WO2021005828A1 - Ad変換装置、ad変換方法および信号処理装置 - Google Patents

Ad変換装置、ad変換方法および信号処理装置 Download PDF

Info

Publication number
WO2021005828A1
WO2021005828A1 PCT/JP2020/008706 JP2020008706W WO2021005828A1 WO 2021005828 A1 WO2021005828 A1 WO 2021005828A1 JP 2020008706 W JP2020008706 W JP 2020008706W WO 2021005828 A1 WO2021005828 A1 WO 2021005828A1
Authority
WO
WIPO (PCT)
Prior art keywords
conversion
signal
dither signal
value
lsb
Prior art date
Application number
PCT/JP2020/008706
Other languages
English (en)
French (fr)
Inventor
裕生 國安
山田 隆章
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2021005828A1 publication Critical patent/WO2021005828A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/06Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M1/08Continuously compensating for, or preventing, undesired influence of physical parameters of noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/20Increasing resolution using an n bit system to obtain n + m bits

Definitions

  • the present invention relates to an AD conversion device that performs oversampling.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2014-7518 (published on January 16, 2014)
  • Japanese Patent Gazette Patent No. 4648996 (issued on March 9, 2011)
  • Japanese Patent Publication Patent Hei 6-104751 (published April 15, 1994)"
  • the amplitude of the dither signal is optimally 2LSB ( ⁇ 1LSB).
  • ⁇ 1LSB the amplitude of the dither signal
  • the dither signal When the dither signal is less than 1 LSB, it is expected that the effect of improving the resolution is small or the resolution is not improved at all. Also, if the dither signal exceeds 1 LSB, it is unpredictable how the resolution will be improved. Therefore, if the amplitude of the dither signal varies, the resolution is affected by the amplitude, and there is a disadvantage that stable AD conversion performance cannot be obtained.
  • One aspect of the present invention is an object of an oversampling type AD conversion device, in which the influence of variation in dither signals is suppressed and the AD conversion performance is stabilized.
  • the AD converter has a dither signal generator that generates a dither signal to be added to the analog input signal, and the analog input signal to which the dither signal is added.
  • An AD conversion unit that performs a process of converting to a digital value and an average value of the digital values obtained by performing the conversion process by the AD conversion unit a plurality of times within a predetermined period are calculated, and the predetermined period is sampled.
  • an averaging processing unit that outputs as a digital signal after AD conversion, and the value of the dither signal is in a range of amplitude corresponding to a value set in a range of 6 LSB or more and 260 LSB or less in the predetermined period. fluctuate.
  • the AD conversion method includes a dither signal generation step of generating a dither signal to be added to an analog input signal, and the analog input signal to which the dither signal is added.
  • An AD conversion step that performs a process of converting to a digital value and an average value of the digital values obtained by performing the conversion process in the AD conversion step a plurality of times within a predetermined period are calculated, and the predetermined period is sampled.
  • the value of the dither signal is in the range of amplitude corresponding to the value set in the range of 6 LSB or more and 260 LSB or less in the predetermined period. fluctuate.
  • the influence of the variation of the dither signal can be suppressed and the AD conversion performance can be stabilized.
  • FIG. 1 is a block diagram showing a schematic configuration of the signal processing device 100 according to the present embodiment.
  • the signal processing device 100 is a device such as an analog input unit that takes in an analog signal, converts it into a digital signal, and outputs the signal, and includes an AD conversion device 10 and a signal output unit 20. ing.
  • the AD conversion device 10 converts an analog input signal (analog input signal) whose detection value output from the sensor 30 is input via the amplifier (indicated by AMP in the figure) 40 into a digital signal.
  • the signal output unit 20 outputs a digital signal to a PLC (Programmable Logic Controller).
  • the sensor 30 detects various physical quantities such as temperature and pressure.
  • the signal processing device 100 is not limited to the device that converts the captured analog input signal into a digital signal and outputs it to the PLC as described above.
  • the signal processing device 100 may be a temperature control unit having a temperature control function (including a control unit and a control output unit for a control target (heater or the like)).
  • the signal processing device 100 may be a digital panel meter which is a display that converts the captured analog input signal into a digital signal and numerically displays the result of performing a predetermined process on the digital signal.
  • the AD conversion device 10 includes a dither signal generation unit 1, an adder 2, an AD conversion unit 3, a data storage unit 4, an averaging processing unit 5, and a cycle control unit 6.
  • the dither signal generation unit 1 generates a dither signal to be added to the analog input signal.
  • the adder 2 adds the dither signal to the analog input signal.
  • the value of the dither signal fluctuates in the range of amplitude corresponding to the value set in the range of 6 LSB (Least Significant Bit) or more and 260 LSB or less in a predetermined period.
  • the AD conversion unit 3 performs a process of converting an analog input signal to which a dither signal is added into a digital value.
  • the averaging processing unit 5 calculates the average value of the digital values obtained by performing the conversion processing by the AD conversion unit 3 a plurality of times within a predetermined period. Further, the averaging processing unit 5 outputs the calculated digital average value as a digital signal after AD conversion having a predetermined period as a sampling cycle.
  • the periodic control unit 6 controls the operations of the data storage unit 4 and the averaging processing unit 5 that are periodically performed in association with the AD conversion processing that is performed a plurality of times by the AD conversion unit 3.
  • the AD conversion device 10 can suppress the maximum error of AD conversion to a practical level by using a dither signal having a voltage amplitude corresponding to 6 LSB or more and 260 LSB or less in a predetermined period. The details of the error reduction effect will be described later.
  • the dither signal generation unit 1 generates a dither signal having an amplitude of a preset amplitude set value (voltage value).
  • a dither signal a signal having a waveform such as a triangular wave, a sawtooth wave, a sine wave, or random noise is used.
  • the dither signal generation unit 1 generates a dither signal voltage value that changes according to the waveform in the amplitude range for each of a plurality of AD conversion processes performed by the AD conversion unit 3 with respect to the voltage value of the analog input signal. ..
  • the dither signal not only fluctuates in value in the range of amplitude corresponding to 6 LSB or more and 260 LSB or less described above in a predetermined period, but more preferably, the dither signal has an amplitude corresponding to 12 LSB or more and 120 LSB or less in a predetermined period. The value may fluctuate within the range.
  • the setting of the amplitude of the dither signal will be described in detail later.
  • the adder 2 adds the voltage of the dither signal generated by the dither signal generation unit 1 to the voltage of the analog input signal. More specifically, the adder 2 adds the changing voltage value output from the dither signal generation unit 1 to the voltage value of the analog input signal for each of the plurality of AD conversion processes performed by the AD conversion unit 3.
  • the AD conversion unit 3 is the main part of the AD conversion device 10 that converts the voltage (analog value) input from the adder 2 into a digital value.
  • the AD conversion unit 3 is composed of various types of AD converters such as a double integral type and a sequential comparison type.
  • the AD conversion unit 3 realizes oversampling by performing AD conversion processing a plurality of times (the average number of times that the averaging processing unit 5 performs averaging processing) on the voltage value of the analog input signal.
  • the data storage unit 4 stores a plurality of digital values of the voltage values of the analog input signals output from the AD conversion unit 3 as data. More specifically, the data storage unit 4 adds digital values that are sequentially input. The data storage unit 4 resets the added digital value (total value) by a reset signal described later from the cycle control unit 6.
  • the data storage unit 4 is composed of a memory, a register, and the like.
  • the cycle control unit 6 outputs a reset signal to the data storage unit 4 when the number of times the AD conversion is executed by the AD conversion unit 3 reaches a preset number of times. Therefore, the cycle control unit 6 includes a counter that counts the number of times the AD conversion is executed. This counter counts the number of AD conversion executions by counting the end interrupt signal (pulse) output from the AD conversion unit 3 each time one AD conversion is completed.
  • the averaging processing unit 5 divides the total value of the digital values output from the data storage unit 4 by the preset average number of AD conversions given by the cycle control unit 6, and thereby the average value of the digital values. Is calculated.
  • the averaging processing unit 5 outputs one digital value obtained by the averaging processing to the sampling cycle by setting a predetermined period in which the AD conversion unit 3 performs the AD conversion processing a plurality of times as a sampling cycle.
  • FIG. 2 is a flowchart showing a processing procedure of AD conversion by the AD conversion device 10.
  • AD conversion method an example (AD conversion method) of adding a sawtooth wave as a dither signal to an analog input signal will be described.
  • the cycle control unit 6 initially sets various values (step S1). In the initial setting, the cycle control unit 6 sets the average number of times Nave, the count value (counter output value) Q, the total value S, the dither signal voltage V, and the initial values of the dither amplitude Ad in a register or the like.
  • the initial value of the average number of times Nave is, for example, 1024.
  • the initial values of the count value Q and the total value S are 0.
  • the dither amplitude Ad is, for example, a voltage corresponding to 12 LSB
  • the initial value of the dither signal voltage V is 0 LSB so that the dither amplitude Ad changes in the range of 0 LSB to 12 LSB.
  • the initial value of the dither signal voltage V may be -6LSB so that the dither amplitude Ad changes in the range of -6LSB to 6LSB.
  • the average number of times Nave is a divisor used in the averaging (division) performed by the averaging processing unit 5, and is the number of times of the AD conversion processing performed by the AD conversion unit 3.
  • the count value Q is the count output value of the counter.
  • the total value S is a value obtained each time the digital value is added by the data storage unit 4.
  • the dither signal voltage V is a voltage value output from the dither signal generation unit 1.
  • the dither amplitude Ad is the amplitude of the dither signal.
  • the cycle control unit 6 updates the count value Q by adding 1 to the count value Q of the counter (step S2).
  • the adder 2 adds the dither signal voltage V output from the dither signal generation unit 1 to the voltage of the input signal (input signal voltage) (step S3).
  • the AD conversion unit 3 executes an AD conversion process on the input signal voltage to which the dither signal voltage V is added (step S4, AD conversion step).
  • the digital value obtained as a result of the AD conversion process is stored in the data storage unit 4. Further, the AD conversion unit 3 outputs an end interrupt signal when the AD conversion process is completed.
  • step S5 the cycle control unit 6 determines whether or not the current count value Q has reached the average number of times Nave.
  • step S5 when the cycle control unit 6 determines that the current count value Q has not reached the average number of times Nave (NO), it updates the variable (step S6) and returns the process to step S2.
  • step S6 the digital value stored in the data storage unit 4, that is, the total value S is the initial value, and the digital value obtained by the AD conversion process this time (measured value Sn this time) is added. Further, the dither signal generation unit 1 receives a notification of variable update from the cycle control unit 6 and adds a value obtained by dividing the dither amplitude Ad by the average number of times Nave to the dither signal voltage V (dither signal generation step).
  • step S5 when the cycle control unit 6 determines that the current count value Q has reached the average number of times Nave (YES), the cycle control unit 6 gives a reset signal to the data storage unit 4.
  • the averaging processing unit 5 calculates the averaging value M by dividing the total value S output from the data accumulating unit 4 by the average number of times Nave (step S7, averaging processing step).
  • the cycle control unit 6 determines whether or not the end condition is satisfied (step S8).
  • the cycle control unit 6 determines that the end condition is satisfied (YES)
  • the cycle control unit 6 ends the process.
  • the end conditions include the fact that the specified processing time (predetermined time) has been reached since the processing was started, and that the user has issued an end command.
  • the periodic control unit 6 determines that the end condition is not satisfied (NO)
  • the variable is reset (step S9), and the process returns to step S2.
  • step S9 the cycle control unit 6 resets the total value S, the count value Q, and the dither signal voltage V of the data storage unit 4. Along with this reset, the cycle control unit 6 outputs a reset signal for resetting the dither signal voltage V and the total value S to the dither signal generation unit 1 and the data storage unit 4, respectively.
  • a voltage that fluctuates within a predetermined amplitude range of the dither signal is added to the voltage value of the analog input signal for each of the plurality of AD conversion processes performed by the AD conversion unit 3.
  • Such an input signal is AD-converted to a digital value, further added, and averaged. As a result, discretization error is suppressed and high resolution is realized.
  • FIG. 3 is a diagram showing an example of the waveform of the dither signal used in the AD conversion device 10 and the relationship between the frequency distribution of the signal level and the AD conversion accuracy.
  • the dither signal has known waveforms such as a triangular wave, a sawtooth wave, a sine wave, and random noise.
  • Triangle waves and sawtooth waves are preferable because the frequency of signal levels is uniformly distributed and the accuracy of AD conversion is good.
  • the sine wave is slightly biased so that the frequency of the signal level is higher on the low side and the high side than on the central side, which is a usable level for the accuracy of AD conversion.
  • the frequency of the signal level of the random noise varies, and the accuracy of the AD conversion is a usable level.
  • an AD converter having a resolution of 10 bits adds a dither signal voltage to an input signal voltage and then oversamples.
  • FIG. 4 is a diagram showing the relationship between the amplitude of noise (dither signal) generated by the AD conversion device 10 and the maximum error after AD conversion.
  • the lower part of FIG. 4 is an enlarged view of a part of the upper part.
  • the relationship shown in FIG. 4 is based on the results obtained by repeating oversampling 1024 times.
  • the maximum error of AD conversion is 2 LSB or less. Further, in the range where the noise amplitude is 12 LSB or more and 120 LSB or less, the maximum error of AD conversion is 1 LSB or less.
  • the range (reference voltage) of the input voltage that the AD conversion unit 3 can perform AD conversion is determined. Therefore, when a dither signal is added to the input signal, the voltage width of the input signal that can be AD-converted becomes narrow. Therefore, when the maximum error of AD conversion is 2LSB, it is preferable that the amplitude of the dither signal is not close to the upper limit of 260LSB but smaller.
  • the range of the input voltage required for the measurement is also relatively small. Therefore, in this case, the range in which the digital value can be obtained according to the required resolution becomes small, so even if a dither signal having an amplitude corresponding to the upper limit of 260 LSB is added, AD conversion can be performed without any problem. is there.
  • the maximum error of AD conversion can be suppressed to a practical value. Specifically, since the dither signal has a voltage amplitude corresponding to 6 LSB or more and 260 LSB or less, the maximum error of AD conversion can be suppressed to 2 LSB or less. Further, since the dither signal has a voltage amplitude corresponding to 12 LSB or more and 120 LSB or less, the maximum error of AD conversion can be suppressed to 1 LSB or less.
  • the control block (particularly the periodic control unit 6) of the signal processing device 100 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software.
  • the signal processing device 100 is a CPU (Central Processing Unit) that executes instructions of a control program that is software that realizes the function, and a ROM (Read Only) in which the above programs and various data are readablely recorded by the CPU. It is equipped with a Memory) or a storage device (these are referred to as "recording media"), a RAM (RandomAccess Memory) for developing the above program, and the like. Then, when the CPU reads the program from the recording medium and executes it, the object of the present invention is achieved.
  • a CPU Central Processing Unit
  • ROM Read Only
  • a "non-temporary tangible medium" for example, a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the AD conversion device includes a dither signal generation unit that generates a dither signal to be added to the analog input signal, and an AD conversion unit that performs a process of converting the analog input signal to which the dither signal is added into a digital value.
  • the average value of the digital values obtained by performing the conversion process by the AD conversion unit a plurality of times within a predetermined period is calculated and output as a digital signal after AD conversion having the predetermined period as the sampling cycle. It is provided with an averaging processing unit, and the value of the dither signal fluctuates in a range of amplitude corresponding to a value set in a range of 6 LSB or more and 260 LSB or less in the predetermined period.
  • the AD conversion method is an AD that performs a dither signal generation step of generating a dither signal to be added to the analog input signal and a process of converting the analog input signal to which the dither signal is added into a digital value.
  • the average value of the digital values obtained by performing the conversion step and the conversion process in the AD conversion step a plurality of times within a predetermined period is calculated, and the digital signal after AD conversion has the predetermined period as the sampling cycle.
  • the value of the dither signal fluctuates in the range of the amplitude corresponding to the value set in the range of 6 LSB or more and 260 LSB or less in the predetermined period including the averaging process step of outputting.
  • the maximum error of AD conversion can be suppressed to 2LSB or less. Therefore, even if the amplitude of the dither signal varies or has an error, the effect on the resolution is small. Therefore, stable AD conversion performance can be obtained at a practical cost.
  • the value of the dither signal may fluctuate in the range of amplitude corresponding to the value set in the range of 12 LSB or more and 120 LSB or less in the predetermined period.
  • the maximum error of AD conversion can be suppressed to 1 LSB or less. Therefore, the AD conversion performance can be further stabilized.
  • the value of the dither signal may fluctuate as a triangular wave or a sawtooth wave in the predetermined period.
  • the number of oversamplings can be reduced. Therefore, the AD conversion performance can be further stabilized.
  • the signal processing device includes any of the above AD conversion devices and a signal output unit that outputs a digital signal output from the AD conversion device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

オーバーサンプリング方式のAD変換装置において、ディザ信号のばらつきの影響を抑えて、AD変換性能を安定化させる。AD変換装置(10)は、アナログ入力信号に加算するディザ信号を生成するディザ信号生成部(1)と、ディザ信号が加算されたアナログ入力信号をデジタル値に変換する処理を行うAD変換部(3)と、所定期間内に前記AD変換部による変換処理が複数回行われることによって得られたデジタル値の平均値を算出し、所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する平均化処理部(5)と、を備える。ディザ信号は、前記所定期間において、6LSB以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する。

Description

AD変換装置、AD変換方法および信号処理装置
 本発明は、オーバーサンプリングを行うAD変換装置に関する。
 例えば、特許文献1~3に記載されているように、オーバーサンプリング方式のAD変換器において、出力のS/Nを改善するために、入力信号にディザ信号を加算することが行われている。
 また、オーバーサンプリング方式のAD変換器において、多数のAD変換データに平均化処理を施すことにより、分解能およびS/Nを向上させることが知られている。
日本国公開特許公報「特開2014-7518号(2014年1月16日公開)」 日本国特許公報「特許第4648996号(2011年3月9日発行)」 日本国公開特許公報「特許平6-104751号(1994年4月15日公開)」
 上述のようなディザ信号を入力信号に加算する従来技術では、ディザ信号の大きさが重要である。しかしながら、これらの従来技術では、ディザ信号をどの程度の大きさにするかという設計指針が明確に示されていない。このため、期待した改善効果が得られないことが多々ある。
 理論的には、ディザ信号の振幅は2LSB(±1LSB)が最適とされる。しかしながら、実際には、1LSBに相当する非常に微小な電圧を、毎回誤差なく正確に入力信号に加算するような回路や環境を、実用的なコストで実現することは困難である。
 ディザ信号が1LSB未満である場合、分解能の改善効果が小さいか、もしくは分解能が全く改善されないと予想される。また、ディザ信号が1LSBを超過する場合、分解能がどのように改善されるか予想できない。したがって、ディザ信号の振幅がばらつくと、分解能がその影響を受けて、安定したAD変換性能が得られなくなるという不都合が生じる。
 本発明の一態様は、オーバーサンプリング方式のAD変換装置において、ディザ信号のばらつきの影響を抑えて、AD変換性能を安定化させることを目的とする。
 上記の課題を解決するために、本発明の一態様に係るAD変換装置は、アナログ入力信号に加算するディザ信号を生成するディザ信号生成部と、前記ディザ信号が加算された前記アナログ入力信号をデジタル値に変換する処理を行うAD変換部と、所定期間内に前記AD変換部による変換処理が複数回行われることによって得られた前記デジタル値の平均値を算出し、前記所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する平均化処理部とを備え、前記ディザ信号が、前記所定期間において、6LSB以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する。
 上記の課題を解決するために、本発明の一態様に係るAD変換方法は、アナログ入力信号に加算するディザ信号を生成するディザ信号生成工程と、前記ディザ信号が加算された前記アナログ入力信号をデジタル値に変換する処理を行うAD変換工程と、所定期間内に前記AD変換工程における変換処理が複数回行われることによって得られた前記デジタル値の平均値を算出し、前記所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する平均化処理工程とを含み、前記ディザ信号が、前記所定期間において、6LSB以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する。
 本発明の一態様によれば、オーバーサンプリング方式のAD変換装置において、ディザ信号のばらつきの影響を抑えて、AD変換性能を安定化させることができる。
本発明の一実施形態に係る信号処理装置の構成を示すブロック図である。 上記信号処理装置におけるAD変換装置によるAD変換処理の手順を示すフローチャートである。 上記AD変換装置において用いられるディザ信号の波形例と信号レベルの頻度分布とAD変換精度との関係を示す図である。 上記AD変換装置において生成するノイズ(ディザ信号)の振幅とAD変換後の最大誤差との関係を示す図である。
 〔実施形態〕
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。
 §1 適用例
 図1を用いて、本発明が適用される場面の一例について説明する。
 図1は、本実施形態に係る信号処理装置100の概略構成を示すブロック図である。
 図1に示すように、信号処理装置100は、アナログ信号を取り込んで、デジタル信号に変換して出力するアナログ入力ユニットのような装置であり、AD変換装置10と、信号出力部20とを備えている。AD変換装置10は、センサ30から出力された検出値がアンプ(図中AMPにて示す)40を介して入力されたアナログの入力信号(アナログ入力信号)をデジタル信号に変換する。信号出力部20は、デジタル信号をPLC(Programmable Logic Controller)に出力する。センサ30は、温度、圧力等の各種の物理量を検出する。
 なお、信号処理装置100は、上記のように、取り込んだアナログ入力信号をデジタル信号に変換してPLCに出力する装置に限定されない。例えば、信号処理装置100は、温度制御機能(制御部および制御対象(ヒータなど)への制御出力部を備える)まで有する温度制御ユニットであってもよい。また、信号処理装置100は、取り込んだアナログ入力信号をデジタル信号に変換して、当該デジタル信号に所定の処理を行った結果を数値表示する表示器であるデジタルパネルメータであってもよい。
 AD変換装置10は、ディザ信号生成部1と、加算器2と、AD変換部3と、データ蓄積部4と、平均化処理部5、周期制御部6とを備えている。
 ディザ信号生成部1は、アナログ入力信号に加算するディザ信号を生成する。加算器2は、ディザ信号をアナログ入力信号に加算する。ディザ信号は、所定期間において、6LSB(Least Significant Bit)以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する。
 AD変換部3は、ディザ信号が加算されたアナログ入力信号をデジタル値に変換する処理を行う。
 平均化処理部5は、所定期間内にAD変換部3による変換処理が複数回行われることによって得られたデジタル値の平均値を算出する。また、平均化処理部5は、算出したデジタルの平均値を、所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する。
 周期制御部6は、AD変換部3によって複数回行われるAD変換処理に伴って、周期的に行われるデータ蓄積部4および平均化処理部5の動作を制御する。
 AD変換装置10は、所定期間において、6LSB以上かつ260LSB以下に相当する電圧の振幅を有するディザ信号を用いることにより、AD変換の最大誤差を実用的なレベルにまで抑えることができる。誤差低減効果の詳細については、後述する。
 §2 構成例
 図1を用いて、実施形態に係るAD変換装置10の構成例について説明する。
 ディザ信号生成部1は、予め設定されている振幅設定値(電圧値)の振幅を有するディザ信号を生成する。ディザ信号としては、三角波、鋸歯状波、正弦波、ランダムノイズ等の波形の信号が用いられる。ディザ信号生成部1は、アナログ入力信号の電圧値に対して、AD変換部3が行う複数回のAD変換処理ごとに、振幅の範囲で波形に応じて変化するディザ信号の電圧値を生成する。また、ディザ信号は、所定期間において、上述した6LSB以上かつ260LSB以下に相当する振幅の範囲で値が変動するだけでなく、より好ましくは、所定期間において、12LSB以上かつ120LSB以下に相当する振幅の範囲で値が変動してもよい。ディザ信号の振幅の設定については、後に詳しく説明する。
 加算器2は、アナログ入力信号の電圧にディザ信号生成部1で生成したディザ信号の電圧を加算する。より詳しくは、加算器2は、アナログ入力信号の電圧値に、AD変換部3が行う複数回のAD変換処理ごとに、ディザ信号生成部1から出力される変化する電圧値を加算する。
 AD変換部3は、加算器2から入力される電圧(アナログ値)をデジタル値に変換するAD変換装置10の主要部である。AD変換部3は、二重積分型、逐次比較型などの各種方式のAD変換器で構成される。AD変換部3は、アナログ入力信号の電圧値に対して複数回(平均化処理部5が平均化処理を行う平均回数)AD変換処理を行うことによりオーバーサンプリングを実現する。
 データ蓄積部4は、AD変換部3から出力される、アナログ入力信号の電圧値の複数のデジタル値をデータとして蓄積する。より詳しくは、データ蓄積部4は、順次入力されるデジタル値を加算していく。データ蓄積部4は、周期制御部6からの後述するリセット信号によって、加算したデジタル値(合計値)をリセットする。データ蓄積部4は、メモリ、レジスタ等によって構成される。
 周期制御部6は、AD変換部3によるAD変換の実行回数が予め設定された回数に達すると、データ蓄積部4にリセット信号を出力する。このため、周期制御部6は、AD変換の実行回数をカウントするカウンタを含んでいる。このカウンタは、AD変換部3から1回のAD変換が終了するごとに出力される終了割込信号(パルス)をカウントすることによりAD変換の実行回数をカウントする。
 平均化処理部5は、周期制御部6から与えられる、予め設定されたAD変換の平均回数で、データ蓄積部4から出力されるデジタル値の合計値を除することによって、デジタル値の平均値を算出する。平均化処理部5は、AD変換部3が複数回のAD変換処理を行う所定期間をサンプリング周期とすることにより、当該サンプリング周期に平均化処理によって得られた1つのデジタル値を出力する。
 続いて、上記のように構成されるAD変換装置10によるAD変換処理について説明する。
 図2は、AD変換装置10によるAD変換の処理手順を示すフローチャートである。ここでは、アナログ入力信号にディザ信号として鋸歯状波を加算する例(AD変換方法)について説明する。
 図2に示すように、まず、周期制御部6は、各種の値の初期設定を行う(ステップS1)。周期制御部6は、初期設定において、平均回数Nave、カウント値(カウンタ出力値)Q、合計値S、ディザ信号電圧Vおよびディザ振幅Adの初期値をレジスタなどに設定する。平均回数Naveの初期値は、例えば1024である。カウント値Qおよび合計値Sの初期値は0である。ディザ振幅Adが例えば12LSB相当の電圧であれば、ディザ振幅Adが0LSB~12LSBの範囲で変化するように、ディザ信号電圧Vの初期値は0LSBである。なお、ディザ振幅Adが-6LSB~6LSBの範囲で変化するように、ディザ信号電圧Vの初期値は-6LSBであってもよい。
 ここで、平均回数Naveは、平均化処理部5が行う平均化(除算)で用いる除数であり、AD変換部3が行うAD変換処理の回数である。カウント値Qは、カウンタのカウント出力値である。合計値Sは、データ蓄積部4によるデジタル値の加算毎に得られる値である。ディザ信号電圧Vは、ディザ信号生成部1から出力される電圧値である。ディザ振幅Adは、ディザ信号の振幅である。
 初期設定の後、周期制御部6は、カウンタのカウント値Qに1を加算することにより、カウント値Qを更新する(ステップS2)。
 次いで、加算器2は、ディザ信号生成部1から出力されるディザ信号電圧Vを入力信号の電圧(入力信号電圧)に加算する(ステップS3)。AD変換部3は、ディザ信号電圧Vが加算された入力信号電圧に対してAD変換処理を実行する(ステップS4,AD変換工程)。AD変換処理の結果得られたデジタル値は、データ蓄積部4に蓄積される。また、AD変換部3は、AD変換処理が終了すると、終了割込信号を出力する。
 周期制御部6は、AD変換処理が1回実行されると、現在のカウント値Qが平均回数Naveに達したか否かを判定する(ステップS5)。ステップS5において、周期制御部6は、現在のカウント値Qが平均回数Naveに達していないと判定すると(NO)、変数を更新して(ステップS6)、処理をステップS2に戻す。
 ステップS6においては、データ蓄積部4に蓄積されたデジタル値、すなわち合計値Sが初期値に今回のAD変換処理によって得られたデジタル値(今回計測値Sn)が加算される。また、ディザ信号生成部1は、周期制御部6より変数更新の通知を受けて、ディザ信号電圧Vにディザ振幅Adを平均回数Naveで除した値を加算する(ディザ信号生成工程)。
 ステップS5において、周期制御部6は、現在のカウント値Qが平均回数Naveに達したと判定すると(YES)、リセット信号をデータ蓄積部4に与える。これにより、平均化処理部5は、データ蓄積部4から出力された合計値Sを平均回数Naveで除することにより、平均値Mを算出する(ステップS7,平均化処理工程)。
 そして、周期制御部6は、終了条件を満たしているか否かを判定する(ステップS8)。周期制御部6は、終了条件を満たしていると判定すると(YES)、処理を終える。終了条件としては、処理を開始してから規定の処理時間(所定時間)に達したこと、ユーザからの終了コマンドが発行されたことなどが挙げられる。一方、周期制御部6は、終了条件を満たしていないと判定すると(NO)、変数をリセットして(ステップS9)、処理をステップS2に戻す。
 周期制御部6は、ステップS9において、データ蓄積部4の合計値S、カウント値Qおよびディザ信号電圧Vをリセットする。周期制御部6は、このリセットに伴い、ディザ信号生成部1およびデータ蓄積部4にそれぞれ、ディザ信号電圧Vおよび合計値Sをリセットするためのリセット信号を出力する。
 上記のように、AD変換部3による複数回のAD変換処理ごとに、アナログ入力信号の電圧値に対して、ディザ信号の所定の振幅の範囲で変動する電圧が加算される。このような入力信号が、AD変換処理されてデジタル値となり、さらに加算され、かつ平均化される。これにより、離散化誤差が抑制され、かつ高分解能化が実現される。
 ここで、ディザ信号の波形とAD変換処理の回数との関係について説明する。
 図3は、AD変換装置10において用いられるディザ信号の波形例と信号レベルの頻度分布とAD変換精度との関係を示す図である。
 ディザ信号は、図3に示すように、三角波、鋸歯状波、正弦波、ランダムノイズといった公知の波形を有している。三角波および鋸歯状波は、信号レベルの頻度が均一に分布しており、AD変換の精度が良好であるので、好ましい。正弦波は、信号レベルの頻度が信号レベルの低い側と高い側とが中央側と比べて大きくなるようにやや偏っており、AD変換の精度としては使用可能なレベルである。ランダムノイズは、信号レベルの頻度がばらついており、AD変換の精度としては使用可能なレベルである。
 通常、10ビットの分解能を有するAD変換器が、ディザ信号電圧を入力信号電圧に加算した上でオーバーサンプリングを行う。これにより、分解能16ビット相当のデジタル出力を得る場合、ディザ信号が三角波または鋸歯波であれば、オーバーサンプリング回数が2(n=16-10=6)回でよい。これに対し、同じく分解能16ビット相当のデジタル出力を得る場合、ディザ信号がランダムノイズであれば、4(n=6)回程度(三角波の2倍)必要となる。
 続いて、ノイズの振幅(ディザ信号振幅)とAD変換の最大誤差との関係について図4を参照して説明する。図4は、AD変換装置10において生成するノイズ(ディザ信号)の振幅とAD変換後の最大誤差との関係を示す図である。
 図4の下側に示す図は、上側に示す図の一部を拡大して示している。図4の横軸は、ノイズ振幅[LSB]を示しており、オーバーサンプリング前のAD変換部3の本来の分解能でのLSB(例えば10bitであれば、基準電圧/210=1LSB)である。縦軸は、AD変換の最大誤差[LSB]を示しており、オーバーサンプリング後の分解能で計算したときのLSB(例えば16bitであれば、基準電圧/216=1LSB)である。図4に示す関係は、オーバーサンプリングを1024回繰り返し行うことによって得られた結果に基づいている。
 図4に示すように、ノイズ振幅が6LSB以上かつ260LSB以下である範囲では、AD変換の最大誤差は2LSB以下となっている。また、ノイズ振幅が12LSB以上かつ120LSB以下である範囲では、AD変換の最大誤差は1LSB以下となっている。
 これに対し、ノイズ振幅が2LSB(±1LSB)であるとき、AD変換の最大誤差はほぼ0となるが、ノイズ振幅がわずかでも2LSBからずれると、AD変換の最大誤差が急激に大きくなる。このため、「発明が解決しようとする課題」に述べたように、2LSBに相当する非常に微小な電圧を、毎回誤差なく正確に入力信号に加算するような回路または環境を、実用的なコストで実現することは困難である。
 なお、AD変換部3がAD変換できる入力電圧の範囲(基準電圧)は決まっている。このため、入力信号にディザ信号を加えると、AD変換できる入力信号の電圧幅が狭くなる。よって、AD変換の最大誤差を2LSBとする場合、ディザ信号の振幅として上限の260LSBに近い値ではなく、より小さい値とすることが好ましい。
 しかしながら、例えばセンサ30が熱電対であり、測定対象の温度の変化幅が比較的小さい場合には、計測に必要とされる入力電圧の範囲も比較的小さくなる。よってこの場合には、必要とされる分解能に応じたデジタル値の取り得る範囲も小さくなるので、上限の260LSBに相当する振幅を有するディザ信号を加えても、支障なくAD変換することが可能である。
 本実施形態のAD変換装置10は、AD変換部3によるAD変換処理を複数回繰り返した結果として得られる複数のデジタル値の平均を算出する。これにより、分解能を向上させることができる。具体的には、AD変換部3の分解能が10ビットである場合、AD変換処理を1024(=210)回行うことによって、16ビットの分解能に相当するデジタル値を得ることができる。
 なお、AD変換処理の回数は、分解能をどの程度向上させるかに応じて適宜設定されるものであり、64(=2)回などであってもよい。
 また、ノイズ振幅を上記の範囲に設定することにより、AD変換の最大誤差を実用的な値に抑えることができる。具体的には、ディザ信号が6LSB以上かつ260LSB以下に相当する電圧の振幅を有することにより、AD変換の最大誤差を2LSB以下に抑えることができる。また、ディザ信号が12LSB以上かつ120LSB以下に相当する電圧の振幅を有することにより、AD変換の最大誤差を1LSB以下に抑えることができる。
 それゆえ、ディザ信号の振幅にばらつきや誤差が生じても、分解能に及ぼす影響が少ない。したがって、安定したAD変換性能を実用的なコストで得ることができる。
 〔ソフトウェアによる実現例〕
 信号処理装置100の制御ブロック(特に周期制御部6)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、信号処理装置100は、その機能を実現するソフトウェアである制御プログラムの命令を実行するCPU(Central Processing Unit)、上記プログラムおよび各種データがCPUで読み取り可能に記録されたROM(Read Only Memory)または記憶装置(これらを「記録媒体」と称する)、上記プログラムを展開するRAM(Random Access Memory)などを備えている。そして、CPUが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。
 上記記録媒体としては、「一時的でない有形の媒体」、例えば、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。
 なお、本発明は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔総括〕
 本実施形態に係るAD変換装置は、アナログ入力信号に加算するディザ信号を生成するディザ信号生成部と、前記ディザ信号が加算された前記アナログ入力信号をデジタル値に変換する処理を行うAD変換部と、所定期間内に前記AD変換部による変換処理が複数回行われることによって得られた前記デジタル値の平均値を算出し、前記所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する平均化処理部とを備え、前記ディザ信号が、前記所定期間において、6LSB以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する。
 また、本実施形態に係るAD変換方法は、アナログ入力信号に加算するディザ信号を生成するディザ信号生成工程と、前記ディザ信号が加算された前記アナログ入力信号をデジタル値に変換する処理を行うAD変換工程と、所定期間内に前記AD変換工程における変換処理が複数回行われることによって得られた前記デジタル値の平均値を算出し、前記所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する平均化処理工程とを含み、前記ディザ信号が、前記所定期間において、6LSB以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する。
 上記の構成によれば、AD変換の最大誤差を2LSB以下に抑えることができる。それゆえ、ディザ信号の振幅にばらつきや誤差が生じても、分解能に及ぼす影響が少ない。したがって、安定したAD変換性能を実用的なコストで得ることができる。
 上記AD変換装置において、前記ディザ信号は、前記所定期間において、12LSB以上かつ120LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動してもよい。
 上記の構成によれば、AD変換の最大誤差を1LSB以下に抑えることができる。それゆえ、より一層AD変換性能を安定化することができる。
 上記AD変換装置において、前記ディザ信号は、前記所定期間において、三角波または鋸歯状波として値が変動してもよい。
 上記の構成によれば、オーバーサンプリング回数を低減することができる。それゆえ、より一層AD変換性能を安定化することができる。
 また、本実施形態に係る信号処理装置は、上記のいずれかのAD変換装置と、前記AD変換装置から出力されるデジタル信号を出力する信号出力部とを備えている。
 上記の構成によれば、高分解能およびS/Nの向上したデジタル信号を出力することができる。
 〔付記事項〕
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
  1 ディザ信号生成部
  3 AD変換部
  5 平均化処理部
 10 AD変換装置
 20 信号出力部
100 信号処理装置

Claims (6)

  1.  アナログ入力信号に加算するディザ信号を生成するディザ信号生成部と、
     前記ディザ信号が加算された前記アナログ入力信号をデジタル値に変換する処理を行うAD変換部と、
     所定期間内に前記AD変換部による変換処理が複数回行われることによって得られた前記デジタル値の平均値を算出し、前記所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する平均化処理部と、を備え、
     前記ディザ信号は、前記所定期間において、6LSB以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動するAD変換装置。
  2.  前記ディザ信号は、前記所定期間において、12LSB以上かつ120LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する請求項1に記載のAD変換装置。
  3.  前記ディザ信号は、前記所定期間において、三角波または鋸歯状波として値が変動する請求項1または2に記載のAD変換装置。
  4.  請求項1から3のいずれか一項に記載のAD変換装置と、
     前記AD変換装置から出力されるデジタル信号を出力する信号出力部と、を備えている信号処理装置。
  5.  アナログ入力信号に加算するディザ信号を生成するディザ信号生成工程と、
     前記ディザ信号が加算された前記アナログ入力信号をデジタル値に変換する処理を行うAD変換工程と、
     所定期間内に前記AD変換工程における変換処理が複数回行われることによって得られた前記デジタル値の平均値を算出し、前記所定期間をサンプリング周期とするAD変換後のデジタル信号として出力する平均化処理工程と、を含み、
     前記ディザ信号は、前記所定期間において、6LSB以上かつ260LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動するAD変換方法。
  6.  前記ディザ信号は、前記所定期間において、12LSB以上かつ120LSB以下の範囲で設定された値に相当する振幅の範囲で値が変動する請求項5に記載のAD変換方法。
PCT/JP2020/008706 2019-07-10 2020-03-02 Ad変換装置、ad変換方法および信号処理装置 WO2021005828A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019128539A JP2021016028A (ja) 2019-07-10 2019-07-10 Ad変換装置、ad変換方法および信号処理装置
JP2019-128539 2019-07-10

Publications (1)

Publication Number Publication Date
WO2021005828A1 true WO2021005828A1 (ja) 2021-01-14

Family

ID=74114601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/008706 WO2021005828A1 (ja) 2019-07-10 2020-03-02 Ad変換装置、ad変換方法および信号処理装置

Country Status (3)

Country Link
JP (1) JP2021016028A (ja)
TW (1) TWI754232B (ja)
WO (1) WO2021005828A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288016A (ja) * 1988-05-13 1989-11-20 Toshiba Corp アナログ−デジタル変換回路
JPH05284033A (ja) * 1992-03-31 1993-10-29 Yokogawa Electric Corp Σδ変調器
US5574380A (en) * 1994-06-01 1996-11-12 Schlumberger Industries, S.A. Current measurement circuit comprising a mutually coupled transformer and an integration circuit
JP2002100992A (ja) * 2000-09-20 2002-04-05 Hitachi Ltd Δς型ad変換器
JP2002314427A (ja) * 2001-04-05 2002-10-25 Nokia Mobile Phones Ltd シグマ−デルタ変調器を動作させる方法及びシグマ−デルタ変調器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3012887B2 (ja) * 1989-03-13 2000-02-28 日本テキサス・インスツルメンツ株式会社 信号変換装置
JPH0514201A (ja) * 1991-06-27 1993-01-22 Tdk Corp A/d変換装置
JP2599634Y2 (ja) * 1993-04-01 1999-09-13 株式会社アドバンテスト ディザー回路付きad変換回路
US6351229B1 (en) * 2000-09-05 2002-02-26 Texas Instruments Incorporated Density-modulated dynamic dithering circuits and method for delta-sigma converter
JP2005510110A (ja) * 2001-11-15 2005-04-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ シグマデルタ変調
US7075466B1 (en) * 2003-05-20 2006-07-11 Pixelworks, Inc. System and method for improving performance of an analog to digital converter
US7035756B2 (en) * 2003-12-17 2006-04-25 Texas Instruments Incorporated Continuous digital background calibration in pipelined ADC architecture
US8174418B2 (en) * 2009-07-14 2012-05-08 Honeywell International Inc. Inexpensively improving resolution and reducing noise of low-noise signals
US9525428B2 (en) * 2014-12-17 2016-12-20 Analog Devices, Inc. Randomly sampling reference ADC for calibration
CN104518797B (zh) * 2015-01-26 2017-10-13 中国电子科技集团公司第二十四研究所 一种用于高精度模数转换器中的抖动电路
US9768793B2 (en) * 2015-12-17 2017-09-19 Analog Devices Global Adaptive digital quantization noise cancellation filters for mash ADCs
CN106788444A (zh) * 2016-12-12 2017-05-31 浙江大学 同时实现无杂散、高信噪失真比的低通σδ调制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288016A (ja) * 1988-05-13 1989-11-20 Toshiba Corp アナログ−デジタル変換回路
JPH05284033A (ja) * 1992-03-31 1993-10-29 Yokogawa Electric Corp Σδ変調器
US5574380A (en) * 1994-06-01 1996-11-12 Schlumberger Industries, S.A. Current measurement circuit comprising a mutually coupled transformer and an integration circuit
JP2002100992A (ja) * 2000-09-20 2002-04-05 Hitachi Ltd Δς型ad変換器
JP2002314427A (ja) * 2001-04-05 2002-10-25 Nokia Mobile Phones Ltd シグマ−デルタ変調器を動作させる方法及びシグマ−デルタ変調器

Also Published As

Publication number Publication date
TW202103455A (zh) 2021-01-16
JP2021016028A (ja) 2021-02-12
TWI754232B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
JP4074823B2 (ja) A/d変換出力データの非直線性補正方法及び非直線性補正装置
US7224298B2 (en) ADC background calibration timing
JP2022163176A (ja) 高線形性位相補間器
TWI600281B (zh) 數位類比轉換器中之可變長度動態元件匹配
US7733250B1 (en) Microcontroller having in-situ autocalibrated integrating analog-to-digital converter (IADC)
JPS6323687B2 (ja)
JP4626581B2 (ja) 数値化装置
US20120242383A1 (en) Phase profile generator
JP2007208969A (ja) ローカルクロック補正方法および回路
JP4605157B2 (ja) 波形生成方法、レーダ装置及びレーダ装置用発振装置
JP5159951B2 (ja) アナログユニット
WO2021005828A1 (ja) Ad変換装置、ad変換方法および信号処理装置
JP5914718B2 (ja) 発振器を有する時間ベース、周波数分割回路及びクロックパルス抑制回路
US20220263517A1 (en) Measurement unit configured to provide a measurement result value
US8860592B2 (en) Signal generating circuit
JP5205942B2 (ja) ゼロ点補正回路
JP2005354617A (ja) A/d変換器試験装置及びa/d変換器の生産方法
KR102556056B1 (ko) 입력 신호 적응성 전압 제어 오실레이터 기반 비균일 샘플링 아날로그 디지털 컨버터
JP2018119972A (ja) 物理量センサ装置
Negreiros et al. All digital ADC with linearity correction and temperature compensation
JP4526891B2 (ja) 遅延量測定方法、及び測定装置
US20220263516A1 (en) Measurement unit configured to provide a measurement result value using calculated values
US20140098847A1 (en) Test circuit
JP2007010347A (ja) タイムインターバル測定装置、タイムインターバル測定方法
KR20230077603A (ko) 타임-디지털 컨버터 및 이를 포함하는 디지털 위상 고정 루프 회로

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20836956

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20836956

Country of ref document: EP

Kind code of ref document: A1