WO2021005777A1 - 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備 - Google Patents

圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備 Download PDF

Info

Publication number
WO2021005777A1
WO2021005777A1 PCT/JP2019/027488 JP2019027488W WO2021005777A1 WO 2021005777 A1 WO2021005777 A1 WO 2021005777A1 JP 2019027488 W JP2019027488 W JP 2019027488W WO 2021005777 A1 WO2021005777 A1 WO 2021005777A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
metal plate
plate
leveling
pair
Prior art date
Application number
PCT/JP2019/027488
Other languages
English (en)
French (fr)
Inventor
陽一 松井
優太 小田原
Original Assignee
Primetals Technologies Japan株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Japan株式会社 filed Critical Primetals Technologies Japan株式会社
Priority to PCT/JP2019/027488 priority Critical patent/WO2021005777A1/ja
Priority to CN202080044719.9A priority patent/CN114007772B/zh
Priority to EP20837907.3A priority patent/EP3974075B1/en
Priority to PCT/JP2020/004004 priority patent/WO2021005818A1/ja
Priority to JP2021530479A priority patent/JP7116260B2/ja
Publication of WO2021005777A1 publication Critical patent/WO2021005777A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/68Camber or steering control for strip, sheets or plates, e.g. preventing meandering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/06Threading
    • B21B2273/10Threading-out or after threading-out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/12End of product
    • B21B2273/14Front end or leading end
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product

Definitions

  • the present disclosure relates to an operation method of a rolling apparatus, a control device of the rolling apparatus, and a rolling apparatus.
  • the metal plate In rolling a metal plate using a rolling mill containing a pair of rolling rolls, the metal plate is subjected to a state in which the tension on the exit side of the rolling mill does not act on the metal plate before the tip of the metal plate is wound by the winding device. Rolling (tip non-tensile rolling) may be performed.
  • Patent Document 1 uses a rolling apparatus including a rolling mill (rolling roll) and a tension reel (winding apparatus) provided on the outlet side of the rolling mill, and tensions the rolled material (metal plate). It is stated that rolling is performed before it is wound on a reel and the tension on the exit side of the rolling mill is established. Further, in Patent Document 1, a meandering detector is provided on the outlet side of the rolling mill on the upstream side of the tension reel, and the offset amount detected by the meandering detector (the axial center position of the rolling roll and the plate of the rolled material). It is described that the leveling control of the rolling mill is performed based on the difference from the center position in the width direction). As a result, it is possible to improve the yield by suppressing meandering and one-sided elongation of the rolled material that may occur when rolling in the absence of tension on the exit side.
  • a meandering detector is provided on the outlet side of the rolling mill on the upstream side of the tension reel, and the offset amount detected by the meandering detector
  • the rolling mill when rolling is performed in a state where the tip tension does not act on the metal plate, an elongation difference occurs at both ends of the rolled metal plate in the plate width direction, and the exit side (downstream side) of the rolling mill.
  • the direction of the tip of the metal plate may bend in the width direction of the sheet with respect to the transport direction by the rolling mill (tip bending).
  • tip bending When such a bending of the tip of the metal plate occurs, the rolling mill is used so that the plate end position in the plate width direction deviated from the specified position returns to the specified position by using the plate end position detector provided on the exit side of the rolling mill.
  • At least one embodiment of the present invention is an operation method of a rolling apparatus capable of appropriately winding a metal plate rolled in a state of no tension at the tip by a winding apparatus, and control of the rolling apparatus.
  • the purpose is to provide equipment and rolling equipment.
  • the method of operating the rolling mill according to at least one embodiment of the present invention is as follows.
  • a method of operating a rolling apparatus including a pair of rolling rolls provided so as to sandwich a metal plate. While rolling the metal plate with the pair of rolling rolls while the ejection side tension applied to the metal plate is zero, the plate end of the metal plate in the plate width direction at the position of the exit side of the pair of rolling rolls.
  • a detection step to detect the position and When the detection result of the metal plate width end position in the detection step deviates from the reference position to one side in the plate width direction, the outflow direction of the metal plate from the rolling roll is the transport direction of the metal plate in the rolling apparatus.
  • the first leveling step of controlling the rolling rolls under pressure so as to follow the above.
  • a rolling apparatus capable of appropriately winding a metal plate rolled in a state of no tension at the tip by a winding apparatus, and a control device and a rolling apparatus of the rolling apparatus. Provided.
  • the rolling equipment 1 includes a rolling apparatus 2 and a control device 100 for controlling the rolling apparatus 2.
  • the rolling mill 2 may include, for example, one rolling mill 10 as shown in FIG. 1, for example, two rolling mills 10 (10A, 10B) as shown in FIG. May include, or may include three or more rolling mills 10.
  • the rolling apparatus 2 shown in FIG. 1 is a rolling apparatus (reverse mill) that reciprocates and rolls a metal plate 90 passed between a pair of rolling rolls 15 and 16.
  • the rolling apparatus 2 shown in FIG. 1 includes a rolling mill 10 including a pair of rolling rolls (work rolls) 15 and 16 provided so as to sandwich a metal plate 90 which is a rolling material, and a rolling roll in the traveling direction of the metal plate 90.
  • a pair of rolling devices 90 is included, including a winding device 4 provided on the inlet side of the 15 and 16 and a winding device 14 provided on the outlet side of the rolling rolls 15 and 16 in the traveling direction of the metal plate 90. It is configured to be rolled by rolls 15 and 16.
  • the rolling apparatus 2 shown in FIG. 2 is a rolling apparatus (reverse mill) for reciprocating and rolling a metal plate 90 between a pair of first rolling rolls 15A and 16A and a pair of second rolling rolls 15B and 16B. Is.
  • the rolling apparatus 2 shown in FIG. 2 sandwiches the metal plate 90 with the first rolling mill 10A including a pair of first rolling rolls (work rolls) 15A and 16A provided so as to sandwich the metal plate 90 which is a rolling material.
  • the second rolling mill 10B including the pair of second rolling rolls (work rolls) 15B and 16B provided in the above, and the unwinding device 4 provided on the inlet side of the first rolling rolls 15A and 16A in the traveling direction of the metal plate 90.
  • a take-up device 14 provided on the outlet side of the second rolling rolls 15B and 16B in the traveling direction of the metal plate 90, and the metal plate 90 is combined with the pair of first rolling rolls 15A and 16A and the pair of second rolling rolls 15A and 16A. It is configured to be rolled by rolling rolls 15B and 16B.
  • the illustrated rolling mills 10, 10A and 10B have the same configuration.
  • the configuration of the rolling mill 10 will be described below, but the same description applies to the rolling mills 10A and 10B.
  • FIG. 2 as the codes of the components (rolling rolls, etc.) of the rolling mills 10A and 10B, the components of the rolling mill 10 shown in FIG. 1 are similarly coded with "A" or "B", respectively. Have been described.
  • the pair of intermediate rolls 17 and 18 provided on the opposite sides of the metal plate 90 with the pair of rolling rolls 15 and 16 sandwiched therein, and Includes a pair of backup rolls 19, 20 and.
  • the intermediate rolls 17 and 18 and the backup rolls 19 and 20 are configured to support the rolling rolls 15 and 16.
  • the rolling mill 10 is provided with a rolling device 22 for applying a load to the pair of rolling rolls 15 and 16 to reduce the metal plate 90 sandwiched between the pair of rolling rolls 15 and 16.
  • the reduction device 22 may include a hydraulic cylinder.
  • a motor (not shown) is connected to the rolling rolls 15 and 16 via a spindle (not shown) or the like, and the rolling rolls 5 and 16 are rotationally driven by the motor.
  • the rolling rolls 15 and 16 are rotated by a motor while the metal plate 90 is rolled by the rolling device 22, so that a frictional force is generated between the rolling rolls 15 and 16 and the metal plate 90.
  • the frictional force causes the metal plate 90 to be sent to the exit side of the rolling rolls 15 and 16.
  • the unwinding device 4 is configured to unwind the metal plate 90 toward the rolling mill 10.
  • the take-up device 14 is configured to take up the metal plate 90 from the rolling mill 10.
  • the unwinding device 4 and the winding device 14 are each driven by a motor (not shown).
  • the unwinding device 4 is configured to give an entry side tension to the metal plate 90 when the metal plate 90 is rolled. Further, the winding device 14 is configured to apply an exit tension to the metal plate 90 when the metal plate 90 is rolled. That is, by appropriately driving the unwinding device 4 and the winding device 14 by the motor, the metal plate 90 is given the entry side tension and the exit side tension. By appropriately applying the entry-side tension and the exit-side tension to the metal plate 90, meandering of the metal plate 90 during rolling can be suppressed.
  • the rolling apparatus 2 shown in FIGS. 1 and 2 includes an entry side pinch roll 6 and a side guide 8 for guiding the metal plate 90 introduced into the rolling mill 10 from the unwinding apparatus 4, and a winding apparatus from the rolling mill 10. Further includes an outlet pinch roll 12 for guiding the metal plate 90 sent to 14.
  • the control device 100 for controlling the rolling apparatus 2 is a first plate edge detecting unit 32 and a second plate for detecting the plate end position of the metal plate 90 in the plate width direction. It includes an edge detection unit 34 and a controller 40 configured to control the operation of the rolling apparatus 2 based on the detection results of the first plate end detection unit 32 and the second plate end detection unit 34.
  • the first plate edge detection unit 32 is provided on the entry side of the pair of rolling rolls 15 and 16 in the transport direction of the metal plate 90, and is located at the plate end position in the plate width direction of the metal plate at the first position Y1 in the transport direction. It is configured to detect a certain first plate end position x1.
  • the second plate edge detecting unit 34 is provided on the exit side of the pair of rolling rolls 15 and 16 in the conveying direction, and is the second plate which is the plate end position in the plate width direction of the metal plate at the second position Y2 in the conveying direction. It is configured to detect the end position x2.
  • the control device 100 shown in FIG. 2 is provided with first plate end detection units 32A and 32B on the entry side in the transport direction with respect to the first rolling rolls 15A and 16A and the second rolling rolls 15B and 16B, respectively.
  • Second plate edge detection units 34A and 34B are provided on the exit side in the transport direction.
  • the controller 40 receives signals indicating measurement results from the first plate edge detection unit 32 and the second plate edge detection unit 34, and drives the rolling device 22 and the rolling rolls 15 and 16 based on these measurement results. It is configured to control the operation of the motor.
  • the controller 40 may include a CPU, a memory (RAM), an auxiliary storage unit, an interface, and the like.
  • the controller 40 receives signals from the first plate edge detection unit 32 and the second plate edge detection unit 34 via the interface.
  • the CPU is configured to process the signal received in this way. Further, the CPU is configured to process a program expanded in the memory.
  • the processing content of the controller 40 may be implemented as a program executed by the CPU and stored in the auxiliary storage unit. When the programs are executed, these programs are expanded in memory. The CPU reads the program from the memory and executes the instructions included in the program.
  • FIG. 3 is a schematic configuration diagram of a controller 40 constituting the control device 100 according to the embodiment.
  • the controller 40 includes a determination unit 42 and a rolling control unit 44.
  • the determination unit 42 includes the first plate end position x1 of the metal plate 90 detected by the first plate end detection unit 32 and the second plate end of the metal plate 90 detected by the second plate end detection unit 34. Based on the position x2, it is configured to determine whether or not the rolling of the metal plate 90 (tip non-tensile rolling) can be started by the pair of rolling rolls 15 and 16 in the state where the output tension of the metal plate 90 is zero. ..
  • the rolling control unit 44 is configured to control the operation of the pair of rolling rolls 15 and 16.
  • the rolling control unit 44 is configured to control a motor for driving the rolling device 22 and the rolling rolls 15 and 16 in order to adjust the gap between the rolls of the rolling rolls 15 and 16 and the rotation speed. To. Each part of the controller 40 other than the determination part 42 will be described later.
  • the control device 100 may further include a display unit (display or the like; not shown) for displaying the determination result by the determination unit 42.
  • a display unit display or the like; not shown
  • the rolling apparatus 2 may be operated by manually performing a part or all of the processing by the control device 100 described below.
  • FIG. 4 is a flowchart showing an example of an operation method of the rolling apparatus 2 according to the embodiment. Note that FIG. 4 is a flowchart showing an example of an operation method until the tip tensionless rolling of the metal plate 90 is started. The operation method after starting the tip tensionless rolling of the metal plate 90 will be described later with reference to the flowcharts of FIGS. 11 and 14.
  • 5A to 5C are schematic views showing the states of the rolling rolls 15 and 16 and the metal plate 90 when the tip tensionless rolling of the metal plate 90 is started, respectively.
  • 6 and 7 are diagrams for explaining the determination of whether or not the tip tensionless rolling can be started by the determination unit 42, respectively.
  • the controller 40 makes a pair of rolling rolls 15 and 16 so that the gap (gap between rolls) is larger than the thickness of the metal plate 90.
  • the positions of the rolling rolls 15 and 16 are adjusted (step S102).
  • the position of the pair of rolling rolls 15 and 16 may be adjusted by operating the rolling device 22 as needed.
  • the tip portion (see FIG. 5A) including the tip 91 of the metal plate 90 is passed between the pair of rolling rolls 15 and 16 while maintaining the state where the gap between the rolls is larger than the plate thickness (step S104).
  • FIG. 5A is a schematic view showing the states of the rolling rolls 15 and 16 and the metal plate 90 when step S104 is completed.
  • the tip 91 of the metal plate 90 is held in a state where the gap d0 between the pair of rolling rolls 15 and 16 is larger than the plate thickness H0 of the metal plate 90 before rolling.
  • the tip including the tip is passed between the rolling rolls 15 and 16.
  • the tip portion including the tip 91 of the metal plate 90 is located on the exit side of the rolling rolls 15 and 16, and does not reach the winding device 14. Therefore, the output tension Td acting on the metal plate 90 is zero. Further, at this point, since the entry side tension Te is not applied to the metal plate 90, the entry side tension Te is also zero.
  • the first plate end detection unit 32 is used to detect the first plate end position x1 at the first position Y1 in the transport direction
  • the second plate end detection unit 34 is used to detect the second position in the transport direction.
  • the second plate end position x2 in Y2 is detected (step S106).
  • FIGS. 6 and 7 are schematic views of the rolling rolls 15 and 16 and the metal plate 90 before the start of rolling, respectively.
  • the metal plate 90 has a plate width W, and has a first end edge 92 and a second end edge 93 which are both end edges in the plate width direction.
  • the first plate end detection unit 32 and the second plate end detection unit 34 have a first plate end position x1 and a second plate end position x2, respectively, as a first position Y1 and a second position Y2. It may be configured to detect the position of the first edge 92 in (see FIGS. 6 and 7).
  • the first plate end detection unit 32 and the second plate end detection unit 34 are set to the first plate end position x1 and the second plate end position x2, respectively, as the first position Y1 and the second position. It may be configured to detect the position of the second edge 93 in Y2.
  • step S106 the determination unit 42 determines whether or not the tip tensionless rolling of the metal plate 90 can be started based on the first plate end position x1 and the second plate end position x2 detected in step S106. (Step S108).
  • step S108 for example, when the longitudinal direction of the metal plate 90 is substantially parallel to the conveying direction of the metal plate 90 by the rolling apparatus 2 (see FIG. 6), it is determined that the tip tensionless rolling of the metal plate 90 can be started. However, when the inclination of the metal plate 90 in the longitudinal direction with respect to the transport direction of the metal plate 90 is equal to or more than a specified degree (see FIG. 7), it is determined that the tip untensile rolling of the metal plate 90 cannot be started.
  • step S108 when the difference
  • step S108 the difference (x1-x ref ) between the reference position x ref and the first plate end position x1 in the plate width direction of the metal plate 90, and the reference position x ref and the second plate.
  • the difference (x2-x ref ) from the end position x2 is equal to or less than the threshold x th2 , it is determined that the tip untensile rolling of the metal plate 90 can be started, and the above difference (x1-x ref ) or (x1-x ref ) or ( When at least one of x2-x ref ) is larger than the threshold value x th2, it is determined that the tip untensile rolling of the metal plate 90 cannot be started.
  • the above-mentioned reference position x ref is the plate width direction (that is, the rolling rolls 15 and 16) when the longitudinal direction of the metal plate 90 coincides with the transport direction by the rolling rolls 15 and 16 (rolling machine). It is a specified position in the axial direction (direction of the central axis O).
  • the above-mentioned reference position x ref may be, for example, the central position in the axial direction of the rolling rolls 15 and 16 (see FIGS. 6 and 7). In FIG.
  • the longitudinal direction of the metal plate 90 coincides with the transport direction by the rolling roll, and at this time, the position of the center line Lc along the longitudinal direction of the metal plate 90 is the above-mentioned plate width direction ( That is, it coincides with the reference position x ref in the axial direction of the rolling rolls 15 and 16).
  • step S108 If it is determined in step S108 above that it is not possible to start the tip tensionless rolling of the metal plate 90 (No in step S108), the position of the metal plate 90 in the plate width direction is corrected (step S110), and the step again.
  • step S106 detection of the first plate end position x1 and the second plate end position x2 (step S106), and determination of whether or not to start the tip tensionless rolling of the metal plate 90 based on the detection result in step S106 (step). S108) is performed.
  • step S108 when it is determined in step S108 that the tip tensionless rolling of the metal plate 90 can be started (Yes in step S108), the rolling control unit 44 starts the tip tensionless rolling of the metal plate 90 (Yes). Step S112).
  • step S112 the metal plate 90 is pressed by the pair of rolling rolls 15 and 16 in a state where the output tension Td applied to the metal plate 90 is zero, and the rotation of the pair of rolling rolls 15 and 16 is started to start the rotation of the metal.
  • the tipless tension rolling of the plate 90 is started (see FIG. 5B).
  • the rolling down device 22 When rolling down the metal plate 90 with a pair of rolling rolls 15 and 16, as shown in FIG. 5B, the rolling down device 22 is operated so that the gap between the rolls becomes a value d1 corresponding to the target plate thickness.
  • the gap d1 between rolls at this point is smaller than the plate thickness H0 of the metal plate 90 before rolling.
  • the rotation speed of the rolling rolls 15 and 16 is adjusted to an appropriate value by adjusting the current value of the motor for driving the rolling rolls 15 and 16. ..
  • the metal plate 90 advances in the direction of the arrow shown in FIG. 5B. Then, as shown in FIG. 5C, in the metal plate 90 after the start of rolling, the portion of the metal plate 90 that is pressed by the rolling rolls 15 and 16 and advances to the exit side of the rolling rolls 15 and 16 is thicker than the plate thickness H0 before rolling. It has a thin plate thickness H1.
  • the tip of the metal plate 90 is compared with the case where the tip of the metal plate is wound around a winding device and rolling is started in a state where the outward tension is applied. Rolling can be started from a portion close to, and the yield of the metal plate 90 can be improved.
  • step S108 After it was determined in step S108 that the tip tensionless rolling of the metal plate 90 was possible, the tip tensionless rolling was started by starting the tip tensionless rolling in step S112.
  • the metal plate 90 can be appropriately wound by the winding device 14.
  • the plate end position detection unit is provided only at one location on the exit side of the rolling rolls 15 and 16, the following problems may occur. That is, for example, as shown in FIG. 7, even if the longitudinal direction of the metal plate 90 is inclined with respect to the transport direction of the metal plate 90 by the rolling rolls 15 and 16 (rolling machine 10) before the start of rolling, the transfer is performed. From the plate end position detection result at only one point in the direction, it is unclear whether the longitudinal direction of the metal plate 90 is inclined with respect to the above-mentioned transport direction. In this case, when the tip tensionless rolling is started, the outflow direction of the metal plate 90 from the rolling rolls 15 and 16 remains inclined with respect to the transport direction by the rolling mill 10.
  • the plate end position (for example, the second plate end position x2 in FIG. 7) detected by the plate end position detecting unit arranged on the exit side is substantially constant even after the start of rolling. Therefore, even if the control is performed based on the detected plate edge position, the inclination of the metal plate 90 with respect to the transport direction cannot be corrected, and if rolling is continued in this state, the tip of the metal plate 90 becomes the rolling mill 10. In some cases, the metal plate 90 after rolling cannot be properly wound by the winding device 14 because the metal plate 90 is separated from the conveying line in the plate width direction.
  • step S106 in each of the first position Y1 on the entry side and the second position Y2 on the exit side of the pair of rolling rolls 15 and 16, the plate width direction of the metal plate 90
  • the plate edge position (first plate edge position x1 and second plate edge position x2) is detected. Therefore, based on these detection results, it is possible to grasp the degree of inclination of the metal plate 90 with respect to the transport direction in the longitudinal direction before the start of the tip tensionless rolling, that is, the metal plate at the start of the tip tensionless rolling. It is possible to grasp the degree of inclination of 90 with respect to the transport direction in the outflow direction.
  • step S108 it is determined whether or not the tip tensionless rolling can be started based on the detection results of the first plate end position x1 and the second plate end position x2. Therefore, for example, based on the above detection result.
  • the tipless tension rolling of the metal plate 90 can be started. Can be determined.
  • the tip tensionless rolling can be started in a state where the outflow direction and the transport direction of the metal plate 90 are substantially parallel, so that the tip portion of the metal plate 90 is a plate from the transport line by the rolling mill 10. It is possible to suppress the deviation in the width direction. Therefore, the rolled metal plate 90 can be easily wound appropriately by the winding device 14.
  • the tip tensionless rolling can be started in a state where the outflow direction and the transport direction of the metal plate 90 are substantially parallel, the second plate end position x2 acquired at the start of the tip tensionless rolling.
  • rolling leveling control of the rolling mill 10 such as meandering control of the metal plate 90 based on the position of the second plate end detected during tip tensionless rolling.
  • the control device 100 is a pair of first rolling rolls 15A and 16A (first). It was determined whether or not the first tip tensionless rolling of the metal plate 90 in the rolling mill 10A) could be started, and it was determined that the first tip tensionless rolling could be started, and the pair of first rolling rolls 15A, After the tip tensionless rolling by 16A is started, it is configured to determine whether or not the second tip tensionless rolling of the metal plate 90 in the pair of second rolling rolls 15B and 16B can be started.
  • the above-mentioned steps S102 to S112 are performed on the first rolling mill 10A, and when the tip tensionless rolling of the metal plate 90 is started, then the above-mentioned steps S102 to S112 are performed on the second rolling mill 10B. ..
  • the tip tension is not applied in step S108. It was determined whether or not rolling could be started, and based on this determination result, tip tensionless rolling was started in step S112. Therefore, the metal plate 90 tip tensionless rolled by these rolling rolls 15 and 16.
  • the rolling rolls 15A and 16A and the pair of rolling rolls 15B and 16B can be used for more efficient rolling while enabling the winding device to appropriately wind the rolling rolls.
  • the first plate edge detection unit 32 and the second plate edge detection unit 34 are provided as close as possible to the rolling rolls 15 and 16 in the transport direction of the metal plate 90 by the rolling rolls 15 and 16.
  • the first plate end detection unit 32 and the second plate end detection unit 34 use the first plate end position x1 and the second plate end position. x2 can be detected, and based on this detection result, rolling can be started with the tip 91 of the metal plate 90 placed near the rolling rolls 15 and 16, and the yield of the metal plate 90 is effective. This is because it can be improved.
  • the pair of rolling rolls 15 and 16 and the winding device 14 in the transport direction is L2 (see FIGS. 1 and 2)
  • the pair of rolling rolls 15 and 16 and the second plate The distance Lb (see FIGS. 1 and 2) with the end detection unit 34 in the transport direction is 0.1 ⁇ L2 or less.
  • the distance between the pair of rolling rolls 15 and 16 and the winding device 14 in the transport direction is the distance between the central axis O of the pair of rolling rolls 15 and 16 and the central axis of the winding device 14 in the transport direction.
  • the distance between the pair of rolling rolls 15 and 16 and the second plate end detection unit 34 in the transport direction is the central axis of the pair of rolling rolls 15 and 16 and the center position of the second plate end detection unit 34, or , The distance in the transport direction from the plate edge detection position (second position Y2) by the second plate edge detection unit 34.
  • the direction of the central axis O of the rolling rolls 15 and 16, the direction of the central axis of the unwinding device 4, and the direction of the central axis of the winding device 14 are substantially parallel to each other.
  • the tip 91 of the metal plate 90 at the start of non-tension rolling is rolled. Although it is relatively close, it is possible to detect the second plate end position x2 at the start of non-tensile rolling and during non-tensile rolling. Therefore, the tip non-tension rolling can be appropriately performed while shortening the length of the unrolled tip portion of the metal plate 90, whereby the yield of the metal plate 90 can be effectively improved.
  • the pair of rolling rolls 15 and 16 and the first plate is 0.1 ⁇ L1 or less.
  • the distance L1 in the transport direction between the pair of rolling rolls 15 and 16 and the unwinding device 4 is the distance L1 in the transport direction between the central axis O of the pair of rolling rolls 15 and 16 and the central axis of the unwinding device 4.
  • the distance between the pair of rolling rolls 15 and 16 and the first plate end detection unit 32 in the transport direction is the central axis O of the pair of rolling rolls 15 and 16 and the center position of the first plate end detection unit 32.
  • it is the distance in the transport direction from the plate edge detection position (first position Y1) by the first plate edge detection unit 32.
  • the transport direction of the metal plate 90 is reversed in the second pass after the first pass is completed.
  • Rolling on the rolling rolls 15 and 16 is started from the rear end side of the metal plate 90.
  • the distances between the first plate edge detection unit 32 and the rolling rolls 15 and 16 are compared in the transport direction in the second pass (opposite to the transport direction in the first pass).
  • the rear end position of the metal plate 90 at the start of the second pass of non-tensile rolling was set relatively close to the rolling roll, and the first plate end position x1 was set at the start of non-tension rolling and during non-tension rolling. Can be detected. Therefore, the tip tensionless rolling can be appropriately performed while shortening the length of the rear end portion of the metal plate 90 that is not rolled, and thereby the yield of the metal plate 90 can be improved.
  • the rolling mill 1 is provided on at least one of the entry and exit sides of the pair of rolling rolls 15 and 16 in the transport direction and is configured to measure the thickness of the metal plate 90. Equipped with a plate thickness gauge.
  • the first plate edge detection unit 32 or the second plate edge detection unit 34 is located between the pair of rolling rolls 15 and 16 and the plate thickness gauge in the transport direction.
  • a plate thickness meter 36 is provided on the entry side of the pair of rolling rolls 15 and 16 in the transport direction, and the first plate end detection unit 32 is paired in the transport direction. It is located between the rolling rolls 15 and 16 of the above and the plate thickness meter 36. Further, in the embodiment shown in FIGS. 1 and 2, a plate thickness meter 38 is provided on the exit side of the pair of rolling rolls 15 and 16 in the transport direction, and the second plate end detection unit 34 is provided in the transport direction. It is located between the pair of rolling rolls 15 and 16 and the plate thickness meter 38.
  • the plate thickness gauges 36 and 38 used to control the plate thickness of the metal plate 90 are preferably provided near the rolling rolls 15 and 16 in the transport direction in order to improve the control response.
  • the first plate end detection unit 32 is closer to the rolling rolls 15 and 16 in the transport direction than the plate thickness gauges 36 and 38 for measuring the plate thickness of the metal plate 90.
  • the tip position of the metal plate 90 at the start of non-tensile rolling is brought closer to the rolling rolls 15 and 16, and the first plate is at the start of non-tensile rolling and during non-tensile rolling. It is possible to detect the end position x1 or the second plate end position x2. Therefore, it is possible to appropriately perform the tip tensionless rolling while shortening the length of the unrolled tip portion of the metal plate, thereby improving the yield of the metal plate.
  • the first plate edge detector 32 or the second plate edge detector 34 uses radiation (eg, X-rays or gamma rays) to detect the first plate edge position x1 or the second plate edge position x2. It is configured to do.
  • radiation eg, X-rays or gamma rays
  • the rolling rolls 15 and 16 vibrate, which is often a harsh environment such as darkness.
  • the first plate edge detection unit 32 or the second plate edge detection unit 34 that detects the plate edge position by using radiation is used, the rolling roll in a harsh environment. Even if it is arranged in the vicinity of 15 and 16, the plate edge position can be appropriately detected.
  • FIG. 8 is a schematic view showing a partial cross section of the metal plate 90 rolled by the rolling equipment 1 according to the embodiment, including the plate width direction and the longitudinal direction.
  • the metal plate 90 has a first surface 94 located on the rolling roll 15 side in the plate thickness direction and a second surface 95 located on the rolling roll 16 side in the plate thickness direction.
  • 9 and 10 are graphs showing an example of a graph showing the relationship between the gap between the pair of rolling rolls 15 and 16 (gap between rolls) and the time in the period including the start of rolling of the metal plate 90, respectively. is there.
  • step S120 when the rolling control unit 44 of the controller 40 determines in step S108 above that the tip-less tension rolling of the metal plate 90 can be started by the determination unit 42, in step S120 described above.
  • the pair of rolling rolls 15 and 16 are brought into contact with the metal plate 90 (time t0 in FIG. 9).
  • the metal plate 90 has not been rolled down yet, and the contact position between the rolling rolls 15 and 16 and the metal plate 90 (the position of the central axis O of the rolling rolls 15 and 16 in the transport direction) is higher than that of the tip 91.
  • the positions 94a and 95a on the wake side see FIG. 8
  • the plate thickness at these positions 94a and 95a is H0 (initial value).
  • the pair of rolling rolls 15 are conveyed to the positions 94b and 95b on the wake side of the above positions 94a and 95a (see FIG. 8) as the metal plate 90 is conveyed.
  • the number of rotations and the amount of rolling of the pair of rolling rolls 15 and 16 are adjusted so that the gap between 16 and 16 gradually decreases until the control value dc corresponding to the target plate thickness Hc of the metal plate 90 is reached (FIG. 9). Times t1 to t2). After time t2, the inter-roll gap is maintained at the control value dc corresponding to the target plate thickness Hc so that the plate thickness of the metal plate 90 that has passed through the rolling rolls 15 and 16 becomes the target plate thickness Hc.
  • the portion of the metal plate 90 including the tip 91 has a shape shown by a solid line in FIG. That is, the metal plate 90 includes the tip 91, the tip portion 90a having a plate thickness of H0, the succeeding portion 90c whose plate thickness is maintained at the target plate thickness Hc, and the tip portion 90a in the longitudinal direction of the metal plate. It has a transition portion 90b located between the and the succeeding portion 90c. In the transition portion 90b, the plate thickness gradually decreases from H0 to Hc from the positions 94a and 95a to the positions 94b and 95b.
  • the rolling rolls 15 and 16 start rolling the metal plate 90 under pressure and no-tension rolling at the tip.
  • the difference in plate thickness between the tip portion 90a that is not rolled by the rolling rolls 15 and 16 and the subsequent portion 90c that is rolled may be large in the metal plate 90.
  • the gap between the pair of rolling rolls 15 and 16 is narrowed to the control value dc corresponding to the target plate thickness Hc (time t1 in FIG. 10), and the rolling rolls 15 and 16 are in that state.
  • the shape of the metal plate 90 changes to the tip portion 90a ahead of the positions 94a and 95a where rolling is started, as shown by the alternate long and short dash line in FIG.
  • the plate thickness is H0) and the subsequent portion 90c (plate thickness is Ht) behind the above-mentioned positions 94a and 95a, and the plate thickness changes abruptly.
  • the pair of rolling rolls 15 and 16 are brought into contact with the metal plate 90, and then the metal plate 90 is rotated while the rolling rolls 15 and 16 are rotated.
  • the number of rotations and the amount of rolling of the rolling rolls 15 and 16 are adjusted so that the gap between the rolling rolls 15 and 16 gradually decreases until the control value dc corresponding to the target plate thickness Ht of the metal plate 90 is reached.
  • a transition portion 90b (see FIG. 8) in which the plate thickness gradually decreases is formed between the tip portion 90a having the same plate thickness H0 as before rolling and the succeeding portion 90c rolled to the target plate thickness Hc.
  • the gap between the pair of rolling rolls 15 and 16 gradually decreases until it reaches the control value dc corresponding to the target plate thickness Hc of the metal plate 90.
  • the inclination angle ⁇ 1 of the first surface 94 in the above-mentioned transition portion 90b with respect to the longitudinal direction of the metal plate 90 or the inclination angle ⁇ 2 of the second surface 95 in the above-mentioned transition portion 90b with respect to the longitudinal direction of the metal plate 90 is 20.
  • the number of rotations and the amount of reduction of the pair of rolling rolls 15 and 16 are adjusted so as to be less than or equal to the degree.
  • the plate thickness change in the transition portion 90b does not become too rapid, so that the boundary between the tip portion 90a and the succeeding portion 90c described above when the metal plate is wound by the winding device 14 or the like.
  • the stress concentration that may occur can be effectively relaxed, and the rolled metal plate 90 can be wound more appropriately by the winding device 14.
  • the control device 100 rolls the metal plate 90 with a pair of rolling rolls 15 and 16 (i.e., the tip of the metal plate 90) with no output tension applied to the metal plate 90. It is provided with a detection unit configured to detect the plate end position x B in the plate width direction of the metal plate 90 at the position on the exit side of the pair of rolling rolls 15 and 16 (while performing non-tensile rolling).
  • the second plate end detection unit 34 provided on the exit side of the rolling rolls 15 and 16 functions as the above-mentioned detection unit.
  • the controller 40 (see FIG. 3) of the control device 100 includes a first leveling unit 46 and a second leveling unit 48.
  • the detection result of the plate end position by the second plate edge detection unit 34 is the plate width from the reference position.
  • the outflow direction of the metal plate 90 from the rolling rolls 15 and 16 is the metal plate in the rolling apparatus 2. It is configured to control the rolling leveling of the pair of rolling rolls 15 and 16 along the conveying direction of 90.
  • the second leveling portion 48 makes the outflow direction of the metal plate 90 from the rolling rolls 15 and 16 the other side (first end edge 92) in the plate width direction with respect to the transport direction.
  • the rolling rolls 15 and 16 are configured to perform rolling leveling control so that the outflow direction of the metal plate 90 returns to the transport direction. Will be done.
  • the second plate end detection unit 34 (detection unit) causes the metal plate 90 to be positioned on the exit side of the rolling rolls 15 and 16. Since the plate end position x B in the plate width direction is detected, the detected plate end position x B deviates from the reference position to one side in the plate width direction, and the metal plate 90 is in the outflow direction. It is possible to detect that a deviation (bending of the tip of the metal plate 90) to one side in the plate width direction has occurred.
  • the outflow direction of the metal plate 90 is aligned with the transport direction of the metal plate 90 in the rolling apparatus 2 by the reduction leveling control by the first leveling portion 46, and then the second By rolling down leveling control by the leveling unit 48, the outflow direction of the metal plate 90 was shifted to the other side in the plate width direction with respect to the transfer direction, and then the outflow direction of the metal plate 90 was made to follow the transfer direction.
  • the tip bending of the metal plate 90 is corrected, and the tip tensionless rolling can be continued in a state where the tip edge (tip 91) of the metal plate 90 is brought close to parallel to the axial direction of the winding device 14. Therefore, according to the above configuration, the metal plate 90 that has been rolled without tension at the tip can be appropriately wound by the winding device 14.
  • the controller 40 may include at least one of an elongation difference calculation unit 50, a deviation angle calculation unit 52, or a remaining time calculation unit 54.
  • the plate end position x is controlled by the first leveling unit 46 under reduction leveling. It is configured to calculate the first elongation difference d1 on the other side of the metal plate 90 until B returns to the reference position with respect to the one side.
  • the deviation angle calculation unit 52 acquires the first deviation angle ⁇ 1 to the one side with respect to the transport direction in the outflow direction of the metal plate 90 at the start of the reduction leveling control by the first leveling unit 46, and the first deviation angle ⁇ 1. Based on this, it is configured to determine the second deviation angle ⁇ 2 to the other side with respect to the transport direction in the outflow direction of the metal plate 90 during execution of the reduction leveling control by the second leveling unit.
  • the remaining time calculation unit 54 is configured to calculate the remaining time Tc until the tip 91 of the metal plate 90 reaches the winding device 14 provided on the downstream side of the pair of rolling rolls 15 and 16.
  • the rolling apparatus 2 may be operated by manually performing a part or all of the rolling apparatus 2.
  • FIG. 11 and 14 are flowcharts showing an example of the operation method of the rolling apparatus 2 according to the embodiment, respectively.
  • 12A to 12D are diagrams showing state transitions of the metal plate 90 when the rolling apparatus 2 is operated based on the flowchart shown in FIG.
  • FIG. 13 is a graph for explaining an example of a method for calculating the first elongation difference and the second elongation difference of the metal plate 90.
  • the horizontal axis represents time and the vertical axis represents the deviation amount ⁇ e described later.
  • Is shown. 15A to 15D are diagrams showing state transitions of the metal plate 90 when the rolling apparatus 2 is operated based on the flowchart shown in FIG.
  • the metal plate 90 while rolling the metal plate 90 with a pair of rolling rolls 15 and 16 in a state where the output tension applied to the metal plate 90 is zero (that is, the metal plate 90 (While performing non-tensile rolling at the tip), using the second plate edge detection unit 34, at the positions on the outlet side of the pair of rolling rolls 15 and 16 (“plate edge detection positions” shown in FIGS. 12A to 12D), the metal plate The plate edge position x B in the plate width direction of 90 is detected (step S202; detection step).
  • the time t20 is the time when the tip tensionless rolling of the metal plate 90 is started.
  • the deviation amount ⁇ e of the plate end position xB detected in step S202 from the reference position in the plate width direction to one side in the plate width direction (one side of the first end edge 92 or the second end edge 93) is determined. It is calculated (step S204), and the calculated deviation amount ⁇ e is compared with the threshold value ⁇ e_th (step S206).
  • the reference position is a specific position in the plate width direction when the longitudinal direction of the metal plate 90 is parallel to the transport direction by the rolling apparatus 2 (the direction orthogonal to the central axes of the rolling rolls 15 and 16). Is.
  • the position of the first edge 92 of the metal plate 90 when the longitudinal direction of the metal plate 90 is parallel to the transport direction by the rolling apparatus 2 is defined as the “reference position”.
  • the center position (position of the center line Lc) in the plate width direction of the metal plate 90 when the longitudinal direction of the metal plate 90 is parallel to the transport direction by the rolling apparatus 2 may be set as the “reference position”.
  • step S206 it is determined that the deviation amount ⁇ e is smaller than the threshold value (NO in step S206), the process returns to step S202, and the plate edge position x B is detected again by the second plate edge detection unit 34.
  • FIG. 12B shows a stage in which the tip of the metal plate 90 is bent due to some disturbance (for example, unevenness of the plate thickness in the plate width direction of the metal plate 90) from the state shown in FIG. 12A.
  • the plate end position x B detected in step S202 deviates from the reference position to the first end edge 92 side (one side) in the plate width direction. That is, the outflow direction of the metal plate 90 from the rolling rolls 15 and 16 is deviated to the first edge 92 side (one side) in the plate width direction with respect to the transport direction by the rolling rolls 15 and 16.
  • the deviation amount ⁇ e calculated in step S204 becomes larger than zero.
  • the deviation amount ⁇ e starts to become larger than zero at time t21, and the deviation amount ⁇ e becomes maximum (state shown in FIG. 12B) at time t23.
  • step S204 When the deviation amount ⁇ e calculated in step S204 is equal to or less than the threshold value ⁇ e_th (NO in step S206), the process returns to step S202, and the plate edge position x B is detected again by the second plate edge detection unit 34.
  • the deviation amount ⁇ e calculated in step S204 becomes larger than the threshold value ⁇ e_th (YES in step S206, time t23 in the graph of FIG. 13)
  • the rolling element 22 so that the deviation amount ⁇ e becomes zero in step S208.
  • the leveling of the rolling rolls 15 and 16 is controlled according to the above (step S208).
  • step S208 rolling leveling control of the pair of rolling rolls 15 and 16 is performed so that the outflow direction of the metal plate 90 from the rolling rolls 15 and 16 follows the transport direction of the metal plate 90 in the rolling apparatus 2.
  • FIG. 12C is a diagram showing a stage at the end of step S208 (when the above-mentioned deviation amount ⁇ e becomes zero; time t24 in the graph of FIG. 13).
  • step S208 the metal plate until the plate end position x B detected by the second plate edge detection unit 34 in the first leveling step (step S208) described above returns to the reference position (until the state shown in FIG. 12C is reached).
  • the first elongation difference E1 relative to the one side (first edge 92 side) on the other side (here, the second edge 93 side) of 90 is calculated (step S210; elongation difference calculation step).
  • a plate edge position x B in the first leveling step is returned to the reference position (up to time t24) in the graph of FIG. 13, the time shift amount ⁇ e of the plate edge position x B integral with respect to the reference position
  • the first elongation difference E1 is calculated based on (area S 1B'shown in Graph FIG. 13).
  • the first elongation difference E1 can be calculated based on the area S 1B'shown in FIG.
  • the remaining time Tc until the tip 91 of the metal plate 90 reaches the winding device 14 provided on the downstream side of the pair of rolling rolls 15 and 16 is calculated (step S212; remaining time calculation step).
  • the starting point of the remaining time Tc is, for example, the time when the above-mentioned deviation amount ⁇ e becomes zero in the first leveling step (the end time of step S208; the time t24 in the graph of FIG. 13), or the start of the second leveling step. It may be a time point (the start time point of steps S214 to S218 described later; time t25 in the graph of FIG. 13). In the graph of FIG. 13, the time from the start time (time t25) of the second leveling step to the time t27 is the remaining time Tc.
  • the remaining time Tc can be calculated based on the distance between the tip 91 of the metal plate 90 and the winding device 14, and the transport speed of the metal plate 90.
  • FIG. 12D shows a state at the time when the second leveling step is completed (that is, a state at the end of step S218).
  • step S214 the drive motors of the reduction device 22 and the rolling rolls 15 and 16 are provided so as to give the metal plate 90 a second elongation difference E2 (see FIG. 12D) having a magnitude equal to that of the first elongation difference E2 within the remaining time Tc.
  • the second elongation difference E2 is a second elongation difference relative to the other side (here, the second end edge 93 side) on the one side (here, the first end edge 92 side) of the metal plate 90. is there.
  • the plate end position x B shifts to the second edge 93 side, and a shift amount ⁇ e occurs.
  • time integral value of ⁇ e in the second edge 93 side (the area S 2B in the graph of FIG. 13 ') is, the area S 2A in the graph of FIG. 13' becomes equal to, leveling of the rolling rolls 15 and 16 control by performing, as a triangle indicated by symbol S 2B in FIG. 12D are formed, it is possible to provide a second differential expansion E2 (see FIG. 12D) with respect to the metal plate 90.
  • the triangle indicated by the symbol S 2B in FIG. 12D and the area S 2B'of the graph of FIG. 13 have a specific correlation, and the triangle indicated by the reference numeral S 2A and the triangle indicated by the reference numeral S 2B in FIG. This is because is similar to.
  • step S216 the leveling control of the rolling rolls 15 and 16 is performed based on the control command value calculated in step S214.
  • the control of step S216 is repeated while the difference
  • the first elongation difference E1 caused by the bending of the tip of the metal plate 90 indicates the magnitude of the deviation of the metal plate 90 to one side in the plate width direction in the outflow direction.
  • the first elongation difference E1 caused by the bending of the tip of the metal plate 90 is calculated, and the above-mentioned second elongation difference E2 is rolled so as to be equal to the above-mentioned first elongation difference E1. Rolling down leveling control of rolls 15 and 16 is performed.
  • the elongation (second elongation) equal to the elongation (elongation corresponding to the first elongation difference E1) generated on one end side (here, the first end edge 92 side) of the metal plate 90 due to the bending of the tip of the metal plate 90. Since the reduction leveling control is performed so as to give the elongation corresponding to the difference E2 to the other end side of the metal plate 90 (here, the second end edge 93 side), the bending of the tip of the metal plate 90 is appropriately corrected. However, the tip edge (tip 91) of the metal plate 90 can be brought close to parallel to the axial direction of the winding device 14. Therefore, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • the above-mentioned first elongation difference E1 generated in the metal plate 90 due to the bending of the tip of the metal plate 90 has a correlation with the time integration of the deviation amount ⁇ e of the plate end position x B with respect to the above-mentioned reference position, and is typically Has a proportional relationship between the first elongation difference E1 and the time integration of the above-mentioned deviation amount ⁇ e.
  • the first elongation difference E1 can be appropriately calculated based on the time integration of the above-mentioned deviation amount ⁇ e.
  • the tip bending of the metal plate 90 is appropriately performed by performing the reduction leveling control so as to give the metal plate 90 a second elongation difference E2 equal to the first elongation difference E1 calculated in this way. It can be corrected.
  • the remaining time Tc until the tip 91 of the metal plate 90 reaches the winding device 14 is calculated, and the second remaining time Tc is within the calculated remaining time Tc. Since the elongation difference E2 is given to the metal plate 90, the bending of the tip of the metal plate 90 can be appropriately corrected before the metal plate 90 starts winding.
  • the first elongation difference E1 is calculated based on the time integration of the amount of deviation ⁇ e of the detected plate edge position x B with respect to the reference position, and the rolling roll 15 is based on the first elongation difference E1.
  • 16 rolling down leveling control was performed.
  • the reduction leveling control of the rolling rolls 15 and 16 is controlled based on the deviation angle of the metal plate 90 with respect to the transport direction in the outflow direction when the tip of the metal plate 90 is bent. I do. More specifically, in the embodiment according to the flowchart of FIG.
  • the second deviation angle ⁇ 2 (see FIG. 15C) to the other side (here, the second edge 93 side) with respect to the transport direction in the outflow direction during the execution of the second leveling step.
  • steps S302, S304, S306, S312, S316, and S318 are the same as those of steps S202, S204, S206, S212, S216, and S218 shown in FIG. 11, so detailed description thereof will be omitted.
  • step S304 when the deviation amount ⁇ e calculated in step S304 based on the plate edge position x B detected in step S302 (detection step) is larger than the threshold value (YES in step S306), this The first deviation angle ⁇ 1 (here, the first edge 92 side) with respect to the transport direction of the outflow direction of the metal plate 90 at the time point (the start time of the first leveling step; the step shown in FIG. 15B). 15B) is acquired (step S308).
  • the first deviation angle ⁇ 1 may be acquired based on the image captured by an imaging device or the like.
  • step S310 based on the first deviation angle ⁇ 1 acquired in step S308, the second deviation angle ⁇ 2 to be given to the metal plate 90 in the second leveling step, that is, the other side of the metal plate 90 with respect to the transport direction in the outflow direction (
  • the second deviation angle ⁇ 2 with respect to the second edge 93 side) is determined (step S310; see FIG. 15C).
  • step S312 the rolling element 22 such that the deviation angle of the metal plate 90 toward the other side (here, the second end edge 93 side) becomes the above-mentioned second deviation angle ⁇ 2.
  • step S314 the control command value for the drive motor of the rolling rolls 15 and 16 is calculated.
  • step S316 the leveling control (first leveling step and second leveling step) of the rolling rolls 15 and 16 is performed (step S316).
  • step S302 the metal plate detected in steps S302 to S306. Since the tip bending of the 90 has been corrected, the process returns to step S302 again to detect the tip bending of the metal plate 90 that may occur next.
  • the first deviation angle ⁇ 1 with respect to the transport direction of the metal plate 90 in the outflow direction (here, the first end edge 92 side) caused by the bending of the tip of the metal plate 90 is the same as the above-mentioned first elongation difference E1.
  • the magnitude of the deviation of the metal plate 90 toward one side (first end edge 92 side) in the plate width direction in the outflow direction is shown.
  • the second deviation angle ⁇ 2 to the other side with respect to the transport direction in the outflow direction during the execution of the second leveling step can be appropriately determined based on the above-mentioned first deviation angle ⁇ 1. ..
  • the tip bending of the metal plate 90 is appropriately corrected, and the tip edge of the metal plate 90 is wound. It can be brought close to parallel to the axial direction of the picking device 14. Therefore, the metal plate 90 that has been rolled without tension at the tip can be appropriately wound by the winding device 14.
  • the second deviation angle ⁇ 2 determined in step S310 may be given to the metal plate 90 at once in the second leveling step of step S316 (see FIG. 15C), or may be divided into a plurality of times. , May be given to the metal plate 90 (see FIG. 15D).
  • the angle ⁇ 2a is given for the first time, the angle ⁇ 2b for the second time, and the angle ⁇ 2c for the third time as the deviation angle of the metal plate 90 toward the other side (second end edge 93 side).
  • the second leveling step is started within a time equal to or less than the time required for the first leveling step.
  • the time required for the first leveling step (from the YES determination in step S206 in FIG. 11 to the end time in step S208) is shown in the graph of FIG. It is from time t22 to time t24.
  • the time from the end of the first leveling step to the start of the second leveling step is from time t24 to t25 in the graph of FIG. 13, which is shorter than the time required for the first leveling step described above.
  • the first leveling step and the second leveling step are performed without distinction (continuously) in step S316, and after the completion of the first leveling step, the second leveling is performed.
  • the time to the start of the step is substantially zero, and the first leveling step (from the outflow direction of the metal plate 90 to one side (first end edge 92 side) to the return to the same direction as the transport direction). It is less than the required time.
  • the second leveling step is started within the time required for the first leveling step, and the metal plate 90 is started.
  • the outflow direction is shifted to the other side (second end edge 93 side). That is, after the completion of the first leveling step, the outflow direction of the metal plate 90 is shifted to the other side (second end edge 93 side) without much time, so that the metal plate 30 at the end of the second leveling step.
  • the amount of deviation in the plate width direction ( ⁇ d shown in FIG. 12D) between the center position in the plate width direction at the tip bending portion and the center position in the plate width direction of the metal plate 90 on the rolling rolls 15 and 16 can be reduced.
  • the area of the rectangular portion A1 shown in FIGS. 12C and 12D can be made as small as possible.
  • the first leveling step and the second leveling step are continuously performed.
  • the above-mentioned deviation amount ⁇ d becomes almost zero. Therefore, the metal plate 90 that has been rolled without tension at the tip can be more appropriately wound by the winding device 14.
  • the method of operating the rolling mill according to at least one embodiment of the present invention is as follows.
  • a method of operating a rolling apparatus including a pair of rolling rolls provided so as to sandwich a metal plate. While rolling the metal plate with the pair of rolling rolls while the ejection side tension applied to the metal plate is zero, the plate end of the metal plate in the plate width direction at the position of the exit side of the pair of rolling rolls.
  • a detection step to detect the position and When the detection result of the metal plate width end position in the detection step deviates from the reference position to one side in the plate width direction, the outflow direction of the metal plate from the rolling roll is the transport direction of the metal plate in the rolling apparatus.
  • the first leveling step of controlling the rolling rolls under pressure so as to follow the above.
  • the plate end position in the plate width direction of the metal plate is detected at the position on the outlet side of the rolling roll. Based on the detected plate edge position deviating from the reference position to one side in the plate width direction, a deviation (bending of the tip of the metal plate) to one side in the plate width direction in the outflow direction of the metal plate occurred. Can be detected.
  • the downflow leveling control is used to make the outflow direction of the metal plate follow the transport direction of the metal plate in the rolling apparatus, and then set the outflow direction of the metal plate to the transport direction.
  • the rolling down leveling was controlled so that the outflow direction was along the transport direction after shifting to the other side in the width direction, the bending of the tip of the metal plate was corrected, and the tip edge of the metal plate was set in the axial direction of the winding device.
  • the tip untensile rolling can be continued in a state of being close to parallel to. Therefore, according to the method (1) above, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • the first elongation difference caused by the bending of the tip of the metal plate indicates the magnitude of the deviation to one side in the plate width direction in the outflow direction of the metal plate.
  • the first elongation difference caused by the bending of the tip of the metal plate is calculated, and the rolling roll is made so that the above-mentioned second elongation difference becomes equal to the above-mentioned first elongation difference. Performs rolling leveling control.
  • the elongation generated on one end side of the metal plate due to the bending of the tip of the metal plate (elongation corresponding to the first elongation difference) and the same magnitude (elongation corresponding to the second elongation difference) are applied to the other end of the metal plate. Since the reduction leveling control is performed so as to be applied to the side, the bending of the tip of the metal plate can be appropriately corrected, and the tip edge of the metal plate can be brought close to parallel to the axial direction of the winding device. Therefore, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • the plate end position is separated from the reference position toward the one side, and the plate end position returns to the reference position in the first leveling step.
  • the first elongation difference is calculated based on the time integration of the deviation amount of the plate edge position.
  • the above-mentioned first elongation difference caused by the bending of the tip of the metal plate has a correlation with the time integration of the deviation amount of the plate end position with respect to the above-mentioned reference position, and typically, the first elongation difference and the above-mentioned first elongation difference. There is a proportional relationship with the time integration of the above-mentioned deviation amount.
  • the first elongation difference can be appropriately calculated based on the time integration of the deviation amount described above.
  • the reduction leveling control is performed so as to give the metal plate a second elongation difference equal to the first elongation difference calculated in this way, thereby appropriately correcting the tip bending of the metal plate and metal.
  • the tip edge of the plate can be brought close to parallel to the axial direction of the take-up device. Therefore, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • a step of calculating the remaining time for calculating the remaining time until the tip of the metal plate reaches the winding device provided on the downstream side of the pair of rolling rolls is provided.
  • the reduction leveling control of the pair of rolling rolls is performed so as to give the metal plate the second elongation difference having a magnitude equal to that of the first elongation difference within the remaining time.
  • the remaining time until the tip of the metal plate reaches the winding device is calculated, and the second elongation difference is set within the calculated remaining time. Since the metal plate is given to the plate, the bending of the tip of the metal plate can be appropriately corrected before the metal plate starts winding, and the tip edge of the metal plate can be brought close to parallel to the axial direction of the winding device. Therefore, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • any of the above methods (1) to (4) Based on the first deviation angle ⁇ 1 of the metal plate to the one side with respect to the transport direction of the outflow direction at the start of the first leveling step, the transport direction of the outflow direction during execution of the second leveling step.
  • the second deviation angle ⁇ 2 with respect to the other side is determined.
  • the first deviation angle ⁇ 1 toward one side with respect to the transport direction in the outflow direction of the metal plate caused by the bending of the tip of the metal plate is the same as the above-mentioned first elongation difference, that is, the one in the plate width direction in the outflow direction of the metal plate. Indicates the magnitude of the deviation to the side.
  • the second deviation angle ⁇ 2 to the other side with respect to the transport direction in the outflow direction during the execution of the second leveling step is appropriately determined based on the first deviation angle ⁇ 1 described above. can do.
  • the reduction leveling control so as to give the second deviation angle ⁇ 2 determined in this way to the metal plate, the bending of the tip of the metal plate is appropriately corrected, and the tip edge of the metal plate is wound around the winding device. It can be made parallel to the axial direction. Therefore, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • the second leveling step is started within a time equal to or less than the time required for the first leveling step.
  • the second leveling step is started within the time required for the first leveling step or less.
  • the outflow direction of the metal plate is shifted to the other side. That is, after the end of the first leveling step, the outflow direction of the metal plate is shifted to the other side without much time, so that the center position in the plate width direction at the tip bending portion of the metal plate at the end of the second leveling step. And, the amount of deviation in the plate width direction from the center position of the metal plate in the plate width direction in the rolling roll can be reduced. Therefore, the metal plate that has been rolled without tension at the tip can be wound more appropriately by the winding device.
  • the plate end positions are detected at two different locations in the transport direction, and when the difference between the detection results of the plate end positions at the two locations is within the specified range, the pair A rolling start step for starting rolling of the metal plate by a rolling roll is provided.
  • the metal plate flows out based on the plate end position detected on the outlet side of the rolling roll. It may not be possible to properly detect that a deviation to one side (bending of the tip of the metal plate) has occurred in the width direction of the plate.
  • the plate end positions in the plate width direction are detected at two different locations in the transport direction, and when the difference between these detection results is within the specified range, the metal plate Start non-tensile rolling at the tip of the.
  • the tip tensionless rolling was started. After the start of rolling, it is properly determined that the deviation to one side (bending of the tip of the metal plate) in the plate width direction in the outflow direction of the metal plate has occurred based on the plate end position detected on the outlet side of the rolling roll. Can be detected.
  • the plate end position of the metal plate in the plate width direction is detected at the position on the exit side of the pair of rolling rolls, and the difference between the reference position of the metal plate in the plate width direction and the plate end position.
  • a rolling start step to start rolling the metal plate with the pair of rolling rolls when is within the specified range.
  • the difference between the reference position and the plate end position in the plate width direction of the metal plate is set within the specified range before the start of the tip tensionless rolling, so that the metal plate is made into a plate.
  • the tip tensionless rolling can be started after being placed at an appropriate position in the width direction.
  • tipless tension rolling can be started with the center position of the rolling roll and the center position of the metal plate in the plate width direction aligned. Therefore, according to the method (8) above, the metal plate that has been rolled without tension at the tip can be wound more appropriately by the winding device.
  • the control device for the rolling mill is A control device for controlling a rolling apparatus including a pair of rolling rolls provided so as to sandwich a metal plate. While rolling the metal plate with the pair of rolling rolls while the ejection side tension applied to the metal plate is zero, the plate end of the metal plate in the plate width direction at the position of the exit side of the pair of rolling rolls.
  • a detector configured to detect the position and When the detection result of the plate end position by the detection unit deviates from the reference position to one side in the plate width direction, the outflow direction of the metal plate from the rolling roll is along the transport direction of the metal plate in the rolling apparatus.
  • the first leveling portion configured to control the reduction leveling of the pair of rolling rolls and After the reduction leveling control by the first leveling unit, the outflow direction of the metal plate from the rolling roll is shifted to the other side in the plate width direction with respect to the transport direction, and then the outflow direction of the metal plate.
  • a second leveling portion configured to control the reduction leveling of the pair of rolling rolls so as to return to the transport direction. To be equipped.
  • the plate end position in the plate width direction of the metal plate is detected at the position on the outlet side of the rolling roll. Based on the detected plate edge position deviating from the reference position to one side in the plate width direction, a deviation (bending of the tip of the metal plate) to one side in the plate width direction in the outflow direction of the metal plate occurred. Can be detected.
  • the downflow leveling control is used to make the outflow direction of the metal plate follow the transport direction of the metal plate in the rolling apparatus, and then set the outflow direction of the metal plate to the transport direction.
  • the rolling down leveling was controlled so that the outflow direction was along the transport direction after shifting to the other side in the width direction, the bending of the tip of the metal plate was corrected, and the tip edge of the metal plate was set in the axial direction of the winding device.
  • the tip untensile rolling can be continued in a state of being close to parallel to. Therefore, according to the configuration (9) above, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • the rolling equipment according to at least one embodiment of the present invention is A rolling apparatus including a pair of rolling rolls provided so as to sandwich a metal plate, The control device according to (9) above and To be equipped.
  • the plate end position in the plate width direction of the metal plate is detected at the position on the outlet side of the rolling roll. Based on the detected plate edge position deviating from the reference position to one side in the plate width direction, a deviation (bending of the tip of the metal plate) to one side in the plate width direction in the outflow direction of the metal plate occurred. Can be detected.
  • the downflow leveling control is used to make the outflow direction of the metal plate follow the transport direction of the metal plate in the rolling apparatus, and then set the outflow direction of the metal plate to the transport direction.
  • the rolling down leveling was controlled so that the outflow direction was along the transport direction after shifting to the other side in the width direction, the bending of the tip of the metal plate was corrected, and the tip edge of the metal plate was set in the axial direction of the winding device.
  • the tip untensile rolling can be continued in a state of being close to parallel to. Therefore, according to the configuration (10) above, the metal plate that has been rolled without tension at the tip can be appropriately wound by the winding device.
  • the present invention is not limited to the above-described embodiments, and includes a modified form of the above-described embodiments and a combination of these embodiments as appropriate.
  • the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also within a range in which the same effect can be obtained.
  • the shape including the uneven portion, the chamfered portion, etc. shall also be represented.
  • the expression “comprising”, “including”, or “having” one component is not an exclusive expression excluding the existence of another component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

金属板を挟むように設けられる一対の圧延ロールを含む圧延装置の運転方法であって、前記金属板に加えられる出側張力がゼロの状態で、前記一対の圧延ロールにより前記金属板を圧延しながら、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出する検出ステップと、前記検出ステップにおける前記金属板幅端位置の検出結果が基準位置から板幅方向の一方側に外れたとき、前記圧延ロールからの前記金属板の流出方向が前記圧延装置における前記金属板の搬送方向に沿うように、前記一対の圧延ロールの圧下レベリング制御を行う第1レベリングステップと、前記第1レベリングステップの後、前記圧延ロールからの前記金属板の流出方向を前記搬送方向に対して前記板幅方向の他方側にずらした後、前記金属板の前記流出方向が前記搬送方向に戻るように、前記一対の圧延ロールの圧下レベリング制御を行う第2レベリングステップと、を備える。

Description

圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備
 本開示は、圧延装置の運転方法並びに圧延装置の制御装置及び圧延装置に関する。
 一対の圧延ロールを含む圧延機を用いた金属板の圧延において、金属板の先端部分が巻き取り装置に巻き取られる前に、金属板に圧延機出側の張力が作用しない状態で金属板の圧延(先端無張力圧延)を行うことがある。
 例えば、特許文献1には、圧延機(圧延ロール)と、該圧延機の出側に設けられたテンションリール(巻き取り装置)と、を含む圧延装置を用い、圧延材(金属板)がテンションリールに巻き取られて圧延機出側の張力が確立する前に圧延を行うことが記載されている。また、特許文献1には、圧延機の出側においてテンションリールよりも上流側に蛇行検出器を設け、蛇行検出器で検出されるオフセット量(圧延ロールの軸方向中央位置と、圧延材の板幅方向中央位置との差)に基づいて圧延機のレベリング制御を行うことが記載されている。これにより、出側張力がない状態での圧延を行うことにより生じ得る圧延材の蛇行及び片伸びを抑制して、歩留まりを改善することが図られている。
特開平11-179414号公報
 ところで、金属板に出側張力が作用しない先端無張力の状態で圧延をすると、圧延される金属板の板幅方向の両端部において伸び差が発生して、圧延機の出側(下流側)にて金属板の先端部の向きが圧延機による搬送方向に対して板幅方向に曲がる現象(先端曲がり)が生じることがある。このような金属板の先端曲がりが生じた場合、圧延機出側に設けた板端位置検出器を用いて、規定位置からずれた板幅方向の板端位置が規定位置に戻るように圧延機を運転することで、金属板の流出方向を圧延機の搬送方向に沿わせることはできる。しかし、このような運転方法では、金属板の先端部の向きが搬送方向に対して曲がった状態を是正できない場合があり、このように金属板の先端部が曲がった状態では、金属板の先端縁が巻き取り装置の回転軸方向に対して傾いた状態となるため、巻き取り装置にて金属板を適切に巻き取れない場合がある。
 上述の事情に鑑みて、本発明の少なくとも一実施形態は、先端無張力の状態で圧延された金属板を巻き取り装置で適切に巻き取ることが可能な圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備を提供することを目的とする。
 本発明の少なくとも一実施形態に係る圧延装置の運転方法は、
 金属板を挟むように設けられる一対の圧延ロールを含む圧延装置の運転方法であって、
 前記金属板に加えられる出側張力がゼロの状態で、前記一対の圧延ロールにより前記金属板を圧延しながら、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出する検出ステップと、
 前記検出ステップにおける前記金属板幅端位置の検出結果が基準位置から板幅方向の一方側に外れたとき、前記圧延ロールからの前記金属板の流出方向が前記圧延装置における前記金属板の搬送方向に沿うように、前記一対の圧延ロールの圧下レベリング制御を行う第1レベリングステップと、
 前記第1レベリングステップの後、前記圧延ロールからの前記金属板の流出方向を前記搬送方向に対して前記板幅方向の他方側にずらした後、前記金属板の前記流出方向が前記搬送方向に戻るように、前記一対の圧延ロールの圧下レベリング制御を行う第2レベリングステップと、
を備える。
 本発明の少なくとも一実施形態によれば、先端無張力の状態で圧延された金属板を巻き取り装置で適切に巻き取ることが可能な圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備が提供される。
一実施形態に係る制御装置を備えた圧延設備の概略構成図である。 一実施形態に係る制御装置を備えた圧延設備の概略構成図である。 一実施形態に係る制御装置を構成するコントローラの概略構成図である。 一実施形態に係る圧延装置の運転方法の一例を示すフローチャートである。 金属板の先端無張力圧延を開始時の圧延ロール及び金属板の状態を示す模式図である。 金属板の先端無張力圧延を開始時の圧延ロール及び金属板の状態を示す模式図である。 金属板の先端無張力圧延を開始時の圧延ロール及び金属板の状態を示す模式図である。 判定部による先端無張力圧延の開始可否の判定について説明するための図である。 判定部による先端無張力圧延の開始可否の判定について説明するための図である。 一実施形態に係る圧延設備で圧延された金属板の板幅方向及び長手方向を含む部分的な断面を示す模式図である。 ロール間ギャップと時間の関係を示すグラフの一例を示すグラフである。 ロール間ギャップと時間の関係を示すグラフの一例を示すグラフである。 一実施形態に係る圧延装置の運転方法の一例を示すフローチャートである。 図11に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。 図11に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。 図11に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。 図11に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。 金属板の第1伸び差及び第2伸び差の算出方法の一例を説明するためのグラフである。 一実施形態に係る圧延装置の運転方法の一例を示すフローチャートである。 図14に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。 図14に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。 図14に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。 図14に示すフローチャートに基づき圧延装置の運転を行うときの、金属板の状態遷移を示す図である。
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
 まず、幾つかの実施形態に係る圧延装置を含む圧延設備の全体構成について説明する。
 図1及び図2は、それぞれ、一実施形態に係る制御装置を備えた圧延設備の概略構成図である。図1及び図2に示すように、圧延設備1は、圧延装置2と、圧延装置2を制御するための制御装置100と、を備えている。幾つかの実施形態では、圧延装置2は、例えば図1に示すように1台の圧延機10を含んでいてもよく、例えば図2に示すように2台の圧延機10(10A,10B)を含んでいてもよく、あるいは、3台以上の圧延機10を含んでいてもよい。
 図1に示す圧延装置2は、一対の圧延ロール15,16間に通された金属板90を往復させて圧延させる圧延装置(リバースミル)である。図1に示す圧延装置2は、圧延材料である金属板90を挟むように設けられる一対の圧延ロール(ワークロール)15,16を含む圧延機10と、金属板90の進行方向にて圧延ロール15,16の入側に設けられる巻き出し装置4と、金属板90の進行方向にて圧延ロール15,16の出側に設けられる巻き取り装置14と、を含み、金属板90を一対の圧延ロール15,16により圧延するように構成されている。
 図2に示す圧延装置2は、一対の第1圧延ロール15A,16A間、及び、一対の第2圧延ロール15B,16Bに通された金属板90を往復させて圧延させる圧延装置(リバースミル)である。図2に示す圧延装置2は、圧延材料である金属板90を挟むように設けられる一対の第1圧延ロール(ワークロール)15A,16Aを含む第1圧延機10Aと、金属板90を挟むように設けられる一対の第2圧延ロール(ワークロール)15B,16Bを含む第2圧延機10Bと、金属板90の進行方向にて第1圧延ロール15A,16Aの入側に設けられる巻き出し装置4と、金属板90の進行方向にて第2圧延ロール15B,16Bの出側に設けられる巻き取り装置14と、を含み、金属板90を一対の第1圧延ロール15A,16A及び一対の第2圧延ロール15B,16Bにより圧延するように構成されている。
 図示する圧延機10,10A,10Bは同様の構成を有する。以下においては圧延機10についてその構成を説明するが、圧延機10A,10Bについても同様の説明が当てはまる。なお図2において、圧延機10A,10Bの構成要素(圧延ロール等)の符号として、図1に示す圧延機10の構成要素を同様の符号に「A」又は「B」をそれぞれ付したものが記載されている。
 圧延機10は、一対の圧延ロール(ワークロール)15,16に加え、一対の圧延ロール15,16をそれぞれ挟んで、金属板90とはそれぞれ反対側に設けられる一対の中間ロール17,18及び一対のバックアップロール19,20と、を含む。中間ロール17,18及びバックアップロール19,20は、圧延ロール15,16を支持するように構成されている。また、圧延機10は、一対の圧延ロール15,16に荷重を加えて一対の圧延ロール15,16に挟まれる金属板90を圧下するための圧下装置22を備えている。圧下装置22は、油圧シリンダを含んでいてもよい。
 圧延ロール15,16には、スピンドル(不図示)等を介してモータ(不図示)が接続されており、圧延ロール5,16は、モータによって回転駆動されるようになっている。金属板90の圧延時には、圧下装置22で金属板90を圧下しながらモータにより圧延ロール15,16を回転させることで、圧延ロール15,16と金属板90との間に摩擦力が生じ、この摩擦力によって金属板90が圧延ロール15,16の出側へと送られるようになっている。
 巻き出し装置4は、圧延機10に向けて金属板90を巻き出すように構成されている。巻き取り装置14は、圧延機10からの金属板90を巻き取るように構成されている。巻き出し装置4及び巻き取り装置14は、それぞれモータ(不図示)により駆動されるようになっている。
 巻き出し装置4は、金属板90の圧延時に、金属板90に入側張力を与えるように構成されている。また、巻き取り装置14は、金属板90の圧延時に、金属板90に出側張力を与えるように構成されている。すなわち、モータによって巻き出し装置4及び巻き取り装置14を適切に駆動することにより、金属板90に入側張力及び出側張力を与えるようになっている。金属板90に適切に入側張力及び出側張力を与えることにより、圧延時における金属板90の蛇行を抑制することができる。
 なお、巻き出し装置4から巻き出される金属板90の尾端直前で圧延を止め、金属板90が圧延ロール15,16に圧下された状態で奇数回目(1パス目等)の圧延が完了したら、その次に、巻き取り装置14から金属板90を圧延機10に向けて巻き出すとともに、巻き出し装置4で金属板90を巻き取りながら、先ほどとは逆の進行方向に金属板90を進行させて偶数回目(2パス目等)の圧延を行う。すなわち、金属板90の進行方向に応じて、巻き出し装置4の役割と及び巻き取り装置14の役割とが入れ替わるようになっている。
 図1及び図2に示す圧延装置2は、巻き出し装置4から圧延機10に導入される金属板90をガイドするための入側ピンチロール6及びサイドガイド8と、圧延機10から巻き取り装置14に送られる金属板90をガイドするための出側ピンチロール12と、をさらに含む。
 図1及び図2に示すように、圧延装置2を制御するための制御装置100は、金属板90の板幅方向の板端位置を検出するための第1板端検出部32及び第2板端検出部34と、第1板端検出部32及び第2板端検出部34の検出結果に基づいて、圧延装置2の運転を制御するように構成されたコントローラ40と、を含む。
 第1板端検出部32は、金属板90の搬送方向にて一対の圧延ロール15,16の入側に設けられ、搬送方向の第1位置Y1における金属板の板幅方向の板端位置である第1板端位置x1を検出するように構成される。第2板端検出部34は、搬送方向にて一対の圧延ロール15,16の出側に設けられ、搬送方向の第2位置Y2における金属板の板幅方向の板端位置である第2板端位置x2を検出するように構成されている。
 なお、図2に示す制御装置100は、第1圧延ロール15A,16A、及び、第2圧延ロール15B,16Bのそれぞれに対し、搬送方向の入側に第1板端検出部32A,32Bが設けられ、搬送方向の出側に第2板端検出部34A,34Bが設けられている。
 コントローラ40は、第1板端検出部32及び第2板端検出部34から計測結果を示す信号を受け取り、これらの計測結果に基づいて、圧下装置22や、圧延ロール15,16を駆動するためのモータの動作を制御するように構成されている。
 コントローラ40は、CPU、メモリ(RAM)、補助記憶部及びインターフェース等を含んでいてもよい。コントローラ40は、インターフェースを介して、第1板端検出部32及び第2板端検出部34からの信号を受け取るようになっている。CPUは、このようにして受け取った信号を処理するように構成される。また、CPUは、メモリに展開されるプログラムを処理するように構成される。
 コントローラ40での処理内容は、CPUにより実行されるプログラムとして実装され、補助記憶部に記憶されていてもよい。プログラム実行時には、これらのプログラムはメモリに展開される。CPUは、メモリからプログラムを読み出し、プログラムに含まれる命令を実行するようになっている。
 図3は、一実施形態に係る制御装置100を構成するコントローラ40の概略構成図である。図3に示すように、コントローラ40は判定部42と、圧延制御部44と、を含む。判定部42は、第1板端検出部32にて検出された金属板90の第1板端位置x1、及び、第2板端検出部34にて検出された金属板90の第2板端位置x2に基づいて、金属板90の出側張力がゼロの状態での一対の圧延ロール15,16による金属板90の圧延(先端無張力圧延)の開始の可否を判定するように構成される。圧延制御部44は、一対の圧延ロール15,16の動作を制御するように構成される。より具体的には、圧延制御部44は、圧延ロール15,16のロール間ギャップや回転速度を調節すべく、圧下装置22や圧延ロール15,16を駆動するためのモータ制御するように構成される。
 なお、コントローラ40の判定部42以外の各部については後述する。
 なお、制御装置100は、判定部42による判定結果を表示するための表示部(ディスプレイ等;不図示)をさらに有していてもよい。
 以下、制御装置100による圧延装置2の運転制御について説明するが、以下に説明する制御装置100による処理の一部又は全部をマニュアルで行うことにより圧延装置2を運転するようにしてもよい。
 図4は、一実施形態に係る圧延装置2の運転方法の一例を示すフローチャートである。なお、図4は、金属板90の先端無張力圧延を開始するまでの運転方法の一例を示すフローチャートである。金属板90の先端無張力圧延を開始後の運転方法については、図11及び図14のフローチャート等を参照しながら後で説明する。
 図5A~図5Cは、それぞれ、金属板90の先端無張力圧延を開始するときの、圧延ロール15,16及び金属板90の状態を示す模式図である。図6及び図7は、それぞれ、判定部42による先端無張力圧延の開始可否の判定について説明するための図である。
 一実施形態では、図4に示すように、まず、コントローラ40により、一対の圧延ロール15,16間のギャップ(ロール間ギャップ)が金属板90の板厚よりも大きい状態となるように一対の圧延ロール15,16の位置を調節する(ステップS102)。この際、必要に応じて圧下装置22を作動させて一対の圧延ロール15,16の位置を調節してもよい。そして、ロール間ギャップが板厚よりも大きい状態を維持したまま、金属板90の先端91を含む先端部(図5A参照)を一対の圧延ロール15,16の間に通す(ステップS104)。
 図5Aは、ステップS104が完了したときの圧延ロール15,16及び金属板90の状態を示す模式図である。図5Aに示すように、ステップS104の完了時点では、一対の圧延ロール15,16間のギャップd0が、圧延前の金属板90の板厚H0よりも大きい状態で、金属板90の先端91を含む先端部が圧延ロール15,16の間を通されている。また、金属板90その先端91を含む先端部は、圧延ロール15,16の出側に位置しており、巻き取り装置14には達していない。このため、金属板90に作用する出側張力Tdはゼロである。また、この時点では、入側張力Teを金属板90に作用させていないため、入側張力Teもゼロである。
 次に、第1板端検出部32を用いて、搬送方向の第1位置Y1における第1板端位置x1を検出するとともに、第2板端検出部34を用いて、搬送方向の第2位置Y2における第2板端位置x2を検出する(ステップS106)。
 ここで、図6及び図7は、それぞれ、圧延開始前における圧延ロール15,16及び金属板90を平面視した模式図である。図6及び図7に示すように、金属板90は、板幅Wを有し、板幅方向の両端縁である第1端縁92及び第2端縁93を有する。幾つかの実施形態では、第1板端検出部32及び第2板端検出部34は、それぞれ、第1板端位置x1及び第2板端位置x2として、第1位置Y1及び第2位置Y2における第1端縁92の位置を検出するように構成されていてもよい(図6及び図7参照)。あるいは、他の実施形態では、第1板端検出部32及び第2板端検出部34は、それぞれ、第1板端位置x1及び第2板端位置x2として、第1位置Y1及び第2位置Y2における第2端縁93の位置を検出するように構成されていてもよい。
 そして、ステップS106の後、判定部42により、ステップS106で検出された第1板端位置x1及び第2板端位置x2に基づいて、金属板90の先端無張力圧延の開始の可否を判定する(ステップS108)。
 ステップS108では、例えば、金属板90の長手方向が、圧延装置2による金属板90の搬送方向と略平行である場合に(図6参照)、金属板90の先端無張力圧延が開始可能と判定し、金属板90の長手方向の、金属板90の搬送方向に対する傾斜が規定程度以上である場合に(図7参照)、金属板90の先端無張力圧延が開始不可と判定する。
 より具体的には、一実施形態では、ステップS108では、第1板端位置x1と第2板端位置x2との差|x1-x2|が閾値Δxth1以下であるとき、金属板90の先端無張力圧延が開始可能であると判定し、上記差|x1-x2|が閾値Δxth1より大きいとき、金属板90の先端無張力圧延が開始不可であると判定する。
 あるいは、一実施形態では、ステップS108では、金属板90の板幅方向における基準位置xrefと第1板端位置x1との差(x1-xref)、及び、基準位置xrefと第2板端位置x2との差(x2-xref)の各々が閾値xth2以下であるとき、金属板90の先端無張力圧延が開始可能であると判定し、上記差(x1-xref)又は(x2-xref)の少なくとも一方が閾値xth2よりも大きいとき、金属板90の先端無張力圧延が開始不可であると判定する。
 ここで、上述の基準位置xrefは、金属板90の長手方向が、圧延ロール15,16(圧延機)による搬送方向と一致している場合の板幅方向(すなわち、圧延ロール15,16の軸方向(中心軸Oの方向))における規定位置である。上述の基準位置xrefは、例えば、圧延ロール15,16の軸方向における中央位置であってもよい(図6及び図7参照)。なお、図6においては、金属板90の長手方向が圧延ロールによる搬送方向と一致しており、このとき、金属板90の長手方向に沿った中心線Lcの位置は、上述の板幅方向(すなわち圧延ロール15,16の軸方向)において基準位置xrefに一致する。
 上述のステップS108にて、金属板90の先端無張力圧延の開始が可能ではないと判定されたら(ステップS108のNo)、金属板90の板幅方向位置を修正し(ステップS110)、再度ステップS106に戻って、第1板端位置x1及び第2板端位置x2の検出(ステップS106)、及び、ステップS106での検出結果に基づく金属板90の先端無張力圧延の開始可否の判定(ステップS108)を行う。
 一方、ステップS108にて、金属板90の先端無張力圧延の開始が可能であると判定されたら(ステップS108のYes)、圧延制御部44により、金属板90の先端無張力圧延を開始する(ステップS112)。
 ステップS112では、金属板90に加える出側張力Tdがゼロの状態で、一対の圧延ロール15,16により金属板90を圧下し、一対の圧延ロール15,16の回転を開始することにより、金属板90の先端無張力圧延を開始する(図5B参照)。
 一対の圧延ロール15,16により金属板90を圧下するときには、図5Bに示すように、ロール間ギャップが目標板厚に対応した値d1となるように、圧下装置22を作動させる。この時点でのロール間ギャップd1は、圧延される前の金属板90の板厚H0よりも小さい。また、圧延ロール15,16の回転開始時及び回転開始後は、圧延ロール15,16を駆動するためのモータの電流値の調節により、圧延ロール15,16の回転速度を適切な値に調節する。
 金属板90の先端張力圧延を開始すると、金属板90は、図5Bに示す矢印の方向に向かって進行する。そして、図5Cに示すように、圧延開始後、金属板90のうち、圧延ロール15、16で圧下されて圧延ロール15,16の出側に進行した部分は、圧延前の板厚H0よりも薄い板厚H1を有している。
 このように、金属板90の先端無張力圧延を行うことで、金属板の先端を巻き取り装置に巻き付けて出側張力を与えた状態で圧延を開始する場合に比べて、金属板90の先端に近い部分から圧延を開始することができ、金属板90の歩留まりを改善することができる。
 そして、上述のように、ステップS108にて金属板90先端無張力圧延の開始が可能であると判定されてから、ステップS112にて先端無張力圧延を開始することにより、先端無張力圧延された金属板90を巻き取り装置14で適切に巻き取ることが可能となる。
 仮に、圧延ロール15,16の出側の1か所にのみ板端位置検出部を設けた場合には、以下に述べる問題が生じ得る。すなわち、例えば図7に示すように、圧延開始前に金属板90の長手方向が、圧延ロール15,16(圧延機10)による金属板90の搬送方向に対して傾斜していたとしても、搬送方向における1点のみでの板端位置検出結果からは、金属板90の長手方向が上述の搬送方向に対して傾斜しているか否かは不明である。この場合に先端無張力圧延を開始すると、金属板90の圧延ロール15,16からの流出方向は、圧延機10による搬送方向に対して傾斜したままである。したがって、出側に配置された板端位置検出部により検出される板端位置(例えば、図7における第2板端位置x2)は、圧延開始後もほぼ一定となる。したがって、検出した板端位置に基づく制御をしても、金属板90の搬送方向に対する傾斜を是正することはできず、この状態で圧延を続けると、金属板90の先端部が、圧延機10による搬送ラインから板幅方向において離れてしまい、圧延後の金属板90を巻き取り装置14で適切に巻き取ることができない場合がある。
 この点、上述した実施形態によれば、ステップS106にて、一対の圧延ロール15,16の入側の第1位置Y1及び出側の第2位置Y2の各々において、金属板90の板幅方向の板端位置(第1板端位置x1及び第2板端位置x2)を検出する。したがって、これらの検出結果に基づいて、先端無張力圧延の開始前における金属板90の長手方向の搬送方向に対する傾斜の程度を把握することができ、即ち、先端無張力圧延の開始時点における金属板90の流出方向の搬送方向に対する傾斜の程度を把握することができる。そして、ステップS108において、第1板端位置x1及び第2板端位置x2の検出結果に基づいて、先端無張力圧延の開始の可否を判定するようにしたので、例えば、上述の検出結果により、金属板90の長手方向(すなわち、圧延開始時における金属板90の流出方向)が搬送方向に対してほぼ平行であると判断されたときに、金属板90の先端無張力圧延を開始可能であると判定することができる。
 よって、上述の実施形態によれば、金属板90の流出方向と搬送方向とがほぼ平行の状態で先端無張力圧延を開始できるので、金属板90の先端部が圧延機10による搬送ラインから板幅方向に外れていくのを抑制することができる。このため、圧延された金属板90を、巻き取り装置14で適切に巻き取りやすくなる。
 また、上述の実施形態によれば、金属板90の流出方向と搬送方向とがほぼ平行の状態で先端無張力圧延を開始できるので、先端無張力圧延開始時に取得された第2板端位置x2を基準として用いることで、先端無張力圧延中に検出される第2板端位置に基づいて、金属板90の蛇行制御等、圧延機10の圧下レベリング制御を適切に行うことができる。
 したがって、先端無張力圧延された金属板90を巻き取り装置14で適切に巻き取ることが可能である。
 また、図2に示す2台の圧延機10(第1圧延機10A及び第2圧延機10B)を含む圧延設備1の場合、制御装置100は、一対の第1圧延ロール15A,16A(第1圧延機10A)における金属板90の第1回目の先端無張力圧延の開始の可否を判定し、第1回目の先端無張力圧延が開始可能であると判定され、一対の第1圧延ロール15A,16Aによる先端無張力圧延が開始された後、一対の第2圧延ロール15B,16Bにおける金属板90の第2回目の先端無張力圧延開始の可否を判定するように構成される。
 すなわち、第1圧延機10Aについて、上述したステップS102~ステップS112を行い、金属板90の先端無張力圧延が開始されたら、その後、第2圧延機10Bについて、上述したステップS102~ステップS112を行う。
 このように、搬送方向に並べられた第1圧延ロール15A,16A(第1圧延機10A)及び第2圧延ロール15B,16B(第2圧延機10B)の各々において、ステップS108にて先端無張力圧延の開始の可否の判定を行い、この判定結果に基づいて、ステップS112にて先端無張力圧延を開始するようにしたので、これらの圧延ロール15,16で先端無張力圧延された金属板90を巻き取り装置で適切に巻き取ることを可能としながら、一対の圧延ロール15A,16A及び一対の圧延ロール15B,16Bを用いて、より効率的に圧延を行うことができる。
 第1板端検出部32及び第2板端検出部34は、圧延ロール15,16による金属板90の搬送方向において、圧延ロール15,16のなるべく近くに設けることが好ましい。これにより、金属板90の先端部を圧延ロール15,16の近くに配置した状態で第1板端検出部32及び第2板端検出部34により第1板端位置x1及び第2板端位置x2を検出可能となるとともに、この検出結果に基づいて、金属板90の先端91を圧延ロール15,16の近くに配置した状態で圧延を開始することができ、金属板90の歩留まりを効果的に改善できるためである。
 幾つかの実施形態では、一対の圧延ロール15,16と巻き取り装置14との搬送方向における距離をL2(図1及び図2参照)としたとき、一対の圧延ロール15,16と第2板端検出部34との搬送方向における距離Lb(図1及び図2参照)は、0.1×L2以下である。
 ここで、一対の圧延ロール15,16と巻き取り装置14との搬送方向における距離とは、一対の圧延ロール15,16の中心軸Oと、巻き取り装置14の中心軸との搬送方向における距離である。また、一対の圧延ロール15,16と第2板端検出部34との搬送方向における距離とは、一対の圧延ロール15,16の中心軸と、第2板端検出部34の中心位置、あるいは、第2板端検出部34による板端検出位置(第2位置Y2)との搬送方向における距離である。なお、圧延ロール15,16の中心軸Oの方向と、巻き出し装置4の中心軸の方向と、巻き取り装置14の中心軸の方向とは、互いに略平行である。
 このように、搬送方向において、第2板端検出部34と圧延ロール15,16との間の距離Lbを比較的短くしたので、無張力圧延開始時における金属板90の先端91を圧延ロールの比較的近くとしながら、無張力圧延開始時及び無張力圧延中に、第2板端位置x2の検出が可能である。したがって、金属板90のうち圧延されない先端部の長さを短くしつつ、先端無張力圧延を適切に行うことができ、これにより金属板90の歩留まりを効果的に向上させることができる。
 幾つかの実施形態では、一対の圧延ロール15,16と巻き出し装置4との搬送方向における距離をL1(図1及び図2参照)としたとき、一対の圧延ロール15,16と第1板端検出部32との搬送方向における距離Laは、0.1×L1以下である。
 ここで、一対の圧延ロール15,16と巻き出し装置4との搬送方向における距離L1とは、一対の圧延ロール15,16の中心軸Oと、巻き出し装置4の中心軸との搬送方向における距離である。また、一対の圧延ロール15,16と第1板端検出部32との搬送方向における距離とは、一対の圧延ロール15,16の中心軸Oと、第1板端検出部32の中心位置、あるいは、第1板端検出部32による板端検出位置(第1位置Y1)との搬送方向における距離である。
 一対の圧延ロール15,16間に通された金属板90を往復させて圧延させる圧延装置(リバースミル)の場合、1パス目終了後の2パス目では、金属板90の搬送方向が逆転し、金属板90の後端側から圧延ロール15,16での圧延が開始される。この点、上述の実施形態によれば、2パス目における搬送方向(1パス目の搬送方向と逆向き)において、第1板端検出部32と圧延ロール15,16との間の距離を比較的短くしたので、2パス目の無張力圧延開始時における金属板90の後端位置を圧延ロールの比較的近くとしながら、無張力圧延開始時及び無張力圧延中に、第1板端位置x1の検出が可能である。したがって、金属板90のうち圧延されない後端部の長さを短くしつつ、先端無張力圧延を適切に行うことができ、これにより金属板90の歩留まりを向上させることができる。
 幾つかの実施形態では、圧延設備1は、搬送方向にて一対の圧延ロール15,16の入側又は出側の少なくとも一方に設けられ、金属板90の板厚を計測するように構成された板厚計を備える。そして、第1板端検出部32又は第2板端検出部34は、搬送方向にて一対の圧延ロール15,16と板厚計との間に位置する。
 図1及び図2に示す実施形態では、搬送方向にて一対の圧延ロール15,16の入側に板厚計36が設けられており、第1板端検出部32は、搬送方向にて一対の圧延ロール15,16と板厚計36との間に位置している。また、図1及び図2に示す実施形態では、搬送方向にて一対の圧延ロール15,16の出側に板厚計38が設けられており、第2板端検出部34は、搬送方向にて一対の圧延ロール15,16と板厚計38との間に位置している。
 金属板90の板厚を制御するために用いられる板厚計36,38は、制御の応答を良好とするため、搬送方向において圧延ロール15,16の近くに設けることが好ましい。この点、上述の実施形態によれば、金属板90の板厚を計測するための板厚計36,38よりも、搬送方向においてさらに圧延ロール15,16の近くに第1板端検出部32又は第2板端検出部34を設けたので、無張力圧延開始時における金属板90の先端位置を圧延ロール15,16により近づけながら、無張力圧延開始時及び無張力圧延中に、第1板端位置x1又は第2板端位置x2の検出が可能である。したがって、金属板のうち圧延されない先端部の長さを短くしつつ、先端無張力圧延を適切に行うことができ、これにより金属板の歩留まりを向上させることができる。
 幾つかの実施形態では、第1板端検出部32又は第2板端検出部34は、放射線(例えばX線やガンマ線)を用いて第1板端位置x1又は第2板端位置x2を検出するように構成される。
 圧延ロール15,16の近傍は、圧延油やヒュームが多量に飛散し、圧延ロール15,16の振動があり、暗い等、過酷な環境であることが多い。この点、上述の実施形態によれば、放射線を用いて板端位置を検出する第1板端検出部32または第2板端検出部34を用いるようにしたので、過酷な環境下の圧延ロール15,16の近傍に配置しても、適切に、板端位置を検出することができる。
 図8は、一実施形態に係る圧延設備1で圧延された金属板90の板幅方向及び長手方向を含む部分的な断面を示す模式図である。図8に示すように、金属板90は、板厚方向において圧延ロール15側に位置する第1表面94と、板厚方向において圧延ロール16側に位置する第2表面95と、を有する。
 図9及び図10は、それぞれ、金属板90の圧延開始時を含む期間における、一対の圧延ロール15,16間のギャップ(ロール間ギャップ)と、時間の関係を示すグラフの一例を示すグラフである。
 幾つかの実施形態では、コントローラ40の圧延制御部44は、上述のステップS108で判定部42により金属板90の先端無張力圧延が開始可能であると判定されたとき、上述のステップS120にて、一対の圧延ロール15,16を金属板90に接触させる(図9の時刻t0)。この時点では、金属板90はまだ圧下されておらず、圧延ロール15,16と金属板90との接触位置(搬送方向における圧延ロール15,16の中心軸Oの位置)は、先端91よりも後流側の位置94a,95aであり(図8参照)、この位置94a,95aにおける板厚はH0(初期値)である。その後、一対の圧延ロール15,16を回転させながら、上述の位置94a,95aよりもさらに後流側の位置94b、95bまで(図8参照)、金属板90の搬送に伴い一対の圧延ロール15,16間のギャップが金属板90の目標板厚Hcに対応する管理値dcとなるまで徐々に減少するように、一対の圧延ロール15,16の回転数及び圧下量を調節する(図9の時刻t1からt2)。なお、時刻t2以後は、圧延ロール15,16を通過した金属板90の板厚が目標板厚Hcとなるように、ロール間ギャップは目標板厚Hcに対応する管理値dcに維持される。
 その結果、金属板90の先端91を含む部分は、図8中に実線で示す形状となる。すなわち、金属板90は、先端91を含み、板厚がH0である先端部90aと、板厚が目標板厚Hcに維持される後続部90cと、金属板の長手方向にて、先端部90aと後続部90cとの間に位置する遷移部90bと、を有する。遷移部90bでは、位置94a,95aから位置94b、95bにかけて、板厚がH0からHcまで徐々に減少している。
 金属板90の先端部(図8中の符号90aで示す部分)を一対の圧延ロール15,16間に通した状態で、圧延ロール15,16による金属板90の圧下及び先端無張力圧延を開始する場合、金属板90のうち、圧延ロール15,16により圧延されない先端部90aと、圧延される後続部90cとの間で板厚の差が大きくなることがある。例えば、仮に、図10に示すように、一対の圧延ロール15,16間のギャップを目標板厚Hcに対応する管理値dcまで狭くし(図10の時刻t1)、その状態で圧延ロール15,16の回転を開始すると(図10の時刻t1)、金属板90の形状は、図8中の二点鎖線で示すように、圧延が開始される位置94a,95aよりも前方の先端部90a(板厚はH0)と、上述の位置94a,95aよりも後方の後続部90c(板厚はHt)とで板厚が急激に変化する形状となる。
 この場合、巻き取り装置14で金属板90を巻き取るとき等に、上述の先端部90aと後続部90cとの境界に応力が集中し、この境界にて金属板90が切断されてしまう場合がある。
 この点、上述の実施形態では、金属板90の先端無張力圧延開始時に、一対の圧延ロール15,16を金属板90に接触させた後、圧延ロール15,16を回転させながら、金属板90の搬送に伴い圧延ロール15,16間のギャップが金属板90の目標板厚Htに対応する管理値dcとなるまで徐々に減少するように、圧延ロール15,16の回転数及び圧下量を調節する。したがって、圧延前と同じ板厚H0を有する先端部90aと、目標板厚Hcに圧延された後続部90cとの間に、板厚が徐々に減少する遷移部90b(図8参照)が形成される。よって、巻き取り装置14で金属板を巻き取るとき等における、上述の先端部90aと後続部90cとの境界に生じ得る応力集中を緩和することができる。これにより、圧延後の金属板90を巻き取り装置14でより適切に巻き取ることが可能となる。
 幾つかの実施形態では、上述のように、金属板90の搬送に伴い一対の圧延ロール15,16間のギャップが金属板90の目標板厚Hcに対応する管理値dcとなるまで徐々に減少させる際、金属板90の長手方向に対する上述の遷移部90bにおける第1表面94の傾斜角度α1、または、金属板90の長手方向に対する上述の遷移部90bにおける第2表面95の傾斜角度α2が20度以下になるように、一対の圧延ロール15,16の回転数及び圧下量を調節する。
 これにより、遷移部90b(図8参照)における板厚変化が急激になりすぎないため、巻き取り装置14で金属板を巻き取るとき等における、上述の先端部90aと後続部90cとの境界に生じ得る応力集中を効果的に緩和し、圧延後の金属板90を巻き取り装置14でより適切に巻き取ることが可能となる。
 次に、上述のようにして、金属板90の先端無張力圧延を開始した後の圧延装置2の運転方法(図4のフローチャートに続く部分)、及び、当該運転方法を実行するための圧延設備1の制御装置100の構成についてさらに説明する。
 幾つかの実施形態では、制御装置100は、金属板90に加えられる出側張力がゼロの状態で、一対の圧延ロール15,16により金属板90を圧延しながら(即ち、金属板90の先端無張力圧延を行いながら)、一対の圧延ロール15,16の出側の位置において金属板90の板幅方向の板端位置xを検出するように構成された検出部を備えている。図1及び図2に示す実施形態では、圧延ロール15,16の出側に設けられた第2板端検出部34が、上述の検出部として機能する。
 また、幾つかの実施形態では、制御装置100のコントローラ40(図3参照)は、第1レベリング部46、及び、第2レベリング部48を備えている。
 第1レベリング部46は、上述の検出部としての第2板端検出部34(以下、単に「第2板端検出部34」ともいう。)による板端位置の検出結果が基準位置から板幅方向の一方側(第1端縁92又は第2端縁93の一方側;図12A等参照)に外れたとき、圧延ロール15,16からの金属板90の流出方向が圧延装置2における金属板90の搬送方向に沿うように、一対の圧延ロール15,16の圧下レベリング制御を行うように構成される。
 第2レベリング部48は、第1レベリング部46による圧下レベリング制御の後、圧延ロール15,16からの金属板90の流出方向を搬送方向に対して板幅方向の他方側(第1端縁92又は第2端縁93の他方側;図12A等参照)にずらした後、金属板90の流出方向が搬送方向に戻るように、一対の圧延ロール15,16の圧下レベリング制御を行うように構成される。
 上述の制御装置100では、先端無張力の状態で金属板90の圧延を行いながら、第2板端検出部34(検出部)により、圧延ロール15,16の出側の位置において金属板90の板幅方向の板端位置xを検出するようにしたので、検出された板端位置xが基準位置から板幅方向の一方側に外れたことに基づいて、金属板90の流出方向の板幅方向における一方側へのずれ(金属板90の先端曲がり)が生じたことを検出することができる。そして、金属板90の先端曲がりが検出されたときには、第1レベリング部46による圧下レベリング制御により、金属板90の流出方向を圧延装置2における金属板90の搬送方向に沿わせた後、第2レベリング部48による圧下レベリング制御により、金属板90の流出方向を搬送方向に対して板幅方向の他方側にずらし、その後金属板90の流出方向が搬送方向に沿うようにしたので、金属板90の先端曲がりを是正し、金属板90の先端縁(先端91)を、巻き取り装置14の軸方向に平行に近づけた状態で、先端無張力圧延を続行することができる。したがって、上記構成によれば、先端無張力圧延された金属板90を巻き取り装置14で適切に巻き取ることができる。
 また、幾つかの実施形態では、コントローラ40は、伸び差算出部50、ずれ角度算出部52、または、残り時間算出部54の少なくとも1つを備えていてもよい。
 伸び差算出部50は、第2板端検出部34で検出した板端位置xが基準位置から前記一方側に向かって離れてから、第1レベリング部46による圧下レベリング制御により板端位置xが基準位置に戻るまでの金属板90の前記他方側における前記一方側に対する相対的な第1伸び差d1を算出するように構成される。
 ずれ角度算出部52は、第1レベリング部46による圧下レベリング制御の開始時点における金属板90の流出方向の搬送方向に対する前記一方側への第1ずれ角度θ1を取得し、該第1ずれ角度θ1基づいて、第2レベリング部による圧下レベリング制御の実行中における金属板90の流出方向の搬送方向に対する前記他方側への第2ずれ角度θ2を決定するように構成される。
 残り時間算出部54は、金属板90の先端91が一対の圧延ロール15,16の下流側に設けられた巻き取り装置14に到達するまでの残り時間Tcを算出するように構成される。
 以下、図1~図3及び図11~図15を参照して、幾つかの実施形態に係る制御装置100による圧延装置2の運転方法について説明するが、以下に説明する制御装置100による処理の一部又は全部をマニュアルで行うことにより圧延装置2を運転するようにしてもよい。
 図11及び図14は、それぞれ、一実施形態に係る圧延装置2の運転方法の一例を示すフローチャートである。図12A~図12Dは、図11に示すフローチャートに基づき圧延装置2の運転を行うときの、金属板90の状態遷移を示す図である。図13は、金属板90の第1伸び差及び第2伸び差の算出方法の一例を説明するためのグラフであり、このグラフにおいて、横軸は時間を示し、縦軸は後述するずれ量Δeを示す。図15A~図15Dは、図14に示すフローチャートに基づき圧延装置2の運転を行うときの、金属板90の状態遷移を示す図である。
 図11に示すフローチャートに係る実施形態では、まず、金属板90に加えられる出側張力がゼロの状態で、一対の圧延ロール15,16により金属板90を圧延しながら(即ち、金属板90の先端無張力圧延を行いながら)、第2板端検出部34を用いて、一対の圧延ロール15,16の出側の位置(図12A~図12Dに示す「板端検出位置」)において金属板90の板幅方向の板端位置xを検出する(ステップS202;検出ステップ)。なお、図13のグラフにおいて、時刻t20は、金属板90の先端無張力圧延を開始した時点である。
 次に、ステップS202で検出された板端位置xBの、板幅方向における基準位置から板幅方向の一方側(第1端縁92又は第2端縁93の一方側)へのずれ量Δeを算出し(ステップS204)、算出したずれ量Δeと、閾値Δe_thとを比較する(ステップS206)。
 ここで、基準位置とは、金属板90の長手方向が、圧延装置2による搬送方向(圧延ロール15,16の中心軸に直交する方向)と平行であるときの、板幅方向における特定の位置である。図12A~図12Dに示す例では、金属板90の長手方向が圧延装置2による搬送方向と平行であるときの金属板90の第1端縁92の位置を「基準位置」としている。なお、金属板90の長手方向が圧延装置2による搬送方向と平行であるときの金属板90の板幅方向中央位置(中心線Lcの位置)を「基準位置」としてもよい。
 図12Aに示す段階においては、板幅方向において、基準位置と板端位置xとが一致しており、ステップS204で算出されるずれ量Δeはゼロである。したがって、ステップS206では、ずれ量Δeは閾値よりも小さいと判定され(ステップS206のNO)、ステップS202に戻って、再度、第2板端検出部34により板端位置xの検出を行う。
 図12Bは、図12Aに示す状態から、何らかの外乱(例えば、金属板90の板幅方向における板厚の不均一さ)により、金属板90の先端曲がりが発生した段階を示す。図12Bに示す例では、ステップS202で検出された板端位置xが、基準位置から板幅方向の第1端縁92側(一方側)に外れている。すなわち、圧延ロール15,16からの金属板90の流出方向が、圧延ロール15,16による搬送方向に対し、板幅方向の第1端縁92側(一方側)にずれている。このときステップS204で算出されるずれ量Δeはゼロより大きくなる。なお、図13に示すグラフでは、時刻t21においてずれ量Δeがゼロより大きくなり始め、時刻t23にてずれ量Δeが極大(図12Bに示す状態)となっている。
 ステップS204で算出されるずれ量Δeが閾値Δe_th以下であるときは(ステップS206のNO)、ステップS202に戻って、再度、第2板端検出部34により板端位置xの検出を行う。一方、ステップS204で算出されるずれ量Δeが閾値Δe_thより大きくなったら(ステップS206のYES、図13のグラフの時刻t23)、ステップS208において、ずれ量Δeがゼロになるように、圧下装置22による圧延ロール15,16のレベリング制御を行う(ステップS208)。すなわち、ステップS208では、圧延ロール15,16からの金属板90の流出方向が圧延装置2における金属板90の搬送方向に沿うように、一対の圧延ロール15,16の圧下レベリング制御を行う(第1レベリングステップ)。図12Cは、ステップS208終了時(上述のずれ量Δeがゼロになったとき;図13のグラフの時刻t24)の段階を示す図である。
 次に、第2板端検出部34で検出される板端位置xが基準位置から板幅方向の前記一方側(ここでは第1端縁92側)に向かって離れてから(図12Bに示す状態)、上述の第1レベリングステップ(ステップS208)で第2板端検出部34で検出される板端位置xが基準位置に戻るまで(図12Cに示す状態になるまで)の金属板90の前記他方側(ここでは第2端縁93側)における前記一方側(第1端縁92側)に対する相対的な第1伸び差E1を算出する(ステップS210;伸び差算出ステップ)。ここで、図12B及び図12Cに示す例では、第2端縁93側における金属板90の伸びがE1であるのに対し、第1端縁92側における金属板90の伸びはゼロである。したがって、上述の第1伸び差はE1である。
 伸び差算出ステップ(ステップS210)では、第2板端検出部34で検出される板端位置xが基準位置から一方側(ここでは第1端縁92側)に向かって離れてから(図13のグラフの時刻t21)、第1レベリングステップで板端位置xが基準位置に戻る(図13のグラフの時刻t24)までの、基準位置に対する板端位置xのずれ量Δeの時間積分(グラフ図13に示す面積S1B’)に基づいて、第1伸び差E1を算出する。ここで、グラフ図13に示す面積S1B’に基づいて第1伸び差E1を算出できるのは、図12Bにおいて符号S1Aで示す三角形と、符号S1Bで示す三角形とが相似であり、図12Bにおいて符号S1Bで示す三角形と図13のグラフの面積S1B’とは、特定の相関関係があるためである。
 次に、金属板90の先端91が一対の圧延ロール15,16の下流側に設けられた巻き取り装置14に到達するまでの残り時間Tcを算出する(ステップS212;残り時間算出ステップ)。残り時間Tcの起算点は、例えば、第1レベリングステップで上述のずれ量Δeがゼロになった時点(ステップS208の終了時点;図13のグラフの時刻t24)、又は、第2レベリングステップの開始時点(後述のステップS214~S218の開始時点;図13のグラフの時刻t25)であってもよい。なお、図13のグラフでは、第2レベリングステップの開始時点(時刻t25)から、時刻t27までの時間が、残り時間Tcである。なお残り時間Tcは、金属板90の先端91と、巻き取り装置14との間の距離と、金属板90の搬送速度と、に基づいて算出することができる。
 次に、圧延ロール15,16からの金属板90の流出方向を搬送方向に対して板幅方向の他方側(ここでは第2端縁93側)にずらした後、金属板90の流出方向が搬送方向に戻るように、一対の圧延ロール15,16の圧下レベリング制御を行う(ステップS214~S218;第2レベリングステップ)。ここで、図12Dは、第2レベリングステップが終了した時点の状態(即ち、ステップS218の終了時点の状態)を示す。
 ステップS214では、残り時間Tc内に第1伸び差E2と等しい大きさの第2伸び差E2(図12D参照)を金属板90に与えるように、圧下装置22及び圧延ロール15,16の駆動モータに対する制御指令値を算出する。ここで、第2伸び差E2は、金属板90の前記一方側(ここでは第1端縁92側)における前記他方側(ここでは第2端縁93側)に対する相対的な第2伸び差である。
 すなわち、第2レベリングステップを行うことにより、図12D及び図13に示すように、第2端縁93側に板端位置xがずれてずれ量Δeが生じる。そして、この第2端縁93側におけるΔeの時間積分値(図13のグラフにおける面積S2B’)が、図13のグラフにおける面積S2A’と等しくなるように、圧延ロール15,16のレベリング制御を行うことで、図12Dにおいて符号S2Bで示す三角形が形成されるように、金属板90に対して第2伸び差E2(図12D参照)を与えることができる。これは、図12Dにおいて符号S2Bで示す三角形と図13のグラフの面積S2B’とは、特定の相関関係があるとともに、図12Dにおいて符号S2Aで示す三角形と、符号S2Bで示す三角形とが相似であるからである。
 ステップS216では、ステップS214で算出した制御指令値に基づき、圧延ロール15,16のレベリング制御を行う。なお、第1伸び差E1と第2伸び差E2との差|E1-E2|が規定範囲内とならない間はステップS216の制御を繰り返し行う(ステップS218のNO)。そして、上述の差|E1-E2|が規定範囲内となったら(ステップS218のYES)、ステップS202~S206で検出された金属板90の先端曲がりは是正されたことになるので、再度、ステップS202に戻って、次に生じ得る金属板90の先端曲がりの検出を行う。
 金属板90の先端曲がりにより生じる第1伸び差E1は、金属板90の流出方向の板幅方向おける一方側へのずれの大きさを示す。この点、上述の実施形態によれば、金属板90の先端曲がりにより生じる第1伸び差E1を算出するとともに、上述の第2伸び差E2が上述の第1伸び差E1と等しくなるように圧延ロール15,16の圧下レベリング制御を行う。すなわち、金属板90の先端曲がりにより金属板90の一端側(ここでは第1端縁92側)に生じた伸び(第1伸び差E1に対応する伸び)と同じ大きさの伸び(第2伸び差E2に対応する伸び)を、金属板90の他端側(ここでは第2端縁93側)に与えるように圧下レベリング制御を行うようにしたので、金属板90の先端曲がりを適切に是正し、金属板90の先端縁(先端91)を、巻き取り装置14の軸方向に平行に近づけることができる。よって、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
 また、金属板90の先端曲がりにより金属板90に生じる上述の第1伸び差E1は、上述の基準位置に対する板端位置xのずれ量Δeの時間積分と相関関係を有し、典型的には、第1伸び差E1と、前述のずれ量Δeの時間積分とが比例関係にある。この点、上述の実施形態によれば、前述のずれ量Δeの時間積分に基づいて、第1伸び差E1を適切に算出することができる。したがって、第2レベリングステップにおいて、このように算出した第1伸び差E1に等しい第2伸び差E2を金属板90に与えるように圧下レベリング制御を行うことにより、金属板90の先端曲がりを適切に是正することができる。
 また、上述の実施形態では、金属板90の先端曲がり発生後、金属板90の先端91が巻き取り装置14に到達するまでの残り時間Tcを算出し、算出された残り時間Tc内に第2伸び差E2を金属板90に与えるようにしたので、金属板90が巻き取り開始前に金属板90の先端曲がりを適切に是正することができる。
 上述した実施形態では、検出された板端位置xの基準位置に対するずれ量Δeの時間積分に基づいて、第1伸び差E1を算出し、この第1伸び差E1に基づいて、圧延ロール15,16の圧下レベリング制御を行った。これに対し、図14のフローチャートによる実施形態では、金属板90の先端曲がりが生じたときの、金属板90の流出方向の搬送方向に対するずれ角度に基づいて、圧延ロール15,16の圧下レベリング制御を行う。より具体的には、図14のフローチャートに係る実施形態では、第1レベリングステップの開始時点における金属板90の流出方向の搬送方向に対する一方側(ここでは第1端縁92側)への第1ずれ角度θ1(図15B参照)に基づいて、第2レベリングステップ実行中における流出方向の搬送方向に対する他方側(ここでは第2端縁93側)への第2ずれ角度θ2(図15C参照)を決定する。
 図14のフローチャートにおいて、ステップS302,S304,S306,S312,S316,S318の内容は、図11に示すステップS202,S204,S206,S212,S216,S218と同様なので、詳細な説明は省略する。
 図14に示すフローチャートに係る実施形態では、ステップS302(検出ステップ)で検出された板端位置xに基づきステップS304で算出されたずれ量Δeが閾値より大きい場合(ステップS306のYES)、この時点(第1レベリングステップの開始時点;図15Bに示す段階)での、金属板90の流出方向の搬送方向に対する一方側(ここでは第1端縁92側)への第1ずれ角度θ1(図15B参照)を取得する(ステップS308)。第1ずれ角度θ1は、ずれ量Δeと、搬送方向における圧延ロール15,16の中心軸Oと第2板端検出部34による板端検出位置との距離mに基づき取得してもよい(tanθ1=Δe/m)。あるいは、撮像装置などによりキャプチャされた画像に基づいて、第1ずれ角度θ1を取得してもよい。
 次に、ステップS308で取得した第1ずれ角度θ1に基づいて、第2レベリングステップにて金属板90に与えるべき第2ずれ角度θ2、すなわち、金属板90の流出方向の搬送方向に対する他方側(ここでは第2端縁93側)への第2ずれ角度θ2を決定する(ステップS310;図15C参照)。
 そして、ステップS312で算出された残り時間Tc以内に、金属板90の他方側(ここでは第2端縁93側)へのずれ角度が上述の第2ずれ角度θ2となるような、圧下装置22及び圧延ロール15,16の駆動モータに対する制御指令値を算出する(ステップS314)。そして、このように算出した制御指令値に基づいて、圧延ロール15,16のレベリング制御(第1レベリングステップ及び第2レベリングステップ)を行う(ステップS316)。そして、金属板90の他方側(ここでは第2端縁93側)へのずれ角度が上述の第2ずれ角度θ2となったら(ステップS318のYES)、ステップS302~S306で検出された金属板90の先端曲がりは是正されたことになるので、再度、ステップS302に戻って、次に生じ得る金属板90の先端曲がりの検出を行う。
 金属板90の先端曲がりにより生じる金属板90の流出方向の搬送方向に対する一方側(ここでは第1端縁92側)への第1ずれ角度θ1は、前述の第1伸び差E1と同様に、金属板90の流出方向の板幅方向おける前記一方側(第1端縁92側)へのずれの大きさを示す。この点、上述の実施形態では、前述の第1ずれ角度θ1に基づいて、第2レベリングステップ実行中における流出方向の搬送方向に対する他方側への第2ずれ角度θ2を適切に決定することができる。したがって、このように決定された第2ずれ角度θ2を金属板90に与えるように圧下レベリング制御を行うことにより、金属板90の先端曲がりを適切に是正し、金属板90の先端縁を、巻き取り装置14の軸方向に平行に近づけることができる。よって、先端無張力圧延された金属板90を巻き取り装置14で適切に巻き取ることができる。
 なお、ステップS310で決定された第2ずれ角度θ2は、ステップS316の第2レベリングステップにて、一度に金属板90に与えてもよいし(図15C参照)、あるいは、複数回に分割して、金属板90に与えてもよい(図15D参照)。図15Dにおいては、金属板90の他方側(第2端縁93側)へのずれ角度として、1回目に角度θ2a、2回目に角度θ2b、3回目に角度θ2cを与えている。ここで、θ2a、θ2b及びθ2cの和は、θ2である(θ2a+θ2b+θ2c=θ2)。
 この場合、金属板90の他方側(第2端縁93側)に一度に大きな第2ずれ角度θ2を与える場合(図15C参照)に比べて、少量の第2ずれ角度θ2a、θ2b及びθ2cを分割して金属板90に与えることになるため、より安定的に、金属板90の先端曲がりを是正することができる。
 幾つかの実施形態では、第1レベリングステップの終了後、第1レベリングステップに要した時間以下の時間内に、第2レベリングステップを開始する。
 例えば、図11~図12Dを参照して説明した実施形態では、第1レベリングステップの所要時間(図11のステップS206のYES判定から、ステップS208の終了時点まで)は、図13のグラフ中の時刻t22から時刻t24までである。そして、第1レベリングステップの終了後、第2レベリングステップ開始までの時間は、図13のグラフ中の時刻t24からt25であり、上述の第1レベリングステップの所要時間よりも、短くなっている。
 また、図14~15Dを参照して説明した実施形態では、ステップS316において第1レベリングステップ及び第2レベリングステップを区別なく(連続的に)行っており、第1レベリングステップ終了後、第2レベリングステップ開始までの時間は実質的にゼロであり、第1レベリングステップ(金属板90の流出方向が一方側(第1端縁92側)にずれてから、搬送方向と同じ方向に戻るまで)の所要時間よりも小さい。
 この場合、第1レベリングステップで金属板90の流出方向を搬送方向に沿わせた後、第1レベリングステップに要した時間以下の時間内に、第2レベリングステップを開始して、金属板90の流出方向を他方側(第2端縁93側)にずらす。即ち、第1レベリングステップ終了後に、時間をあまり空けずに金属板90の流出方向を他方側(第2端縁93側)にずらすことで、第2レベリングステップ終了時点での、金属板30の先端曲がり部における板幅方向の中心位置と、圧延ロール15,16における金属板90の板幅方向の中心位置との板幅方向におけるずれ量(図12Dに示すΔd)を小さくすることができる。(言い換えると、図12Cや図12Dに示される矩形部A1の面積をなるべく小さくすることができる。)例えば図15Cに示すように、第1レベリングステップと第2レベリングステップとを連続的に行うことにより、上述のずれ量Δdはほとんどゼロとなる。よって、先端無張力圧延された金属板90を巻き取り装置14でより適切に巻き取ることができる。
 以下、幾つかの実施形態に係る圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備について概要を記載する。
(1)本発明の少なくとも一実施形態に係る圧延装置の運転方法は、
 金属板を挟むように設けられる一対の圧延ロールを含む圧延装置の運転方法であって、
 前記金属板に加えられる出側張力がゼロの状態で、前記一対の圧延ロールにより前記金属板を圧延しながら、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出する検出ステップと、
 前記検出ステップにおける前記金属板幅端位置の検出結果が基準位置から板幅方向の一方側に外れたとき、前記圧延ロールからの前記金属板の流出方向が前記圧延装置における前記金属板の搬送方向に沿うように、前記一対の圧延ロールの圧下レベリング制御を行う第1レベリングステップと、
 前記第1レベリングステップの後、前記圧延ロールからの前記金属板の流出方向を前記搬送方向に対して前記板幅方向の他方側にずらした後、前記金属板の前記流出方向が前記搬送方向に戻るように、前記一対の圧延ロールの圧下レベリング制御を行う第2レベリングステップと、
を備える。
 上記(1)の方法によれば、先端無張力の状態で金属板の圧延を行いながら、圧延ロールの出側の位置において金属板の板幅方向の板端位置を検出するようにしたので、検出された板端位置が基準位置から板幅方向の一方側に外れたことに基づいて、金属板の流出方向の板幅方向おける一方側へのずれ(金属板の先端曲がり)が生じたことを検出することができる。そして、金属板の先端曲がりが検出されたときには、圧下レベリング制御により、金属板の流出方向を圧延装置における金属板の搬送方向に沿わせた後、金属板の流出方向を搬送方向に対して板幅方向の他方側にずらし、その後流出方向が搬送方向に沿うように圧下レベリング制御を行うようにしたので、金属板の先端曲がりを是正し、金属板の先端縁を、巻き取り装置の軸方向に平行に近づけた状態で、先端無張力圧延を続行することができる。したがって、上記(1)の方法によれば、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
(2)幾つかの実施形態では、上記(1)の方法において、
 前記板端位置が前記基準位置から前記一方側に向かって離れてから、前記第1レベリングステップで前記板端位置が前記基準位置に戻るまでの前記金属板の前記他方側における前記一方側に対する相対的な第1伸び差を算出する伸び差算出ステップを備え、
 前記第2レベリングステップでは、前記金属板の前記一方側における前記他方側に対する相対的な第2伸び差が、前記第1伸び差と等しくなるように、前記一対の圧延ロールの圧下レベリング制御を行う。
 金属板の先端曲がりにより生じる第1伸び差は、金属板の流出方向の板幅方向おける一方側へのずれの大きさを示す。この点、上記(2)の方法によれば、金属板の先端曲がりにより生じる第1伸び差を算出するとともに、上述の第2伸び差が上述の第1伸び差と等しくなるように圧延ロールの圧下レベリング制御を行う。すなわち、金属板の先端曲がりにより金属板の一端側に生じた伸び(第1伸び差に対応する伸び)と同じ大きさの伸び(第2伸び差に対応する伸び)を、金属板の他端側に与えるように圧下レベリング制御を行うようにしたので、金属板の先端曲がりを適切に是正し、金属板の先端縁を、巻き取り装置の軸方向に平行に近づけることができる。よって、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
(3)幾つかの実施形態では、上記(2)の方法において、
 前記伸び差算出ステップでは、前記板端位置が前記基準位置から前記一方側に向かって離れてから、前記第1レベリングステップで前記板端位置が前記基準位置に戻るまでの、前記基準位置に対する前記板端位置のずれ量の時間積分に基づいて、前記第1伸び差を算出する。
 金属板の先端曲がりにより金属板に生じる上述の第1伸び差は、上述の基準位置に対する板端位置のずれ量の時間積分と相関関係を有し、典型的には、第1伸び差と、前述のずれ量の時間積分とが比例関係にある。この点、上記(3)の方法によれば、前述のずれ量の時間積分に基づいて、第1伸び差を適切に算出することができる。したがって、第2レベリングステップにおいて、このように算出した第1伸び差に等しい第2伸び差を金属板に与えるように圧下レベリング制御を行うことにより、金属板の先端曲がりを適切に是正し、金属板の先端縁を、巻き取り装置の軸方向に平行に近づけることができる。よって、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
(4)幾つかの実施形態では、上記(2)又は(3)の方法において、
 前記金属板の先端が前記一対の圧延ロールの下流側に設けられた巻き取り装置に到達するまでの残り時間を算出する残り時間算出ステップを備え、
 前記第2レベリングステップでは、前記残り時間内に前記第1伸び差と等しい大きさの前記第2伸び差を前記金属板に与えるように、前記一対の圧延ロールの圧下レベリング制御を行う。
 上記(4)の方法によれば、金属板の先端曲がり発生後、金属板の先端が巻き取り装置に到達するまでの残り時間を算出し、算出された残り時間内に第2伸び差を金属板に与えるようにしたので、金属板が巻き取り開始前に金属板の先端曲がりを適切に是正し、金属板の先端縁を巻き取り装置の軸方向に平行に近づけることができる。よって、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
(5)幾つかの実施形態では、上記(1)乃至(4)の何れかの方法において、
 前記第1レベリングステップの開始時点における前記金属板の前記流出方向の前記搬送方向に対する前記一方側への第1ずれ角度θ1に基づいて、前記第2レベリングステップ実行中における前記流出方向の前記搬送方向に対する前記他方側への第2ずれ角度θ2を決定する。
 金属板の先端曲がりにより生じる金属板の流出方向の搬送方向に対する前記一方側への第1ずれ角度θ1は、前述の第1伸び差と同様に、金属板の流出方向の板幅方向おける前記一方側へのずれの大きさを示す。この点、上記(5)の方法によれば、前述の第1ずれ角度θ1に基づいて、第2レベリングステップ実行中における流出方向の搬送方向に対する他方側への第2ずれ角度θ2を適切に決定することができる。したがって、このように決定された第2ずれ角度θ2を金属板に与えるように圧下レベリング制御を行うことにより、金属板の先端曲がりを適切に是正し、金属板の先端縁を、巻き取り装置の軸方向に平行に近づけることができる。よって、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れかの構成において、
 第1レベリングステップの終了後、前記第1レベリングステップに要した時間以下の時間内に、前記第2レベリングステップを開始する。
 上記(6)の構成によれば、第1レベリングステップで金属板の流出方向を搬送方向に沿わせた後、第1レベリングステップに要した時間以下の時間内に、第2レベリングステップを開始して、金属板の流出方向を他方側にずらす。即ち、第1レベリングステップ終了後に、時間をあまり空けずに金属板の流出方向を他方側にずらすことで、第2レベリングステップ終了時点での、金属板の先端曲がり部における板幅方向の中心位置と、圧延ロールにおける金属板の板幅方向の中心位置との板幅方向におけるずれ量を小さくすることができる。よって、よって、先端無張力圧延された金属板を巻き取り装置でより適切に巻き取ることができる。
(7)幾つかの実施形態では、上記(1)乃至(6)の何れかの方法において、
 前記検出ステップの前、前記搬送方向において異なる2か所にて前記板端位置を検出し、前記2か所における前記板端位置の検出結果の差が規定範囲内であるときに、前記一対の圧延ロールによる前記金属板の圧延を開始する圧延開始ステップを備える。
 圧延装置による搬送方向に対して金属板の長手方向が傾斜した状態で先端無張力圧延を開始してしまうと、圧延ロールの出側にて検出される板端位置に基づいて、金属板の流出方向の板幅方向おける一方側へのずれ(金属板の先端曲がり)が生じたことを適切に検出できない場合がある。この点、上記(7)の方法によれば、搬送方向において異なる2か所にて板幅方向の板端位置を検出し、これらの検出結果の差が規定範囲内であるときに、金属板の先端無張力圧延を開始する。すなわち、2か所で検出された板端位置の差が小さく、金属板の長手方向が搬送方向に対して平行に近いことを確認してから、先端無張力圧延を開始するようにしたので、圧延開始後に、圧延ロールの出側にて検出される板端位置に基づいて、金属板の流出方向の板幅方向おける一方側へのずれ(金属板の先端曲がり)が生じたことを適切に検出することができる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れかの方法において、
 前記検出ステップの前、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出し、前記金属板の板幅方向における基準位置と前記板端位置との差が規定範囲内であるときに、前記一対の圧延ロールによる前記金属板の圧延を開始する圧延開始ステップを備える。
 上記(8)の構成によれば、先端無張力圧延の開始前に、金属板の板幅方向における基準位置と板端位置との差を規定範囲内とするようにしたので、金属板を板幅方向において適切な位置に配置してから先端無張力圧延を開始することができる。例えば、圧延ロールの中央位置と、金属板の板幅方向中央位置とを合わせた状態で、先端無張力圧延を開始することができる。よって、上記(8)の方法によれば、先端無張力圧延された金属板を巻き取り装置でより適切に巻き取ることができる。
(9)本発明の少なくとも一実施形態に係る圧延装置の制御装置は、
 金属板を挟むように設けられる一対の圧延ロールを含む圧延装置を制御するための制御装置であって、
 前記金属板に加えられる出側張力がゼロの状態で、前記一対の圧延ロールにより前記金属板を圧延しながら、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出するように構成された検出部と、
 前記検出部による前記板端位置の検出結果が基準位置から板幅方向の一方側に外れたとき、前記圧延ロールからの前記金属板の流出方向が前記圧延装置における前記金属板の搬送方向に沿うように、前記一対の圧延ロールの圧下レベリング制御を行うように構成された第1レベリング部と、
 前記第1レベリング部による前記圧下レベリング制御の後、前記圧延ロールからの前記金属板の流出方向を前記搬送方向に対して前記板幅方向の他方側にずらした後、前記金属板の前記流出方向が前記搬送方向に戻るように、前記一対の圧延ロールの圧下レベリング制御を行うように構成された第2レベリング部と、
を備える。
 上記(9)の構成によれば、先端無張力の状態で金属板の圧延を行いながら、圧延ロールの出側の位置において金属板の板幅方向の板端位置を検出するようにしたので、検出された板端位置が基準位置から板幅方向の一方側に外れたことに基づいて、金属板の流出方向の板幅方向おける一方側へのずれ(金属板の先端曲がり)が生じたことを検出することができる。そして、金属板の先端曲がりが検出されたときには、圧下レベリング制御により、金属板の流出方向を圧延装置における金属板の搬送方向に沿わせた後、金属板の流出方向を搬送方向に対して板幅方向の他方側にずらし、その後流出方向が搬送方向に沿うように圧下レベリング制御を行うようにしたので、金属板の先端曲がりを是正し、金属板の先端縁を、巻き取り装置の軸方向に平行に近づけた状態で、先端無張力圧延を続行することができる。したがって、上記(9)の構成によれば、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
(10)本発明の少なくとも一実施形態に係る圧延設備は、
 金属板を挟むように設けられる一対の圧延ロールを含む圧延装置と、
 上記(9)に記載の制御装置と、
を備える。
 上記(10)の構成によれば、先端無張力の状態で金属板の圧延を行いながら、圧延ロールの出側の位置において金属板の板幅方向の板端位置を検出するようにしたので、検出された板端位置が基準位置から板幅方向の一方側に外れたことに基づいて、金属板の流出方向の板幅方向おける一方側へのずれ(金属板の先端曲がり)が生じたことを検出することができる。そして、金属板の先端曲がりが検出されたときには、圧下レベリング制御により、金属板の流出方向を圧延装置における金属板の搬送方向に沿わせた後、金属板の流出方向を搬送方向に対して板幅方向の他方側にずらし、その後流出方向が搬送方向に沿うように圧下レベリング制御を行うようにしたので、金属板の先端曲がりを是正し、金属板の先端縁を、巻き取り装置の軸方向に平行に近づけた状態で、先端無張力圧延を続行することができる。したがって、上記(10)の構成によれば、先端無張力圧延された金属板を巻き取り装置で適切に巻き取ることができる。
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
1     圧延設備
2     圧延装置
4     巻き出し装置
5     圧延ロール
6     入側ピンチロール
8     サイドガイド
10    圧延機
10A   第1圧延機
10B   第2圧延機
12    出側ピンチロール
14    巻き取り装置
15    圧延ロール
15A   第1圧延ロール
15B   第2圧延ロール
16    圧延ロール
16A   第1圧延ロール
16B   第2圧延ロール
17    中間ロール
18    中間ロール
19    バックアップロール
20    バックアップロール
22    圧下装置
30    金属板
32    第1板端検出部
32A   第1板端検出部
32B   第1板端検出部
34    第2板端検出部
34A   第2板端検出部
34B   第2板端検出部
36    板厚計
38    板厚計
40    コントローラ
42    判定部
44    圧延制御部
46    第1レベリング部
48    第2レベリング部
50    差算出部
52    ずれ角度算出部
54    時間算出部
90    金属板
90a   先端部
90b   遷移部
90c   後続部
91    先端
92    第1端縁
93    第2端縁
94    第1表面
95    第2表面
100   制御装置
A1    矩形部
Lc    中心線
O     中心軸
S2A’  面積
S2B’  面積
Y1    第1位置
Y2    第2位置
m     距離
x1    第1板端位置
x2    第2板端位置
    板端位置
ref  基準位置
Δe    ずれ量
θ1    第1ずれ角度
θ2    第2ずれ角度

Claims (10)

  1.  金属板を挟むように設けられる一対の圧延ロールを含む圧延装置の運転方法であって、
     前記金属板に加えられる出側張力がゼロの状態で、前記一対の圧延ロールにより前記金属板を圧延しながら、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出する検出ステップと、
     前記検出ステップにおける前記板端位置の検出結果が基準位置から板幅方向の一方側に外れたとき、前記圧延ロールからの前記金属板の流出方向が前記圧延装置における前記金属板の搬送方向に沿うように、前記一対の圧延ロールの圧下レベリング制御を行う第1レベリングステップと、
     前記第1レベリングステップの後、前記圧延ロールからの前記金属板の流出方向を前記搬送方向に対して前記板幅方向の他方側にずらした後、前記金属板の前記流出方向が前記搬送方向に戻るように、前記一対の圧延ロールの圧下レベリング制御を行う第2レベリングステップと、
    を備える圧延装置の運転方法。
  2.  前記板端位置が前記基準位置から前記一方側に向かって離れてから、前記第1レベリングステップで前記板端位置が前記基準位置に戻るまでの前記金属板の前記他方側における前記一方側に対する相対的な第1伸び差を算出する伸び差算出ステップを備え、
     前記第2レベリングステップでは、前記金属板の前記一方側における前記他方側に対する相対的な第2伸び差が、前記第1伸び差と等しくなるように、前記一対の圧延ロールの圧下レベリング制御を行う
    請求項1に記載の圧延装置の運転方法。
  3.  前記伸び差算出ステップでは、前記板端位置が前記基準位置から前記一方側に向かって離れてから、前記第1レベリングステップで前記板端位置が前記基準位置に戻るまでの、前記基準位置に対する前記板端位置のずれ量の時間積分に基づいて、前記第1伸び差を算出する
    請求項2に記載の圧延装置の運転方法。
  4.  前記金属板の先端が前記一対の圧延ロールの下流側に設けられた巻き取り装置に到達するまでの残り時間を算出する残り時間算出ステップを備え、
     前記第2レベリングステップでは、前記残り時間内に前記第1伸び差と等しい大きさの前記第2伸び差を前記金属板に与えるように、前記一対の圧延ロールの圧下レベリング制御を行う
    請求項2又は3に記載の圧延装置の運転方法。
  5.  前記第1レベリングステップの開始時点における前記金属板の前記流出方向の前記搬送方向に対する前記一方側への第1ずれ角度θ1に基づいて、前記第2レベリングステップ実行中における前記流出方向の前記搬送方向に対する前記他方側への第2ずれ角度θ2を決定する
    請求項1乃至4の何れか一項に記載の圧延装置の運転方法。
  6.  第1レベリングステップの終了後、前記第1レベリングステップに要した時間以下の時間内に、前記第2レベリングステップを開始する
    請求項1乃至5の何れか一項に記載の圧延装置の運転方法。
  7.  前記検出ステップの前、前記搬送方向において異なる2か所にて前記板端位置を検出し、前記2か所における前記板端位置の検出結果の差が規定範囲内であるときに、前記一対の圧延ロールによる前記金属板の圧延を開始する圧延開始ステップを備える
    請求項1乃至6の何れか一項に記載の圧延装置の運転方法。
  8.  前記検出ステップの前、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出し、前記金属板の板幅方向における基準位置と前記板端位置との差が規定範囲内であるときに、前記一対の圧延ロールによる前記金属板の圧延を開始する圧延開始ステップを備える
    請求項1乃至7の何れか一項に記載の圧延装置の運転方法。
  9.  金属板を挟むように設けられる一対の圧延ロールを含む圧延装置を制御するための制御装置であって、
     前記金属板に加えられる出側張力がゼロの状態で、前記一対の圧延ロールにより前記金属板を圧延しながら、前記一対の圧延ロールの出側の位置において前記金属板の板幅方向の板端位置を検出するように構成された検出部と、
     前記検出部による前記板端位置の検出結果が基準位置から板幅方向の一方側に外れたとき、前記圧延ロールからの前記金属板の流出方向が前記圧延装置における前記金属板の搬送方向に沿うように、前記一対の圧延ロールの圧下レベリング制御を行うように構成された第1レベリング部と、
     前記第1レベリング部による前記圧下レベリング制御の後、前記圧延ロールからの前記金属板の流出方向を前記搬送方向に対して前記板幅方向の他方側にずらした後、前記金属板の前記流出方向が前記搬送方向に戻るように、前記一対の圧延ロールの圧下レベリング制御を行うように構成された第2レベリング部と、
    を備える圧延装置の制御装置。
  10.  金属板を挟むように設けられる一対の圧延ロールを含む圧延装置と、
     請求項9に記載の制御装置と、
    を備える圧延設備。
PCT/JP2019/027488 2019-07-11 2019-07-11 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備 WO2021005777A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/027488 WO2021005777A1 (ja) 2019-07-11 2019-07-11 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備
CN202080044719.9A CN114007772B (zh) 2019-07-11 2020-02-04 轧制装置的运转方法及轧制装置的控制装置以及轧制设备
EP20837907.3A EP3974075B1 (en) 2019-07-11 2020-02-04 Method for operating rolling mill device, control device for rolling mill device, and rolling mill facility
PCT/JP2020/004004 WO2021005818A1 (ja) 2019-07-11 2020-02-04 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備
JP2021530479A JP7116260B2 (ja) 2019-07-11 2020-02-04 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/027488 WO2021005777A1 (ja) 2019-07-11 2019-07-11 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備

Publications (1)

Publication Number Publication Date
WO2021005777A1 true WO2021005777A1 (ja) 2021-01-14

Family

ID=74114136

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/027488 WO2021005777A1 (ja) 2019-07-11 2019-07-11 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備
PCT/JP2020/004004 WO2021005818A1 (ja) 2019-07-11 2020-02-04 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/004004 WO2021005818A1 (ja) 2019-07-11 2020-02-04 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備

Country Status (4)

Country Link
EP (1) EP3974075B1 (ja)
JP (1) JP7116260B2 (ja)
CN (1) CN114007772B (ja)
WO (2) WO2021005777A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS458780B1 (ja) * 1966-10-12 1970-03-30
JPS4996955A (ja) * 1973-01-20 1974-09-13
JPH0220608A (ja) * 1988-07-05 1990-01-24 Sumitomo Metal Ind Ltd 圧延材の蛇行制御方法
JPH07132310A (ja) * 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd 圧延方法
JP2014117743A (ja) * 2012-12-19 2014-06-30 Jfe Steel Corp 圧延材の蛇行制御方法、圧延材の蛇行制御装置、圧延材の蛇行制御プログラム、及び圧延材の製造方法
JP2018158365A (ja) * 2017-03-23 2018-10-11 Jfeスチール株式会社 熱間圧延方法及び熱間圧延装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395163A (en) * 1977-01-31 1978-08-19 Sumitomo Metal Ind Ltd Correcting method for level of work roll of tandem mill
US5218848A (en) * 1990-02-13 1993-06-15 Hitachi, Ltd. Method and apparatus for correcting a widthwise bend in an end portion of a hot-rolled sheet-shaped product
JPH11179414A (ja) 1997-12-24 1999-07-06 Nkk Corp 冷間圧延機における片伸び量推定方法及び形状制御方法
JP4996955B2 (ja) 2007-03-28 2012-08-08 下西技研工業株式会社 開閉装置
DE102007035283A1 (de) * 2007-07-27 2009-01-29 Siemens Ag Verfahren zur Einstellung eines Zustands eines Walzguts, insbesondere eines Vorbands
JP5395163B2 (ja) 2009-03-12 2014-01-22 パナソニック株式会社 メモリ管理装置及びメモリ領域設定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS458780B1 (ja) * 1966-10-12 1970-03-30
JPS4996955A (ja) * 1973-01-20 1974-09-13
JPH0220608A (ja) * 1988-07-05 1990-01-24 Sumitomo Metal Ind Ltd 圧延材の蛇行制御方法
JPH07132310A (ja) * 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd 圧延方法
JP2014117743A (ja) * 2012-12-19 2014-06-30 Jfe Steel Corp 圧延材の蛇行制御方法、圧延材の蛇行制御装置、圧延材の蛇行制御プログラム、及び圧延材の製造方法
JP2018158365A (ja) * 2017-03-23 2018-10-11 Jfeスチール株式会社 熱間圧延方法及び熱間圧延装置

Also Published As

Publication number Publication date
WO2021005818A1 (ja) 2021-01-14
JPWO2021005818A1 (ja) 2021-01-14
JP7116260B2 (ja) 2022-08-09
EP3974075C0 (en) 2023-08-23
EP3974075A4 (en) 2022-07-27
CN114007772A (zh) 2022-02-01
EP3974075A1 (en) 2022-03-30
EP3974075B1 (en) 2023-08-23
CN114007772B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2012086043A1 (ja) 熱間圧延設備及び熱間圧延方法
JP5839053B2 (ja) 圧延装置およびその制御方法
JP2010240731A (ja) 圧延装置およびその制御方法
WO2021005818A1 (ja) 圧延装置の運転方法並びに圧延装置の制御装置及び圧延設備
JP2006263779A (ja) 熱間圧延設備のサイドガイド制御方法
CN112334243B (zh) 轧制装置的控制装置、轧制设备以及轧制装置的运转方法
WO2021005778A1 (ja) 圧延装置の制御装置及び圧延設備並びに圧延装置の運転方法
JP2000298519A (ja) 金属帯の通板位置制御方法
JP7076328B2 (ja) 搬送装置の制御方法及び搬送装置
JP7020445B2 (ja) 巻取装置の尾端停止位置制御方法、尾端停止位置制御装置及び巻取装置
WO2012127570A1 (ja) 圧延制御装置、圧延制御方法および圧延制御プログラム
JP3636151B2 (ja) 金属帯の製造法
JP7222152B2 (ja) 圧延装置の制御装置及び圧延設備並びに圧延装置の運転方法
JP2012045627A (ja) 圧延装置の制御方法
JP2024076828A (ja) ワークロール開閉装置
WO2024042936A1 (ja) 冷間圧延方法及び冷間圧延設備
JP2012183578A (ja) 冷間圧延機の板厚制御方法及び板厚制御装置
JPH1128513A (ja) 熱間圧延ラインにおける金属帯の巻取り方法および巻取りコイラ
JP6540644B2 (ja) 巻取装置及び鋼板尾端停止位置の制御方法
JP4712580B2 (ja) リバース圧延における蛇行制御方法
JP5452576B2 (ja) 圧延装置およびその制御方法
KR20230113802A (ko) 미단 버클링 억제 장치
JPH01313103A (ja) 帯状材のセンタリング装置
JP2007152411A (ja) 鋼帯への張力付与時の張力衝撃緩衝方法および装置
JPH0456687B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19937286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19937286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP