WO2016143707A1 - カチオン電着塗料組成物 - Google Patents

カチオン電着塗料組成物 Download PDF

Info

Publication number
WO2016143707A1
WO2016143707A1 PCT/JP2016/056855 JP2016056855W WO2016143707A1 WO 2016143707 A1 WO2016143707 A1 WO 2016143707A1 JP 2016056855 W JP2016056855 W JP 2016056855W WO 2016143707 A1 WO2016143707 A1 WO 2016143707A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
electrodeposition coating
coating composition
pigment
pigment dispersion
Prior art date
Application number
PCT/JP2016/056855
Other languages
English (en)
French (fr)
Inventor
達夫 太田
洋平 田合
Original Assignee
日本ペイント・オートモーティブコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント・オートモーティブコーティングス株式会社 filed Critical 日本ペイント・オートモーティブコーティングス株式会社
Priority to CN201680026336.2A priority Critical patent/CN107969133B/zh
Publication of WO2016143707A1 publication Critical patent/WO2016143707A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/04Electrophoretic coating characterised by the process with organic material
    • C25D13/06Electrophoretic coating characterised by the process with organic material with polymers

Definitions

  • the present invention relates to a cationic electrodeposition coating composition.
  • the cationic electrodeposition coating composition generally includes a resin emulsion and a pigment dispersion paste.
  • organotin compounds have been widely used as curing catalysts.
  • the use of organotin compounds may be restricted in the future due to recent environmental regulation trends. Therefore, it is necessary to develop an alternative catalyst for organotin compounds.
  • a method is disclosed in which a bismuth compound is mixed and dissolved in advance with an amine-containing carboxylic acid such as an amino acid, and the resulting mixture is used to prepare a pigment dispersion paste (Patent Document 1). Also disclosed is a method in which a bismuth compound is mixed and dissolved in advance with lactic acid, and then the resulting mixture is added to a paint (Patent Document 2). As described in these documents, there is an advantage that catalytic activity is improved by dissolving bismuth in advance. On the other hand, in order to dissolve bismuth in advance, it is necessary to use a large amount of acid.
  • the bismuth solution prepared in this way also has a problem that many residues are generated.
  • the present invention solves the above-described conventional problems, and its object is to provide a cured electrodeposition coating film having excellent curability and excellent coating film appearance, impact resistance, corrosion resistance, and the like.
  • An object of the present invention is to provide a cationic electrodeposition coating composition containing a bismuth compound.
  • a cationic electrodeposition coating composition comprising an aminated resin (A), a blocked isocyanate curing agent (B), an amino polyether-modified polyalkylene glycol resin (G), and a pigment dispersion paste
  • the pigment dispersion paste is prepared by previously mixing a bismuth compound (c1) and an organic acid (c2) to prepare a bismuth mixture (C), and then the obtained bismuth mixture (C), pigment dispersion resin (D) and pigment Prepared by mixing (F),
  • the pigment (F) contains zinc oxide in the range of 0.5 to 5% by mass
  • the amino polyether-modified polyalkylene glycol resin (G) is a resin obtained by reacting an amino polyether and a polyalkylene glycol diglycidyl ether.
  • the above cationic electrodeposition coating composition wherein the amino polyether-modified polyalkylene glycol resin (G) is a resin obtained by reacting a polyalkylene glycol diglycidyl ether, a polycyclic phenol compound, a dicarboxylic acid compound and an amino polyether. object.
  • the pigment dispersion paste is The bismuth compound (c1) and the organic acid (c2) are premixed to prepare a bismuth mixture (C), and then Prepared bismuth mixture (C); pigment dispersion resin (D); aminated resin emulsion containing aminated resin (E); and pigment (F); The cationic electrodeposition coating composition.
  • the pigment dispersion resin (D) has a hydroxyl value of 20 to 120 mgKOH / g
  • the aminated resin (E) has a hydroxyl value of 150 to 650 mgKOH / g.
  • the cationic electrodeposition coating composition [5]
  • the above cationic electrodeposition coating composition wherein the organic acid (c2) is one or more selected from the group consisting of lactic acid, dimethylolpropionic acid and methanesulfonic acid. [9] Furthermore, the said cationic electrodeposition coating composition containing a nitrite metal salt (H). [10] The cationic electrodeposition coating composition further comprising a rare earth metal salt (I) selected from the group consisting of neodymium, yttrium, lanthanum, cerium, praseodymium and ytterbium.
  • a rare earth metal salt (I) selected from the group consisting of neodymium, yttrium, lanthanum, cerium, praseodymium and ytterbium.
  • the present invention further includes a step of mixing a resin emulsion containing an aminated resin (A) and a curing agent (B); an amino polyether-modified polyalkylene glycol resin (G); and a pigment dispersion paste.
  • a method for preparing a composition comprising: The pigment dispersion paste is prepared by previously mixing a bismuth compound (c1) and an organic acid (c2) to prepare a bismuth mixture (C), and then the obtained bismuth mixture (C), pigment dispersion resin (D) and pigment Prepared by mixing (F),
  • the pigment (F) contains zinc oxide in the range of 0.5 to 5% by mass
  • the amino polyether-modified polyalkylene glycol resin (G) is a resin obtained by reacting an amino polyether and a polyalkylene glycol diglycidyl ether.
  • a method for preparing a cationic electrodeposition coating composition is also provided.
  • the amino polyether-modified polyalkylene glycol resin (G) is a resin obtained by reacting a polyalkylene glycol diglycidyl ether, a polycyclic phenol compound, a dicarboxylic acid compound and an amino polyether. preferable.
  • the pigment dispersion paste is The bismuth compound (c1) and the organic acid (c2) are premixed to prepare a bismuth mixture (C), and then It is preferably prepared by mixing the obtained bismuth mixture (C); pigment dispersion resin (D); aminated resin emulsion containing aminated resin (E); and pigment (F).
  • the present invention further provides a method for forming a cured electrodeposition coating film comprising the step of electrodeposition-coating the above-mentioned cationic electrodeposition coating composition on an object to form a cured electrodeposition coating film on the object to be coated.
  • the coated object has an edge portion, and when the coated object having the formed cured electrodeposition coated film is subjected to a salt spray test, the number of rust occurrences at 1 cm 2 of the edge coated portion. Is preferably less than 2 pieces / cm 2 .
  • the cationic electrodeposition coating composition of the present invention can provide a cured electrodeposition coating film containing a bismuth compound, excellent in curability, and having excellent coating film appearance, impact resistance, corrosion resistance, and the like.
  • the cationic electrodeposition coating composition of the present invention is a cured electrodeposition coating composition that is excellent in curability and has excellent coating film appearance, impact resistance, corrosion resistance, etc. even if it does not substantially contain an organic tin compound.
  • a membrane can be provided.
  • the present inventors have studied to disperse bismuth in the pigment dispersion paste for the purpose of stably dispersing the bismuth component in the electrodeposition coating composition.
  • a bismuth compound in advance mixed with an acid component, bismuth was made finer, the catalytic activity was improved, and the curability was improved.
  • zinc oxide added to the pigment dispersion paste containing such a bismuth compound, when the object to be coated has an edge portion, the corrosion resistance (rust resistance) of the edge portion can be improved.
  • the interaction between the bismuth compound and zinc oxide and the resin component becomes stronger, and the resulting cured electrodeposition coating film It turns out that it tends to harden.
  • the coating film becomes hard, the coating film may be cracked or peeled off when subjected to external impact.
  • the present inventors aimed to improve the catalytic activity of bismuth compounds and solve the above problems. And, by including the amino polyether-modified polyalkylene glycol resin (G) in the cationic electrodeposition coating composition, flexibility is imparted to the cured electrodeposition coating film without adversely affecting the curing performance, It has been found through experiments that the above problems can be solved, and the present invention has been completed.
  • the cationic electrodeposition coating composition of the present invention will be described in detail.
  • the cationic electrodeposition coating composition of the present invention comprises an aminated resin (A), a blocked isocyanate curing agent (B), an amino polyether-modified polyalkylene glycol resin (G), and a pigment dispersion paste.
  • the pigment dispersion paste is prepared by previously mixing the bismuth compound (c1) and the organic acid (c2) to prepare a bismuth mixture (C), and then the obtained bismuth mixture (C) and the pigment dispersion resin (D).
  • pigment (F) contains zinc oxide in the range of 0.5 to 5% by mass.
  • Aminated resin (A) is a coating film forming resin constituting an electrodeposition coating film.
  • an amine-modified epoxy resin obtained by modifying an oxirane ring in the epoxy resin skeleton with an amine compound is preferable.
  • an amine-modified epoxy resin is prepared by opening a ring of an oxirane ring in a starting material resin molecule by a reaction with an amine compound such as a primary amine, a secondary amine or a tertiary amine and / or its acid salt.
  • a typical example of the starting material resin is a polyphenol polyglycidyl ether type epoxy resin which is a reaction product of a polycyclic phenol compound such as bisphenol A, bisphenol F, bisphenol S, phenol novolak, cresol novolak, and epichlorohydrin.
  • examples of other starting material resins include oxazolidone ring-containing epoxy resins described in JP-A-5-306327. These epoxy resins can be prepared by reacting a diisocyanate compound or a bisurethane compound obtained by blocking an isocyanate group of a diisocyanate compound with a lower alcohol such as methanol or ethanol, and epichlorohydrin.
  • the above starting material resin can be used by extending the chain with a bifunctional polyester polyol, polyether polyol, bisphenol, dibasic carboxylic acid or the like before the oxirane ring-opening reaction with the amine compound.
  • ethylene glycol mono- mer may be added to some oxirane rings for the purpose of adjusting molecular weight or amine equivalent and improving heat flow.
  • a monohydroxy compound such as -2-ethylhexyl ether, ethylene glycol mono n-butyl ether, propylene glycol mono-2-ethylhexyl ether, or a monocarboxylic acid compound such as octylic acid may be added.
  • An amine-modified epoxy resin is obtained by reacting the oxirane ring of the epoxy resin with an amine compound.
  • amine compounds to be reacted with the oxirane ring include primary amines and secondary amines.
  • an epoxy resin and a secondary amine are reacted, an amine-modified epoxy resin having a tertiary amino group is obtained.
  • an epoxy resin and a primary amine are reacted, an amine-modified epoxy resin having a secondary amino group is obtained.
  • an amine-modified epoxy resin having a primary amino group can be prepared by using a secondary amine having a blocked primary amine.
  • an amine-modified epoxy resin having a primary amino group and a secondary amino group can be prepared by blocking the primary amino group with a ketone to form a ketimine before reacting with the epoxy resin. It can be prepared by deblocking after introduction. In addition, you may use a tertiary amine together as needed as an amine made to react with an oxirane ring.
  • the primary amine and the secondary amine include, for example, butylamine, octylamine, diethylamine, dibutylamine, methylbutylamine, monoethanolamine, diethanolamine, N-methylethanolamine and the like.
  • Specific examples of the secondary amine having a blocked primary amine include, for example, aminoethylethanolamine ketimine, diethylenetriamine diketimine, and the like.
  • Specific examples of the tertiary amine that may be used as needed include triethylamine, N, N-dimethylbenzylamine, N, N-dimethylethanolamine, and the like. These amines may be used alone or in combination of two or more.
  • the amine compound to be reacted with the oxirane ring of the epoxy resin is 50 to 95% by mass of secondary amine, 0 to 30% by mass of secondary amine having a blocked primary amine, and 0 to 20% by mass of primary amine. Those containing within the above range are preferred.
  • the number average molecular weight of the aminated resin (A) is preferably in the range of 1,000 to 5,000. When the number average molecular weight is 1,000 or more, physical properties such as corrosion resistance of the obtained cured electrodeposition coating film are improved. On the other hand, when the number average molecular weight is 5,000 or less, the viscosity of the aminated resin can be easily adjusted to enable smooth synthesis, and handling of emulsified dispersion of the obtained aminated resin (A) is possible. Becomes easier.
  • the number average molecular weight of the aminated resin (A) is more preferably in the range of 2,000 to 3,500.
  • the number average molecular weight is a polystyrene-equivalent number average molecular weight measured by gel permeation chromatography (GPC).
  • the amine value of the aminated resin (A) is preferably in the range of 20 to 100 mgKOH / g.
  • the amine value of the aminated resin (A) is 20 mgKOH / g or more, the emulsion dispersion stability of the aminated resin (A) in the electrodeposition coating composition is improved.
  • the amine value is 100 mgKOH / g or less, the amount of amino groups in the cured electrodeposition coating film becomes appropriate, and there is no possibility of reducing the water resistance of the coating film.
  • the amine value of the aminated resin (A) is more preferably in the range of 20 to 80 mgKOH / g.
  • the hydroxyl value of the aminated resin (A) is preferably in the range of 150 to 650 mgKOH / g.
  • the hydroxyl value of the aminated resin (A) is more preferably in the range of 180 to 300 mgKOH / g.
  • the number average molecular weight is in the range of 1,000 to 5,000, the amine value is 20 to 100 mgKOH / g, and the hydroxyl value is 150 to 650 mgKOH / g.
  • aminated resin (A) there is an advantage that excellent corrosion resistance can be imparted to the article to be coated.
  • aminated resin (A) if necessary, aminated resins having different amine values and / or hydroxyl values may be used in combination. When two or more kinds of amine resins having different amine values and hydroxyl values are used in combination, the average amine value and the average hydroxyl value calculated based on the mass ratio of the aminated resin used are within the above numerical range. preferable.
  • the aminated resin (A) used in combination is an aminated resin having an amine value of 20 to 50 mgKOH / g and a hydroxyl value of 50 to 300 mgKOH / g, and an amine value of 50 to 200 mgKOH / g.
  • the aminated resin (A) may contain an amino group-containing acrylic resin, an amino group-containing polyester resin, or the like, if necessary.
  • Block isocyanate curing agent (B) The blocked isocyanate curing agent (B) (hereinafter sometimes simply referred to as “curing agent (B)”) is a film-forming resin constituting the electrodeposition coating film.
  • the blocked isocyanate curing agent (B) can be prepared by blocking polyisocyanate with a sealing agent.
  • polyisocyanates examples include hexamethylene diisocyanate (including trimer), aliphatic diisocyanates such as tetramethylene diisocyanate and trimethylhexamethylene diisocyanate, isophorone diisocyanate, and alicyclic such as 4,4′-methylenebis (cyclohexyl isocyanate).
  • Aromatic diisocyanates such as polyisocyanate, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, xylylene diisocyanate and the like can be mentioned.
  • sealants include monovalent alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, methylphenyl carbinol; ethylene glycol mono Cellosolves such as hexyl ether and ethylene glycol mono 2-ethylhexyl ether; Polyether type terminal diols such as polyethylene glycol, polypropylene glycol and polytetramethylene ether glycol phenol; ethylene glycol, propylene glycol, 1,4-butanediol, etc.
  • monovalent alkyl (or aromatic) alcohols such as n-butanol, n-hexyl alcohol, 2-ethylhexanol, lauryl alcohol, phenol carbinol, methylphenyl carbinol
  • ethylene glycol mono Cellosolves such as hexyl ether and ethylene glycol mono 2-
  • Polyester type terminal polyols obtained from the following diols and dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, suberic acid, sebacic acid; para-t-butyl Phenols such as phenol and cresol; oximes such as dimethyl ketoxime, methyl ethyl ketoxime, methyl isobutyl ketoxime, methyl amyl ketoxime, and cyclohexanone oxime; and lactams represented by ⁇ -caprolactam and ⁇ -butyrolactam are preferably used. .
  • dioxalic acid succinic acid, adipic acid, suberic acid, sebacic acid
  • para-t-butyl Phenols such as phenol and cresol
  • oximes such as dimethyl ketoxime, methyl ethyl ketoxime, methyl isobutyl ketoxime, methyl amyl ketoxime, and cyclohe
  • the blocking ratio of the blocked isocyanate curing agent (B) is preferably 100%. Thereby, there exists an advantage that the storage stability of an electrodeposition coating composition becomes favorable.
  • the blocked isocyanate curing agent (B) is a combination of a curing agent prepared by blocking an aliphatic diisocyanate with a sealing agent and a curing agent prepared by blocking an aromatic diisocyanate with a sealing agent. It is preferable to do.
  • the blocked isocyanate curing agent (B) reacts preferentially with the primary amine of the aminated resin (A) and further reacts with a hydroxyl group to be cured.
  • the curing agent at least one curing agent selected from the group consisting of an organic curing agent such as a melamine resin or a phenol resin, a silane coupling agent, and a metal curing agent may be used in combination with the blocked isocyanate curing agent (B). .
  • each of the aminated resin (A) and the blocked isocyanate curing agent (B) was dissolved in an organic solvent to prepare a solution, and these solutions were mixed. Thereafter, it is preferable to prepare a resin emulsion by neutralizing with a neutralizing acid.
  • the neutralizing acid include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid, and acetic acid.
  • the resin emulsion containing the aminated resin (A) and the curing agent (B) with one or more acids selected from the group consisting of formic acid, acetic acid and lactic acid.
  • the neutralizing acid is preferably used in an amount of 10 to 100%, more preferably 20 to 70%, as the equivalent ratio of the neutralizing acid to the equivalent of the amino group of the aminated resin (A). Is more preferable.
  • the equivalent ratio of the neutralized acid to the equivalent of the amino group of the aminated resin (A) is defined as the neutralization rate. When the neutralization rate is 10% or more, affinity for water is ensured and water dispersibility is improved.
  • the content of the curing agent (B) reacts with an active hydrogen-containing functional group such as a primary amino group, a secondary amino group or a hydroxyl group in the aminated resin (A) at the time of curing to form a good cured coating film. A sufficient amount is needed to give.
  • the preferable content of the curing agent (B) is 90/10 to 90% expressed by the solid content mass ratio of the aminated resin (A) and the curing agent (B) (aminated resin (A) / curing agent (B)). 50/50, more preferably in the range of 80/20 to 65/35.
  • Amino polyether-modified polyalkylene glycol resin (G) The cationic electrodeposition coating composition of the present invention contains an amino polyether-modified polyalkylene glycol resin (G).
  • the amino polyether-modified polyalkylene glycol resin (G) is a resin obtained by reacting amino polyether and polyalkylene glycol diglycidyl ether.
  • This resin (G) contains a polyalkylene glycol skeleton. By having this skeleton, flexibility can be imparted to the cured coating film without adversely affecting the curing catalyst performance of the bismuth compound.
  • this resin (G) has reactivity with the aminated resin (A) and the blocked isocyanate curing agent (B) contained in the electrodeposition coating composition by being modified with amino polyether. Therefore, it does not exist as a volatile component in the obtained cured electrodeposition coating film, but effectively functions as a resin component imparting flexibility in the cured electrodeposition coating film.
  • amino polyether used for the preparation of the amino polyether-modified polyalkylene glycol resin (G), the following formula [Wherein, x is an integer of 2 or more, R is hydrogen, a methyl group or an ethyl group, and m and n are each independently 2 or 3. ] The compound shown by these is mentioned.
  • the amino polyether has a structure in which two polymethylene chains having a primary amino group at the terminal and a polyalkylene glycol chain are bonded to a tertiary nitrogen atom.
  • the amino polyether can be prepared by hydrolyzing a polyoxyalkylene ketimine.
  • the method for hydrolyzing the polyoxyalkylene ketimine can be performed by, for example, a known method described in JP-A-1-249748.
  • the value of x represents the number of repeating units of the polyalkylene glycol chain, and is preferably an integer of 2 to 20, more preferably an integer of 9 to 11.
  • R in the polyalkylene glycol chain is preferably a methyl group. R is usually the same, but two or more may be used.
  • the number of repeating units m and n of the polymethylene chain bonded to the primary amino group is independently 2 or 3, but 2 is more preferable.
  • the polyalkylene glycol diglycidyl ether used for the preparation of the amino polyether-modified polyalkylene glycol resin (G) is a compound having a polyalkylene glycol skeleton and having glycidyl groups at both ends thereof.
  • the polyalkylene glycol diglycidyl ether preferably has a molecular weight of 300 to 7000, more preferably 500 to 1000. When molecular weight is less than 300, there exists a possibility that sufficient flexibility cannot be provided with respect to a cured electrodeposition coating film. When the molecular weight exceeds 7000, the adhesion with the coating film provided on the obtained cured electrodeposition coating film may be reduced.
  • the polyalkylene glycol diglycidyl ether preferably has an epoxy equivalent of 150 to 3500. Moreover, when epoxy equivalent is less than 150, there exists a possibility that sufficient flexibility cannot be provided with respect to a cured electrodeposition coating film. When epoxy equivalent exceeds 3500, there exists a possibility that adhesiveness with the coating film provided on the obtained cured electrodeposition coating film may fall.
  • polyalkylene glycol diglycidyl ether examples include polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, polyisopropylene glycol diglycidyl ether, polybutylene glycol diglycidyl ether, and the like. These polyalkylene glycol diglycidyl ethers may be used alone or in combination of two or more.
  • a commercially available product may be used as the polyalkylene glycol diglycidyl ether.
  • Epolite series manufactured by Kyoeisha Chemical Co. for example, Epolite 200E (polyethylene glycol # 200 diglycidyl ether, epoxy equivalent 150-163 g / eq), Epolite 400E (polyethylene glycol # 400 diglycidyl ether, epoxy equivalent 185-215 g / eq), Epolite 400P (polypropylene glycol # 400 diglycidyl ether, epoxy equivalent 190-210 g / eq), etc.
  • EX-821 polyethylene glycol diglycidyl ether, epoxy equivalent 185 g / eq
  • EX-830 polyethylene glycol diglycidyl ether, epoxy equivalent 268 g / eq
  • EX-832 polyethylene) Glycol diglycidyl ether, epoxy equivalent 284 g / eq
  • EX-841 polyethylene glycol diglycidyl ether, epoxy equivalent 372 g / eq
  • EX-861 polyethylene glycol diglycidyl ether, epoxy equivalent 551 g / eq
  • EX-941 Polypropylene glycol diglycidyl ether, epoxy equivalent 173 g / eq
  • EX-920 polypropylene glycol diglycidyl ether, epoxy equivalent 176 g / eq
  • EX-931 polypropylene glycol diglycidyl diglycidyl ether, EX-931 (polypropylene glycol diglycidyl ether, epoxy equivalent
  • polycyclic phenol compound examples include, for example, bisphenol A, bisphenol F, bisphenol S, phenol novolak, cresol novolak, and the like. More preferably, bisphenol A is used as the polycyclic phenol compound. When the polycyclic phenol compound is used, it is more preferably used in the range of 16 to 38 parts by mass with respect to 100 parts by mass of the polyalkylene glycol diglycidyl ether.
  • Saturated or unsaturated hydrocarbon group-containing dicarboxylic acid is preferably used as the dicarboxylic acid compound.
  • the saturated hydrocarbon group include alkyl groups having 5 to 20 carbon atoms.
  • the unsaturated hydrocarbon group include an alkynyl group having 5 to 20 carbon atoms, an alkadiynyl group, an alkatriynyl group, an alkenyl group, an alkadienyl group, and an alkatrienyl group.
  • the dicarboxylic acid compound is used, it is preferably used in the range of 32 parts by mass or less, more preferably in the range of 0.01 to 32 parts by mass with respect to 100 parts by mass of the polyalkylene glycol diglycidyl ether.
  • the saturated or unsaturated hydrocarbon group-containing dicarboxylic acid may be a polymerized fatty acid such as dimer acid.
  • Dimer acid is a fatty acid derivative produced by an addition reaction of an unsaturated fatty acid generally obtained from drying oil or semi-drying oil, and has a dimer of fatty acid as a main component.
  • the main examples of dimer acid as a main component such as C 36 dibasic acid obtained by the addition of C 18 unsaturated fatty acids.
  • the structure of this dimer acid is generally not a single structure but a mixture of acyclic, monocyclic and polycyclic rings.
  • commercially available dimer acid may contain a small amount of monomeric acid, trimer acid and the like.
  • fatty acids used as raw materials for dimer acids include vegetable oil fatty acids such as tall oil, soybean oil, coconut oil, castor oil, palm oil or rice bran oil, and animal oil fatty acids such as beef tallow fatty acid or tallow fatty acid. .
  • saturated or unsaturated hydrocarbon group-containing dicarboxylic acid examples include, for example, adipic acid, 1,10-dodecanedicarboxylic acid, and commercially available dimer acid (for example, Versadim 216, 228 manufactured by Henkel) Tsunodim 205, 395 and the like, and ENPOL 1026, 1028, 1061, 1062, etc. manufactured by Cognis.
  • the amino polyether-modified polyalkylene glycol resin (G) was prepared by changing the primary amino group of the amino polyether to an epoxy group of the polyalkylene glycol diglycidyl ether in an equivalent ratio of 1.05 to 2.0. It can be prepared by reacting in a range of amounts. This reaction can be carried out, for example, by stirring at room temperature to 150 ° C. for 0.5 to 48 hours. The reaction temperature and reaction time can be appropriately changed according to the reaction scale and the like.
  • the polyalkylene glycol diglycidyl ether is reacted with the amino polyether before the polyalkylene glycol is reacted.
  • a polycyclic phenol compound and / or a dicarboxylic acid compound can be reacted with glycol diglycidyl ether. Examples thereof include a method in which polyalkylene glycol diglycidyl ether is reacted with a polycyclic phenol compound and / or a dicarboxylic acid compound at 80 to 200 ° C. for 1 to 24 hours, for example.
  • aminopolyether-modified polyalkylene glycol resin (G) can be prepared by reacting in the same manner as described above.
  • the amino polyether-modified polyalkylene glycol resin (G) is preferably used in a state of being neutralized with a neutralizing acid.
  • a neutralizing acid for example, organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid, and acetic acid can be used.
  • the amino polyether-modified polyalkylene glycol resin (G) and the curing agent (B) are mixed, and then the obtained mixture is placed in an aqueous medium containing a neutralizing acid.
  • a neutralizing acid the organic acids described above can be used.
  • the “resin solid content of the coating film-forming resin” means the total amount of the solid content mass of the resin component that forms the coating film by the curing reaction after electrodeposition coating, and specifically, It means the total amount of the solid content of the aminated resin (A), the curing agent (B) and the amino polyether-modified polyalkylene glycol resin (G).
  • the bismuth mixture (C) is prepared by previously mixing the bismuth compound (c1) and the organic acid (c2).
  • the bismuth mixture (C) is a mixture prepared by previously mixing the bismuth compound (c1) and the organic acid (c2) in the preparation of the pigment dispersion paste. In the preparation of the pigment dispersion paste, by mixing the bismuth compound (c1) and the organic acid (c2) in advance, the bismuth compound is dispersed in a finely divided state, and good catalytic activity can be obtained.
  • the bismuth compound (c1) is a compound containing a bismuth metal, and examples thereof include bismuth oxide, bismuth hydroxide, bismuth nitrate, and mixtures thereof.
  • a preferred bismuth compound (c1) is at least one selected from the group consisting of bismuth oxide and bismuth hydroxide.
  • the bismuth compound (c1) is in powder form.
  • the average particle size of the bismuth compound (c1) is preferably 0.5 to 20 ⁇ m, and more preferably 1 to 3 ⁇ m.
  • the average particle size is a volume average particle size D50, and ion exchange is performed using a laser Doppler particle size analyzer (manufactured by Nikkiso Co., Ltd., “Microtrac UPA150”) so that the signal level is appropriate. The value measured after dilution with water.
  • the amount of the bismuth compound (c1) contained in the electrodeposition coating composition in the present invention is 0.05 to 5 in terms of metal element with respect to the resin solid content of the coating film-forming resin contained in the electrodeposition coating composition. It is preferably 1.0% by mass.
  • the amount of the bismuth compound (c1) is in the above range, the resin component forming the coating film is cured well and the storage stability of the electrodeposition coating composition can be kept good.
  • metal element conversion is a metal element conversion coefficient (a coefficient for converting a metal compound amount into a metal element amount to a metal compound content, specifically, a metal element in a metal compound. Is the value obtained by dividing the atomic weight of the product by the molecular weight of the metal compound.) To obtain the target metal element amount.
  • the bismuth compound (c1) is bismuth oxide (Bi 2 O 3 , molecular weight 466)
  • the electrodeposition coating composition containing 0.5% by mass of bismuth oxide with respect to the resin solid content of the film-forming resin The metal element equivalent content of bismuth is calculated to be 0.448% by mass by the calculation of 0.5% by mass ⁇ (418 ⁇ 466).
  • Organic acid (c2) is, for example, one or more compounds selected from the group consisting of hydroxycarboxylic acid and sulfonic acid.
  • hydroxycarboxylic acid examples include the following compounds: -Monohydroxy monocarboxylic acids having 2 to 5 carbon atoms, preferably 2 to 4 carbon atoms, especially aliphatic monohydroxy monocarboxylic acids, such as lactic acid and glycolic acid; -Monohydroxy dicarboxylic acids having 2 to 5 carbon atoms, preferably 2 to 4 carbon atoms, in particular aliphatic monohydroxy dicarboxylic acids, such as hydroxymalonic acid and malic acid; A dihydroxymonocarboxylic acid having 3 to 7 carbon atoms, preferably 3 to 6 carbon atoms, in particular aliphatic dihydroxymonocarboxylic acid, such as dimethylolpropionic acid (DMPA) and glyceric acid; -Dihydroxy dicarboxylic acids having 3 to 6 carbon atoms, preferably 3 to 5 carbon atoms such as tartaric acid and glucose, especially aliphatic dihydroxy dicarboxylic acids.
  • DMPA dimethylolpropi
  • the sulfonic acid is an organic sulfonic acid, and examples thereof include alkanesulfonic acids having 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms such as methanesulfonic acid and ethanesulfonic acid.
  • organic acid (c2) it is preferable to use one or more selected from the group consisting of monohydroxymonocarboxylic acid, dihydroxymonocarboxylic acid, and alkanesulfonic acid.
  • organic acid (c2) it is more preferable to use one or more selected from the group consisting of lactic acid, dimethylolpropionic acid and methanesulfonic acid.
  • the usage form of the organic acid (c2) is not particularly limited, and examples thereof include a solid form, a liquid form, a solution form dissolved in a solvent, and particularly an aqueous solution form.
  • the ratio is preferably 5 to 1: 4, and more preferably 1: 1 to 1: 2.
  • Pigment dispersion resin (D) is a resin for improving the dispersion performance of the pigment (F), and is used by being dispersed in an aqueous medium.
  • a pigment dispersion resin having a cationic group such as a modified epoxy resin having at least one selected from a quaternary ammonium group and a tertiary sulfonium group can be used.
  • a modified epoxy resin having a quaternary ammonium group can be prepared by reacting an epoxy resin with a tertiary amine.
  • aqueous solvent ion-exchanged water or water containing a small amount of alcohol is used.
  • the pigment dispersion resin (D) preferably has a hydroxyl value of 20 to 120 mgKOH / g.
  • the pigment dispersion resin having such a hydroxyl value can be prepared, for example, by introducing a blocked isocyanate group by reacting a half-blocked isocyanate with a hydroxyl group of an epoxy resin having a hydroxyl group.
  • polyepoxide As the epoxy resin, polyepoxide is generally used. This epoxide has an average of 2 or more 1,2-epoxy groups in one molecule. Useful examples of such polyepoxides include the aforementioned epoxy resins.
  • the half-blocked isocyanate used for reacting with the epoxy resin is prepared by partially blocking the polyisocyanate.
  • the reaction between the polyisocyanate and the blocking agent can be performed by cooling to 40 to 50 ° C. while dropping the blocking agent in the presence of a curing catalyst (for example, a tin-based catalyst) as necessary. preferable.
  • the above polyisocyanate is not particularly limited as long as it has two or more isocyanate groups on average in one molecule.
  • polyisocyanate that can be used in the preparation of the blocked isocyanate curing agent can be used.
  • Suitable blocking agents for preparing the above half-blocked isocyanate include lower aliphatic alkyl monoalcohols having 4 to 20 carbon atoms. Specific examples include butyl alcohol, amyl alcohol, hexyl alcohol, 2-ethylhexyl alcohol, heptyl alcohol and the like.
  • the reaction between the epoxy resin and the half-blocked isocyanate is preferably carried out at 140 ° C. for about 1 hour.
  • tertiary amine those having 1 to 6 carbon atoms can be preferably used.
  • Specific examples of the tertiary amine include, for example, dimethylethanolamine, trimethylamine, triethylamine, dimethylbenzylamine, diethylbenzylamine, N, N-dimethylcyclohexylamine, tri-n-butylamine, diphenethylmethylamine, dimethylaniline, N- And methyl morpholine.
  • neutralizing acid used by mixing with the said tertiary amine Specifically, it is inorganic acid or organic acid like hydrochloric acid, nitric acid, phosphoric acid, formic acid, acetic acid, lactic acid, etc. .
  • the reaction between the neutralized salt of tertiary amine thus obtained and the epoxy resin can be carried out by a conventional method.
  • the above epoxy resin is dissolved in a solvent such as ethylene glycol monobutyl ether, and the resulting solution is heated to 60 to 100 ° C., and a neutralized acid salt of a tertiary amine is added dropwise thereto to give an acid value of 1.
  • the reaction mixture is held at 60-100 ° C. until it is.
  • the pigment dispersion resin (D) preferably has an epoxy equivalent of 1000 to 1800.
  • the epoxy equivalent is more preferably 1200 to 1700.
  • the pigment-dispersed resin (D) preferably has a number average molecular weight of 1500 to 2700.
  • the pigment dispersion resin (D) preferably has 35 to 70 meq (milligram equivalent number) of quaternary ammonium groups per 100 g, more preferably 35 to 55 meq of quaternary ammonium groups per 100 g.
  • amount of the quaternary ammonium group is within the above range, there are advantages that the pigment dispersion performance is improved and the coating workability of the electrodeposition coating composition is improved.
  • Pigment (F) The cationic electrodeposition coating composition of the present invention contains a pigment (F).
  • the pigment (F) contains zinc oxide in the range of 0.5 to 5% by mass. By containing zinc oxide in the range of 0.5 to 5% by mass in the pigment (F), the corrosion resistance of the edge portion can be improved.
  • the pigment (F) further contains a pigment usually used in an electrodeposition coating composition.
  • Such pigments include, for example, commonly used inorganic and organic pigments, for example colored pigments such as titanium white (titanium dioxide), carbon black and bengara; kaolin, talc, aluminum silicate, calcium carbonate, mica and Extender pigments such as clay; iron phosphate, aluminum phosphate, calcium phosphate, aluminum tripolyphosphate, and rust preventive pigments such as aluminum phosphomolybdate and zinc aluminum phosphomolybdate.
  • colored pigments such as titanium white (titanium dioxide), carbon black and bengara
  • kaolin talc, aluminum silicate, calcium carbonate, mica
  • Extender pigments such as clay
  • iron phosphate, aluminum phosphate, calcium phosphate, aluminum tripolyphosphate, and rust preventive pigments such as aluminum phosphomolybdate and zinc aluminum phosphomolybdate.
  • the corrosion resistance evaluation of the cured electrodeposition coating film formed on the article having an edge portion is performed by a salt spray test (35 ° C. ⁇ 168 hours) based on JIS Z 2371 (2000). More specifically, in the salt spray test, the number of rust occurrences in the edge coating portion of the cured electrodeposition coating film formed on the article having the edge portion is, for example, 2 per 1 cm 2 of the edge portion. In the case of less than cm 2 , it can be said that the coating film is excellent in the corrosion resistance (rust prevention) of the edge portion.
  • the pigment (F) is preferably used in an amount of 1 to 30% by mass relative to the resin solid content of the cationic electrodeposition coating composition.
  • the bismuth compound (c1) and the organic acid (c2) are mixed in advance prior to the other components to prepare a bismuth mixture (C).
  • a bismuth mixture (C) By preparing the bismuth mixture (C) by mixing the bismuth compound (c1) and the organic acid (c2) in advance, the solubility of the bismuth compound is improved, thereby improving the catalytic activity and being excellent in curability and corrosion resistance.
  • a coated film can be formed.
  • the mixing of the bismuth compound (c1) and the organic acid (c2) is performed by dispersing the bismuth compound (c1) particles in the organic acid (c2) aqueous solution by stirring.
  • Conditions such as temperature and agitation speed in mixing may be those normally performed in the production of a coating composition, for example, at 10 to 30 ° C., preferably at room temperature, at an agitation speed at which an agitating flow is generated. Can do.
  • the stirring time can be appropriately selected according to the size of the reaction system, and can be selected, for example, in the range of 0.1 to 24 hours.
  • a pigment dispersion paste is prepared by mixing the bismuth mixture (C) thus obtained, the pigment dispersion resin (D) and the pigment (F). Mixing of these components can be performed in any order.
  • a pigment dispersion paste can be prepared by mixing the bismuth mixture (C) and the pigment dispersion resin (D) and then mixing the pigment (F).
  • a pigment dispersion paste can be prepared by previously mixing the pigment dispersion resin (D) and the pigment (F) and mixing the resulting mixture and the bismuth mixture (C).
  • an aminated resin emulsion containing an aminated resin (E) may be used.
  • the dispersion stability of the pigment dispersion paste containing the bismuth compound (c1) can be improved by using an aminated resin emulsion containing the amination resin (E).
  • content of the amination resin (E) used as needed in preparation of a pigment dispersion paste is not converted as a film formation resin. This is because the aminated resin (E) used as necessary in the preparation of the pigment dispersion paste has a function of improving the dispersion performance of the pigment and functions as a dispersant like the pigment dispersion resin.
  • the aminated resin (E) used as necessary in the preparation of the pigment dispersion paste is an aminated resin (A) that satisfies the specific values of the aminated resin (A). I just need it.
  • the electrodeposition coating composition of the present invention contains an aminated resin (E)
  • the aminated resin (A) as a coating film-forming resin and an aminated resin used as necessary in the preparation of a pigment dispersion paste (E) may be completely the same, and the aminated resin (E) may not be the same resin as long as it satisfies the specific value of the aminated resin (A). .
  • the aminated resin (E) when used, it is prepared and used in the state of an aminated resin emulsion.
  • a solution is prepared, and these solutions are mixed.
  • the aminated resin emulsion can be prepared by dispersing in water using a neutralizing acid.
  • the aminated resin emulsion is prepared by dissolving the aminated resin (E) in an organic solvent and dispersing the solution in water using a neutralizing acid.
  • Examples of the neutralizing acid that can be used to prepare the aminated resin emulsion include organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid, and acetic acid.
  • organic acids such as methanesulfonic acid, sulfamic acid, lactic acid, dimethylolpropionic acid, formic acid, and acetic acid.
  • the neutralizing acid it is more preferable to use one or more acids selected from the group consisting of formic acid, acetic acid and lactic acid.
  • an aminated resin emulsion containing an aminated resin (E) when used, it can be prepared, for example, by the following method.
  • Method 1 A bismuth mixture (C) obtained by previously mixing a bismuth compound (c1) and an organic acid (c2) and a pigment dispersion resin (D) are mixed, and the resulting mixture and the aminated resin emulsion are mixed.
  • Method 2 The bismuth mixture (C) obtained by previously mixing the bismuth compound (c1) and the organic acid (c2), the pigment dispersion resin (D) and the aminated resin emulsion are mixed, and then the pigment (F) Mixing, Method 3: A bismuth mixture (C) obtained by previously mixing a bismuth compound (c1) and an organic acid (c2) and the aminated resin emulsion are mixed, and the resulting mixture is mixed with the pigment dispersion resin (D). And pigment (F).
  • One embodiment (method 1) in the preparation procedure of the pigment dispersion paste is the mixing of the bismuth mixture (C) obtained by previously mixing the bismuth compound (c1) and the organic acid (c2) with the pigment dispersion resin (D). Then, the obtained mixture and the aminated resin emulsion are mixed, and then the pigment (F) is mixed.
  • Method 2 in the preparation procedure of the pigment dispersion paste is the bismuth mixture (C) obtained by premixing the bismuth compound (c1) and the organic acid (c2), and the pigment dispersion resin (D). And the aminated resin emulsion are mixed, and then the pigment (F) is mixed.
  • Method 3 in the preparation procedure of the pigment dispersion paste is to mix the bismuth mixture (C) obtained by previously mixing the bismuth compound (c1) and the organic acid (c2) and the aminated resin emulsion, In this embodiment, the obtained mixture is mixed with the pigment dispersion resin (D) and the pigment (F).
  • the ratio of the pigment (F) and the pigment dispersion resin (D) contained in the pigment dispersion paste is expressed as a solid content mass ratio.
  • Pigment (F) / Pigment dispersion resin (D) 1 / 0.1 to 1/1 is preferable.
  • the conditions such as the temperature and the stirring speed in mixing may be those normally performed in the production of the coating composition.
  • the pigment is dispersed at 10 to 50 ° C., preferably 20 to 40 ° C. It can be carried out at a stirring speed such that a stirring flow that can be generated is generated.
  • the stirring time is preferably performed until, for example, the dispersed particle size of the pigment is 10 ⁇ m or less.
  • the dispersed particle size of the pigment can be confirmed by measuring the volume average particle size of the pigment.
  • the electrodeposition coating composition of the present invention such as other components may further contain a metal nitrite (H) in addition to the above components.
  • a metal nitrite H
  • an alkali metal nitrite or an alkaline earth metal nitrite is preferred, and an alkaline earth metal nitrite is more preferred.
  • the metal nitrite include calcium nitrite, sodium nitrite, potassium nitrite, magnesium nitrite, strontium nitrite, barium nitrite, zinc nitrite and the like.
  • the corrosion resistance is improved, and in particular, there is an advantage that the corrosion resistance (edge rust prevention) of the edge portion is improved.
  • the corrosion resistance improving effect achieved by the addition of zinc oxide can be further improved.
  • the electrodeposition coating composition contains a metal nitrite (H)
  • it is contained in an amount of 0.001 to 0.2% by mass in terms of the metal element of the metal component with respect to the total mass of the coating film forming resin. Is preferred.
  • the metal nitrite (H) can be added to the electrodeposition coating composition by any method.
  • a method of preparing an aqueous solution of metal nitrite (H) in advance and adding it to the electrodeposition coating composition can be mentioned.
  • the metal nitrite (H) can be mixed with the pigment (F) in advance and dispersed in the same manner as the pigment (F).
  • the electrodeposition coating composition of the present invention may further contain a rare earth metal salt (I) selected from the group consisting of neodymium, yttrium, lanthanum, cerium, praseodymium and ytterbium, in addition to the above components.
  • a rare earth metal salt (I) selected from the group consisting of neodymium, yttrium, lanthanum, cerium, praseodymium and ytterbium, in addition to the above components.
  • the rare earth metal salt (I) include, for example, acetate, nitrate, sulfate, sulfamate, lactate, formate, and carbonate of the rare earth metal.
  • the electrodeposition coating composition contains the rare earth metal salt (I), it is contained in an amount of 0.0001 to 0.5% by mass in terms of the metal element of the rare earth metal with respect to the resin solid content of the coating film forming resin. Is preferred.
  • the rare earth metal salt (I) can be added to the electrodeposition coating composition by any method.
  • a method in which an aqueous solution of a rare earth metal salt (I) is prepared in advance and added to the electrodeposition coating composition can be mentioned.
  • the electrodeposition coating composition of the present invention may contain an amino acid as necessary.
  • an amino acid may be further mixed when the bismuth compound (c1) and the organic acid (c2) are mixed in advance.
  • an amino acid having a strong chelating property can be coordinated with the bismuth compound, whereby the dissolution stability of the bismuth compound can be improved.
  • amino acid for example, glycine, aspartic acid or a mixture thereof can be used.
  • the molar ratio of the bismuth compound (c1) and the amino acid is Bi: amino acid in an amount of 1: 0.5 to 1: 4.0. More preferably, it is used in an amount of
  • the electrodeposition coating composition of the present invention comprises a resin emulsion containing an aminated resin (A) and a curing agent (B), an amino polyether-modified polyalkylene glycol resin (G), a pigment dispersion paste, and It can be prepared by mixing other components as required.
  • the resin solid content of the electrodeposition coating composition of the present invention is preferably 1 to 30% by mass with respect to the total amount of the electrodeposition coating composition.
  • the resin solid content of the electrodeposition coating composition is less than 1% by mass, the amount of electrodeposition coating film deposited decreases, and it may be difficult to ensure sufficient corrosion resistance.
  • the resin solid content of an electrodeposition coating composition exceeds 30 mass%, there exists a possibility that throwing power or a coating external appearance may worsen.
  • the pH of the electrodeposition coating composition of the present invention is preferably 4.5-7.
  • the pH of the electrodeposition coating composition can be set in the above range by adjusting the amount of neutralizing acid used, the amount of free acid added, and the like.
  • the pH of the electrodeposition coating composition can be measured using a commercially available pH meter having a temperature compensation function.
  • the milligram equivalent (MEQ (A)) of the acid with respect to 100 g of the solid content of the electrodeposition coating composition is preferably 40 to 120.
  • the milligram equivalent (MEQ (A)) of the acid with respect to 100 g of the resin solid content of the electrodeposition coating composition can be adjusted by the amount of neutralized acid and the amount of free acid.
  • MEQ (A) is an abbreviation for mg equivalent (acid), and is the sum of mg equivalents of all acids per 100 g of solid content of the paint.
  • This MEQ (A) is obtained by accurately weighing about 10 g of the solid content of the electrodeposition coating composition and dissolving it in about 50 ml of a solvent (THF: tetrahydrofuran), followed by potentiometric titration using a 1/10 N NaOH solution. The amount of acid contained in the electrodeposition coating composition can be quantified and measured.
  • THF tetrahydrofuran
  • the electrodeposition coating composition contains substantially neither a tin compound nor a lead compound.
  • “the electrodeposition coating composition is substantially free of both a tin compound and a lead compound” means that the concentration of the lead compound contained in the electrodeposition coating composition does not exceed 50 ppm as a lead metal element, And it means that the concentration of the organic tin compound does not exceed 50 ppm as a tin metal element.
  • the electrodeposition coating composition of the present invention contains a bismuth compound (c1). Therefore, it is not necessary to use a lead compound or an organic tin compound as a curing catalyst. Thereby, the electrodeposition coating composition which does not contain any of a tin compound and a lead compound can be prepared.
  • the electrodeposition coating composition of the present invention comprises additives generally used in the coating field, such as ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethyl hexyl ether, propylene glycol monobutyl ether, dipropylene glycol.
  • Organic solvents such as monobutyl ether and propylene glycol monophenyl ether, surfactants such as anti-drying agents and antifoaming agents, viscosity modifiers such as acrylic resin fine particles, anti-fogging agents, vanadium salts, copper, iron, manganese, magnesium,
  • An inorganic rust preventive agent such as a calcium salt may be included as necessary.
  • auxiliary complexing agents may be blended depending on the purpose.
  • These additives may be mixed during the preparation of the resin emulsion, may be mixed during the preparation of the pigment dispersion paste, or may be mixed during or after the mixing of the resin emulsion and the pigment dispersion paste.
  • the electrodeposition coating composition of the present invention may contain other film forming resin components in addition to the aminated resin (A).
  • film forming resin components include acrylic resin, polyester resin, urethane resin, butadiene resin, phenol resin, xylene resin, and the like.
  • the aminated resin which does not correspond to the aminated resin (A) as described above may be used.
  • Phenol resins and xylene resins are preferred as other film-forming resin components that can be included in the electrodeposition coating composition.
  • the phenol resin and xylene resin include xylene resins having 2 or more and 10 or less aromatic rings.
  • the cationic electrodeposition coating composition of the present invention is excellent in curability and substantially excellent in impact resistance and corrosion resistance (especially edge portion corrosion resistance) even if it contains substantially neither an organic tin compound nor a lead compound.
  • An electrodeposition coating film can be provided.
  • Electrodeposition coating and electrodeposition coating film formation A cured electrodeposition coating film can be formed on a coating object by performing electrodeposition coating on the coating object using the electrodeposition coating composition of the present invention.
  • an object to be coated is immersed in the electrodeposition coating composition as a cathode, and then a voltage is applied to the anode. Thereby, an electrodeposition coating film deposits on a to-be-coated article.
  • electrodeposition coating is performed by applying a voltage of 50 to 450 V after the object to be coated is immersed in the electrodeposition coating composition. If the applied voltage is less than 50V, electrodeposition may be insufficient, and if it exceeds 450V, the coating film may be destroyed and an abnormal appearance may be obtained.
  • the bath temperature of the coating composition is usually adjusted to 10 to 45 ° C.
  • the voltage application time varies depending on the electrodeposition conditions, but can generally be 2 to 5 minutes.
  • the film thickness of the electrodeposition coating film is such that the film thickness of the cured electrodeposition coating film finally obtained by heat curing is preferably 5 to 40 ⁇ m, more preferably 10 to 25 ⁇ m. There exists a possibility that corrosion resistance may be inferior that the film thickness of an electrodeposition coating film is less than 5 micrometers. On the other hand, if it exceeds 40 ⁇ m, it leads to waste of paint.
  • the electrodeposition coating film obtained as described above is heated by heating at 120 to 260 ° C., preferably 140 to 220 ° C. for 10 to 30 minutes after completion of the electrodeposition process, or after washing with water. A cured electrodeposition coating is formed.
  • various objects that can be energized can be used.
  • coatings that can be used include cold-rolled steel sheets, hot-rolled steel sheets, stainless steel, electrogalvanized steel sheets, hot-dip galvanized steel sheets, zinc-aluminum alloy-plated steel sheets, zinc-iron alloy-plated steel sheets, zinc-magnesium alloy-based plating Examples include steel plates, zinc-aluminum-magnesium alloy-based plated steel plates, aluminum-based plated steel plates, aluminum-silicon alloy-based plated steel plates, and tin-based plated steel plates.
  • pigment dispersion resin 710.0 parts of bisphenol A type epoxy resin (trade name: DER-331J, manufactured by Dow Chemical Co.) and 289.6 parts of bisphenol A were charged in a reaction vessel, and the temperature was 1 at 150 to 160 ° C. in a nitrogen atmosphere. After reacting for a period of time and then cooling to 120 ° C., 498.8 parts of the previously prepared 2-ethylhexanol half-blocked IPDI (MIBK solution) was added. The reaction mixture is stirred at 110-120 ° C.
  • Production Example 2-1 Production of Aminated Resin (A-1) 92 parts of methyl isobutyl ketone, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Company), 382 parts of bisphenol A, 63 parts of octylic acid, 2 parts of dimethylbenzylamine was added, the temperature in the reaction vessel was maintained at 140 ° C., and the reaction was continued until the epoxy equivalent reached 1110 g / eq, followed by cooling until the temperature in the reaction vessel reached 120 ° C.
  • A-1 92 parts of methyl isobutyl ketone, 940 parts of bisphenol A type epoxy resin (trade name DER-331J, manufactured by Dow Chemical Company), 382 parts of bisphenol A, 63 parts of octylic acid, 2 parts of dimethylbenzylamine was added, the temperature in the reaction vessel was maintained at 140 ° C., and the reaction was continued until the epoxy equivalent reached 1110 g / eq, followed by cooling until the
  • aminated resin (cation-modified epoxy resin).
  • the number average molecular weight of this resin was 2,560, the amine value was 41 mgKOH / g (of which the amine value derived from the primary amine was 12 mgKOH / g), and the hydroxyl value was 250 mgKOH / g.
  • B-1 Production of Blocked Isocyanate Curing Agent (B-1 ) 1680 parts of hexamethylene diisocyanate (HDI) and 732 parts of MIBK were charged into a reaction vessel and heated to 60 ° C. A solution obtained by dissolving 346 parts of trimethylolpropane in 1067 parts of MEK oxime was added dropwise at 60 ° C. over 2 hours. Further, after heating at 75 ° C. for 4 hours, in the measurement of IR spectrum, it was confirmed that the absorption based on the isocyanate group disappeared, and after standing to cool, 27 parts of MIBK was added to add a blocked isocyanate curing agent (B -1) was obtained. The isocyanate group value was 252 mgKOH / g.
  • Production Example 3-2 Production of Blocked Isocyanate Curing Agent (B-2) 1,340 parts of 4,4′-diphenylmethane diisocyanate and 277 parts of MIBK were charged into a reaction vessel and heated to 80 ° C., and then 226 parts of ⁇ -caprolactam Was dissolved in 944 parts of butyl cellosolve dropwise at 80 ° C. over 2 hours. After further heating at 100 ° C. for 4 hours, in the IR spectrum measurement, it was confirmed that the absorption based on the isocyanate group disappeared, and after standing to cool, 349 parts of MIBK was added to obtain a blocked isocyanate curing agent (B-2). (Solid content 80%). The isocyanate group value was 251 mgKOH / g.
  • Production Example 4-1 Production of Aminated Resin Emulsion (1 ) 350 parts (solid content) of aminated resin (A-1) obtained in Production Example 2-1 and blocked isocyanate obtained in Production Example 3-1. Ethylene glycol mono-2-ethylhexyl was mixed with 75 parts (solid content) of the curing agent (B-1) and 75 parts (solid content) of the blocked isocyanate curing agent (B-2) obtained in Production Example 3-2. Ether was added to 3% (15 parts) based on solids. Next, neutralize by adding formic acid so that the addition amount is equivalent to a resin neutralization rate of 40%, slowly dilute by adding ion-exchanged water, and then reduce the methyl content under reduced pressure so that the solid content becomes 40%. Isobutyl ketone was removed to obtain an aminated resin emulsion (1).
  • Production Example 4-2 Production of Aminated Resin Emulsion (2) Instead of the aminated resin (A-1) obtained in Production Example 2-1, the aminated resin (A-) obtained in Production Example 2-2 was used. An aminated resin emulsion (2) was obtained in the same manner as in Production Example 4-1, except that 2) was used.
  • Production Example 5-1 Production of Pigment Dispersion Paste (1) While mixing and stirring 120 parts of ion-exchanged water, 3.1 parts of 50% aqueous lactic acid solution and 4 parts of bismuth oxide, the pigment dispersion obtained in Production Example 1 was mixed here. 70 parts of resin (D) was added and stirred at 1000 rpm for 1 hour at room temperature to prepare a bismuth mixture.
  • Production Example 5-2 Production of Pigment Dispersion Paste (2) A pigment dispersion paste (2) was obtained in the same manner as in Production Example 5-1, except that the aminated resin emulsion (1) was not added.
  • Production Example 5-3 Production of Pigment Dispersion Paste (3) A pigment dispersion paste (3) was obtained in the same manner as in Production Example 5-1, except that bismuth hydroxide was used instead of bismuth oxide.
  • Production Example 5-4 Production of Pigment Dispersion Paste (4) A pigment dispersion paste (4) was obtained in the same manner as in Production Example 5-1, except that the amount of zinc oxide was changed to 0.5 part.
  • Production Example 5-5 Production of Pigment Dispersion Paste (5) A pigment dispersion paste (5) was obtained in the same manner as in Production Example 5-1, except that the amount of zinc oxide was changed to 5 parts.
  • Production Example 6-1 Production of amino polyether-modified polyalkylene glycol resin (G-1) A reaction vessel equipped with a stirrer, thermometer, reflux condenser, and nitrogen inlet tube was charged with Chemiol EP-400P (manufactured by Sanyo Chemical Industries). 181.0 parts of polypropylene glycol diglycidyl ether, epoxy equivalent of about 300) and 43.1 parts of bisphenol A were added, and the temperature was raised to 140 ° C. with stirring. Thereafter, 0.6 part of benzyldimethylamine was added and kept at 175 ° C. for 4 hours to obtain a polyepoxide having an epoxy equivalent of 1000.
  • Chemiol EP-400P manufactured by Sanyo Chemical Industries
  • Production Example 6-2 Production of amino polyether-modified polyalkylene glycol resin (G-2) 43.5 parts of AP-40, which is an amino polyether, was added to an amino polyether having an amine value of 255 mgKOH / g (diethylenetriamine manufactured by Sanyo Kasei Co., Ltd.). Propylene oxide adduct AP-10) An amino polyether-modified polyalkylene glycol resin (G-2) was obtained in the same manner as in Production Example 6-1 except that the content was changed to 43.5 parts. Using the obtained amino polyether-modified polyalkylene glycol resin (G-2), an emulsion containing the amino polyether-modified polyalkylene glycol resin (G-2) was obtained by the same procedure as in Production Example 6-1. .
  • Production Example 6-3 Production of amino polyether-modified polyalkylene glycol resin (G-3) An amino polyether-modified polyalkylene glycol resin (G-3) was prepared in the same manner as in Production Example 6-1 except that bisphenol A was not used. -3) was obtained. Using the resulting amino polyether-modified polyalkylene glycol resin (G-3), an emulsion containing the amino polyether-modified polyalkylene glycol resin (G-3) was obtained by the same procedure as in Production Example 6-1. .
  • Production Example 6-4 Production of amino polyether-modified polyalkylene glycol resin (G-4) Amino polyether-modified polyalkylene was prepared in the same manner as in Production Example 6-1, except that Versadim 216, which is a dimer acid, was not used. Glycol resin (G-4) was obtained. Using the resulting amino polyether-modified polyalkylene glycol resin (G-4), an emulsion containing the amino polyether-modified polyalkylene glycol resin (G-4) was obtained by the same procedure as in Production Example 6-1. .
  • Example 1 In a stainless steel container, 485 parts of ion-exchanged water, 269 parts of the aminated resin emulsion (1) obtained in Production Example 4-1, (coating film-forming resin emulsion), aminopolyether-modified polyalkylene glycol obtained in Production Example 6-1 59 parts of the emulsion containing the resin (G-1) and 144 parts of the pigment dispersion paste (1) obtained in Production Example 5-1 were added, followed by aging at 40 ° C. for 16 hours to obtain an electrodeposition coating composition. It was.
  • Example 2 An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the pigment dispersion paste (2) obtained in Production Example 5-2 was used instead of the pigment dispersion paste (1).
  • Example 3 An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the pigment dispersion paste (3) obtained in Production Example 5-3 was used instead of the pigment dispersion paste (1).
  • Example 4 Instead of the emulsion containing the amino polyether-modified polyalkylene glycol resin (G-1) obtained in Production Example 6-1, the amino polyether-modified polyalkylene glycol resin (G-2) obtained in Production Example 6-2 was used. An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the containing emulsion was used.
  • Example 5 Instead of the emulsion containing the amino polyether-modified polyalkylene glycol resin (G-1) obtained in Production Example 6-1, the amino polyether-modified polyalkylene glycol resin (G-3) obtained in Production Example 6-3 was used. An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the containing emulsion was used.
  • Example 6 Instead of the emulsion containing the amino polyether-modified polyalkylene glycol resin (G-1) obtained in Production Example 6-1, the amino polyether-modified polyalkylene glycol resin (G-4) obtained in Production Example 6-4 was used. An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the containing emulsion was used.
  • Example 7 In a stainless steel container, 492 parts of ion-exchanged water, 300 parts of the aminated resin emulsion (1) obtained in Production Example 4-1 (coating film-forming resin emulsion), aminopolyether-modified polyalkylene glycol obtained in Production Example 6-1 20 parts of the emulsion containing the resin (G-1) and 144 parts of the pigment dispersion paste (1) obtained in Production Example 5-1 were added, followed by aging at 40 ° C. for 16 hours to obtain an electrodeposition coating composition. It was.
  • Example 8 In a stainless steel container, 477 parts of ion exchanged water, 237 parts of the aminated resin emulsion (1) obtained in Production Example 4-1, (coating film-forming resin emulsion), aminopolyether-modified polyalkylene glycol obtained in Production Example 6-1 98 parts of the emulsion containing the resin (G-1) and 144 parts of the pigment dispersion paste (1) obtained in Production Example 5-1 were added, followed by aging at 40 ° C. for 16 hours to obtain an electrodeposition coating composition. It was.
  • Example 9 An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the aminated resin emulsion (2) was used instead of the aminated resin emulsion (1).
  • Example 10 An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the pigment dispersion paste (4) obtained in Production Example 5-4 was used instead of the pigment dispersion paste (1).
  • Example 11 An electrodeposition coating composition was obtained in the same manner as in Example 1, except that the pigment dispersion paste (5) obtained in Production Example 5-5 was used instead of the pigment dispersion paste (1).
  • Example 12 In the production of an electrodeposition coating composition, a calcium nitrite aqueous solution (concentration: 30% by mass, calcium nitrite: manufactured by Nissan Chemical Industries, Ltd.) was used, and the concentration in the electrodeposition coating composition was 400 ppm (0.004 in terms of metal element). An electrodeposition coating composition was obtained in the same manner as in Example 1 except that it was added in an amount of (mass%).
  • Example 13 In the production of an electrodeposition coating composition, a neodymium acetate aqueous solution (concentration: 10% by mass) was added in such an amount that the concentration in the electrodeposition coating composition was 500 ppm (0.005% by mass) in terms of metal element. Obtained an electrodeposition coating composition in the same manner as in Example 1.
  • Comparative Example 1 An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the pigment dispersion paste (6) obtained in Comparative Production Example 5-6 was used instead of the pigment dispersion paste (1).
  • Comparative Example 2 An electrodeposition coating composition was obtained in the same manner as in Example 1 except that the amino polyether-modified polyalkylene glycol resin (G-1) was not used.
  • Comparative Example 4 An electrodeposition coating composition was obtained in the same manner as in Example 1, except that the pigment dispersion paste (7) obtained in Comparative Production Example 5-7 was used instead of the pigment dispersion paste (1).
  • the cured electrodeposition coating film obtained by coating according to the above method was immersed in acetone and heated to reflux at 56 ° C. for 4 hours. After the reflux, the cured electrodeposition coating film was dried, and the coating film residual rate was determined from the following formula from the coating film mass before and after immersion in acetone, and the curability was evaluated.
  • the electrodeposition coating compositions obtained by the above Examples and Comparative Examples were electrodeposited under the same conditions as the above electrodeposition coating and heat-cured to form a cured electrodeposition coating film, and then JIS Z A salt spray test (35 ° C. ⁇ 168 hours) in accordance with 2371 (2000) was conducted to examine the number of rust generated at the tip of the L-shaped dedicated blade.
  • the “L-shaped dedicated replaceable blade tip” means a width of 5 mm from the apex of the blade to the replaceable blade body direction.
  • variety contains both the surface side and a back surface side, and becomes a width
  • This "L-shaped dedicated blade tip” corresponds to the "edge" in this specification.
  • the number of rust generated at the tip of the L-type exclusive blade is 20
  • the length of the L-type exclusive blade is 100 mm (10 cm)
  • the width of the L-type exclusive blade tip Since the total of the front and back surfaces is 10 mm (width 1 cm)
  • the electrodeposition coating compositions obtained in each Example and Comparative Example were subjected to the following operations (a) to (g), and the loss on heating was calculated according to the following formula (1).
  • A The test plate (zinc phosphate-treated plate) was precisely weighed to determine the test plate weight A before electrodeposition coating.
  • B The test plate was immersed in the electrodeposition coating composition, and cationic electrodeposition coating was applied so that the film thickness after drying was 20 ⁇ m.
  • D After drying, the test plate was cooled to room temperature in a desiccator and then precisely weighed to determine the test plate weight B after drying.
  • the electrodeposition coating compositions of the examples all have good curability, the content of the heat loss component is low, and the obtained cured electrodeposition coating film has a good coating appearance. It was also confirmed that the impact resistance was high and the edge rust resistance was also high.
  • Comparative Example 1 is an example in which zinc oxide is not contained in the pigment (F).
  • the cured electrodeposition coating film obtained using the electrodeposition coating composition of Comparative Example 1 was inferior in edge rust prevention.
  • Comparative Example 2 is an example in which an amino polyether-modified polyalkylene glycol resin is not included.
  • the cured electrodeposition coating film obtained using the electrodeposition coating composition of Comparative Example 2 was particularly inferior in impact resistance.
  • Comparative Example 3 is an example in which polyoxyethylene bisphenol A ether was used in place of the amino polyether-modified polyalkylene glycol resin.
  • the electrodeposition coating composition of Comparative Example 3 is inferior in curability, and the cured electrodeposition coating film obtained using this electrodeposition coating composition has a high content of heat loss component and has an impact resistance. And edge rust resistance were also poor.
  • Comparative Example 4 is an example prepared without using the organic acid (c2) in the preparation of the bismuth mixture.
  • the electrodeposition coating composition of Comparative Example 4 is inferior in curability, and the cured electrodeposition coating film obtained using this electrodeposition coating composition is also inferior in impact resistance and edge rust prevention. It was.
  • the cationic electrodeposition coating composition of the present invention can provide a cured electrodeposition coating film having excellent curability and excellent performance even when substantially free of an organic tin compound.

Abstract

 本発明は、優れた塗膜外観、耐衝撃性、耐腐食性などを有する硬化電着塗膜を提供する、ビスマス化合物を含むカチオン電着塗料組成物を提供することを課題とする。 本発明は、アミン化樹脂(A)、ブロックイソシアネート硬化剤(B)、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)および顔料分散ペーストを含む、カチオン電着塗料組成物であって、上記顔料分散ペーストは、ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、得られたビスマス混合物(C)、顔料分散樹脂(D)および顔料(F)を混合することによって調製され、上記顔料(F)は、酸化亜鉛を、0.5~5質量%の範囲で含み、上記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、アミノポリエーテルおよびポリアルキレングリコールジグリシジルエーテルを反応させて得られる樹脂である、カチオン電着塗料組成物を提供する。

Description

カチオン電着塗料組成物
 本発明は、カチオン電着塗料組成物に関する。
 カチオン電着塗料組成物は一般に、樹脂エマルションおよび顔料分散ペーストを含む。このようなカチオン電着塗料組成物においては、硬化触媒として、有機錫化合物が広く使用されてきた。しかしながら、有機錫化合物は、昨今の環境規制動向から、今後は使用を制限されるおそれがある。そのため、有機錫化合物の代替触媒を開発する必要がある。
 ビスマス化合物を、カチオン電着塗料組成物の硬化触媒として用いる検討が行われている。しかしながら、例えば、酸化ビスマスまたは水酸化ビスマスなどのビスマス化合物を顔料分散ペーストに単に分散させるのみでは、ビスマス化合物の触媒活性が低くなり、塗膜を十分に硬化させることができなかった。また、ビスマス化合物をカチオン電着塗料組成物中に加えることによって、塗料組成物または顔料分散ペーストの保存安定性が低下し、保存時に凝集が生じるという問題があった。
 ビスマス化合物をアミノ酸などのアミン含有カルボン酸と予め混合および溶解させた後、得られた混合物を顔料分散ペーストの調製に用いる方法が開示されている(特許文献1)。またビスマス化合物を乳酸と予め混合および溶解させた後、得られた混合物を塗料に添加する方法も開示されている(特許文献2)。これらの文献に記載されるように、ビスマスを予め溶解させることによって、触媒活性が向上する利点がある。その一方で、ビスマスを予め溶解させるためには、多量の酸を用いる必要がある。ビスマスの溶解に多量の酸を用いることによって、電着塗料組成物の電導度が高くなり、電着塗装作業性が低下し、また得られる塗膜の外観が悪化するという不具合がある。さらに、このようにして調製されたビスマス溶液は、残渣が多く発生するという問題もある。
特許第3293633号 特許第3874386号
 本発明は上記従来の課題を解決するものであり、その目的とするところは、硬化性に優れ、かつ、優れた塗膜外観、耐衝撃性、耐腐食性などを有する硬化電着塗膜を提供する、ビスマス化合物を含むカチオン電着塗料組成物を提供することにある。
 上記課題を解決するため、本発明は下記態様を提供する。
[1]
 アミン化樹脂(A)、ブロックイソシアネート硬化剤(B)、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)および顔料分散ペーストを含む、カチオン電着塗料組成物であって、
 上記顔料分散ペーストは、ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、得られたビスマス混合物(C)、顔料分散樹脂(D)および顔料(F)を混合することによって調製され、
 上記顔料(F)は、酸化亜鉛を、0.5~5質量%の範囲で含み、
 上記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、アミノポリエーテルおよびポリアルキレングリコールジグリシジルエーテルを反応させて得られる樹脂である、
カチオン電着塗料組成物。
[2]
 上記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、ポリアルキレングリコールジグリシジルエーテル、多環式フェノール化合物、ジカルボン酸化合物およびアミノポリエーテルを反応させて得られる樹脂である、上記カチオン電着塗料組成物。
[3]
 上記顔料分散ペーストは、
ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、
得られたビスマス混合物(C);顔料分散樹脂(D);アミン化樹脂(E)を含むアミン化樹脂エマルション;および顔料(F);を混合することによって調製される、
上記カチオン電着塗料組成物。
[4]
 上記顔料分散樹脂(D)は、水酸基価が20~120mgKOH/gであり、
上記アミン化樹脂(E)は、水酸基価が150~650mgKOH/gである、
上記カチオン電着塗料組成物。
[5]
 上記顔料分散ペーストに含まれる、顔料(F)および顔料分散樹脂(D)の比率は、固形分質量比として、顔料(F)/顔料分散樹脂(D)=1/0.1~1/1であり、および、
 上記顔料分散ペーストに含まれる、顔料(F)およびアミン化樹脂(E)の比率は、固形分質量比として、顔料(F)/アミン化樹脂(E)=1/0.02~1/0.3である、
上記カチオン電着塗料組成物。
[6]
 上記カチオン電着塗料組成物中におけるアミノポリエーテル変性ポリアルキレングリコール樹脂(G)およびアミン化樹脂(A)の比率は、固形分質量比として、(G)/(A)=0.08/1~0.4/1である、
上記カチオン電着塗料組成物。
[7]
 上記ビスマス化合物(c1)を、カチオン電着塗料組成物の樹脂固形分に対して、金属元素換算で0.05~1.0質量%の量で含む、上記カチオン電着塗料組成物。
[8]
 上記有機酸(c2)は、乳酸、ジメチロールプロピオン酸およびメタンスルホン酸からなる群から選択される1種またはそれ以上である、上記カチオン電着塗料組成物。
[9]
 さらに亜硝酸金属塩(H)を含む、上記カチオン電着塗料組成物。
[10]
 さらに、ネオジム、イットリウム、ランタン、セリウム、プラセオジム、イッテルビウムからなる群から選択される希土類金属の塩(I)を含む、上記カチオン電着塗料組成物。
[11]
 本発明はさらに、アミン化樹脂(A)および硬化剤(B)を含む樹脂エマルション;アミノポリエーテル変性ポリアルキレングリコール樹脂(G);および顔料分散ペーストを混合する工程を包含する、カチオン電着塗料組成物の調製方法であって、
 上記顔料分散ペーストは、ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、得られたビスマス混合物(C)、顔料分散樹脂(D)および顔料(F)を混合することによって調製され、
 上記顔料(F)は、酸化亜鉛を、0.5~5質量%の範囲で含み、
 上記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、アミノポリエーテルおよびポリアルキレングリコールジグリシジルエーテルを反応させて得られる樹脂である、
カチオン電着塗料組成物の調製方法、も提供する。
[12]
 上記調製方法において、上記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、ポリアルキレングリコールジグリシジルエーテル、多環式フェノール化合物、ジカルボン酸化合物およびアミノポリエーテルを反応させて得られる樹脂であるのが好ましい。
[13]
 上記調製方法において、上記顔料分散ペーストは、
ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、
得られたビスマス混合物(C);顔料分散樹脂(D);アミン化樹脂(E)を含むアミン化樹脂エマルション;および顔料(F);を混合することによって調製されるのが好ましい。
[14]
 本発明はさらに、上記カチオン電着塗料組成物を被塗物に電着塗装して、被塗物に硬化電着塗膜を形成する工程を包含する、硬化電着塗膜形成方法、も提供する。
[15]
 上記塗膜形成方法において、上記被塗物はエッジ部を有し、および、形成された硬化電着塗膜を有する被塗物を塩水噴霧試験した場合において、エッジ塗装部1cmにおける錆発生個数が2個/cm未満であるのが好ましい。
 本発明のカチオン電着塗料組成物は、ビスマス化合物を含み、硬化性に優れ、そして優れた塗膜外観、耐衝撃性、耐腐食性などを有する硬化電着塗膜を提供することができる。本発明のカチオン電着塗料組成物は、実質的に有機錫化合物を含まなくても、硬化性に優れており、かつ、優れた塗膜外観、耐衝撃性および耐食性などを有する硬化電着塗膜を提供することができる。
発明の経緯
 まず、本発明に至った経緯を説明する。本発明者らは、ビスマス成分を電着塗料組成物中に安定に分散させることを目的として、顔料分散ペースト中にビスマスを分散させることを検討した。この検討において、ビスマス化合物を酸成分と予め混合して加えることによって、ビスマスが微細化された状態となり、触媒活性が向上し、硬化性が向上することが判明した。そして、このようなビスマス化合物を含む顔料分散ペースト中に、さらに酸化亜鉛を加えることによって、被塗物がエッジ部を有する場合において、エッジ部の耐食性(防錆性)を向上させることができることを実験によって見いだした。一方で、ビスマス化合物の触媒活性が向上することによって、得られる硬化電着塗膜中において、ビスマス化合物そして酸化亜鉛と、樹脂成分との相互作用がより強くなり、得られる硬化電着塗膜が硬くなる傾向があることが判明した。硬化電着塗膜が硬くなると、外部からの衝撃を受けた場合に、塗膜の割れ・はがれが生じることがある。
 本発明者らは、ビスマス化合物の触媒活性を向上させつつ、かつ、上記問題を解決することを目的とした。そして、カチオン電着塗料組成物中に、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)を含めることによって、硬化性能などに悪影響を与えることなく、硬化電着塗膜に可撓性が付与され、上記問題を解決することができることを実験により見いだし、本発明を完成するに至った。以下、本発明のカチオン電着塗料組成物について詳述する。
カチオン電着塗料組成物
 本発明のカチオン電着塗料組成物は、アミン化樹脂(A)、ブロックイソシアネート硬化剤(B)、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)および顔料分散ペーストを含む。そして、上記顔料分散ペーストは、ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、得られたビスマス混合物(C)、顔料分散樹脂(D)および顔料(F)を混合することによって調製される。ここで顔料(F)は、酸化亜鉛を、0.5~5質量%の範囲で含む。
アミン化樹脂(A)
 アミン化樹脂(A)は、電着塗膜を構成する塗膜形成樹脂である。アミン化樹脂(A)として、エポキシ樹脂骨格中のオキシラン環を、アミン化合物で変性して得られるアミン変性エポキシ樹脂が好ましい。一般にアミン変性エポキシ樹脂は、出発原料樹脂分子内のオキシラン環を、1級アミン、2級アミンあるいは3級アミンおよび/またはその酸塩などのアミン化合物との反応によって開環して調製される。出発原料樹脂の典型例は、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラックなどの多環式フェノール化合物とエピクロルヒドリンとの反応生成物であるポリフェノールポリグリシジルエーテル型エポキシ樹脂である。また他の出発原料樹脂の例として、特開平5-306327号公報に記載のオキサゾリドン環含有エポキシ樹脂を挙げることができる。これらのエポキシ樹脂は、ジイソシアネート化合物、またはジイソシアネート化合物のイソシアネート基をメタノール、エタノールなどの低級アルコールでブロックして得られたビスウレタン化合物と、エピクロルヒドリンとの反応によって調製することができる。
 上記出発原料樹脂は、アミン化合物によるオキシラン環の開環反応の前に、2官能性のポリエステルポリオール、ポリエーテルポリオール、ビスフェノール類、2塩基性カルボン酸などにより鎖延長して用いることができる。
 また、アミン化合物によるオキシラン環の開環反応の前に、分子量またはアミン当量の調節、熱フロー性の改良などを目的として、一部のオキシラン環に対して2-エチルヘキサノール、ノニルフェノール、エチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノ-2-エチルヘキシルエーテルなどのモノヒドロキシ化合物またはオクチル酸などのモノカルボン酸化合物を付加して用いることもできる。
 上記エポキシ樹脂のオキシラン環とアミン化合物とを反応させることによって、アミン変性エポキシ樹脂が得られる。オキシラン環と反応させるアミン化合物として、1級アミンおよび2級アミンが挙げられる。エポキシ樹脂と2級アミンとを反応させると、3級アミノ基を有するアミン変性エポキシ樹脂が得られる。また、エポキシ樹脂と1級アミンとを反応させると、2級アミノ基を有するアミン変性エポキシ樹脂が得られる。さらに、ブロックされた1級アミンを有する2級アミンを用いることにより、1級アミノ基を有するアミン変性エポキシ樹脂を調製することができる。例えば、1級アミノ基および2級アミノ基を有するアミン変性エポキシ樹脂の調製は、エポキシ樹脂と反応させる前に、1級アミノ基をケトンでブロック化してケチミンにしておいて、これをエポキシ樹脂に導入した後に脱ブロック化することによって調製することができる。なお、オキシラン環と反応させるアミンとして、必要に応じて、3級アミンを併用してもよい。
 1級アミン、2級アミンの具体例として、例えば、ブチルアミン、オクチルアミン、ジエチルアミン、ジブチルアミン、メチルブチルアミン、モノエタノールアミン、ジエタノールアミン、N-メチルエタノールアミンなどが挙げられる。ブロックされた1級アミンを有する2級アミンの具体例として、例えば、アミノエチルエタノールアミンのケチミン、ジエチレントリアミンのジケチミンなどが挙げられる。また、必要に応じて用いてもよい3級アミンの具体例として、例えば、トリエチルアミン、N,N-ジメチルベンジルアミン、N,N-ジメチルエタノールアミンなどが挙げられる。これらのアミン類は1種のみを単独で用いてもよく、2種以上を併用してもよい。
 上記エポキシ樹脂のオキシラン環と反応させるアミン化合物は、2級アミンが50~95質量%、ブロックされた1級アミンを有する2級アミンが0~30質量%、1級アミンが0~20質量%の量範囲で含むものが好ましい。
 アミン化樹脂(A)の数平均分子量は、1,000~5,000の範囲であるのが好ましい。数平均分子量が1,000以上であることにより、得られる硬化電着塗膜の耐食性などの物性が良好となる。一方で、数平均分子量が5,000以下であることにより、アミン化樹脂の粘度調整が容易となって円滑な合成が可能となり、また、得られたアミン化樹脂(A)の乳化分散の取扱いが容易になる。アミン化樹脂(A)の数平均分子量は2,000~3,500の範囲であるのがより好ましい。
 なお、本明細書において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の数平均分子量である。
 アミン化樹脂(A)のアミン価は、20~100mgKOH/gの範囲内であるのが好ましい。アミン化樹脂(A)のアミン価が20mgKOH/g以上であることにより、電着塗料組成物中におけるアミン化樹脂(A)の乳化分散安定性が良好となる。一方で、アミン価が100mgKOH/g以下であることにより、硬化電着塗膜中のアミノ基の量が適正となり、塗膜の耐水性を低下させるおそれがなくなる。アミン化樹脂(A)のアミン価は、20~80mgKOH/gの範囲内であるのがより好ましい。
 アミン化樹脂(A)の水酸基価は、150~650mgKOH/gの範囲内であるのが好ましい。水酸基価が150mgKOH/g以上であることにより、硬化電着塗膜において硬化が良好となり、塗膜外観も向上する。一方で、水酸基価が650mgKOH/g以下であることにより、硬化電着塗膜中に残存する水酸基の量が適正となり、塗膜の耐水性を低下させるおそれがなくなる。アミン化樹脂(A)の水酸基価は、180~300mgKOH/gの範囲内であるのがより好ましい。
 本発明の電着塗料組成物において、数平均分子量が1,000~5,000の範囲内であり、アミン価が20~100mgKOH/gであり、かつ、水酸基価が150~650mgKOH/gであるアミン化樹脂(A)を用いることによって、被塗物に優れた耐食性を付与することができるという利点がある。
 なおアミン化樹脂(A)としては、必要に応じて、アミン価および/または水酸基価の異なるアミン化樹脂を併用してもよい。2種以上の異なるアミン価、水酸基価のアミン化樹脂を併用する場合は、使用するアミン化樹脂の質量比に基づいて算出する平均アミン価および平均水酸基価が、上記の数値範囲であるのが好ましい。また、併用するアミン化樹脂(A)としては、アミン価が20~50mgKOH/gであり、かつ、水酸基価が50~300mgKOH/gであるアミン化樹脂と、アミン価が50~200mgKOH/gであり、かつ、水酸基価が200~500mgKOH/gであるアミン化樹脂との併用が好ましい。このような組合わせを用いると、エマルションのコア部がより疎水となりシェル部が親水となるため優れた耐食性を付与することができるという利点がある。
 なおアミン化樹脂(A)は、必要に応じて、アミノ基含有アクリル樹脂、アミノ基含有ポリエステル樹脂などを含んでもよい。
ブロックイソシアネート硬化剤(B)
 ブロックイソシアネート硬化剤(B)(以下、単に「硬化剤(B)」ということがある)は、電着塗膜を構成する塗膜形成樹脂である。ブロックイソシアネート硬化剤(B)は、ポリイソシアネートを、封止剤でブロック化することによって調製することができる。
 ポリイソシアネートの例としては、ヘキサメチレンジイソシアネート(3量体を含む)、テトラメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート、イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)などの脂環式ポリイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアネート、キシリレンジイソシアネートなどの芳香族ジイソシアネートが挙げられる。
 封止剤の例としては、n-ブタノール、n-ヘキシルアルコール、2-エチルヘキサノール、ラウリルアルコール、フェノールカルビノール、メチルフェニルカルビノールなどの一価のアルキル(または芳香族)アルコール類;エチレングリコールモノヘキシルエーテル、エチレングリコールモノ2-エチルヘキシルエーテルなどのセロソルブ類;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコールフェノールなどのポリエーテル型両末端ジオール類;エチレングリコール、プロピレングリコール、1,4-ブタンジオールなどのジオール類と、シュウ酸、コハク酸、アジピン酸、スベリン酸、セバシン酸などのジカルボン酸類から得られるポリエステル型両末端ポリオール類;パラ-t-ブチルフェノール、クレゾールなどのフェノール類;ジメチルケトオキシム、メチルエチルケトオキシム、メチルイソブチルケトオキシム、メチルアミルケトオキシム、シクロヘキサノンオキシムなどのオキシム類;およびε-カプロラクタム、γ-ブチロラクタムに代表されるラクタム類が好ましく用いられる。
 ブロックイソシアネート硬化剤(B)のブロック化率は100%であるのが好ましい。これにより、電着塗料組成物の貯蔵安定性が良好になるという利点がある。
 ブロックイソシアネート硬化剤(B)は、脂肪族ジイソシアネートを封止剤でブロック化することによって調製された硬化剤と、芳香族ジイソシアネートを封止剤でブロック化することによって調製された硬化剤とを併用することが好ましい。
 ブロックイソシアネート硬化剤(B)は、アミン化樹脂(A)の1級アミンと優先的に反応し、さらに水酸基と反応して硬化する。硬化剤としては、メラミン樹脂またはフェノール樹脂などの有機硬化剤、シランカップリング剤、金属硬化剤からなる群から選ばれる少なくとも一種の硬化剤を、ブロックイソシアネート硬化剤(B)と併用してもよい。
 本発明のカチオン電着塗料組成物の調製においては、アミン化樹脂(A)およびブロックイソシアネート硬化剤(B)それぞれを、有機溶媒中に溶解させて、溶液を調製し、これらの溶液を混合した後、中和酸を用いて中和することにより、樹脂エマルションを調製するのが好ましい。中和酸として、例えば、メタンスルホン酸、スルファミン酸、乳酸、ジメチロールプロピオン酸、ギ酸、酢酸などの有機酸が挙げられる。本発明においては、アミン化樹脂(A)および硬化剤(B)を含む樹脂エマルションを、ギ酸、酢酸および乳酸からなる群から選択される1種またはそれ以上の酸によって中和するのがより好ましい。
 中和酸は、アミン化樹脂(A)が有するアミノ基の当量に対する中和酸の当量比率として、10~100%となる量で用いるのがより好ましく、20~70%となる量で用いるのがさらに好ましい。本明細書において、アミン化樹脂(A)が有するアミノ基の当量に対する中和酸の当量比率を、中和率とする。中和率が10%以上であることにより、水への親和性が確保され、水分散性が良好となる。
 硬化剤(B)の含有量は、硬化時にアミン化樹脂(A)中の、1級アミノ基、2級アミノ基または水酸基などの活性水素含有官能基と反応して、良好な硬化塗膜を与えるのに十分な量が必要とされる。好ましい硬化剤(B)の含有量は、アミン化樹脂(A)と硬化剤(B)との固形分質量比(アミン化樹脂(A)/硬化剤(B))で表して90/10~50/50、より好ましくは80/20~65/35の範囲である。アミン化樹脂(A)と硬化剤(B)との固形分質量比の調整により、造膜時の塗膜(析出膜)の流動性および硬化速度が改良され、塗装外観が向上する。
アミノポリエーテル変性ポリアルキレングリコール樹脂(G)
 本発明のカチオン電着塗料組成物は、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)を含む。アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、アミノポリエーテルおよびポリアルキレングリコールジグリシジルエーテルを反応させて得られる樹脂である。この樹脂(G)は、ポリアルキレングリコール骨格を含む。この骨格を有することによって、ビスマス化合物の硬化触媒性能に悪影響を与えることなく、硬化後の塗膜において可撓性を付与することができる。またこの樹脂(G)は、アミノポリエーテルによって変性されていることによって、電着塗料組成物中に含まれるアミン化樹脂(A)、ブロックイソシアネート硬化剤(B)との反応性を有する。そのため、得られる硬化電着塗膜において揮発成分として存在することなく、硬化電着塗膜において、可撓性を付与する樹脂成分として有効に機能することとなる。
 アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の調製に用いられるアミノポリエーテルとして、下記式
Figure JPOXMLDOC01-appb-C000001
[式中、xは2以上の整数であり、Rは、水素、メチル基またはエチル基であり、mおよびnは、それぞれ独立して、2または3である。]
で示される化合物が挙げられる。
 上記アミノポリエーテルは、上記の式で示されるように、第3級の窒素原子に、末端に1級アミノ基を有するポリメチレン鎖が2つと、ポリアルキレングリコール鎖とが結合している構造を有する。上記アミノポリエーテルは、ポリオキシアルキレンケチミンを加水分解することによって調製することができる。ポリオキシアルキレンケチミンを加水分解する方法は、例えば、特開平1-249748号公報に記載される公知の方法によって行うことができる。
 上記xの値は、ポリアルキレングリコール鎖の繰り返し単位数を示すものであり、2~20の整数が好ましく、9~11の整数がより好ましい。ポリアルキレングリコール鎖中のRは、メチル基であるのが好ましい。また、Rは通常同一であるが、2種以上であってもよい。
 また、上記の式で、1級アミノ基に結合しているポリメチレン鎖の繰り返し単位数mおよびnとしては、それぞれ独立に2または3であるが、ともに2であるのがより好ましい。
 アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の調製に用いられるポリアルキレングリコールジグリシジルエーテルは、ポリアルキレングリコール骨格を有し、かつその両末端にグリシジル基を有する化合物である。ポリアルキレングリコールジグリシジルエーテルは、分子量が300~7000であるのが好ましく、500~1000であるのがより好ましい。分子量が300未満である場合は、硬化電着塗膜に対して十分な可撓性を付与することができないおそれがある。分子量が7000を超えると、得られた硬化電着塗膜の上に設けられる塗膜との密着性が低下するおそれがある。
 ポリアルキレングリコールジグリシジルエーテルは、エポキシ当量が150~3500であるのが好ましい。また、エポキシ当量が150未満である場合は、硬化電着塗膜に対して十分な可撓性を付与することができないおそれがある。エポキシ当量が3500を超える場合は、得られた硬化電着塗膜の上に設けられる塗膜との密着性が低下するおそれがある。
 ポリアルキレングリコールジグリシジルエーテルとしては、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ポリイソプロピレングリコールジグリシジルエーテル、ポリブチレングリコールジグリシジルエーテルなどが挙げられる。これらのポリアルキレングリコールジグリシジルエーテルは、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 ポリアルキレングリコールジグリシジルエーテルは、市販品を用いてもよい。市販品として、例えば、
共栄社化学社製エポライトシリーズ、例えば、エポライト200E(ポリエチレングリコール#200ジグリシジルエーテル、エポキシ当量150~163g/eq)、エポライト400E(ポリエチレングリコール#400ジグリシジルエーテル、エポキシ当量185~215g/eq)、エポライト400P(ポリプロピレングリコール#400ジグリシジルエーテル、エポキシ当量190~210g/eq)など、
ナガセケムテックス社製デナコールシリーズ、例えば、EX-821(ポリエチレングリコールジグリシジルエーテル、エポキシ当量185g/eq)、EX-830(ポリエチレングリコールジグリシジルエーテル、エポキシ当量268g/eq)、EX-832(ポリエチレングリコールジグリシジルエーテル、エポキシ当量284g/eq)、EX-841(ポリエチレングリコールジグリシジルエーテル、エポキシ当量372g/eq)、EX-861(ポリエチレングリコールジグリシジルエーテル、エポキシ当量551g/eq)、EX-941(ポリプロピレングリコールジグリシジルエーテル、エポキシ当量173g/eq)、EX-920(ポリプロピレングリコールジグリシジルエーテル、エポキシ当量176g/eq)、EX-931(ポリプロピレングリコールジグリシジルエーテル、エポキシ当量471g/eq)など、
三洋化成工業社製ケミオールシリーズ、例えば、ケミオールEP-400P(ポリプロピレングリコールジグリシジルエーテル、エポキシ当量約300g/eq)、グリシエールPP-300P(ポリプロピレングリコールジグリシジルエーテル、エポキシ当量約296g/eq)など、
が挙げられる。
 前記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の調製において、上記ポリアルキレングリコールジグリシジルエーテルおよびアミノポリエーテルに加えて、必要に応じて、多環式フェノール化合物および/またはジカルボン酸化合物を用いてもよい。
 多環式フェノール化合物の具体例として、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールノボラック、クレゾールノボラックなどが挙げられる。多環式フェノール化合物としてビスフェノールAを用いるのがより好ましい。多環式フェノール化合物を用いる場合は、ポリアルキレングリコールジグリシジルエーテル 100質量部に対して、16~38質量部の範囲で用いるのがより好ましい。
 ジカルボン酸化合物として、飽和または不飽和炭化水素基含有ジカルボン酸を用いるのが好ましい。飽和炭化水素基として炭素数5~20のアルキル基が挙げられる。不飽和炭化水素基として、炭素数5~20のアルキニル基、アルカジイニル基、アルカトリイニル基、アルケニル基、アルカジエニイル基、アルカトリエニイル基などが挙げられる。ジカルボン酸化合物を用いる場合は、ポリアルキレングリコールジグリシジルエーテル 100質量部に対して、32質量部以下の範囲で用いるのが好ましく、0.01~32質量部の範囲で用いるのがより好ましい。
 飽和または不飽和炭化水素基含有ジカルボン酸は、例えばダイマー酸などの重合脂肪酸であってもよい。ダイマー酸は、一般に乾性油または半乾性油などから得られる不飽和脂肪酸の付加反応によって製造される脂肪酸誘導体であり、脂肪酸の二量体を主成分としている。ダイマー酸の主な例は、C18不飽和脂肪酸の付加によって得られるC36二塩基酸などを主成分とするものである。このダイマー酸の構造は、一般的には、単一ではなく、非環、単環および多環などの混合物である。また、市販のダイマー酸には、少量のモノマー酸、トリマー酸などが含まれる場合もある。ダイマー酸の原料となる脂肪酸としては、トール油、大豆油、ヤシ油、ひまし油、パーム油または米ぬか油などの植物油系脂肪酸、および牛脂系脂肪酸または豚脂系脂肪酸などの動物油系脂肪酸などが挙げられる。
 飽和または不飽和炭化水素基含有ジカルボン酸の具体例として、例えば、アジピン酸、1,10-ドデカンジカルボン酸、市販のダイマー酸(例えば、ヘンケル社製バーサダイム216、228など、築野食品工業社製ツノダイム205、395など、コグニス社製エンポール1026、1028、1061、1062など)が挙げられる。
 アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の調製は、ポリアルキレングリコールジグリシジルエーテルのエポキシ基に対して、アミノポリエーテルの第1級アミノ基を、当量比で1.05~2.0の範囲となる量で反応させることによって、調製することができる。この反応は、例えば室温~150℃で0.5~48時間撹拌することによって行うことができる。なお反応温度および反応時間は、反応スケールなどに応じて適宜変更することができる。
 アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の調製において、多環式フェノール化合物および/またはジカルボン酸化合物を用いる場合は、ポリアルキレングリコールジグリシジルエーテルとアミノポリエーテルとを反応させる前に、ポリアルキレングリコールジグリシジルエーテルに対して、多環式フェノール化合物および/またはジカルボン酸化合物を反応させることができる。例えば、ポリアルキレングリコールジグリシジルエーテルと、多環式フェノール化合物および/またはジカルボン酸化合物とを、例えば80~200℃で、1~24時間反応させる方法などが挙げられる。こうして得られた反応物に対して、アミノポリエーテルを、反応物のエポキシ基に対して、アミノポリエーテルの第1級アミノ基を、当量比で1.05~2.0の範囲となる量で、上記と同様に反応させることによって、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)を調製することができる。
 電着塗料組成物の調製においては、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、中和酸を用いて中和した状態で用いるのが好ましい。具体的には、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)を、中和酸を含む水性媒体中に分散させて用いる態様が挙げられる。中和酸として、例えば、メタンスルホン酸、スルファミン酸、乳酸、ジメチロールプロピオン酸、ギ酸、酢酸などの有機酸を用いることができる。
 電着塗料組成物の調製における他の方法として、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)と硬化剤(B)とを混合した後、得られた混合物を、中和酸を含む水性媒体中に分散させて用いる態様が挙げられる。中和酸として、上述の有機酸を用いることができる。
 本発明のカチオン電着塗料組成物の塗膜形成樹脂中における、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の量は、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)およびアミン化樹脂(A)の固形分質量比として、(G)/(A)=0.08/1~0.4/1であるのが好ましく、(G)/(A)=0.08/1~0.38/1であるのがより好ましく、(G)/(A)=0.15/1~0.31/1であるのがさらに好ましい。アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の含有量が上記範囲より少ない場合は、硬化電着塗膜において十分な可撓性を付与することができないおそれがある。一方で、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)の含有量が上記範囲を超える場合は、得られる硬化電着塗膜の耐食性および塗膜外観(平滑性)などが劣ることとなるおそれがある。
 なお本明細書において「塗膜形成樹脂の樹脂固形分」とは、電着塗装後の硬化反応によって塗膜を形成することとなる樹脂成分の固形分質量の総量を意味し、具体的には、アミン化樹脂(A)、硬化剤(B)およびアミノポリエーテル変性ポリアルキレングリコール樹脂(G)の固形分質量の総量を意味する。
顔料分散ペースト
 本発明のカチオン電着塗料組成物中に含まれる顔料分散ペーストは、ビスマス混合物(C)、顔料分散樹脂(D)および顔料(F)を含む。ここでビスマス混合物(C)は、ビスマス化合物(c1)および有機酸(c2)を予め混合することによって調製される。
  ビスマス混合物(C)
 ビスマス混合物(C)は、ビスマス化合物(c1)および有機酸(c2)を、顔料分散ペーストの調製において、予め混合することによって調製される、混合物である。顔料分散ペーストの調製において、ビスマス化合物(c1)および有機酸(c2)を予め混合することによって、ビスマス化合物が微細化された状態で分散されることとなり、良好な触媒活性を得ることができる。
  ビスマス化合物(c1)
 ビスマス化合物(c1)はビスマス金属を含有する化合物であり、例えば、酸化ビスマス、水酸化ビスマス、硝酸ビスマスまたはそれらの混合物が挙げられる。好ましいビスマス化合物(c1)は、酸化ビスマスおよび水酸化ビスマスからなる群から選択される少なくとも1種である。
 ビスマス化合物(c1)は、粉体形態のものを用いる。ビスマス化合物(c1)の平均粒子径は、0.5~20μmであるのが好ましく、1~3μmであるのがより好ましい。本明細書中、平均粒子径は体積平均粒子径D50であり、レーザードップラー式粒度分析計(日機装社製、「マイクロトラックUPA150」)を用いて、分散体を信号レベルが適性になるようイオン交換水で希釈して測定した値をいう。
 本発明における電着塗料組成物中に含まれるビスマス化合物(c1)の量は、電着塗料組成物中に含まれる塗膜形成樹脂の樹脂固形分に対して、金属元素換算で0.05~1.0質量%であるのが好ましい。ビスマス化合物(c1)の量が上記範囲であることによって、塗膜を形成する樹脂成分が良好に硬化し、かつ、電着塗料組成物の保存安定性を良好に保つことができる。
 本明細書において「金属元素換算」とは、金属化合物の含有量に金属元素換算係数(金属化合物量を金属元素量に換算するための係数であり、具体的には、金属化合物中の金属元素の原子量を、金属化合物の分子量で除算した値を意味する。)を積算することにより、目的の金属元素量を求めることである。例えば、ビスマス化合物(c1)が酸化ビスマス(Bi、分子量466)である場合、酸化ビスマスを、塗膜形成樹脂の樹脂固形分に対して0.5質量%含む電着塗料組成物における、ビスマスの金属元素換算含有量は、0.5質量%×(418÷466)の計算により、0.448質量%と算出される。
  有機酸(c2)
 有機酸(c2)は、例えば、ヒドロキシカルボン酸およびスルホン酸からなる群から選択される1種またはそれ以上の化合物である。
 ヒドロキシカルボン酸としては、例えば、以下の化合物が挙げられる;
・乳酸、グリコール酸などの全炭素原子数2~5、好ましくは2~4のモノヒドロキシモノカルボン酸、特に脂肪族モノヒドロキシモノカルボン酸;
・ヒドロキシマロン酸、リンゴ酸などの全炭素原子数2~5、好ましくは2~4のモノヒドロキシジカルボン酸、特に脂肪族モノヒドロキシジカルボン酸;
・ジメチロールプロピオン酸(DMPA)、グリセリン酸などの全炭素原子数3~7、好ましくは3~6のジヒドロキシモノカルボン酸、特に脂肪族ジヒドロキシモノカルボン酸;
・酒石酸、ブドウ酸などの全炭素原子数3~6、好ましくは3~5のジヒドロキシジカルボン酸、特に脂肪族ジヒドロキシジカルボン酸。
 スルホン酸は有機スルホン酸であり、例えば、メタンスルホン酸、エタンスルホン酸などの全炭素原子数1~5、好ましくは1~3のアルカンスルホン酸が挙げられる。
 有機酸(c2)として、モノヒドロキシモノカルボン酸、ジヒドロキシモノカルボン酸、アルカンスルホン酸からなる群から選択される1種またはそれ以上を用いるのが好ましい。有機酸(c2)として、乳酸、ジメチロールプロピオン酸およびメタンスルホン酸からなる群から選択される1種またはそれ以上を用いるのがさらに好ましい。
 有機酸(c2)の使用形態は特に限定されず、例えば、固体形態、液体形態、溶媒に溶解された溶液形態、特に水溶液形態、などが挙げられる。
 ビスマス混合物(C)における、ビスマス化合物(c1)および有機酸(c2)の含有量は、ビスマス化合物(c1)におけるビスマス金属および有機酸(c2)のモル比が、Bi:有機酸=1:0.5~1:4となる比率であるのが好ましく、1:1~1:2となる比率であるのがより好ましい。
顔料分散樹脂(D)
 顔料分散樹脂(D)は、顔料(F)の分散性能を向上させるための樹脂であり、水性媒体中に分散されて使用される。顔料分散樹脂として、4級アンモニウム基および3級スルホニウム基から選択される少なくとも1種またはそれ以上を有する変性エポキシ樹脂などの、カチオン基を有する顔料分散樹脂を用いることができる。例えば、4級アンモニウム基を有する変性エポキシ樹脂は、エポキシ樹脂と3級アミンとを反応させることによって調製することができる。水性溶媒としてはイオン交換水または少量のアルコール類を含む水などを用いる。
 顔料分散樹脂(D)は、水酸基価が20~120mgKOH/gであるのが好ましい。このような水酸基価を有する顔料分散樹脂は、例えば、水酸基を有するエポキシ樹脂の水酸基に対して、ハーフブロックイソシアネートを反応させて、ブロックイソシアネート基を導入することによって、調製することができる。
 上記エポキシ樹脂としては、一般的にはポリエポキシドが用いられる。このエポキシドは、1分子中に平均2個以上の1,2-エポキシ基を有する。このようなポリエポキシドの有用な例として、上述のエポキシ樹脂が挙げられる。
 エポキシ樹脂と反応させるために用いられるハーフブロックイソシアネートは、ポリイソシアネートを部分的にブロックすることにより調製される。ポリイソシアネートとブロック剤との反応は、必要に応じた硬化触媒(例えばスズ系触媒など)の存在の下で、攪拌下、ブロック剤を滴下しながら40~50℃に冷却することにより行うことが好ましい。
 上記のポリイソシアネートは、1分子中に平均で2個以上のイソシアネート基を有するものであれば特に限定されない。具体的な例としては、上記ブロックイソシアネート硬化剤の調製で用いることができるポリイソシアネートを用いることができる。
 上記のハーフブロックイソシアネートを調製するための適当なブロック化剤としては、4~20個の炭素原子を有する低級脂肪族アルキルモノアルコールが挙げられる。具体的には、ブチルアルコール、アミルアルコール、ヘキシルアルコール、2-エチルヘキシルアルコール、ヘプチルアルコールなどが挙げられる。
 上記のエポキシ樹脂とハーフブロックイソシアネートとの反応は、好ましくは140℃で約1時間保つことにより行われる。
 上記3級アミンとして、炭素数1~6のものが好ましく用いることができる。3級アミンの具体例として、例えば、ジメチルエタノールアミン、トリメチルアミン、トリエチルアミン、ジメチルベンジルアミン、ジエチルベンジルアミン、N,N-ジメチルシクロヘキシルアミン、トリ-n-ブチルアミン、ジフェネチルメチルアミン、ジメチルアニリン、N-メチルモルホリンなどが挙げられる。
 さらに上記3級アミンと混合して用いられる中和酸としては、特に制限はなく、具体的には、塩酸、硝酸、リン酸、蟻酸、酢酸、乳酸のような無機酸または有機酸などである。このようにして得られる3級アミンの中和酸塩とエポキシ樹脂との反応は、常法により行うことができる。例えば、エチレングリコールモノブチルエーテルなどの溶剤に上記エポキシ樹脂を溶解させ、得られた溶液を60~100℃まで加熱し、ここへ3級アミンの中和酸塩を滴下して、酸価が1となるまで反応混合物を60~100℃に保持して行われる。
 上記顔料分散樹脂(D)は、エポキシ当量が1000~1800であるのが好ましい。このエポキシ当量は1200~1700であるのがより好ましい。また顔料分散樹脂(D)は、数平均分子量が1500~2700であるのが好ましい。
 上記顔料分散樹脂(D)は、100g当り35~70meq(ミリグラム当量数)の4級アンモニウム基を有するのが好ましく、100g当り35~55meqの4級アンモニウム基を有するのがより好ましい。4級アンモニウム基の量が上記範囲であることによって、顔料分散性能が向上し、また、電着塗料組成物の塗装作業性が良好となる利点がある。
顔料(F)
 本発明のカチオン電着塗料組成物は、顔料(F)を含む。そしてこの顔料(F)は、酸化亜鉛を、0.5~5質量%の範囲で含む。顔料(F)に酸化亜鉛が0.5~5質量%の範囲で含まれることによって、エッジ部の耐食性を向上させることができる。顔料(F)は、酸化亜鉛以外にもさらに、電着塗料組成物において通常用いられる顔料を含む。このような顔料として、例えば、通常使用される無機顔料および有機顔料、例えば、チタンホワイト(二酸化チタン)、カーボンブラックおよびベンガラのような着色顔料;カオリン、タルク、ケイ酸アルミニウム、炭酸カルシウム、マイカおよびクレーのような体質顔料;リン酸鉄、リン酸アルミニウム、リン酸カルシウム、トリポリリン酸アルミニウム、およびリンモリブデン酸アルミニウム、リンモリブデン酸アルミニウム亜鉛のような防錆顔料など、が挙げられる。
 本明細書において、エッジ部を有する被塗物に形成された硬化電着塗膜の耐食性評価は、JIS Z 2371(2000)に準拠した塩水噴霧試験(35℃×168時間)によって行う。より具体的には、上記塩水噴霧試験において、エッジ部を有する被塗物に形成された硬化電着塗膜のエッジ塗装部における錆発生個数が、エッジ部1cmあたりに対して例えば2個/cm未満である場合において、エッジ部の耐食性(防錆性)に優れた塗膜であるということができる。
 顔料(F)は、カチオン電着塗料組成物の樹脂固形分に対して1~30質量%となる量で用いるのが好ましい。
顔料分散ペーストの調製
 顔料分散ペーストの調製においては、ビスマス化合物(c1)および有機酸(c2)を、他の成分に先立って、予め混合し、ビスマス混合物(C)を調製する。ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製することによって、ビスマス化合物の溶解性が向上し、これにより触媒活性が向上し、硬化性および耐食性に優れた塗膜を形成することができる。
 ビスマス化合物(c1)および有機酸(c2)の混合は、ビスマス化合物(c1)粒子を、有機酸(c2)水溶液中、撹拌により分散させることによって行われる。混合における温度および撹拌速度などの条件は、塗料組成物の製造において通常行われる条件であってよく、例えば10~30℃、好ましくは室温条件下において、撹拌流が生じる程度の撹拌速度において行うことができる。撹拌時間は、反応系の大きさに応じて適宜選択することができ、例えば、0.1~24時間の範囲で選択することができる。
 こうして得られたビスマス混合物(C)と、顔料分散樹脂(D)および顔料(F)とを混合することによって、顔料分散ペーストが調製される。これらの成分の混合は、任意の順序で行うことができる。例えば、ビスマス混合物(C)と顔料分散樹脂(D)とを混合し、その後に顔料(F)を混合することによって、顔料分散ペーストを調製することができる。また、例えば、顔料分散樹脂(D)および顔料(F)を予め混合し、得られた混合物とビスマス混合物(C)とを混合することによって、顔料分散ペーストを調製することもできる。
 本発明のカチオン電着塗料組成物に含まれる顔料分散ペーストの調製において、アミン化樹脂(E)を含むアミン化樹脂エマルションを用いてもよい。顔料分散ペーストの調製において、アミン化樹脂(E)を含むアミン化樹脂エマルションを用いることによって、ビスマス化合物(c1)を含む顔料分散ペーストの分散安定性を向上させることができる。なお、本発明の電着塗料組成物において、顔料分散ペーストの調製において必要に応じて用いられるアミン化樹脂(E)の含有量は、塗膜形成樹脂としては換算しない。顔料分散ペーストの調製において必要に応じて用いられるアミン化樹脂(E)は、顔料の分散性能を向上させる機能を果たしており、顔料分散樹脂と同様に分散剤として機能しているためである。
 本発明の電着塗料組成物において、顔料分散ペーストの調製において必要に応じて用いられるアミン化樹脂(E)は、上記アミン化樹脂(A)の特数値などを満たすアミン化樹脂(A)であればよい。本発明の電着塗料組成物にアミン化樹脂(E)が含まれる場合において、塗膜形成樹脂としてのアミン化樹脂(A)と、顔料分散ペーストの調製において必要に応じて用いられるアミン化樹脂(E)とは、完全に同一であってもよく、また、アミン化樹脂(E)は上記アミン化樹脂(A)の特数値を満たすことを条件として完全に同一の樹脂ではなくてもよい。
 顔料分散ペーストの調製において、アミン化樹脂(E)を用いる場合は、アミン化樹脂エマルションの状態に調製して用いる。アミン化樹脂エマルションの調製方法の1態様として、アミン化樹脂(E)および上記ブロックイソシアネート硬化剤(B)それぞれを、有機溶媒中に溶解させて、溶液を調製し、これらの溶液を混合した後、中和酸を用いて水中に分散させることにより、アミン化樹脂エマルションを調製することができる。アミン化樹脂エマルションの調製方法の他の1態様として、アミン化樹脂(E)を有機溶媒中に溶解させて溶液を調製し、中和酸を用いて水中に分散させることにより、アミン化樹脂エマルションを調製することができる。アミン化樹脂エマルションの調製に用いることができる中和酸として、例えば、メタンスルホン酸、スルファミン酸、乳酸、ジメチロールプロピオン酸、ギ酸、酢酸などの有機酸が挙げられる。中和酸として、ギ酸、酢酸および乳酸からなる群から選択される1種またはそれ以上の酸を用いるのがより好ましい。
 顔料分散ペーストの調製において、アミン化樹脂(E)を含むアミン化樹脂エマルションを用いる場合は、例えば下記方法によって調製することができる。
 方法1:ビスマス化合物(c1)および有機酸(c2)を予め混合して得られたビスマス混合物(C)および顔料分散樹脂(D)を混合し、得られた混合物と上記アミン化樹脂エマルションとを混合し、次いで上記顔料(F)を混合する、
 方法2:ビスマス化合物(c1)および有機酸(c2)を予め混合して得られたビスマス混合物(C)、顔料分散樹脂(D)および上記アミン化樹脂エマルションを混合し、次いで上記顔料(F)を混合する、
 方法3:ビスマス化合物(c1)および有機酸(c2)を予め混合して得られたビスマス混合物(C)および上記アミン化樹脂エマルションを混合し、得られた混合物と、上記顔料分散樹脂(D)および顔料(F)とを混合する。
 顔料分散ペーストの調製手順における1態様(方法1)は、ビスマス化合物(c1)および有機酸(c2)を予め混合して得られたビスマス混合物(C)と、顔料分散樹脂(D)とを混合し、そして、得られた混合物と上記アミン化樹脂エマルションとを混合し、次いで、上記顔料(F)を混合する態様である。
 顔料分散ペーストの調製手順における他の1態様(方法2)は、ビスマス化合物(c1)および有機酸(c2)を予め混合して得られたビスマス混合物(C)、そして、顔料分散樹脂(D)、およびアミン化樹脂エマルションを混合し、次いで上記顔料(F)を混合する態様である。
 顔料分散ペーストの調製手順における他の1態様(方法3)は、ビスマス化合物(c1)および有機酸(c2)を予め混合して得られたビスマス混合物(C)およびアミン化樹脂エマルションを混合し、得られた混合物と、上記顔料分散樹脂(D)および顔料(F)とを混合する態様である。
 顔料分散ペーストの調製において、アミン化樹脂(E)を含むアミン化樹脂エマルションを用いる場合は、顔料分散ペーストに含まれる顔料(F)および顔料分散樹脂(D)の比率は、固形分質量比として、顔料(F)/顔料分散樹脂(D)=1/0.1~1/1であるのが好ましい。また、顔料分散ペーストに含まれる、顔料(F)およびアミン化樹脂(E)の比率は、固形分質量比として、顔料(F)/アミン化樹脂(E)=1/0.02~1/0.3であるのが好ましい。これらの量範囲を満たすことによって、より優れた顔料分散安定性を得ることができる利点がある。
 顔料分散ペーストの調製において、混合における温度および撹拌速度などの条件は、塗料組成物の製造において通常行われる条件であってよく、例えば10~50℃、好ましくは20~40℃において、顔料を分散させることができる撹拌流が生じる程度の撹拌速度において行うことができる。撹拌時間は、例えば、顔料の分散粒度が10μm以下となるまで行うのが好ましい。ここで顔料の分散粒度は、顔料の体積平均粒子径を測定することによって確認することができる。
他の成分など
 本発明の電着塗料組成物は、上記成分に加えて、さらに亜硝酸金属塩(H)を含んでもよい。亜硝酸金属塩(H)として、アルカリ金属の亜硝酸塩またはアルカリ土類金属の亜硝酸塩が好ましく、アルカリ土類金属の亜硝酸塩がより好ましい。亜硝酸金属塩として、例えば、亜硝酸カルシウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸マグネシウム、亜硝酸ストロンチウム、亜硝酸バリウム、亜硝酸亜鉛などが挙げられる。
 電着塗料組成物が亜硝酸金属塩(H)を含むことによって、耐食性が向上し、特にエッジ部の耐食性(エッジ防錆性)が向上するという利点がある。特に、酸化亜鉛が含まれる電着塗料組成物において、亜硝酸金属塩(H)を併用することによって、酸化亜鉛の添加によって達成される耐食性向上効果を、より向上させることができる。電着塗料組成物が亜硝酸金属塩(H)を含む場合は、塗膜形成樹脂の全質量に対して、金属成分の金属元素換算で0.001~0.2質量%の量で含むのが好ましい。
 上記亜硝酸金属塩(H)は、電着塗料組成物中に任意の方法によって加えることができる。例えば、亜硝酸金属塩(H)の水溶液を予め調製し、電着塗料組成物に加えるなどの方法が挙げられる。また、亜硝酸金属塩(H)を予め顔料(F)と混合しておき、顔料(F)と同様にして分散させることもできる。
 本発明の電着塗料組成物は、上記成分に加えて、さらに、ネオジム、イットリウム、ランタン、セリウム、プラセオジム、イッテルビウムからなる群から選択される希土類金属の塩(I)を含んでもよい。上記希土類金属の塩(I)の具体例として、例えば、上記希土類金属の酢酸塩、硝酸塩、硫酸塩、スルファミン酸塩、乳酸塩、ギ酸塩、炭酸塩などが挙げられる。
 電着塗料組成物が希土類金属の塩(I)を含むことによって、耐食性が向上し、特にエッジ部の耐食性(エッジ防錆性)が向上するという利点がある。電着塗料組成物が希土類金属の塩(I)を含む場合は、塗膜形成樹脂の樹脂固形分に対して、希土類金属の金属元素換算で0.0001~0.5質量%の量で含むのが好ましい。
 上記希土類金属の塩(I)は、電着塗料組成物中に任意の方法によって加えることができる。例えば、希土類金属の塩(I)の水溶液を予め調製し、電着塗料組成物に加えるなどの方法が挙げられる。
 本発明の電着塗料組成物は、必要に応じてアミノ酸を含んでもよい。アミノ酸を含む場合は、顔料分散ペーストの調製において、ビスマス化合物(c1)および有機酸(c2)を予め混合する際に、さらにアミノ酸を混合してもよい。アミノ酸をさらに混合することによって、キレート性の強いアミノ酸を、ビスマス化合物に配位させることができ、これによってビスマス化合物の溶解安定性を向上させることができる。
 アミノ酸として、例えば、グリシン、アスパラギン酸またはそれらの混合物を用いることができる。アミノ酸を用いる場合は、ビスマス化合物(c1)およびアミノ酸のモル比が、Bi:アミノ酸で1:0.5~1:4.0となる量で用いるのが好ましく、1:1~1:2となる量で用いるのがさらに好ましい。
電着塗料組成物の調製
 本発明の電着塗料組成物は、アミン化樹脂(A)および硬化剤(B)を含む樹脂エマルション、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)、顔料分散ペーストそして必要に応じた他の成分を混合することによって調製することができる。
 本発明の電着塗料組成物の樹脂固形分量は、電着塗料組成物全量に対して1~30質量%であるのが好ましい。電着塗料組成物の樹脂固形分量が1質量%未満である場合は、電着塗膜析出量が少なくなり、十分な耐食性を確保することが困難となるおそれがある。また電着塗料組成物の樹脂固形分量が30質量%を超える場合は、つきまわり性または塗装外観が悪くなるおそれがある。
 本発明の電着塗料組成物は、pHが4.5~7であることが好ましい。電着塗料組成物のpHが4.5未満である場合は、耐食性が劣り、また電着塗装においてスラッジの発生が生じるという不具合がある。電着塗料組成物のpHは、用いる中和酸の量、遊離酸の添加量などの調整によって、上記範囲に設定することができる。
 電着塗料組成物のpHは、温度補償機能を有する市販のpHメーターを用いて測定することができる。
 電着塗料組成物の固形分100gに対する酸のミリグラム当量(MEQ(A))は40~120であるのが好ましい。なお、電着塗料組成物の樹脂固形分100gに対する酸のミリグラム当量(MEQ(A))は、中和酸量および遊離酸の量によって調整することができる。
 ここでMEQ(A)とは、mg equivalent(acid)の略であり、塗料の固形分100g当たりのすべての酸のmg当量の合計である。このMEQ(A)は、電着塗料組成物の固形分を約10g精秤し約50mlの溶剤(THF:テトラヒドロフラン)に溶解した後、1/10NのNaOH溶液を用いて電位差滴定を行うことによって、電着塗料組成物中の含有酸量を定量して測定することができる。
 電着塗料組成物は、実質的に錫化合物および鉛化合物の何れも含まないものであるのが好ましい。本明細書において「電着塗料組成物が実質的に錫化合物および鉛化合物の何れも含まない」とは、電着塗料組成物に含まれる鉛化合物の濃度が鉛金属元素として50ppmを超えず、かつ、有機錫化合物の濃度が錫金属元素として50ppmを超えないことを意味する。本発明の電着塗料組成物においては、ビスマス化合物(c1)が含まれる。そのため、硬化触媒としての鉛化合物、有機錫化合物を用いる必要がない。これにより、実質的に錫化合物および鉛化合物の何れも含まない電着塗料組成物を調製することができる。
 本発明の電着塗料組成物は、塗料分野において一般的に用いられている添加剤、例えば、エチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテルなどの有機溶媒、乾き防止剤、消泡剤などの界面活性剤、アクリル樹脂微粒子などの粘度調整剤、はじき防止剤、バナジウム塩、銅、鉄、マンガン、マグネシウム、カルシウム塩などの無機防錆剤など、を必要に応じて含んでもよい。またこれら以外に、目的に応じて公知の補助錯化剤、緩衝剤、平滑剤、応力緩和剤、光沢剤、半光沢剤、酸化防止剤、および紫外線吸収剤などを配合してもよい。これらの添加剤は、樹脂エマルションの調製時に混合してもよく、顔料分散ペーストの調製時に混合してもよく、また、樹脂エマルションと顔料分散ペーストとの混合時または混合後に混合してもよい。
 本発明の電着塗料組成物は、上記アミン化樹脂(A)以外にも、他の塗膜形成樹脂成分を含んでもよい。他の塗膜形成樹脂成分として、例えば、アクリル樹脂、ポリエステル樹脂、ウレタン樹脂、ブタジエン系樹脂、フェノール樹脂、キシレン樹脂などが挙げられる。上述したようなアミン化樹脂(A)に該当しないアミン化樹脂であってもよい。電着塗料組成物に含まれうる他の塗膜形成樹脂成分として、フェノール樹脂、キシレン樹脂が好ましい。フェノール樹脂、キシレン樹脂として、例えば、2以上10以下の芳香族環を有するキシレン樹脂が挙げられる。
 本発明のカチオン電着塗料組成物は、実質的に有機錫化合物および鉛化合物のいずれも含まなくても、硬化性に優れ、そして耐衝撃性および耐食性(特にエッジ部耐食性)などに優れた硬化電着塗膜を提供することができる。
電着塗装および電着塗膜形成
 本発明の電着塗料組成物を用いて被塗物に対して電着塗装を行うことによって、被塗物に硬化電着塗膜を形成することができる。本発明の電着塗料組成物を用いる電着塗装は、被塗物を陰極として、電着塗料組成物中に浸漬し、次いで陽極との間に電圧を印加する。これにより、電着塗膜が被塗物上に析出する。
 電着塗装工程において、電着塗料組成物中に被塗物を浸漬した後、50~450Vの電圧を印加することによって、電着塗装が行われる。印加電圧が50V未満であると電着が不充分となるおそれがあり、450Vを超えると、塗膜が破壊され異常外観となるおそれがある。電着塗装時、塗料組成物の浴液温度は、通常10~45℃に調節される。
 電圧を印加する時間は、電着条件によって異なるが、一般には、2~5分とすることができる。
 電着塗膜の膜厚は、加熱硬化により最終的に得られる硬化電着塗膜の膜厚が好ましくは5~40μm、より好ましくは10~25μmとなるような膜厚とする。電着塗膜の膜厚が5μm未満であると、耐食性が劣ることとなるおそれがある。一方40μmを超えると、塗料の浪費につながる。
 上述のようにして得られる電着塗膜を、電着過程の終了後、そのまま、または水洗した後、120~260℃、好ましくは140~220℃で、10~30分間加熱することによって、加熱硬化した電着塗膜が形成される。
 本発明の電着塗料組成物を塗装する被塗物としては、通電可能な種々の被塗物を用いることができる。使用できる被塗物として例えば、冷延鋼板、熱延鋼板、ステンレス、電気亜鉛めっき鋼板、溶融亜鉛めっき鋼板、亜鉛-アルミニウム合金系めっき鋼板、亜鉛-鉄合金系めっき鋼板、亜鉛-マグネシウム合金系めっき鋼板、亜鉛-アルミニウム-マグネシウム合金系めっき鋼板、アルミニウム系めっき鋼板、アルミニウム-シリコン合金系めっき鋼板、錫系めっき鋼板などが挙げられる。
 以下の実施例により本発明をさらに具体的に説明するが、本発明はこれらに限定されない。実施例中、「部」および「%」は、ことわりのない限り、質量基準による。
製造例1 顔料分散樹脂(D)の製造
  2-エチルヘキサノールハーフブロック化イソホロンジイソシアネートの調製
 攪拌装置、冷却管、窒素導入管および温度計を装備した反応容器に、イソホロンジイソシアネート(以下、IPDIと略す)222.0部を入れ、メチルイソブチルケトン(MIBK)39.1部で希釈した後、ここヘジブチル錫ジラウレート0.2部を加えた。その後、これを50℃に昇温した後、2-エチルヘキサノール131.5部を攪拌下、乾燥窒素雰囲気で2時間かけて滴下し、2-エチルヘキサノールハーフブロック化IPDI(固形分90.0質量%)を得た。
  4級化剤の調製
 反応容器に、ジメチルエタノールアミン87.2部、75%乳酸水溶液117.6部およびエチレングリコールモノn-ブチルエーテル39.2部を順に加え、65℃で30分攪拌して4級化剤を調製した。
  顔料分散樹脂の製造
 ビスフェノールA型エポキシ樹脂(商品名:DER-331J、ダウケミカル社製)710.0部とビスフェノールA289.6部とを反応容器に仕込み、窒素雰囲気下、150~160℃で1時間反応させ、次いで、120℃に冷却した後、先に調製した2-エチルヘキサノールハーフブロック化IPDI(MIBK溶液)498.8部を加えた。反応混合物を110~120℃で1時間撹拌し、エチレングリコールモノn-ブチルエーテル463.4部を加え、混合物を85~95℃に冷却し、先に調製した4級化剤196.7部を添加した。酸価が1となるまで反応混合物を85~95℃に保持した後、脱イオン水964部を加えて、目的とする分散樹脂を得た(固形分50質量%)。
製造例2-1 アミン化樹脂(A-1)の製造
 メチルイソブチルケトン92部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA382部、オクチル酸63部、ジメチルベンジルアミン2部を加え、反応容器内の温度を140℃に保持し、エポキシ当量が1110g/eqになるまで反応させた後、反応容器内の温度が120℃になるまで冷却した。ついでジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)78部とジエタノールアミン92部の混合物を添加し、120℃で1時間反応させることにより、アミン化樹脂(カチオン変性エポキシ樹脂)を得た。この樹脂の数平均分子量は2,560、アミン価は50mgKOH/g(うち1級アミンに由来するアミン価は14mgKOH/g)、水酸基価は240mgKOH/gであった。
製造例2-2 アミン化樹脂(A-2)の製造
 メチルイソブチルケトン92部、ビスフェノールA型エポキシ樹脂(商品名DER-331J、ダウケミカル社製)940部、ビスフェノールA382部、オクチル酸106部、ジメチルベンジルアミン2部を加え、反応容器内の温度を140℃に保持し、エポキシ当量が1530g/eqになるまで反応させた後、反応容器内の温度が120℃になるまで冷却した。ついでジエチレントリアミンジケチミン(固形分73%のメチルイソブチルケトン溶液)59部とジエタノールアミン69部の混合物を添加し、120℃で1時間反応させることにより、アミン化樹脂(カチオン変性エポキシ樹脂)を得た。この樹脂の数平均分子量は2,560、アミン価は41mgKOH/g(うち1級アミンに由来するアミン価は12mgKOH/g)、水酸基価は250mgKOH/gであった。
製造例3-1 ブロックイソシアネート硬化剤(B-1)の製造
 ヘキサメチレンジイソシアネート(HDI)1680部およびMIBK732部を反応容器に仕込み、これを60℃まで加熱した。ここに、トリメチロールプロパン346部をMEKオキシム1067部に溶解させたものを60℃で2時間かけて滴下した。さらに75℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷後、MIBK27部を加えて固形分が78%のブロックイソシアネート硬化剤(B-1)を得た。イソシアネート基価は252mgKOH/gであった。
製造例3-2 ブロックイソシアネート硬化剤(B-2)の製造
 4,4’-ジフェニルメタンジイソシアナート1340部およびMIBK277部を反応容器に仕込み、これを80℃まで加熱した後、ε-カプロラクタム226部をブチルセロソルブ944部に溶解させたものを80℃で2時間かけて滴下した。さらに100℃で4時間加熱した後、IRスペクトルの測定において、イソシアネート基に基づく吸収が消失したことを確認し、放冷後、MIBK349部を加えてブロックイソシアネート硬化剤(B-2)を得た(固形分80%)。イソシアネート基価は251mgKOH/gであった。
製造例4-1 アミン化樹脂エマルション(1)の製造
 製造例2-1で得られたアミン化樹脂(A-1)350部(固形分)と、製造例3-1で得られたブロックイソシアネート硬化剤(B-1)75部(固形分)および製造例3-2で得られたブロックイソシアネート硬化剤(B-2)75部(固形分)とを混合し、エチレングリコールモノ-2-エチルヘキシルエーテルを固形分に対して3%(15部)になるように添加した。次に、ギ酸を添加量が樹脂中和率40%相当分になるように加えて中和し、イオン交換水を加えてゆっくり希釈し、次いで固形分が40%になるように減圧下でメチルイソブチルケトンを除去して、アミン化樹脂エマルション(1)を得た。
製造例4-2 アミン化樹脂エマルション(2)の製造
 製造例2-1で得られたアミン化樹脂(A-1)の代わりに、製造例2-2で得られたアミン化樹脂(A-2)を用いたこと以外は、製造例4-1と同様にして、アミン化樹脂エマルション(2)を得た。
製造例5-1 顔料分散ペースト(1)の製造
 イオン交換水120部、50%乳酸水溶液3.1部および酸化ビスマス 4部を混合および撹拌しながら、ここに製造例1で得られた顔料分散樹脂(D)70部を添加し、室温で1時間、1000rpmにて攪拌し、ビスマス混合物を調製した。次いで、製造例4-1で得られた、アミン化樹脂(A-1)を含むアミン化樹脂エマルション(1)25部(アミン化樹脂(A-1)をアミン化樹脂(E)として使用)を添加し、さらに顔料であるカーボン1部、酸化チタン40部、サテントン57部、酸化亜鉛2部を加え、サンドミルを用いて40℃で1時間、2000rpmにて撹拌することで、顔料分散ペースト(1)を得た。
製造例5-2 顔料分散ペースト(2)の製造
 アミン化樹脂エマルション(1)を添加しないこと以外は、製造例5-1と同様にして、顔料分散ペースト(2)を得た。
製造例5-3 顔料分散ペースト(3)の製造
 酸化ビスマスの代わりに水酸化ビスマスを用いたこと以外は、製造例5-1と同様にして、顔料分散ペースト(3)を得た。
製造例5-4 顔料分散ペースト(4)の製造
 酸化亜鉛の量を0.5部に変更したこと以外は、製造例5-1と同様にして、顔料分散ペースト(4)を得た。
製造例5-5 顔料分散ペースト(5)の製造
 酸化亜鉛の量を5部に変更したこと以外は、製造例5-1と同様にして、顔料分散ペースト(5)を得た。
比較製造例5-6 顔料分散ペースト(6)の製造
 酸化亜鉛を用いなかったこと以外は、製造例5-1と同様にして、顔料分散ペースト(6)を得た。
比較製造例5-7 顔料分散ペースト(7)の製造
 有機酸である乳酸を用いなかったこと以外は、製造例5-1と同様にして、顔料分散ペースト(7)を得た。
製造例6-1 アミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)の製造
 攪拌機、温度計、還流冷却管、窒素導入管を装備した反応容器に、ケミオールEP-400P(三洋化成工業社製のポリプロピレングリコールジグリシジルエーテル、エポキシ当量約300)181.0部とビスフェノールA43.1部とを加え、これらを攪拌しながら140℃まで昇温した。その後、ベンジルジメチルアミン0.6部を添加し、175℃で4時間保温して、エポキシ当量1000のポリエポキシドを得た。ついでバーサダイム216(ヘンケル白水社製のダイマー酸、酸価192)32.7部とベンジルジメチルアミン0.1部とを加え、160℃で酸価が0.5以下になるまで反応させ、分子量4600で、エポキシ当量2300であるポリグリシジルエーテルを得た。次に、この化合物に、アミン価75mgKOH/gのアミノポリエーテル(三洋化成社製のジエチレントリアミン・プロピレンオキサイド付加物AP-40)154.2部を添加し80℃で4時間保温し、アミン当量1510、分子量30000のアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を得た。
 得られたアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)に、さらに、50%乳酸20部およびイオン交換水345.8部の混合液に加え十分に攪拌した後、さらにイオン交換水260部をゆっくりと加え、アミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルションを得た。
製造例6-2 アミノポリエーテル変性ポリアルキレングリコール樹脂(G-2)の製造
 アミノポリエーテルであるAP-40 43.5部を、アミン価255mgKOH/gのアミノポリエーテル(三洋化成社製のジエチレントリアミン・プロピレンオキサイド付加物AP-10)43.5部に変更したこと以外は、製造例6-1と同様にして、アミノポリエーテル変性ポリアルキレングリコール樹脂(G-2)を得た。
 得られたアミノポリエーテル変性ポリアルキレングリコール樹脂(G-2)を用いて、製造例6-1と同様の手順により、アミノポリエーテル変性ポリアルキレングリコール樹脂(G-2)を含むエマルションを得た。
製造例6-3 アミノポリエーテル変性ポリアルキレングリコール樹脂(G-3)の製造
 ビスフェノールAを用いなかったこと以外は、製造例6-1と同様にして、アミノポリエーテル変性ポリアルキレングリコール樹脂(G-3)を得た。
 得られたアミノポリエーテル変性ポリアルキレングリコール樹脂(G-3)を用いて、製造例6-1と同様の手順により、アミノポリエーテル変性ポリアルキレングリコール樹脂(G-3)を含むエマルションを得た。
製造例6-4 アミノポリエーテル変性ポリアルキレングリコール樹脂(G-4)の製造
 ダイマー酸であるバーサダイム216を用いなかったこと以外は、製造例6-1と同様にして、アミノポリエーテル変性ポリアルキレングリコール樹脂(G-4)を得た。
 得られたアミノポリエーテル変性ポリアルキレングリコール樹脂(G-4)を用いて、製造例6-1と同様の手順により、アミノポリエーテル変性ポリアルキレングリコール樹脂(G-4)を含むエマルションを得た。
実施例1
 ステンレス容器に、イオン交換水485部、製造例4-1で得たアミン化樹脂エマルション(1)269部(塗膜形成樹脂エマルション)、製造例6-1で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルション59部および製造例5-1で得た顔料分散ペースト(1)144部を添加し、その後、40℃で16時間エージングして、電着塗料組成物を得た。
実施例2
 顔料分散ペースト(1)の代わりに、製造例5-2で得た顔料分散ペースト(2)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例3
 顔料分散ペースト(1)の代わりに、製造例5-3で得た顔料分散ペースト(3)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例4
 製造例6-1で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルションの代わりに、製造例6-2で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-2)を含むエマルションを用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例5
 製造例6-1で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルションの代わりに、製造例6-3で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-3)を含むエマルションを用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例6
 製造例6-1で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルションの代わりに、製造例6-4で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-4)を含むエマルションを用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例7
 ステンレス容器に、イオン交換水492部、製造例4-1で得たアミン化樹脂エマルション(1)300部(塗膜形成樹脂エマルション)、製造例6-1で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルション20部および製造例5-1で得た顔料分散ペースト(1)144部を添加し、その後、40℃で16時間エージングして、電着塗料組成物を得た。
実施例8
 ステンレス容器に、イオン交換水477部、製造例4-1で得たアミン化樹脂エマルション(1)237部(塗膜形成樹脂エマルション)、製造例6-1で得たアミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルション98部および製造例5-1で得た顔料分散ペースト(1)144部を添加し、その後、40℃で16時間エージングして、電着塗料組成物を得た。
実施例9
 アミン化樹脂エマルション(1)の代わりに、アミン化樹脂エマルション(2)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例10
 顔料分散ペースト(1)の代わりに、製造例5-4で得た顔料分散ペースト(4)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例11
 顔料分散ペースト(1)の代わりに、製造例5-5で得た顔料分散ペースト(5)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例12
 電着塗料組成物の製造において、亜硝酸カルシウム水溶液(濃度:30質量%、亜硝酸カルシウム:日産化学工業社製)を、電着塗料組成物中における濃度が金属元素換算で400ppm(0.004質量%)となる量で加えたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
実施例13
 電着塗料組成物の製造において、酢酸ネオジム水溶液(濃度:10質量%)を、電着塗料組成物中における濃度が金属元素換算で500ppm(0.005質量%)となる量で加えたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
比較例1
 顔料分散ペースト(1)の代わりに、比較製造例5-6で得た顔料分散ペースト(6)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
比較例2
 アミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を用いなかったこと以外は、実施例1と同様にして、電着塗料組成物を得た。
比較例3
 アミノポリエーテル変性ポリアルキレングリコール樹脂(G-1)を含むエマルション 70部の代わりに、ポリオキシエチレンビスフェノールAエーテル(三洋化成工業社製、ニューポールBPE―60)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
比較例4
 顔料分散ペースト(1)の代わりに、比較製造例5-7で得た顔料分散ペースト(7)を用いたこと以外は、実施例1と同様にして、電着塗料組成物を得た。
 上記実施例および比較例の電着塗料組成物を用いて、以下の評価を行った。結果を表1に示す。
硬化電着塗膜を有する電着塗装板の作成
 冷延鋼板(JIS G3141、SPCC-SD)を、サーフクリーナーEC90(日本ペイント社製)中に50℃で2分間浸漬して、脱脂処理した。次にサーフファインGL1(日本ペイント社製)に常温30秒浸漬し、サーフダイン6350(日本ペイント社製)に35℃×2分間浸漬した。脱イオン水による水洗を行った。一方、実施例および比較例で得られた電着塗料組成物に、硬化後の電着塗膜の膜厚が15μmとなるように2-エチルヘキシルグリコールを必要量添加した。その後、電着塗料組成物に鋼板を全て埋没させた後、直ちに電圧の印加を開始し、30秒間昇圧し180Vに達してから150秒間保持する条件で電圧を印加して、被塗物(冷延鋼板)上に未硬化の電着塗膜を析出させた。得られた未硬化の電着塗膜を、160℃で15分間加熱硬化させて、硬化電着塗膜を有する電着塗装板を得た。
硬化性
 上記方法に従い塗装して得られた硬化電着塗膜を、アセトンに浸漬し、56℃で4時間加熱還流させた。還流後の硬化電着塗膜を乾燥させ、アセトン浸漬前後での塗膜質量から、下記式より塗膜残存率を求め、硬化性の評価を行った。評価基準は以下の通りとした。

塗膜残存率=Y/X
X=アセトン浸漬前の塗膜質量;
Y=アセトン浸漬後の塗膜質量。

評価基準
○;塗膜残存率 90%以上
△;塗膜残存率 85%以上90%未満(実用上問題なし)
×;塗膜残存率 85%未満(実用上問題あり)
硬化電着塗膜外観(塗装外観)
 上記方法に従い塗装して得られた硬化電着塗膜を有する電着塗装板について、塗膜外観における異常の有無を目視で判断した。評価基準は以下の通りとした。

評価基準
◎ :極めて均一な塗膜外観を有している
○ :均一な塗膜外観を有している
○△:ややムラがあると視認される部分があるものの、全体としてほぼ均一な塗膜外観を有している
△ :ムラが視認される
× :塗膜外観が明らかに不均一である
エッジ腐食試験
 本試験の評価は、上記冷延鋼板ではなく、L型専用替刃(LB10K:オルファ株式会社製、長さ100mm、幅18mm、厚さ0.5mm)を、サーフクリーナーEC90(日本ペイント社製)中に50℃で2分間浸漬して脱脂処理し、サーフファインGL-1(日本ペイント社製)で表面調整し、次いでリン酸亜鉛化成処理液であるサーフダインSD-5000(日本ペイント社製、リン酸亜鉛化成処理液)中に40℃で2分間浸漬して、リン酸亜鉛化成処理を行ったものを用いた。これに、上記実施例および比較例によって得られた電着塗料組成物を、上記電着塗装と同様の条件で電着塗装して加熱硬化させ、硬化電着塗膜を形成したのち、JIS Z 2371(2000)に準拠した塩水噴霧試験(35℃×168時間)を行い、L型専用替刃先端部に発生した錆の個数を調べた。
 なお、この試験において「L型専用替刃先端部」は、刃の頂点から替刃本体方向に対して5mmまでの幅を意味する。上記幅は、表面側および裏面側の両方を含み、表面裏面の合計では10mmの幅となる。この「L型専用替刃先端部」は、本明細書における「エッジ部」に相当する。
 例えば、下記評価で、L型専用替刃先端部に発生した錆の個数が20個である場合は、L型専用替刃の長さが100mm(10cm)、L型専用替刃先端部の幅は表面裏面の合計で10mm(幅1cm)であるため、L型専用替刃先端部1cmあたりの錆の個数は、
20個/10cm=2個/cm
となる

評価基準
◎ :10個未満
   (L型専用替刃先端部1cmあたりの錆の個数として、1個/cm未満)
○ :10個以上~20個未満
   (L型専用替刃先端部1cmあたりの錆の個数として、1個/cm以上2個/cm未満)
○△:20個以上~50個未満
   (L型専用替刃先端部1cmあたりの錆の個数として、2個/cm以上5個/cm未満)
△ :50個以上~100個未満
   (L型専用替刃先端部1cmあたりの錆の個数として、5個/cm以上10個/cm未満)
× :100個以上
   (L型専用替刃先端部1cmあたりの錆の個数として、10個/cm以上)
加熱減量
 各実施例および比較例で得た電着塗料組成物について、以下の(a)~(g)の操作を行い、下記数式(1)により加熱減量を算出した。
(a)試験板(リン酸亜鉛処理板)を精秤し、電着塗装前の試験板重量Aを求めた。
(b)試験板を電着塗料組成物中に浸漬させ、乾燥後の膜厚が20μmとなるようにカチオン電着塗装を施した。
(c)電着塗装後の試験板を水洗後、試験板の表面に形成されたウエット膜を、105℃で3時間、乾燥させた。
(d)乾燥後、試験板をデシケーター中で室温まで冷却してから精秤し、乾燥後の試験板重量Bを求めた。
(e)乾燥後の試験板に対して、200℃で25分間の焼付けを施した。
(f)焼付け後、試験板をデシケーター中で室温まで冷却してから精秤し、焼付け後の試験板重量Cを求めた。
(g)上述のようにして求めた電着塗装前の試験板重量A、乾燥後の試験板重量Bおよび焼付け後の試験板重量Cを下記数式(1)に代入することで、加熱減量Dを算出した。
D(%)=[1-(C-A)/(B-A)]×100

評価基準は以下の通りとした。
評価基準
○ :13%未満
○△:13%以上~15%未満
△ :15%以上~18%未満
× :18%以上
耐衝撃性
 JIS-K5600-5-3に準じて、衝撃変形試験機(商品名「デュポン・衝撃試験機」、東洋精機製作所社製)を用いて、上記方法に従い得られた硬化電着塗膜を有する電着塗装板(冷延鋼板)に対して、塗装面の裏側より、0.5インチ径、質量0.5kgのおもりを高さ50cmより落下させた。次の判定基準に従い、試験後の塗膜の剥離状態を目視観察した。

判定基準
◎ :剥離なし、塗膜変形なし
○ :剥離は無いが、若干塗膜が変形する
○△:衝撃部周囲の塗膜浮きが生じる
△ :衝撃部周囲の塗膜剥離が生じる
× :衝撃部全面の塗膜剥離が生じる
Figure JPOXMLDOC01-appb-T000002
*表中の「アミノポリエーテル変性ポリアルキレングリコール樹脂(G)(固形分質量比(G)/(A))」は、電着塗料組成物中に含まれるアミン化樹脂(A)およびアミノポリエーテル変性ポリアルキレングリコール樹脂(G)の固形分質量比を示す。
 実施例の電着塗料組成物は、いずれも、良好な硬化性を有しており、加熱減量成分の含有量も低く、また得られた硬化電着塗膜は、良好な塗膜外観を有し、耐衝撃性も高く、そしてエッジ防錆性も高いことが確認された。
 比較例1は、顔料(F)中に酸化亜鉛が含まれない例である。この比較例1の電着塗料組成物を用いて得られた硬化電着塗膜は、エッジ防錆性が劣っていた。
 比較例2は、アミノポリエーテル変性ポリアルキレングリコール樹脂が含まれていない例である。この比較例2の電着塗料組成物を用いて得られた硬化電着塗膜は、特に耐衝撃性が劣っていた。
 比較例3は、アミノポリエーテル変性ポリアルキレングリコール樹脂の代わりに、ポリオキシエチレンビスフェノールAエーテルを用いた例である。この比較例3の電着塗料組成物は、硬化性が劣っており、またこの電着塗料組成物を用いて得られた硬化電着塗膜は、加熱減量成分の含有量が高く、耐衝撃性およびエッジ防錆性も劣っていた。ポリオキシエチレンビスフェノールAエーテルは、電着塗料組成物中に含まれるアミン化樹脂(A)、硬化剤(B)と反応しないためである。
 比較例4は、ビスマス混合物の調製において、有機酸(c2)を用いることなく調製した例である。この比較例4の電着塗料組成物は、硬化性が劣っており、またこの電着塗料組成物を用いて得られた硬化電着塗膜は、耐衝撃性およびエッジ防錆性も劣っていた。
 本発明のカチオン電着塗料組成物は、実質的に有機錫化合物を含まなくても、硬化性に優れ、そして優れた性能を有する硬化電着塗膜を提供することができる。本発明によって、環境規制動向によって使用を制限されるおそれがある有機錫化合物の使用量を削減することができるという利点がある。

Claims (15)

  1.  アミン化樹脂(A)、ブロックイソシアネート硬化剤(B)、アミノポリエーテル変性ポリアルキレングリコール樹脂(G)および顔料分散ペーストを含む、カチオン電着塗料組成物であって、
     前記顔料分散ペーストは、ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、得られたビスマス混合物(C)、顔料分散樹脂(D)および顔料(F)を混合することによって調製され、
     前記顔料(F)は、酸化亜鉛を、0.5~5質量%の範囲で含み、
     前記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、アミノポリエーテルおよびポリアルキレングリコールジグリシジルエーテルを反応させて得られる樹脂である、
    カチオン電着塗料組成物。
  2.  前記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、ポリアルキレングリコールジグリシジルエーテル、多環式フェノール化合物、ジカルボン酸化合物およびアミノポリエーテルを反応させて得られる樹脂である、
    請求項1記載のカチオン電着塗料組成物。
  3.  前記顔料分散ペーストは、
    ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、
    得られたビスマス混合物(C);顔料分散樹脂(D);アミン化樹脂(E)を含むアミン化樹脂エマルション;および顔料(F);を混合することによって調製される、
    請求項1または2記載のカチオン電着塗料組成物。
  4.  前記顔料分散樹脂(D)は、水酸基価が20~120mgKOH/gであり、
    前記アミン化樹脂(E)は、水酸基価が150~650mgKOH/gである、
    請求項3記載のカチオン電着塗料組成物。
  5.  前記顔料分散ペーストに含まれる、顔料(F)および顔料分散樹脂(D)の比率は、固形分質量比として、顔料(F)/顔料分散樹脂(D)=1/0.1~1/1であり、および、
     前記顔料分散ペーストに含まれる、顔料(F)およびアミン化樹脂(E)の比率は、固形分質量比として、顔料(F)/アミン化樹脂(E)=1/0.02~1/0.3である、
    請求項3または4記載のカチオン電着塗料組成物。
  6.  前記カチオン電着塗料組成物中におけるアミノポリエーテル変性ポリアルキレングリコール樹脂(G)およびアミン化樹脂(A)の比率は、固形分質量比として、(G)/(A)=0.08/1~0.4/1である、
    請求項1~5いずれかに記載のカチオン電着塗料組成物。
  7.  前記カチオン電着塗料組成物は、前記ビスマス化合物(c1)を、カチオン電着塗料組成物の樹脂固形分に対して、金属元素換算で0.05~1.0質量%の量で含む、
    請求項1~6いずれかに記載のカチオン電着塗料組成物。
  8.  前記有機酸(c2)は、乳酸、ジメチロールプロピオン酸およびメタンスルホン酸からなる群から選択される1種またはそれ以上である、請求項1~7いずれかに記載のカチオン電着塗料組成物。
  9.  さらに亜硝酸金属塩(H)を含む、請求項1~8いずれかに記載のカチオン電着塗料組成物。
  10.  さらに、ネオジム、イットリウム、ランタン、セリウム、プラセオジム、イッテルビウムからなる群から選択される希土類金属の塩(I)を含む、請求項1~9いずれかに記載のカチオン電着塗料組成物。
  11.  アミン化樹脂(A)および硬化剤(B)を含む樹脂エマルション;アミノポリエーテル変性ポリアルキレングリコール樹脂(G);および顔料分散ペーストを混合する工程を包含する、カチオン電着塗料組成物の調製方法であって、
     前記顔料分散ペーストは、ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、得られたビスマス混合物(C)、顔料分散樹脂(D)および顔料(F)を混合することによって調製され、
     前記顔料(F)は、酸化亜鉛を、0.5~5質量%の範囲で含み、
     前記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、アミノポリエーテルおよびポリアルキレングリコールジグリシジルエーテルを反応させて得られる樹脂である、
    カチオン電着塗料組成物の調製方法。
  12.  前記アミノポリエーテル変性ポリアルキレングリコール樹脂(G)は、ポリアルキレングリコールジグリシジルエーテル、多環式フェノール化合物、ジカルボン酸化合物およびアミノポリエーテルを反応させて得られる樹脂である、請求項11記載のカチオン電着塗料組成物の調製方法。
  13.  前記顔料分散ペーストは、
    ビスマス化合物(c1)および有機酸(c2)を予め混合してビスマス混合物(C)を調製し、次いで、
    得られたビスマス混合物(C);顔料分散樹脂(D);アミン化樹脂(E)を含むアミン化樹脂エマルション;および顔料(F);を混合することによって調製される、
    請求項11または12記載のカチオン電着塗料組成物の調製方法。
  14.  請求項1~10いずれかに記載のカチオン電着塗料組成物を被塗物に電着塗装して、被塗物に硬化電着塗膜を形成する工程を包含する、硬化電着塗膜形成方法。
  15.  前記被塗物はエッジ部を有し、および、形成された硬化電着塗膜を有する被塗物を塩水噴霧試験した場合において、エッジ塗装部1cmにおける錆発生個数が2個/cm未満である、請求項14記載の塗膜形成方法。
PCT/JP2016/056855 2015-03-06 2016-03-04 カチオン電着塗料組成物 WO2016143707A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680026336.2A CN107969133B (zh) 2015-03-06 2016-03-04 阳离子电沉积涂料组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-044624 2015-03-06
JP2015044624A JP2018070663A (ja) 2015-03-06 2015-03-06 カチオン電着塗料組成物

Publications (1)

Publication Number Publication Date
WO2016143707A1 true WO2016143707A1 (ja) 2016-09-15

Family

ID=56879155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056855 WO2016143707A1 (ja) 2015-03-06 2016-03-04 カチオン電着塗料組成物

Country Status (3)

Country Link
JP (1) JP2018070663A (ja)
CN (1) CN107969133B (ja)
WO (1) WO2016143707A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061640A (ja) * 2015-09-25 2017-03-30 日本ペイント・オートモーティブコーティングス株式会社 カチオン電着塗料組成物の調製方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111234678B (zh) * 2018-11-28 2023-07-28 立邦涂料(中国)有限公司 无锡环保低温型电泳涂料及其制备方法
JP7333198B2 (ja) * 2019-05-29 2023-08-24 日本ペイント・オートモーティブコーティングス株式会社 カチオン電着塗料組成物の調製方法
CA3222694A1 (en) * 2021-07-01 2023-01-05 Brian Carl OKERBERG Electrodepositable coating compositions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339524A (ja) * 2000-10-11 2004-12-02 Kansai Paint Co Ltd 熱硬化性カチオン性塗料組成物
JP2013056961A (ja) * 2011-09-07 2013-03-28 Nippon Paint Co Ltd 電着塗料組成物および化成処理を施していない被塗物に電着塗膜を形成する方法
JP2015187199A (ja) * 2014-03-26 2015-10-29 日本ペイント・オートモーティブコーティングス株式会社 電着塗料組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006059123A1 (de) * 2005-12-27 2007-06-28 Kansai Paint Co., Ltd., Amagasaki Anstrichmittel für die Elektroabscheidung
JP5725757B2 (ja) * 2009-09-15 2015-05-27 関西ペイント株式会社 カチオン電着塗料組成物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339524A (ja) * 2000-10-11 2004-12-02 Kansai Paint Co Ltd 熱硬化性カチオン性塗料組成物
JP2013056961A (ja) * 2011-09-07 2013-03-28 Nippon Paint Co Ltd 電着塗料組成物および化成処理を施していない被塗物に電着塗膜を形成する方法
JP2015187199A (ja) * 2014-03-26 2015-10-29 日本ペイント・オートモーティブコーティングス株式会社 電着塗料組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017061640A (ja) * 2015-09-25 2017-03-30 日本ペイント・オートモーティブコーティングス株式会社 カチオン電着塗料組成物の調製方法
EP3354700A4 (en) * 2015-09-25 2019-06-12 Nippon Paint Automotive Coatings Co., Ltd. PROCESS FOR THE PREPARATION OF A CATIONIC ELECTRODEPOSITION COATING MATERIAL COMPOSITION

Also Published As

Publication number Publication date
CN107969133A (zh) 2018-04-27
JP2018070663A (ja) 2018-05-10
CN107969133B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
JP6441126B2 (ja) カチオン電着塗料組成物の調製方法
JP2018159032A (ja) エポキシ粘性剤およびカチオン電着塗料組成物
WO2016143707A1 (ja) カチオン電着塗料組成物
JP7064291B2 (ja) カチオン電着塗料組成物
WO2018174134A1 (ja) カチオン電着塗料組成物
WO2017051901A1 (ja) カチオン電着塗料組成物の調製方法
JP2015187199A (ja) 電着塗料組成物
JP6406848B2 (ja) 電着塗料組成物
JP7471151B2 (ja) カチオン電着塗料用エポキシ粘性剤の製造方法
JP7401214B2 (ja) カチオン電着塗料組成物
WO2022014277A1 (ja) カチオン電着塗料組成物
JP5996338B2 (ja) 電着塗料組成物
JP2022129794A (ja) カチオン電着塗料組成物
JP2022183490A (ja) カチオン電着塗料組成物、電着塗装物および電着塗装物の製造方法
JP7333198B2 (ja) カチオン電着塗料組成物の調製方法
JP6615552B2 (ja) カチオン電着塗料組成物
WO2020129817A1 (ja) カチオン電着塗料組成物及び硬化電着塗膜の形成方法
JP6719185B2 (ja) カチオン電着塗料組成物の調製方法
JP2011202047A (ja) カチオン性電着塗料組成物
JP5334133B2 (ja) カチオン性電着塗料組成物の塗装方法
WO2022019034A1 (ja) カチオン電着塗料組成物
JP2022073653A (ja) カチオン電着塗料組成物
JP2012057034A (ja) カチオン性電着塗料組成物
JP2006137863A (ja) 無鉛性カチオン電着塗料組成物
JP2012057035A (ja) カチオン性電着塗料組成物の塗装方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16761677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP