溶剤による希釈を行なうことなく、水系溶媒に分散できるので、環境に対する負荷も低減することができる。
 ある態様において、シリコーン化合物(C)は、ポリシロキサンを主骨格として有する。例えば、ポリシロキサンは、分子中にSi原子を3個以上20個以下有し、例えば、3個以上10個以下有する。ある態様においてシリコーン化合物(C)は、ポリジメチルシロキサンを主骨格として有する。
 ある態様において、シリコーン化合物(C)は、ポリエーテル変性シリコーン化合物(C-1)、ポリエステル変性シリコーン化合物(C-2)及びポリアクリル変性シリコーン化合物(C-3)からなる群から選択される少なくとも1つである。本開示のカチオン電着塗料組成物は、これら変性シリコーン化合物を単独で含んでもよく、組合せて含んでもよい。
 このようなシリコーン化合物(C)を含むことにより、本開示のカチオン電着塗料組成物は、より良好なハジキ防止性と、より良好な塗膜外観とを共に備えることができ、その上、より良好な塗料安定性を示すことができる。
 ある態様において、シリコーン化合物(C)は、ポリエーテル変性シリコーン化合物(C-1)と、ポリエステル変性シリコーン化合物(C-2)及びポリアクリル変性シリコーン化合物(C-3)から選択される少なくとも1種とを含む。
 シリコーン化合物(C)は、このような組合せを含むことにより、より安定な水和性を備えることができる。
 また、このようなシリコーン化合物(C)を有する本開示のカチオン電着塗料組成物は、優れたハジキ防止性を有することができる。また、より良好な塗料の安定性を示すことができる。更に、カチオン電着塗料組成物から形成した電着塗膜と、上塗り塗膜等との密着性がより良好となるなどの利点がある。
 ポリエーテル変性シリコーン化合物(C-1)として、ポリシロキサンの末端および/または側鎖に、ポリエーテル鎖が導入された化合物等が挙げられる。例えば、ポリシロキサンにポリエーテル鎖以外の置換基を更に有してもよい。
 ある態様において、ポリエーテル変性シリコーン化合物(C-1)は、ポリシロキサン、例えば、ポリジメチルシロキサン等の側鎖に、ポリエーテル鎖が導入された化合物である。
 ポリエーテル変性シリコーン化合物(C-1)を含むことで、本開示のカチオン電着塗料組成物は、より優れたハジキ防止性、より優れた塗膜外観、例えば、良好な塗膜平滑性及び塗装ムラが生じない等の効果を示すことができる。また、より良好な、塗料の安定性を示すことができる。更に、カチオン電着塗料組成物から形成した電着塗膜と、上塗り塗膜等との密着性がより良好となるなどの利点がある。
 ポリエステル変性シリコーン化合物(C-2)として、ポリシロキサンの末端および/または側鎖に、ポリエステル鎖が導入された化合物等が挙げられる。例えば、ポリシロキサンにポリエステル鎖以外の置換基を更に有してもよい。
 ある態様において、ポリエステル変性シリコーン化合物(C-2)は、ポリシロキサン、例えば、ポリジメチルシロキサン等の側鎖に、ポリエステル鎖が導入された化合物である。
 ポリエステル変性シリコーン化合物(C-2)を含むことで、本開示のカチオン電着塗料組成物は、より優れたハジキ防止性、塗膜外観を示すことができる。また、より良好な、塗料の安定性を示すことができる。更に、カチオン電着塗料組成物から形成した電着塗膜と、上塗り塗膜等との密着性がより良好となるなどの利点がある。
 ポリアクリル変性シリコーン化合物(C-3)として、ポリシロキサンの末端および/または側鎖に、ポリアクリル鎖が導入された化合物等が挙げられる。例えば、ポリシロキサンにポリアクリル鎖以外の置換基を更に有してもよい。
 ある態様において、ポリアクリル変性シリコーン化合物(C-3)は、ポリシロキサン、例えば、ポリジメチルシロキサン等の側鎖に、ポリアクリル鎖が導入された化合物である。
 ポリアクリル変性シリコーン化合物(C-3)を含むことで、本開示のカチオン電着塗料組成物は、より優れたハジキ防止性、塗膜外観を示すことができる。また、より良好な、塗料の安定性を示すことができる。更に、カチオン電着塗料組成物から形成した電着塗膜と、上塗り塗膜等との密着性がより良好となるなどの利点がある。
顔料および顔料分散ペースト
 上記カチン電着塗料組成物は、上記成分に加えて顔料を含んでもよい。カチオン電着塗料組成物が顔料を含む場合は、電着塗料組成物の調製において、顔料および顔料分散剤を用いて顔料分散ペーストを調製するのが好ましい。顔料分散ペーストは、当業者において知られた方法により調製することができる。
 顔料分散ペーストの調製において、上記金属化合物(B)を分散させるのが好ましい。このような顔料分散ペーストの調製の態様例1として例えば下記態様例1から3が挙げられる。
態様例1
 顔料分散ペーストは、金属化合物(B)、顔料分散樹脂および顔料;を含み、
 上記顔料分散ペーストは、
上記金属化合物(B)と、上記顔料分散樹脂を混合し、得られた混合物と、上記顔料分散樹脂と、上記顔料とを混合する工程によって調製される、態様。

態様例2
 顔料分散ペーストは、金属化合物(B)、顔料分散樹脂、封鎖剤および顔料;を含み、
 上記封鎖剤は、水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂および多価酸からなる群から選択される1種またはそれ以上を含み、および
 上記顔料分散ペーストは、
上記金属化合物(B)と、上記顔料分散樹脂と、封鎖剤とを混合し、得られた混合物と、上記顔料分散樹脂と、上記顔料とを混合する工程によって調製される、態様。

態様例3
 顔料分散ペーストは、金属化合物(B)、顔料分散樹脂、有機酸、封鎖剤および顔料;を含み、
 上記有機酸は、ヒドロキシモノカルボン酸およびスルホン酸からなる群から選択される1種またはそれ以上の化合物であり、
 上記封鎖剤は、水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂および多価酸からなる群から選択される1種またはそれ以上を含み、および
 上記顔料分散ペーストは、
上記金属化合物(B)と、上記有機酸とを混合し、得られた混合物と、上記顔料分散樹脂と、上記封鎖剤とを混合し、次いで上記顔料とを混合する工程によって調製される、態様。
 以下、顔料分散ペーストに含まれる各成分について詳述する。
顔料分散樹脂
 顔料分散樹脂は、顔料を分散させるための樹脂であり、水性媒体中に分散されて使用される。顔料分散樹脂として、4級アンモニウム基、3級スルホニウム基および1級アミン基から選択される少なくとも1種またはそれ以上を有する変性エポキシ樹脂などの、カチオン基を有する顔料分散樹脂を用いることができる。水性溶媒としてはイオン交換水または少量のアルコール類を含む水などを用いる。
 顔料分散樹脂として、水酸基価が20mgKOH/g以上120mgKOH/g以下であるアミン変性エポキシ樹脂が好ましく用いられる。水酸基価が20mgKOH/g以上120mgKOH/g以下であるアミン変性エポキシ樹脂は、例えば、水酸基を有するエポキシ樹脂の水酸基に対して、ハーフブロックイソシアネートを反応させて、ブロックイソシアネート基を導入することによって、調製することができる。
 上記エポキシ樹脂としては、一般的にはポリエポキシドが用いられる。このエポキシドは、1分子中に平均2個以上の1,2-エポキシ基を有する。このようなポリエポキシドの有用な例として、上述のエポキシ樹脂が挙げられる。
 エポキシ樹脂と反応させるために用いられるハーフブロックイソシアネートは、ポリイソシアネートを部分的にブロックすることにより調製される。ポリイソシアネートとブロック剤との反応は、必要に応じた硬化触媒(例えばスズ系触媒など)の存在の下で、攪拌下、ブロック剤を滴下しながら40℃以上50℃以下に冷却することにより行うことが好ましい。
 上記のポリイソシアネートは、1分子中に平均で2個以上のイソシアネート基を有するものであれば特に限定されない。具体的な例としては、上記ブロックイソシアネート硬化剤の調製で用いることができるポリイソシアネートを用いることができる。
 上記のハーフブロックイソシアネートを調製するための適当なブロック化剤としては、4個以上20個以下の炭素原子を有する低級脂肪族アルキルモノアルコールが挙げられる。具体的には、ブチルアルコール、アミルアルコール、ヘキシルアルコール、2-エチルヘキシルアルコール、ヘプチルアルコールなどが挙げられる。
 上記のエポキシ樹脂とハーフブロックイソシアネートとの反応は、好ましくは140℃で約1時間保つことにより行われる。
 上記3級アミンとして、炭素数1以上6以下のものが好ましく用いることができる。3級アミンの具体例として、例えば、ジメチルエタノールアミン、トリメチルアミン、トリエチルアミン、ジメチルベンジルアミン、ジエチルベンジルアミン、N,N-ジメチルシクロヘキシルアミン、トリ-n-ブチルアミン、ジフェネチルメチルアミン、ジメチルアニリン、N-メチルモルホリンなどが挙げられる。
 さらに上記3級アミンと混合して用いられる中和酸としては、特に制限はなく、具体的には、塩酸、硝酸、リン酸、ギ酸、酢酸、乳酸のような無機酸または有機酸などである。中和酸は、ギ酸、酢酸および乳酸からなる群から選択される1種またはそれ以上の酸であるのがより好ましい。このようにして得られる3級アミンの中和酸塩とエポキシ樹脂との反応は、常法により行うことができる。例えば、エチレングリコールモノブチルエーテルなどの溶剤に上記エポキシ樹脂を溶解させ、得られた溶液を60℃以上100℃以下まで加熱し、ここへ3級アミンの中和酸塩を滴下して、酸価が1となるまで反応混合物を60℃以上100℃以下に保持して行われる。
 上記水酸基価が20mgKOH/g以上120mgKOH/g以下であるアミン変性エポキシ樹脂は、エポキシ当量が1000以上1800以下であるのが好ましい。このエポキシ当量は1200以上1700以下であるのがより好ましい。また水酸基価が20mgKOH/g以上120mgKOH/g以下であるアミン変性エポキシ樹脂は、数平均分子量が1500以上2700以下であるのが好ましい。
 上記水酸基価が20mgKOH/g以上120mgKOH/g以下であるアミン変性エポキシ樹脂は、100g当り35mEq(ミリグラム当量)以上70mEq以下の4級アンモニウム基を有するのが好ましく、100g当り35mEq以上55mEq以下の4級アンモニウム基を有するのがより好ましい。4級アンモニウム基の量が上記範囲であることによって、顔料分散性能が向上し、また、電着塗料組成物の塗装作業性が良好となる利点がある。
 顔料分散樹脂の量は、顔料分散ペーストに含まれる顔料および顔料分散樹脂の比率(固形分質量比)として、顔料/顔料分散樹脂=1/0.1から1/1.5の範囲内であるのが好ましく、顔料/顔料分散樹脂=1/0.1から1/1.1の範囲内であるのがより好ましい。
顔料
 顔料として、電着塗料組成物において通常用いられる顔料を用いることができる。顔料として、例えば、通常使用される無機顔料および有機顔料、例えば、チタンホワイト(二酸化チタン)、カーボンブラックおよびベンガラのような着色顔料;カオリン、タルク、ケイ酸アルミニウム、炭酸カルシウム、マイカおよびクレーのような体質顔料;リン酸鉄、リン酸アルミニウム、リン酸カルシウム、トリポリリン酸アルミニウム、およびリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛のような防錆顔料など、が挙げられる。
 顔料は、カチオン電着塗料組成物の樹脂固形分に対して1質量%以上30質量%以下となる量で用いるのが好ましい。
有機酸
 本発明において、顔料分散ペーストの調製において有機酸を用いるのがより好ましい。本発明において有機酸を用いる場合は、上記金属化合物(B)と有機酸とを予め混合し、混合物を調製する。金属化合物(B)と有機酸とを予め混合することによって、金属化合物(B)の溶解性および分散性が向上し、これにより触媒活性が向上し、硬化性および耐食性に優れた塗膜を形成することができるという利点がある。
 有機酸は、例えば、ヒドロキシモノカルボン酸およびスルホン酸からなる群から選択される1種またはそれ以上の化合物である。
 ヒドロキシカルボン酸としては、例えば、以下の化合物が挙げられる;
a)乳酸、グリコール酸などの、全炭素原子数2以上5以下、好ましくは2以上4以下のモノヒドロキシモノカルボン酸、特に脂肪族モノヒドロキシモノカルボン酸;
b)ジメチロールプロピオン酸(DMPA)、グリセリン酸などの、全炭素原子数3以上7以下、好ましくは3以上6以下のジヒドロキシモノカルボン酸、特に脂肪族ジヒドロキシモノカルボン酸。
 スルホン酸は有機スルホン酸であり、例えば、メタンスルホン酸、エタンスルホン酸などの全炭素原子数1以上5以下、好ましくは1以上3以下のアルカンスルホン酸が挙げられる。
 有機酸として、乳酸、ジメチロールプロピオン酸およびメタンスルホン酸からなる群から選択される1種またはそれ以上を用いるのがさらに好ましい。
 有機酸の使用形態は特に限定されず、例えば、固体形態、液体形態、溶媒に溶解された溶液形態(特に水溶液形態)が挙げられる。有機酸は水溶液の形態で用いるのが好ましい。有機酸の水溶液の調製に用いることができる溶媒として、イオン交換水、浄水、蒸留水などの水、そして水を主成分とする水性溶媒などが挙げられる。水性溶媒は、水に加えて、必要に応じた有機溶媒(例えば、アルコール、エステル、ケトンなどの、水溶性または水混和性有機溶媒など)を含んでもよい。
 本発明において、有機酸を用いる場合における、金属化合物(B)における金属のモル数と、前記有機酸のモル数との比率は、金属化合物(B):有機酸=1:0.3から1:2.7の範囲内であるのがより好ましい。本発明における金属化合物(B)に含まれる金属元素は、Y、La、Ce、Nd、PrおよびBiからなる群から選択される1種またはそれ以上の金属元素であり、全て3価の陽イオンとなる元素である。そして、上記有機酸である、ヒドロキシモノカルボン酸およびスルホン酸からなる群から選択される1種またはそれ以上の化合物は、いずれも1価の酸である。そのため、上記金属元素のモル数と有機酸のモル数との比率が、金属元素:有機酸=1:0.3から1:2.7の範囲内である場合は、金属元素による陽イオンの総価数(つまり、金属元素のモル数×3)に対して、有機酸による陰イオンの総価数(有機酸のモル数)が満たない状態である。上記比率で金属化合物(B)、そして有機酸を用いることによって、優れた塗膜外観を有する硬化塗膜を提供する、電着塗料組成物を調製することができる。
 本発明の好ましい態様において、顔料分散ペーストが、金属化合物(B)と、有機酸とを上記モル数比率で含むことによって、得られる硬化電着塗膜の塗膜外観を悪化させることなく、より優れたハジキ発生防止性能が得られることとなるという利点がある。このメカニズムの詳細は必ずしも明らかではなく、理論に拘束されるものではないが、金属元素による陽イオンの総価数(つまり、金属元素のモル数×3)に対して、有機酸による陰イオンの総価数(有機酸のモル数)が満たない状態であることによって、上記金属化合物(B)そして有機酸が電着塗料組成物中に含まれる場合であっても、電着塗料組成物の電導度が適切な範囲に保たれるためと考えられる。
 上記モル数の比率は、金属化合物(B):有機酸=1:0.5から1:2.4の範囲内であるのがより好ましく、金属化合物(B):有機酸=1:0.9から1:2.1の範囲内であるのがさらに好ましい。
封鎖剤
 本発明の好ましい1態様においては、顔料分散ペーストの調製において封鎖剤が用いられる。封鎖剤は、水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂および多価酸からなる群から選択される1種またはそれ以上を含む。封鎖剤として、上記いずれか一方を用いてもよく、併用してもよい。
  アミン変性エポキシ樹脂
 水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂は、エポキシ樹脂骨格中のオキシラン環に対して、アミン化合物を反応して変性することによって調製することができる。上記アミン変性エポキシ樹脂は、上述したアミン化樹脂のアミン変性エポキシ樹脂と同様にして調製することができる。上記アミン変性エポキシ樹脂として、アミン化樹脂におけるアミン変性エポキシ樹脂をそのまま用いてもよい。本発明において、上記アミン変性エポキシ樹脂およびアミン化樹脂のアミン変性エポキシ樹脂として、同一の樹脂を用いてもよく、また異なる樹脂を用いてもよい。
 水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂の調製において、エポキシ樹脂のオキシラン環と反応させるアミンは、2級アミンが50質量%以上95質量%以下、ブロックされた1級アミンを有する2級アミンが0質量%以上30質量%以下、1級アミンが0質量%以上20質量%以下であるのが好ましい。
 アミン変性エポキシ樹脂において、水酸基価が150mgKOH/g以上650mgKOH/g以下であり、かつ、アミン価30mgKOH/g以上190mgKOH/g以下であることによって、封鎖性能が良好に発揮され、得られる顔料分散ペーストの分散安定性が向上し、塗料安定性に優れた電着塗料組成物が得られる利点がある。
 水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂は、数平均分子量が1,000以上5,000以下の範囲であるのが好ましい。数平均分子量が上記範囲であることにより、良好な顔料分散安定性を得ることができる。上記アミン変性エポキシ樹脂の数平均分子量は、2,000以上3,500以下の範囲であるのがさらに好ましい。上記アミン変性エポキシ樹脂の数平均分子量が1,000以上であることによって、得られる硬化電着塗膜の耐溶剤性および耐食性などの物性が良好となる。また上記アミン変性エポキシ樹脂の数平均分子量が5,000以下であることによって、得られる顔料分散ペーストの分散性および分散安定性が良好となる。
 水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂は、樹脂固形分100gに対する塩基のミリグラム当量(mEq(B))が50~350であるのが好ましい。アミン変性エポキシ樹脂のmEq(B)が上記範囲内であることによって、顔料分散ペーストの良好な貯蔵安定性を確保することができる利点がある。なお、アミン変性エポキシ樹脂の固形分100gに対する塩基のミリグラム当量(mEq(B))は、アミン変性エポキシ樹脂の調製において反応させるアミン化合物の種類および量によって調整することができる。
 ここでmEq(B)とは、mg Equivalent(base)の略であり、樹脂の固形分100g当たりの塩基のミリグラム当量である。このmEq(B)は、電着塗料組成物の固形分を約10g精秤し約50mlの溶剤(THF:テトラヒドロフラン)に溶解した後、無水酢酸7.5ml、酢酸2.5mlを加え、自動電位差滴定装置(例えば京都電子工業株式会社製、APB-410など)を用いて0.1N過塩素酸酢酸溶液で電位差滴定を行うことによって、アミン変性エポキシ樹脂中の含塩基量を定量して測定することができる。
 本発明において、水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂が用いられる場合は、樹脂エマルションの状態に調製して用いられるのが好ましい。樹脂エマルションの調製方法の1態様として、塗膜形成樹脂(A)として用いることができる樹脂エマルションと同様にして調製する方法が挙げられる。具体的には、上記アミン変性エポキシ樹脂および上記ブロックイソシアネート硬化剤それぞれを、有機溶媒中に溶解させて、溶液を調製し、これらの溶液を混合した後、中和酸を用いて水中に分散させることにより、アミン変性エポキシ樹脂エマルションを調製することができる。アミン変性エポキシ樹脂エマルションの調製方法の他の1態様として、上記アミン変性エポキシ樹脂を有機溶媒中に溶解させて溶液を調製し、中和酸を用いて水中に分散させてもよい。樹脂エマルションの調製に用いることができる中和酸として、例えば、メタンスルホン酸、スルファミン酸、乳酸、ジメチロールプロピオン酸、ギ酸、酢酸などの有機酸が挙げられる。中和酸として、ギ酸、酢酸および乳酸からなる群から選択される1種またはそれ以上の酸を用いるのがより好ましい。
 封鎖剤として上記アミン変性エポキシ樹脂を用いる場合における、顔料分散ペースト中に含まれるアミン変性エポキシ樹脂の量は、顔料分散樹脂の樹脂固形分100質量部に対して、アミン変性エポキシ樹脂の樹脂固形分量として0.02質量部以上3質量部以下であるのが好ましく、0.03質量部以上1質量部以下であるのがより好ましく、0.06質量部以上0.4質量部以下であるのがさらに好ましい。アミン変性エポキシ樹脂の量が上記範囲内であることによって、封鎖剤としての効果および硬化性を確保することができる利点がある。
  多価酸
 本明細書において「多価酸」とは、1価の酸基を2またはそれ以上有する化合物もしくは2価以上の酸基を有する化合物をいう。多価酸は、2またはそれ以上のカルボン酸基を有する化合物およびリン酸基を有する化合物からなる群から選択される1種またはそれ以上であるのが好ましい。多価酸の具体例として、例えば、
 2またはそれ以上のカルボン酸基を有する炭素数2以上6以下の化合物、例えば、酒石酸、ブドウ酸、クエン酸、リンゴ酸、ヒドロキシマロン酸、マロン酸、コハク酸、グルタン酸、アジピン酸など;
 2またはそれ以上のカルボン酸基を有するポリマー、例えばポリアクリル酸など;
 リン酸基を有する化合物、例えば、リン酸、縮合リン酸(例えば二リン酸、三リン酸、ポリリン酸、シクロリン酸など)など
が挙げられる。
 本明細書において、縮合リン酸は、2またはそれ以上のリン酸基を有する無機化合物を意味する。縮合リン酸は、例えば、オルトリン酸(HPO)の脱水反応またはそれに類する反応によって調製することができる。
 多価酸として、酒石酸、クエン酸、リン酸、縮合リン酸、リンゴ酸およびポリアクリル酸からなる群から選ばれる1種またはそれ以上であるのが好ましく、酒石酸、クエン酸およびリンゴ酸からなる群から選ばれる1種またはそれ以上であるのがさらに好ましい。
 顔料分散ペースト中に含まれる多価酸の量は、顔料分散樹脂の樹脂固形分100質量部に対して0.01質量部以上10質量部以下であるのが好ましく、0.08質量部以上5質量部以下であるのがより好ましく、0.09質量部以上3.5質量部以下であるのがさらに好ましい。
 本発明の好ましい1態様において、水酸基価150mgKOH/g以上650mgKOH/g以下およびアミン価30mgKOH/g以上190mgKOH/g以下であるアミン変性エポキシ樹脂および多価酸からなる群から選択される1種またはそれ以上を含む封鎖剤が用いられる。顔料分散ペーストは、上記金属化合物(B)と上記有機酸とを混合して得られた混合物と、上記顔料分散樹脂と、上記封鎖剤とを混合し、次いで上記顔料とを混合することによって調製される。これにより、得られる顔料分散ペーストの分散安定性が向上し、塗料安定性に優れた電着塗料組成物が得られる。このメカニズムの詳細は必ずしも明らかではなく、理論に拘束されるものではないが、以下のように考えられる。
 金属化合物(B)および有機酸を予め混合することによって、金属化合物(B)は微分散状態になっていると考えられる。具体的には、一部の金属化合物(B)が有機酸と溶解し、そして他の一部の金属化合物(B)が有機酸と共に分散(例えばキレート様分散)していると考えられる。ここで、得られた混合物と顔料分散樹脂とを混合することによって、金属化合物(B)の金属成分の少なくとも一部を顔料分散樹脂が被覆し、金属化合物(B)の分散安定性がわずかに向上する。しかしながら、この段階における金属化合物(B)の被覆状態は十分でないと考えられる。そのため、顔料を加えると、顔料と金属化合物(B)とが反応し被覆状態が崩れる可能性がある。そこで、顔料分散樹脂とともに封鎖剤を用いることによって、顔料分散樹脂を自己凝集させ、緩やかだった顔料分散樹脂による金属化合物(B)の被覆が強固なものとなると考えられる。この自己凝集力は強いため、顔料分散樹脂とともに封鎖剤を用いることによって、顔料分散樹脂の量を低減しても、良好な分散安定性を得ることができる利点がある。すなわち本明細書において、封鎖剤とは、金属化合物(B)の少なくとも一部を被覆する顔料分散樹脂の被覆性能を強固なものとする作用を有する成分を意味する。
  顔料分散ペーストの調製
 上記態様例1から3の調製について順次説明する。上記態様例1においては、顔料分散ペーストは、上記金属化合物(B)と上記顔料分散樹脂とを混合して得られた混合物と、上記顔料分散樹脂と、上記顔料とを混合する工程によって調製される。
 この態様においては、最初に、金属化合物(B)と、顔料分散樹脂(すなわち、電着塗料組成物中に含まれる顔料分散樹脂の一部)とを混合する。得られた混合物に対して、顔料分散樹脂(すなわち、電着塗料組成物中に含まれる顔料分散樹脂の残り)と、顔料とを混合する。
 金属化合物(B)と、顔料分散樹脂との混合における温度および撹拌速度などの混合条件は、塗料組成物の製造において通常行われる条件であってよく、例えば10℃以上50℃以下、好ましくは20℃以上40℃以下において、各成分を分散させることができる撹拌流が生じる程度の撹拌速度において行うことができる。撹拌時間は、反応系のスケールおよび撹拌装置などに依存して任意に選択することができる。撹拌時間は、例えば、5分以上2時間以下であってよい。
 こうして得られた混合物と、顔料分散樹脂および顔料とを混合する。顔料分散樹脂および顔料の混合方法は、任意の方法であってよい。例えば、残りの顔料分散樹脂および顔料を予め混合しておき、次いで、上記より得られた混合物と混合してもよい。この混合によって、顔料分散ペーストが調製される。この混合における温度および撹拌速度などの条件は、塗料組成物の製造において通常行われる条件であってよく、例えば10℃以上50℃以下、好ましくは20℃以上40℃以下において、顔料を分散させることができる撹拌流が生じる程度の撹拌速度において行うことができる。撹拌時間は、例えば、顔料の分散粒度が10μm以下となるまで行うのが好ましい。ここで顔料の分散粒度は、顔料の体積平均粒子径を測定することによって確認することができる。
 上記態様例2において、顔料分散ペーストは、上記金属化合物(B)と、上記顔料分散樹脂と、封鎖剤とを混合して得られた混合物と、上記顔料分散樹脂と、上記顔料とを混合する工程によって調製される。
 この態様においては、最初に、上記金属化合物(B)と、上記顔料分散樹脂(すなわち、電着塗料組成物中に含まれる顔料分散樹脂の一部)と、封鎖剤とを混合する。この混合において、封鎖剤は、金属化合物(B)と顔料分散樹脂とを混合した後に加えるのが好ましい。次いで、得られた混合物に対して、顔料分散樹脂(すなわち、電着塗料組成物中に含まれる顔料分散樹脂の残り)と、顔料とを混合する。得られた混合物に対する、顔料分散樹脂および顔料の混合方法は、任意の方法であってよい。例えば、残りの顔料分散樹脂および顔料を予め混合しておき、次いで、上記より得られた混合物と混合してもよい。
 この態様における混合温度および撹拌速度などの混合条件は、塗料組成物の製造において通常行われる条件であってよく、より具体的には、上記した態様例1と同様の条件であってよい。
 上記態様例3において、顔料分散ペーストは、まず、金属化合物(B)と有機酸とを予め混合して、次いで、得られた混合物と、上記金属化合物(B)と、上記顔料分散樹脂と、封鎖剤とを混合して得られた混合物と、上記顔料分散樹脂と、上記顔料とを混合する工程によって調製される。
 金属化合物(B)と有機酸とを、他の成分に先立って混合して、混合物を調製する。金属化合物(B)と有機酸とを予め混合して混合物を調製することによって、金属化合物(B)の溶解性および分散性が向上する。これにより、触媒活性が向上し、硬化性および耐食性に優れた塗膜を形成することができる。
 金属化合物(B)と有機酸との混合は、例えば、有機酸と溶媒(特に水溶媒)とを混合して得られた有機酸水溶液中に、金属化合物(B)の粒子を、撹拌により分散させることによって行うことができる。混合における温度および撹拌速度などの条件は、塗料組成物の製造において通常行われる条件であってよく、例えば10℃以上30℃以下、好ましくは室温条件下において、撹拌流が生じる程度の撹拌速度において行うことができる。撹拌時間は、反応系の大きさに応じて適宜選択することができ、例えば、0.1時間以上24時間以下の範囲で選択することができる。
 こうして得られた混合物と、顔料分散樹脂と、封鎖剤とを混合して分散液を調製する。上記混合物、顔料分散樹脂および封鎖剤の混合順序は任意であってよい。例えば、上記混合物、顔料分散樹脂および封鎖剤を同時に添加し混合してもよく、混合物および顔料分散樹脂を混合した後に封鎖剤を添加してもよく、混合物および封鎖剤を混合した後に顔料分散樹脂を添加してもよい。この混合における温度および撹拌速度などの条件は、塗料組成物の製造において通常行われる条件であってよく、例えば10℃以上50℃以下、好ましくは20℃以上40℃以下において、各混合物、顔料分散樹脂および封鎖剤を分散させることができる撹拌流が生じる程度の撹拌速度において行うことができる。撹拌時間は、反応系のスケールおよび撹拌装置などに依存して任意に選択することができる。撹拌時間は、例えば、5分以上1時間以下であってよい。
 顔料分散樹脂の量は、顔料分散ペーストに含まれる顔料および顔料分散樹脂の比率(固形分質量比)として、顔料/顔料分散樹脂=1/0.1から1/1.5の範囲内であるのが好ましく、顔料/顔料分散樹脂=1/0.1から1/1.1の範囲内であるのがより好ましい。顔料分散樹脂の量が上記範囲内であることによって、良好な硬化性および顔料分散安定性を確保することができる利点がある。
 金属化合物(B)、顔料分散樹脂および封鎖剤の混合によって調製された分散液と、顔料とを混合することによって、顔料分散ペーストが調製される。この混合における温度および撹拌速度などの条件は、塗料組成物の製造において通常行われる条件であってよく、例えば10℃以上50℃以下、好ましくは20℃以上40℃以下において、顔料を分散させることができる撹拌流が生じる程度の撹拌速度において行うことができる。撹拌時間は、例えば、顔料の分散粒度が10μm以下となるまで行うのが好ましい。ここで顔料の分散粒度は、顔料の体積平均粒子径を測定することによって確認することができる。
電着塗料組成物の製造
 上記カチオン電着塗料組成物は、上記塗膜形成樹脂(A)および顔料分散ペーストを混合することによって調製することができる。上記塗膜形成樹脂(A)および顔料分散ペーストの混合比率は、固形分質量比率として、塗膜形成樹脂(A):顔料分散ペースト=1:0.1から1:0.4の範囲内であるのが好ましく、1:0.15から1:0.3の範囲内であるのがより好ましい。
 カチオン電着塗料組成物の固形分量は、電着塗料組成物全量に対して1質量%以上30質量%以下であるのが好ましい。
 カチオン電着塗料組成物は、pHが4.5以上7以下であることが好ましい。電着塗料組成物のpHは、用いる中和酸の量、遊離酸の添加量などの調整によって、上記範囲に設定することができる。電着塗料組成物のpHは、温度補償機能を有する市販のpHメーターを用いて測定することができる。
 電着塗料組成物の固形分100gに対する酸のミリグラム当量(mEq(A))は40以上120以下であるのが好ましい。なお、電着塗料組成物の樹脂固形分100gに対する酸のミリグラム当量(mEq(A))は、中和酸量および遊離酸の量によって調整することができる。
 ここでmEq(A)とは、mg Equivalent(acid)の略であり、塗料の固形分100g当たりのすべての酸のミリグラム当量の合計である。このmEq(A)は、電着塗料組成物の固形分を約10g精秤し約50mlの溶剤(THF:テトラヒドロフラン)に溶解した後、1/10NのNaOH溶液を用いて電位差滴定を行うことによって、電着塗料組成物中の含有酸量を定量して測定することができる。
 上記カチオン電着塗料組成物は、塗料分野において一般的に用いられている添加剤、例えば、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテルなどの有機溶媒、乾き防止剤、消泡剤などの界面活性剤、アクリル樹脂微粒子などの粘度調整剤、はじき防止剤、バナジウム塩、銅、鉄、マンガン、マグネシウム、カルシウム塩などの無機防錆剤など、を必要に応じて含んでもよい。またこれら以外に、目的に応じて公知の補助錯化剤、緩衝剤、平滑剤、応力緩和剤、光沢剤、半光沢剤、酸化防止剤、および紫外線吸収剤などを配合してもよい。これらの添加剤は、塗膜形成樹脂(A)の調製時に混合してもよく、顔料分散ペーストの調製時に混合してもよく、また、塗膜形成樹脂(A)と顔料分散ペーストとの混合時または混合後に混合してもよい。
電着塗装および電着塗膜形成
 上記カチオン電着塗料組成物を用いて、被塗物に対し電着塗装および電着塗膜形成を行うことができる。カチオン電着塗料組成物を用いる電着塗装においては、被塗物を陰極とし、陰極と陽極との間に電圧を印加する。これにより、電着塗膜が被塗物上に析出する。
 電着塗装工程において、電着塗料組成物中に被塗物を浸漬した後、50V以上450V以下の電圧を印加することによって、電着塗装が行われる。電着塗装時、塗料組成物の浴液温度は、通常10℃以上45℃以下に調節される。
 電圧を印加する時間は、電着条件によって異なるが、一般には、2分以上5分以下とすることができる。
 電着塗膜の膜厚は、加熱硬化により最終的に得られる電着塗膜の膜厚が好ましくは5μm以上40μm以下、より好ましくは10μm以上25μm以下となるような膜厚とする。
 上述のようにして得られる電着塗膜を、電着過程の終了後、そのまま、または水洗した後、120℃以上260℃以下、好ましくは140℃以上220℃以下で、10分以上30分以下加熱することによって、加熱硬化した電着塗膜が形成される。
 カチオン電着塗料組成物を塗装する被塗物としては、通電可能な種々の被塗物を用いることができる。使用できる被塗物として例えば、冷延鋼板、熱延鋼板、ステンレス、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、亜鉛-アルミニウム合金系めっき鋼板、亜鉛-鉄合金系めっき鋼板、亜鉛-マグネシウム合金系めっき鋼板、亜鉛-アルミニウム-マグネシウム合金系めっき鋼板、アルミニウム系めっき鋼板、アルミニウム-シリコン合金系めっき鋼板、錫系めっき鋼板などが挙げられる。
 上記カチオン電着塗料組成物は、上記金属化合物(B)およびシリコーン化合物(C)の両方を特定の含有量の範囲内で含むことにより、良好なハジキ防止性を示す利点がある。上記カチオン電着塗料組成物はさらに、得られる硬化電着塗膜の塗膜外観も良好であるという利点がある。
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。
 実施例及び比較例において、シリコーン化合物として、以下のものを使用した。
シリコーン化合物:TEGOWet265 Evonik製
(SP値=12.7、ポリエーテル変性シリコーン化合物、シリコーン化合物の濃度52質量%)
製造例1 顔料分散樹脂の製造
  2-エチルヘキサノールハーフブロック化イソホロンジイソシアネートの調製
 攪拌装置、冷却管、窒素導入管および温度計を装備した反応容器に、イソホロンジイソシアネート(以下、IPDIと略す)222.0部を入れ、メチルイソブチルケトン(MIBK)39.1部で希釈した後、ここヘジブチル錫ジラウレート0.2部を加えた。その後、これを50℃に昇温した後、攪拌しながら、2-エチルヘキサノール131.5部を乾燥窒素雰囲気で2時間かけて滴下し、2-エチルヘキサノールハーフブロック化IPDI(固形分90.0質量%)を得た。
  4級化剤の調製
 反応容器に、ジメチルエタノールアミン87.2部、75%乳酸水溶液117.6部およびエチレングリコールモノn-ブチルエーテル39.2部を順に加え、65℃で30分攪拌して4級化剤を調製した。
  顔料分散樹脂の製造
 ビスフェノールA型エポキシ樹脂(商品名:DER-331J、ダウケミカル社製)710.0部とビスフェノールA289.6部とを反応容器に仕込み、窒素雰囲気下、150~160℃で1時間反応させた。次いで、120℃に冷却した後、先に調製した2-エチルヘキサノールハーフブロック化IPDI(MIBK溶液)498.8部を加えた。反応混合物を110~120℃で1時間撹拌し、エチレングリコールモノn-ブチルエーテル463.4部を加えた。混合物を85~95℃に冷却し、先に調製した4級化剤196.7部を添加した。酸価が1となるまで反応混合物を85~95℃に保持した後、脱イオン水964部を加えて、目的とする顔料分散樹脂を得た(固形分50質量%)。得られた顔料分散樹脂の水酸基価は、75mgKOH/gであった。
製造例2 アミン化樹脂の製造
 メチルイソブチルケトン92部、ビスフェノールA型エポキシ樹脂(商品名:DER-331J、ダウケミカル社製)940部、ビスフェノールA382部、オクチル酸63部およびジメチルベンジルアミン2部を加え、反応容器内の温度を140℃に保持した。エポキシ当量が1110g/eqになるまで反応を行った後、反応容器内の温度が120℃になるまで冷却した。ついでジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)78部とジエタノールアミン92部との混合物を添加し、120℃で1時間反応させることにより、アミン化樹脂(アミン変性エポキシ樹脂)を得た。この樹脂の数平均分子量は2,560、アミン価(樹脂固形分100gに対する塩基のミリグラム当量:mEq(B))は50mgKOH/g(うち1級アミンに由来するアミン価は14mgKOH/g)、水酸基価は240mgKOH/gであった。
製造例3-1 ブロックイソシアネート硬化剤(1)の製造
 ヘキサメチレンジイソシアネート(HDI)1680部およびMIBK732部を反応容器に仕込み、これを60℃まで加熱した。ここに、トリメチロールプロパン346部をMEKオキシム1067部に溶解させたものを60℃で2時間かけて滴下した。さらに75℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷した。その後、MIBK27部を加えて、固形分が78%のブロックイソシアネート硬化剤(1)を得た。イソシアネート基価は252mgKOH/gであった。
製造例3-2 ブロックイソシアネート硬化剤(2)の製造
 4,4’-ジフェニルメタンジイソシアナート1340部およびMIBK277部を反応容器に仕込み、これを80℃まで加熱した。その後、ε-カプロラクタム226部をブチルセロソルブ944部に溶解させたものを80℃で2時間かけて滴下した。さらに100℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷した。その後、MIBK349部を加えて、ブロックイソシアネート硬化剤(2)を得た(固形分80%)。イソシアネート基価は251mgKOH/gであった。
製造例4 アミン変性エポキシ樹脂のエマルション(1)の製造
 製造例2で得たアミン化樹脂350部(固形分)と、製造例3-1で得たブロックイソシアネート硬化剤(1)75部(固形分)および製造例3-2で得たブロックイソシアネート硬化剤(2)75部(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15部)になるように添加した。次に、ギ酸を添加量が樹脂中和率40%相当分になるように加えて中和した。その後、イオン交換水を加えてゆっくり希釈した。次いで、固形分が40%になるように減圧下でメチルイソブチルケトンを除去して、アミン変性エポキシ樹脂のエマルション(1)を得た。
実施例1
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水125.7部に、50%乳酸水溶液0.04部および酸化イットリウム0.05部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた、顔料分散樹脂を81.4部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.6部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン45.6部、サテントン(焼成カオリン)63.6部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)369.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.015部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例2
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水125.7部に、50%乳酸水溶液0.04部および酸化ランタン0.05部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を81.4部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.6部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン45.6部、サテントン(焼成カオリン)63.7部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)369.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.015部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例3
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水125.7部に、50%乳酸水溶液0.04部および酸化セリウム0.05部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を81.4部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.6部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン45.6部、サテントン(焼成カオリン)63.7部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)369.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.015部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例4
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水125.7部に、50%乳酸水溶液0.04部および酸化ネオジム0.05部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を81.4部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.6部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン45.6部、サテントン(焼成カオリン)63.7部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)369.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.015部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例5
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水125.7部に、50%乳酸水溶液0.04部および酸化ビスマス0.05部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を81.4部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.6部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン45.6部、サテントン(焼成カオリン)63.5部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)369.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.015部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例6
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水130.4部に、50%乳酸水溶液0.006部および酸化ビスマス0.01部を加え、室温で1時間攪拌した。ここに、さらに50%乳酸水溶液0.037部および酸化ランタン0.04部を加え室温で1時間撹拌および混合した。ここに、製造例1で得られた、顔料分散樹脂を85.2部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.7部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン47.5部、サテントン(焼成カオリン)66.1部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)369.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.015部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例7
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例1と同様にして、カチオン電着塗料組成物を製造した。
実施例8
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例2と同様にして、カチオン電着塗料組成物を製造した。
実施例9
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例3と同様にして、カチオン電着塗料組成物を製造した。
実施例10
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例4と同様にして、カチオン電着塗料組成物を製造した。
実施例11
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例5と同様にして、カチオン電着塗料組成物を製造した。
実施例12
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例6と同様にして、カチオン電着塗料組成物を製造した。
実施例13
 顔料分散ペーストの製造において、50%乳酸水溶液0.78部および酸化イットリウム1部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を2.4部用いたこと以外は、実施例1と同様にして、カチオン電着塗料組成物を製造した。
実施例14
顔料分散ペーストの製造において、50%乳酸水溶液0.73部および酸化イットリウム1部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を2.4部用いたこと以外は、実施例2と同様にして、カチオン電着塗料組成物を製造した。
実施例15
 顔料分散ペーストの製造において、50%乳酸水溶液0.70部および酸化イットリウム1部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を2.4部用いたこと以外は、実施例3と同様にして、カチオン電着塗料組成物を製造した。
実施例16
 顔料分散ペーストの製造において、50%乳酸水溶液0.74部および酸化イットリウム1部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を2.4部用いたこと以外は、実施例4と同様にして、カチオン電着塗料組成物を製造した。
実施例17
 顔料分散ペーストの製造において、50%乳酸水溶液0.77部および酸化イットリウム1部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を2.4部用いたこと以外は、実施例5と同様にして、カチオン電着塗料組成物を製造した。
実施例18
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水130.1部に、50%乳酸水溶液0.15部および酸化ビスマス0.2部を加え、室温で1時間攪拌した。ここに、さらに50%乳酸水溶液0.88部および酸化ランタン0.8部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を85.2部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.7部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン47.5部、サテントン(焼成カオリン)66.1部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)375.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト92.1部およびシリコーン化合物を2.4部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例19
 顔料分散ペーストの製造において、50%乳酸水溶液2.34部および酸化イットリウム3部を用いたこと以外は、実施例1と同様にして、カチオン電着塗料組成物を製造した。
実施例20
 顔料分散ペーストの製造において、50%乳酸水溶液2.2部および酸化ランタン3部を用いたこと以外は、実施例2と同様にして、カチオン電着塗料組成物を製造した。
実施例21
 顔料分散ペーストの製造において、50%乳酸水溶液2.1部および酸化セリウム3部を用いたこと以外は、実施例3と同様にして、カチオン電着塗料組成物を製造した。
実施例22
 顔料分散ペーストの製造において、50%乳酸水溶液2.2部および酸化ネオジム3部を用いたこと以外は、実施例4と同様にして、カチオン電着塗料組成物を製造した。
実施例23
 顔料分散ペーストの製造において、50%乳酸水溶液2.3部および酸化ビスマス3部を用いたこと以外は、実施例5と同様にして、カチオン電着塗料組成物を製造した。
実施例24
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水128.1部に、50%乳酸水溶液0.43部、酸化ビスマス0.6部を加え、室温で1時間攪拌した。ここに、さらに50%乳酸水溶液2.6部および酸化ランタン2.4部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂)を85.2部(樹脂固形分換算量)加え、室温で13時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.7部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン47.5部、サテントン(焼成カオリン)63.7部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)375.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.015部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
実施例25
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例19と同様にして、カチオン電着塗料組成物を製造した。
実施例26
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例20と同様にして、カチオン電着塗料組成物を製造した。
実施例27
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例21と同様にして、カチオン電着塗料組成物を製造した。
実施例28
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例22と同様にして、カチオン電着塗料組成物を製造した。
実施例29
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例23と同様にして、カチオン電着塗料組成物を製造した。
実施例30
 電着塗料組成物の製造において、シリコーン化合物の量を7.4部に変更したこと以外は、実施例24と同様にして、カチオン電着塗料組成物を製造した。
比較例1
 顔料分散ペーストの製造において、50%乳酸水溶液0.019部および酸化イットリウム0.025部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例1と同様にして、カチオン電着塗料組成物を製造した。
比較例2
 顔料分散ペーストの製造において、50%乳酸水溶液0.018部および酸化ランタン0.025部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例2と同様にして、カチオン電着塗料組成物を製造した。
比較例3
 顔料分散ペーストの製造において、50%乳酸水溶液0.018部および酸化セリウム0.025部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例3と同様にして、カチオン電着塗料組成物を製造した。
比較例4
 顔料分散ペーストの製造において、50%乳酸水溶液0.018部および酸化ネオジム0.025部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例4と同様にして、カチオン電着塗料組成物を製造した。
比較例5
 顔料分散ペーストの製造において、50%乳酸水溶液0.019部および酸化ビスマス0.025部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例5と同様にして、カチオン電着塗料組成物を製造した。
比較例6
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水131.1部に、50%乳酸水溶液0.004部、酸化ビスマス0.005部を加え、室温で1時間攪拌した。ここに、さらに50%乳酸水溶液0.021部および酸化ランタン0.02部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を85.2部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.7部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン47.5部、サテントン(焼成カオリン)66.8部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)375.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.008部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
比較例7
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例1と同様にして、カチオン電着塗料組成物を製造した。
比較例8
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例2と同様にして、カチオン電着塗料組成物を製造した。
比較例9
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例3と同様にして、カチオン電着塗料組成物を製造した。
比較例10
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例4と同様にして、カチオン電着塗料組成物を製造した。
比較例11
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例5と同様にして、カチオン電着塗料組成物を製造した。
比較例12
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例6と同様にして、カチオン電着塗料組成物を製造した。
比較例13
 顔料分散ペーストの製造において、50%乳酸水溶液3.11部および酸化イットリウム4部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例1と同様にして、カチオン電着塗料組成物を製造した。
比較例14
 顔料分散ペーストの製造において、50%乳酸水溶液2.94部および酸化ランタン4部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例2と同様にして、カチオン電着塗料組成物を製造した。
比較例15
 顔料分散ペーストの製造において、50%乳酸水溶液2.10部および酸化セリウム4部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例3と同様にして、カチオン電着塗料組成物を製造した。
比較例16
 顔料分散ペーストの製造において、50%乳酸水溶液2.95部および酸化ネオジム4部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例4と同様にして、カチオン電着塗料組成物を製造した。
比較例17
 顔料分散ペーストの製造において、50%乳酸水溶液3.09部および酸化ビスマス4部を用いたこと、および、電着塗料組成物の製造においてシリコーン化合物を0.008部用いたこと以外は、実施例5と同様にして、カチオン電着塗料組成物を製造した。
比較例18
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水127.1部に、50%乳酸水溶液0.58部、酸化ビスマス0.75部を加え、室温で1時間攪拌した。ここに、さらに50%乳酸水溶液3.49部および酸化ランタン3.25部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を85.2部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.7部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン47.5部、サテントン(焼成カオリン)62.6部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)375.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を0.008部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
比較例19
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例13と同様にして、カチオン電着塗料組成物を製造した。
比較例20
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例14と同様にして、カチオン電着塗料組成物を製造した。
比較例21
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例15と同様にして、カチオン電着塗料組成物を製造した。
比較例22
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例16と同様にして、カチオン電着塗料組成物を製造した。
比較例23
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例17と同様にして、カチオン電着塗料組成物を製造した。
比較例24
 電着塗料組成物の製造において、シリコーン化合物の量を9.72部に変更したこと以外は、比較例18と同様にして、カチオン電着塗料組成物を製造した。
比較例25
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水125.2部に、50%乳酸水溶液0.6部および水酸化カリウム1部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を81.4部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.6部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン45.5部、サテントン(焼成カオリン)62.8部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 ステンレス容器に、イオン交換水492.8部、製造例4で調製したアミン変性エポキシ樹脂のエマルション(1)369.1部(樹脂固形分換算量、塗膜形成樹脂(A)の樹脂エマルションとして使用)、上記顔料分散ペースト91.6部およびシリコーン化合物を2.4部加えて混合した。その後、40℃で16時間エージングして、カチオン電着塗料組成物を得た。
比較例26
顔料分散ペーストの製造
 分散ペーストの固形分濃度が47質量%になるように、イオン交換水125.2部に、50%乳酸水溶液0.6部および酸化カルシウム1部を加え、室温で1時間撹拌および混合した。ここに、製造例1で得られた顔料分散樹脂を81.4部(樹脂固形分換算量)加え、室温で1時間、1000rpmにて攪拌した。
 その後、10%酒石酸水溶液2.6部を加え、次いで製造例4で得られたアミン変性エポキシ樹脂のエマルション(1)7.5部(樹脂固形分換算、アミン変性エポキシ樹脂を含むエマルション(封鎖剤)として使用)を加えて混合した。さらに顔料であるカーボン1部、酸化チタン45.5部、サテントン(焼成カオリン)62.8部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで顔料分散ペーストを得た。
電着塗料組成物の製造
 上記より得られた顔料分散ペーストを用いて、比較例25と同様の手順により、カチオン電着塗料組成物を製造した。
比較例27
 シリコーン化合物2.4部の代わりに、ハジキ防止剤として、メタクリル酸メチル、アクリル酸n-ブチル、メタクリル酸ヒドロキシエチルからなるアクリル樹脂(SP=11.5、固形分量52%)を2.4部用いたこと以外は、実施例18と同様にして、カチオン電着塗料組成物を製造した。
 上記実施例および比較例で得られたカチオン電着塗料組成物を用いて下記評価試験を行った。評価結果を下記表に示す。下記表に示される各成分の量は固形分質量部である。
硬化電着塗膜の形成
 冷延鋼板(JIS  G3141、SPCC-SD)を、サーフクリーナーEC90(日本ペイント・サーフケミカルズ社製)中に50℃で2分間浸漬して、脱脂処理した。次にサーフファインGL1(日本ペイント・サーフケミカルズ社製)に常温30秒浸漬し、次いでサーフダインEC3200(日本ペイント・サーフケミカルズ社製、ジルコニウム化成処理剤)に35℃で2分間浸漬した。その後、脱イオン水による水洗を行った。
 上記で得られたカチオン電着塗料組成物に、硬化後の電着塗膜の膜厚が20μmとなるように、2-エチルヘキシルグリコールを必要量添加した。
 その後、電着塗料組成物に鋼板を全て埋没させた後、直ちに電圧の印加を開始した。30秒間昇圧し180Vに達してから150秒間保持する条件で電圧を印加して、被塗物(冷延鋼板)上に未硬化の電着塗膜を析出させた。得られた未硬化の電着塗膜を、160℃で15分間加熱硬化させて、膜厚20μmの硬化電着塗膜を有する電着塗装板を得た。
ハジキ防止性の評価(かけ流し油ハジキ性)
 油分として、10%-ブチルセロソルブ溶液を調整した。
 上記溶液をイオン交換水に加えて、油分を300ppm含む、油分含有水溶液を調製した。
 上記実施例および比較例のカチオン電着塗料組成物を用いて、上記と同様の電圧印加条件により電着塗装し、鋼板に、未硬化の電着塗膜を析出させた。次いで、未硬化の電着塗膜を有する鋼板を、イオン交換水中に浸漬させた。
 未硬化の電着塗膜を有する鋼板を30°傾斜を有する評価台上に置き、3分静置させた。30°傾斜試験台上の未硬化の電着塗膜の上に、上記油分含有水溶液1mlを、10秒間かけて、未硬化の電着塗膜の上部から垂れ流した。その後、評価台の傾斜を90°とし、3分間静置した。次いで、未硬化の電着塗膜を190℃で15分焼きつけ硬化させた。
 硬化電着塗膜の表面を目視観察し、ハジキ数をカウントして、以下の評価基準に従って評価した。

評価基準
◎   ハジキ個数が5個以下
○   ハジキ個数が6個以上15個以下
○△  ハジキ個数が16個以上30個以下かつハジキは浅く小さい
△   ハジキ個数が16個以上30個以下かつハジキは深く大きい
×   ハジキ個数が30個以上
ハジキ防止性の評価(混入油ハジキ性)
 油分として、10%-ブチルセロソルブ溶液を調整した。
 10Lの電着塗料組成物中に、上記溶液を、油分が200ppmとなるよう混入し、500rpmで24時間撹拌した。
 鋼板をL型に折り曲げたL型鋼板のうち、少なくとも水平部(長さ5cm)が電着塗料組成物に浸かるよう、L型鋼板を配置した。このとき、L型鋼板の水平部が電着塗料組成物の液面と水平になり、L型鋼板の垂直部が塗料組成物の液面と垂直になるようにL型鋼板を配置した。L型鋼板において、乾燥塗膜が20μmとなるように電着し、未硬化塗膜を形成した。
 得られた未硬化塗膜を、160℃で15分焼きつけ硬化させた。その他の電着条件は、上記外観評価で作成した硬化電着塗膜の形成と同一である。混入油ハジキ性の評価は、カチオン電着塗料組成物の塗装前及び塗装時におけるハジキ防止性を評価することが想定されている。
 L型鋼板の水平部の下面における塗膜表面を目視観察し、ハジキ数をカウントして、以下の評価基準に従って評価した。

評価基準
◎  ハジキ無し
○  ハジキ個数が3個以下
○△ ハジキ個数が4個以上10個以下
△  ハジキ個数が11個以上15個以下
×  ハジキ個数が16個以上
外観評価(目視評価)
 上記電着塗装板により得られた電着塗膜を有する電着塗装板について、塗膜外観における異常の有無を目視で評価した。評価基準は以下の通りとした。

評価基準
○  均一な塗膜外観を有している
○△ ややムラがあると視認される部分があるものの、全体としてほぼ均一な塗膜外観を有している
△  塗膜外観が不均一である
×  塗膜外観が極めて不均一である。
外観評価(Ra(2.5))
 SJ-210 (Mitutoyo 製)を用いて、塗膜表面の算術平均粗さ(Ra(2.5))(2.5mm以上の波長を除去)を測定した。塗膜の厚さは20μmとし、測定を5回行い、その平均をとった。
 測定条件は、カットオフ波長2.5mm以上、走査速度0.5mm/秒とした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記実施例のカチオン電着塗料組成物はいずれも、かけ流しハジキおよび混入油ハジキいずれについても、良好なハジキ防止性を有することが確認された。さらに、得られる硬化電着塗膜は塗膜外観が良好であり、Ra値も低いことが確認された。
 比較例1から24は、金属化合物(B)、シリコーン化合物(C)の含有量が、上記範囲から外れる例である。これらの実験例では、ハジキ防止性および塗膜外観のうちいずれか一方または両方が劣ることが確認された。
 比較例25は、1価の金属元素であるカリウム(K)を含む金属化合物を用いた例である。比較例26は、2価の金属元素であるカルシウム(Ca)を含む金属化合物を用いた例である。これらの比較例では、いずれも、ハジキ防止性が劣ることが確認された。
 比較例27は、シリコーン化合物の代わりにアクリル樹脂を用いた実験例である。この比較例で用いたアクリル樹脂のSP値は高く、実施例で用いたシリコーン化合物のSP値に近い値である。しかしながらこの比較例では、ハジキ防止性が得られないことが確認された。
 上記カチオン電着塗料組成物は、良好なハジキ防止性能を有する。上記カチオン電着塗料組成物を用いることによって、良好な塗膜外観を有する硬化電着塗膜を形成することができる利点がある。
 本願は、2019年7月11日付けで日本国にて出願された特願2019-129248に基づく優先権を主張し、その記載内容の全てが、参照することにより本明細書に援用される。

Claims (6)

  1.  塗膜形成樹脂(A)、3価の金属元素を含む金属化合物(B)およびシリコーン化合物(C)を含むカチオン電着塗料組成物であって、
     前記金属化合物(B)の含有量は、前記塗膜形成樹脂(A)の樹脂固形分100質量部に対して、金属元素換算で0.03質量部以上4質量部未満であり、
     前記シリコーン化合物(C)の含有量は、前記塗膜形成樹脂(A)の樹脂固形分100質量部に対して0.005質量部以上4.5質量部以下である、
    カチオン電着塗料組成物。
  2.  前記金属化合物(B)に含まれる金属元素は、Y、La、Ce、Nd、Pr、YbおよびBiからなる群から選択される1種またはそれ以上である、請求項1記載のカチオン電着塗料組成物。
  3.  前記シリコーン化合物(C)のSP値は、10.5を超え15.0以下である、請求項1または2記載のカチオン電着塗料組成物。
  4.  前記シリコーン化合物(C)は、ポリエーテル変性シリコーン化合物(C-1)、ポリエステル変性シリコーン化合物(C-2)及びポリアクリル変性シリコーン化合物(C-3)からなる群から選択される少なくとも1つである、請求項1~3いずれかに記載のカチオン電着塗料組成物。
  5.  前記シリコーン化合物(C)が、水系溶媒中に溶解又は分散可能である、請求項1~4いずれかに記載のカチオン電着塗料組成物。
  6.  請求項1~5いずれかに記載のカチオン電着塗料組成物に、被塗物を浸漬し、電着塗装を行い、未硬化の電着塗膜を形成すること、及び
    前記未硬化の電着塗膜を加熱硬化させて、被塗物上に硬化電着塗膜を形成すること、
    を包含する、硬化電着塗膜の形成方法。
PCT/JP2020/026266 2019-07-11 2020-07-03 カチオン電着塗料組成物 WO2021006220A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080049719.8A CN114040947B (zh) 2019-07-11 2020-07-03 阳离子电沉积涂料组合物
MX2021015951A MX2021015951A (es) 2019-07-11 2020-07-03 Composición de revestimiento por electrodeposición catiónica.
EP20836845.6A EP3998316A4 (en) 2019-07-11 2020-07-03 COATING COMPOSITION FOR CATIONIC ELECTRODEPOSITION
US17/624,404 US20220332960A1 (en) 2019-07-11 2020-07-03 Cationic electrodeposition coating composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-129248 2019-07-11
JP2019129248A JP7401214B2 (ja) 2019-07-11 2019-07-11 カチオン電着塗料組成物

Publications (1)

Publication Number Publication Date
WO2021006220A1 true WO2021006220A1 (ja) 2021-01-14

Family

ID=74114232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026266 WO2021006220A1 (ja) 2019-07-11 2020-07-03 カチオン電着塗料組成物

Country Status (6)

Country Link
US (1) US20220332960A1 (ja)
EP (1) EP3998316A4 (ja)
JP (1) JP7401214B2 (ja)
CN (1) CN114040947B (ja)
MX (1) MX2021015951A (ja)
WO (1) WO2021006220A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197618A (zh) * 2021-04-14 2022-10-18 株式会社Kcc 丙烯酸类电沉积涂料组合物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7198961B1 (ja) * 2022-08-09 2023-01-04 日本ペイントマリン株式会社 下塗り用塗料組成物及び塗膜

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306327A (ja) 1991-12-06 1993-11-19 Nippon Paint Co Ltd オキサゾリドン環含有水性樹脂および塗料
JP2009280803A (ja) * 2008-04-24 2009-12-03 Nippon Paint Co Ltd カチオン電着塗料、塗膜の形成方法及び塗膜
JP2012092293A (ja) 2010-09-29 2012-05-17 Kansai Paint Co Ltd 電着塗料用顔料分散ペースト及びカチオン電着塗料組成物
JP2017508025A (ja) * 2013-12-20 2017-03-23 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH 顔料ペースト、及び水性電着材料の製造方法、それらの使用方法、電気泳動電着の方法、及びコーティングされた物品
CN106883690A (zh) * 2017-04-06 2017-06-23 广德瑞邦涂料有限公司 一种厚膜膏溶剂型电泳漆
US20180282557A1 (en) * 2017-03-31 2018-10-04 Axalta Coating Systems Ip Co., Llc Electrocoating compositon including an anti-crater agent
JP2019129248A (ja) 2018-01-25 2019-08-01 株式会社Screenホールディングス 基板洗浄ブラシおよび基板洗浄装置
WO2020129817A1 (ja) * 2018-12-18 2020-06-25 日本ペイント・オートモーティブコーティングス株式会社 カチオン電着塗料組成物及び硬化電着塗膜の形成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63245917A (ja) * 1987-04-01 1988-10-13 松下電器産業株式会社 固体電解コンデンサの製造方法
DE4446440A1 (de) * 1994-12-23 1996-06-27 Hoechst Ag Wäßrige Pigmentpasten
US6033545A (en) * 1997-12-08 2000-03-07 Ppg Industries Ohio, Inc. Electrocoating processes and compositions containing polysiloxane crater control agents
JP2001192611A (ja) * 2000-01-07 2001-07-17 Nippon Paint Co Ltd カチオン電着塗料組成物
WO2006038725A1 (ja) * 2004-10-08 2006-04-13 Tokuyama Corporation コーティング剤用組成物およびその製造方法
JP5441802B2 (ja) * 2009-05-26 2014-03-12 関西ペイント株式会社 カチオン電着塗料組成物
CN102604003B (zh) * 2012-03-14 2014-07-09 大连工业大学 一种自分层有机-无机纳米复合乳液及其制备方法
JP6012744B2 (ja) * 2012-10-02 2016-10-25 関西ペイント株式会社 カチオン電着塗料組成物
JP2014177514A (ja) * 2013-03-13 2014-09-25 Shinto Paint Co Ltd カチオン性電着塗料組成物
CN103319691B (zh) * 2013-06-24 2015-07-15 浩力森涂料(上海)有限公司 有机硅改性环氧电泳涂料乳液的制备方法
CN103992716B (zh) * 2014-04-16 2016-05-18 朱峰 一种用于油烟机的电泳水性特氟龙涂料及其制备方法
JP2018184489A (ja) * 2015-09-25 2018-11-22 日本ペイント・オートモーティブコーティングス株式会社 カチオン電着塗料組成物の調製方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05306327A (ja) 1991-12-06 1993-11-19 Nippon Paint Co Ltd オキサゾリドン環含有水性樹脂および塗料
JP2009280803A (ja) * 2008-04-24 2009-12-03 Nippon Paint Co Ltd カチオン電着塗料、塗膜の形成方法及び塗膜
JP2012092293A (ja) 2010-09-29 2012-05-17 Kansai Paint Co Ltd 電着塗料用顔料分散ペースト及びカチオン電着塗料組成物
JP2017508025A (ja) * 2013-12-20 2017-03-23 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツングBASF Coatings GmbH 顔料ペースト、及び水性電着材料の製造方法、それらの使用方法、電気泳動電着の方法、及びコーティングされた物品
US20180282557A1 (en) * 2017-03-31 2018-10-04 Axalta Coating Systems Ip Co., Llc Electrocoating compositon including an anti-crater agent
CN106883690A (zh) * 2017-04-06 2017-06-23 广德瑞邦涂料有限公司 一种厚膜膏溶剂型电泳漆
JP2019129248A (ja) 2018-01-25 2019-08-01 株式会社Screenホールディングス 基板洗浄ブラシおよび基板洗浄装置
WO2020129817A1 (ja) * 2018-12-18 2020-06-25 日本ペイント・オートモーティブコーティングス株式会社 カチオン電着塗料組成物及び硬化電着塗膜の形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUH, CLARKE, J.P.S.A-1, vol. 5, 1967, pages 1671 - 1681

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115197618A (zh) * 2021-04-14 2022-10-18 株式会社Kcc 丙烯酸类电沉积涂料组合物
CN115197618B (zh) * 2021-04-14 2024-02-13 株式会社Kcc 丙烯酸类电沉积涂料组合物

Also Published As

Publication number Publication date
EP3998316A1 (en) 2022-05-18
MX2021015951A (es) 2022-04-18
JP7401214B2 (ja) 2023-12-19
CN114040947B (zh) 2023-02-28
JP2021014515A (ja) 2021-02-12
CN114040947A (zh) 2022-02-11
US20220332960A1 (en) 2022-10-20
EP3998316A4 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
JP6795435B2 (ja) エポキシ粘性剤およびカチオン電着塗料組成物
JP6441126B2 (ja) カチオン電着塗料組成物の調製方法
WO2021006220A1 (ja) カチオン電着塗料組成物
US11034855B2 (en) Cationic electrodeposition coating material composition
JP7064291B2 (ja) カチオン電着塗料組成物
WO2016143707A1 (ja) カチオン電着塗料組成物
WO2017051901A1 (ja) カチオン電着塗料組成物の調製方法
WO2021256193A1 (ja) カチオン電着塗料用エポキシ粘性剤の製造方法
JP6832908B2 (ja) カチオン電着塗料組成物及び硬化電着塗膜の形成方法
JP6406848B2 (ja) 電着塗料組成物
JP2022129794A (ja) カチオン電着塗料組成物
JP6615552B2 (ja) カチオン電着塗料組成物
JP7333198B2 (ja) カチオン電着塗料組成物の調製方法
JP6719185B2 (ja) カチオン電着塗料組成物の調製方法
JP2022088769A (ja) カチオン電着塗料組成物、電着塗装方法及びカチオン電着塗膜
JP2024016478A (ja) カチオン電着塗料組成物、カチオン電着塗膜および塗装方法
JP2022020996A (ja) カチオン電着塗料組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836845

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020836845

Country of ref document: EP

Effective date: 20220211