WO2021000853A1 - 一种制动控制方法、系统及车辆 - Google Patents

一种制动控制方法、系统及车辆 Download PDF

Info

Publication number
WO2021000853A1
WO2021000853A1 PCT/CN2020/099223 CN2020099223W WO2021000853A1 WO 2021000853 A1 WO2021000853 A1 WO 2021000853A1 CN 2020099223 W CN2020099223 W CN 2020099223W WO 2021000853 A1 WO2021000853 A1 WO 2021000853A1
Authority
WO
WIPO (PCT)
Prior art keywords
braking
current
parameter
acceleration
preset
Prior art date
Application number
PCT/CN2020/099223
Other languages
English (en)
French (fr)
Inventor
张帅
刘秀
陈淑江
侯文涛
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Priority to EP20835031.4A priority Critical patent/EP3992047A4/en
Publication of WO2021000853A1 publication Critical patent/WO2021000853A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/087Interaction between the driver and the control system where the control system corrects or modifies a request from the driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/106Rate of change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed
    • B60W2720/106Longitudinal acceleration

Definitions

  • This application relates to the field of vehicle technology, and in particular to a brake control method, system and vehicle.
  • BOS Brake Override System
  • the control strategy of the brake priority system is to directly clear the driving torque of the engine after the brake pedal is depressed, so that there will be a problem that the power is suddenly interrupted after the brake pedal is depressed, resulting in poor driving experience.
  • this application aims to propose a brake control method, system, and vehicle to solve the problem of poor driving experience caused by sudden power interruption after the brake pedal is stepped on in the current brake priority system.
  • a braking control method includes:
  • the driving torque output by the engine is controlled according to the target acceleration parameter.
  • the corresponding relationship between the braking parameter and the acceleration coefficient includes:
  • the acceleration coefficient is 1;
  • the acceleration coefficient and the braking parameter have a negative correlation; wherein, the first preset The braking threshold is less than the second preset braking threshold;
  • the acceleration coefficient is zero.
  • the step of obtaining current acceleration parameters, current braking parameters, and current braking mode includes:
  • a current braking mode corresponding to the current driving state is acquired.
  • the acceleration parameter includes at least one of an accelerator pedal opening value and an engine speed
  • the braking parameter includes at least one of a brake pedal opening value and a master cylinder pressure value.
  • the step of generating a target acceleration parameter according to the target acceleration coefficient and the current acceleration parameter includes:
  • a target acceleration parameter is generated.
  • the target corresponding to the current braking parameter can be determined according to the current braking mode.
  • Acceleration coefficient According to the target acceleration coefficient and the current acceleration parameter, generate the target acceleration parameter, and the target acceleration coefficient and the current acceleration parameter control the driving torque of the engine, so that the engine can be controlled according to the current braking mode and braking parameters
  • the output driving torque avoids the problem of sudden power interruption caused by the direct clearing of the engine driving torque after the brake pedal is depressed, and effectively improves the driving experience.
  • Another purpose of the present application is to provide a brake control system to solve the problem of poor driving experience caused by sudden power interruption after the brake pedal is stepped on in the current brake priority system.
  • a brake control system includes:
  • the obtaining module is configured to obtain the current acceleration parameters, the current braking parameters, and the current braking mode; wherein the corresponding relationship between the braking parameters and the acceleration coefficient is preset in the braking mode;
  • a search module configured to determine a target acceleration coefficient corresponding to the current braking parameter according to the current braking mode
  • a generating module configured to generate a target acceleration parameter according to the target acceleration coefficient and the current acceleration parameter
  • the control module is configured to control the driving torque output by the engine according to the target acceleration parameter.
  • the corresponding relationship between the braking parameter and the acceleration coefficient includes:
  • the acceleration coefficient is 1;
  • the acceleration coefficient and the braking parameter have a negative correlation; wherein, the first preset The braking threshold is less than the second preset braking threshold;
  • the acceleration coefficient is zero.
  • the acquisition module includes:
  • the first obtaining module is configured to obtain current acceleration parameters and current braking parameters
  • the first search module is configured to determine the current driving state according to the current acceleration parameter and the current braking parameter;
  • the second acquisition module is configured to acquire the current braking mode corresponding to the current driving state according to the current driving state.
  • the acceleration parameter includes at least one of an accelerator pedal opening value and an engine speed
  • the braking parameter includes at least one of a brake pedal opening value and a master cylinder pressure value.
  • the brake control system and the aforementioned brake control method have the same advantages over the prior art, and will not be repeated here.
  • Another objective of the present application is to provide a vehicle to solve the problem of poor driving experience caused by sudden interruption of power after the brake pedal in the existing brake priority system is depressed.
  • a vehicle includes: the above-mentioned brake control system.
  • the vehicle has the same advantages as the aforementioned brake control control system over the prior art, and will not be repeated here.
  • FIG. 1 is a flowchart of the steps of a brake control method according to an embodiment of the application
  • FIG. 2 is a schematic diagram of a braking mode according to an embodiment of the application.
  • FIG. 3 is a flowchart of steps of another brake control method according to an embodiment of the application.
  • FIG. 4 is a structural block diagram of a brake control system according to an embodiment of the application.
  • Fig. 5 schematically shows a block diagram of a computing processing device for executing the method according to the present application.
  • Fig. 6 schematically shows a storage unit for holding or carrying program codes for implementing the method according to the present application.
  • an embodiment of the present application provides a step flowchart of a braking control method, and the method may specifically include:
  • Step 101 Acquire current acceleration parameters, current braking parameters, and current braking mode; wherein, the corresponding relationship between braking parameters and acceleration coefficients is preset in the braking mode.
  • the acceleration parameter in the embodiment of the present application is a parameter that can reflect the acceleration or driving speed of the vehicle, and can specifically include at least one of the accelerator pedal opening value and the engine speed.
  • the acceleration parameter may also be other parameter values that can reflect the acceleration of the vehicle.
  • the embodiment of the present application only takes the acceleration parameter as the accelerator pedal opening value for explanation. When the acceleration parameter is other parameter values, refer to the execution.
  • the braking parameter in the embodiment of the present application is a parameter that can reflect vehicle braking or speed attenuation, and can specifically include at least one of a brake pedal opening value, a brake master cylinder pressure value, and a braking torque value.
  • the braking parameter may also be other parameter values that reflect vehicle braking or vehicle speed decay.
  • the embodiment of the present application only uses the braking parameter as the brake pedal opening value for explanation. When the braking parameter is other parameter values, refer to execution OK.
  • the braking mode in the embodiment of the present application can characterize the current braking rate of the vehicle, and different braking modes are preset with different braking parameters and different acceleration coefficients.
  • the acceleration coefficient can reflect the decay rate of the acceleration parameter of the vehicle.
  • the acceleration coefficient reflects the decay of the accelerator pedal opening value. rate.
  • the braking mode when the brake is stepped on is emergency braking mode, and the corresponding braking mode is invalid when the accelerator pedal fails.
  • Braking mode When the accelerator pedal is stepped on by mistake, the corresponding braking mode is the brake mode for stepping on by mistake.
  • a corresponding relationship between braking parameters and acceleration coefficients is preset in each braking mode, and the corresponding relationship between braking parameters and acceleration coefficients preset in different braking modes may be the same or different.
  • each braking mode is set after a large number of vehicle safety experiments are verified.
  • the corresponding relationship between the braking parameter and the acceleration coefficient may specifically include:
  • the acceleration coefficient is 1;
  • the acceleration coefficient and the braking parameter have a negative correlation; wherein, the first preset The braking threshold is less than the second preset braking threshold;
  • the acceleration coefficient is zero.
  • the first preset braking threshold and the second preset braking threshold are calibrated amounts, that is, they can be calibrated adaptively according to different requirements.
  • the first preset braking threshold can be calibrated to 5%, and the second preset braking threshold is 15%;
  • the first preset braking threshold can be calibrated to 8%, and the second preset braking threshold is 85%; when the braking mode is the braking mode by mistake, in order to avoid Stepping on accidentally causes injury to personnel or vehicles and improves the safety factor of the vehicle.
  • the first preset braking threshold can be calibrated to 3% and the second preset braking threshold to 10%. It is understandable that in each braking mode, the first preset braking threshold and the second preset braking threshold are all set by the factory parameters of the vehicle after verification according to the vehicle safety inspection standard. Can be changed at will.
  • the acceleration coefficient has a negative correlation with the braking parameter, that is to say, with the braking
  • the acceleration coefficient and the braking parameter may change linearly according to a preset ratio, or may be exponential or logarithmic curve changes. The specific change curve is not limited in the embodiment of the application.
  • the following method is usually used to preset the corresponding relationship between the acceleration coefficient and the braking parameter: Obtain multiple braking parameters between the first preset braking threshold and the second preset braking threshold, and calibrate through the calibration method
  • the acceleration coefficients corresponding to multiple braking parameters are calculated by interpolation for uncalibrated braking parameters.
  • the acceleration coefficients corresponding to the multiple braking parameters calibrated by the calibration method are all verified by the vehicle safety. It can be understood that the more the number of braking parameters obtained during the calibration by the calibration method, the The more accurate the value of the acceleration factor corresponding to the braking parameter, the higher the vehicle safety factor.
  • A represents the acceleration coefficient
  • B represents the brake pedal opening degree
  • the first preset braking threshold is 5%
  • the second preset braking threshold is 15%.
  • the acceleration coefficient is 1
  • the acceleration coefficient is 0.
  • an emergency situation such as the failure of the accelerator pedal of the vehicle or the failure of the acceleration verification system, etc.
  • the current acceleration parameters, current braking parameters, and current Braking mode to further determine the next action.
  • the acceleration parameters and braking parameters in the embodiments of the present application can be detected by corresponding sensors provided in the vehicle.
  • a sensor provided in the vehicle.
  • an accelerator pedal opening sensor and a brake pedal opening sensor can be set, so that the accelerator pedal opening sensor and the brake The pedal opening sensor is directly acquired, or the accelerator pedal opening sensor and the brake pedal opening sensor can be connected to the vehicle central control system, and the vehicle central control system obtains the corresponding parameters.
  • the specific method of obtaining the above parameters in the embodiments of this application Not limited.
  • Step 102 Determine a target acceleration coefficient corresponding to the current braking parameter according to the current braking mode.
  • the preset braking parameter and acceleration in the braking mode can be determined according to the current braking mode.
  • the corresponding relationship of the coefficients, and then the acceleration coefficient corresponding to the current braking parameter can be determined as the target acceleration coefficient.
  • the current braking mode is the braking mode shown in Figure 2.
  • the target acceleration coefficient and braking mode are The linear transformation relationship, specifically, when the current brake pedal opening value is 10%, the corresponding target acceleration coefficient is 0.5; when the brake pedal opening is 12%, the corresponding target acceleration coefficient is 0.3.
  • the opening of the brake pedal should change from small to large, and the corresponding acceleration coefficient will gradually change from 1 to 0.
  • Step 103 Generate a target acceleration parameter according to the target acceleration coefficient and the current acceleration parameter.
  • the target acceleration parameters can be calculated and generated according to the target acceleration coefficient and the current acceleration parameters.
  • the target accelerator pedal opening value is calculated and generated according to the target acceleration coefficient and the current accelerator pedal opening value.
  • Step 104 Control the driving torque output by the engine according to the target acceleration parameter.
  • the driving torque output by the engine can be controlled according to the target acceleration parameter to start adjusting the driving torque output by the engine, so as to achieve the control of the vehicle speed.
  • the current accelerator pedal opening value, current brake pedal opening value and current braking mode are obtained. Since the corresponding relationship between the brake pedal opening value and the acceleration coefficient is preset in the braking mode, you can According to the obtained current braking mode, determine the target acceleration coefficient corresponding to the current brake pedal opening value, and generate the target accelerator pedal opening value according to the target acceleration coefficient and the current accelerator pedal opening value, and according to the target accelerator pedal opening value The value controls the drive torque output by the engine; if the brake pedal opening value is from small to large, the corresponding acceleration coefficient is gradually reduced from 1 to 0, and the generated target accelerator pedal opening value gradually decreases , The drive torque output by the control engine is finally reduced.
  • the technical effect of controlling the speed of the vehicle can be achieved by stepping on the brake pedal, which avoids the fact that the brake pedal is stepped on in the current brake priority system.
  • the driving torque of the engine is directly cleared after driving down, resulting in a sudden interruption of power and poor driving experience, which effectively improves driving experience.
  • the target acceleration coefficient corresponding to the current braking parameter can be determined according to the current braking mode ; According to the target acceleration coefficient and the current acceleration parameters, the target acceleration parameters are generated, and the target acceleration coefficient and the current acceleration parameters control the driving torque output by the engine, so that the engine output can be controlled according to the current braking mode and braking parameters
  • the driving torque avoids the problem of sudden power interruption caused by the direct clearing of the engine driving torque after the brake pedal is depressed, which effectively improves the driving experience.
  • FIG. 3 another braking control method according to an embodiment of the present application is shown, and the method includes:
  • Step 301 Obtain current acceleration parameters and current braking parameters
  • the acceleration parameters and braking parameters in the embodiments of the present application can be detected by corresponding sensors provided in the vehicle.
  • a sensor provided in the vehicle.
  • an accelerator pedal opening sensor and a brake pedal opening sensor can be set, so that the accelerator pedal opening sensor and the brake The pedal opening sensor is directly acquired, or the accelerator pedal opening sensor and the brake pedal opening sensor can be connected to the vehicle central control system, and the vehicle central control system obtains the corresponding parameters.
  • the specific method of obtaining the above parameters in the embodiments of this application Not limited.
  • Step 302 Determine the current driving state according to the current acceleration parameter and the current braking parameter.
  • the current driving state can be determined according to the current acceleration parameters and the current braking parameters. For example, under normal circumstances, when the acceleration parameter is not zero, the corresponding braking parameter should be zero during the normal driving of the vehicle, or when the acceleration parameter is zero, the corresponding braking parameter should not be zero.
  • the accelerator pedal opening value as the acceleration parameter and the brake pedal opening value as the braking parameter as an example to illustrate: Under normal circumstances, the accelerator pedal and the brake pedal will not be depressed at the same time, in other words, the vehicle is normal During driving, either the accelerator pedal opening value or the brake pedal opening value must be zero.
  • the current acceleration parameter and the current braking parameter can be used to determine that the current driving state is an abnormal state of the vehicle. It can be understood that The situation is the driver's misoperation (for example, the accelerator pedal and the brake pedal are stepped on at the same time during the training of the driving school), or the accelerator pedal failure (throttle cable failure, throttle lever is dead, etc.). Or, if it is obtained that the transmission control engine speed is increasing and the brake pedal opening is decreasing at the same time, it can be determined that the current driving state is the ejection start state.
  • the current acceleration parameter obtained at the same time is zero and the current braking parameter is not zero, it means that the vehicle is in the normal braking process; if the current acceleration parameter obtained at the same time is not zero, and the current braking The parameter is zero, which means that the vehicle is accelerating normally or driving at a constant speed.
  • the embodiment of the present application only takes the abnormal driving state of the vehicle as an example to illustrate the braking control method. When the vehicle is driving and braking normally, refer to the execution.
  • the current driving state is the abnormal state of the vehicle according to the current acceleration parameters and current braking parameters
  • other performance parameters of the vehicle such as continuous braking time, continuous acceleration time, acceleration parameter changes, etc.
  • different braking steps can be taken to achieve more precise control of the vehicle and safe driving.
  • the embodiments of this application only take the current acceleration parameters and current braking parameters as simple examples to distinguish and determine different driving conditions. It is understandable that in actual applications, in addition to the current acceleration parameters and the current braking parameters, there may be other Vehicle performance parameters and discrimination conditions, so that the current driving state can be determined more accurately and quickly.
  • Step 303 Acquire a current braking mode corresponding to the current driving state according to the current driving state.
  • different driving states can be set to correspond to different braking modes, so that different braking modes can be adopted according to the driving state, thereby achieving different braking effects.
  • the corresponding braking mode can be set to the fast/emergency braking mode, that is, the vehicle is braked in a short period of time to reduce the vehicle speed to zero to ensure the safety of the drivers and passengers. Safe; when the current driving state is the ejection start state, the corresponding braking mode can be set to the slow braking mode, that is, when the brake pedal opening has not reached zero, the acceleration parameters of the vehicle can be controlled to increase, so as to achieve the vehicle The technical effect of starting at a higher speed.
  • the braking parameter can be set to the brake pedal opening value, the first preset braking threshold is 5%, and the second preset braking threshold is 15%, that is, when the brake pedal opening is less than or equal to 5%, the corresponding acceleration coefficient is 1; when the brake pedal opening is greater than 5% and less than 15%, the acceleration coefficient can be as shown in Figure 2.
  • the displayed linear change, acceleration coefficient 1/(5%-15%)*brake parameter +1.5; when the brake pedal opening is greater than or equal to 15%, the acceleration coefficient is 0. That is to say, in the fast/emergency braking mode, when the brake pedal opening is increased from 0 to greater than 5%, the acceleration coefficient is always 1.
  • the acceleration coefficient decreases according to the slope shown in Figure 2.
  • the acceleration coefficient decreases to 0. No matter how the brake pedal increases, the corresponding acceleration coefficient is always 0. , No longer change, so as to achieve the effect of quickly braking the vehicle.
  • the braking mode When the braking mode is slow braking mode, it can be set when the brake pedal opening is less than or equal to 10%, the corresponding acceleration coefficient is 1; when the brake pedal opening is greater than 10% and less than 90%, acceleration The coefficient is 0.9; when the brake pedal opening is greater than or equal to 90%, the acceleration coefficient is 0. That is to say, in the slow braking mode or ejection start mode, the brake pedal opening is gradually reduced from 100% to 0. Once the brake pedal opening is 100% attenuated to within 90%, The acceleration coefficient increases from 0 to 0.9. Once the brake pedal opening is less than or equal to 10%, the acceleration coefficient is 1, and the acceleration coefficient gradually increases, so that in the braking mode, the acceleration coefficient increases. So as to achieve the technical effect that the vehicle starts at a certain speed and reduces the acceleration time when the vehicle starts.
  • first preset braking threshold and second preset braking threshold are only schematically set, so as to explain the principle of braking control.
  • first preset braking threshold and the second The two preset braking thresholds are all set after passing the vehicle safety test.
  • Step 304 Determine a target acceleration coefficient corresponding to the current braking parameter according to the current braking mode.
  • the opening value of the brake pedal changes due to the driver stepping on the brake pedal It is a process of increasing from zero, so in this mode, the target acceleration coefficient corresponding to the current braking parameter can be determined.
  • the corresponding acceleration factor is reduced from 1 to 0.33 and then to 0.
  • the acceleration coefficient is +1.5, the acceleration coefficient decreases with the increase of the braking parameter; when the current brake pedal opening is greater than or equal to 15%, the acceleration coefficient is 0.
  • Step 305 Generate a target acceleration parameter according to the product of the target acceleration coefficient and the current acceleration parameter.
  • the target acceleration parameter can be generated according to the product of the target acceleration coefficient and the current acceleration parameter.
  • the target acceleration parameter is the accelerator pedal opening degree
  • the target accelerator pedal opening degree is generated according to the product of the target acceleration coefficient and the current accelerator pedal opening degree
  • the target acceleration parameter is the engine speed
  • the target acceleration coefficient and the current engine speed The product of the speeds to generate the target engine speed.
  • the attenuation coefficient can be set according to the actual situation, and the target acceleration parameter is generated according to the product of the target acceleration coefficient, the attenuation coefficient, and the current acceleration parameter, so that the target acceleration parameter is closer to the actual driving demand of the vehicle .
  • Step 306 Control the driving torque output by the engine according to the target acceleration parameter.
  • the driving torque output by the engine can be controlled according to the target acceleration parameters, so as to achieve the control of the vehicle driving speed.
  • the target acceleration parameters control the driving torque output by the engine and the prior art , The embodiments of this application will not be repeated.
  • the current braking parameter can be determined according to the current braking mode.
  • the target acceleration parameter is generated, and the driving torque output by the engine is controlled by the target acceleration coefficient and the current acceleration parameter, so that it can be based on the current braking mode and braking
  • the parameter controls the driving torque output by the engine, avoiding the problem of sudden power interruption caused by the direct clearing of the engine driving torque after the brake pedal is depressed, and effectively improving the driving experience.
  • the brake control system 400 may specifically include:
  • the obtaining module 401 is configured to obtain the current acceleration parameters, the current braking parameters, and the current braking mode; wherein the corresponding relationship between the braking parameters and the acceleration coefficient is preset in the braking mode;
  • the searching module 402 is configured to determine a target acceleration coefficient corresponding to the current braking parameter according to the current braking mode
  • a generating module 403, configured to generate a target acceleration parameter according to the target acceleration coefficient and the current acceleration parameter
  • the control module 404 is configured to control the driving torque output by the engine according to the target acceleration parameter.
  • the corresponding relationship between the braking parameter and the acceleration coefficient includes:
  • the acceleration coefficient is 1;
  • the acceleration coefficient and the braking parameter have a negative correlation; wherein, the first preset The braking threshold is less than the second preset braking threshold;
  • the acceleration coefficient is zero.
  • the obtaining module 401 further includes:
  • the first obtaining module is configured to obtain current acceleration parameters and current braking parameters
  • the first search module is configured to determine the current driving state according to the current acceleration parameter and the current braking parameter;
  • the second acquisition module is configured to acquire the current braking mode corresponding to the current driving state according to the current driving state.
  • the acceleration parameter includes at least one of an accelerator pedal opening value and an engine speed
  • the braking parameter includes at least one of a brake pedal opening value and a master cylinder pressure value.
  • the generating module 403 includes:
  • the first generating module is configured to generate a target acceleration parameter according to the product of the target acceleration coefficient and the current acceleration parameter.
  • the braking system provided by the embodiments of the present application has a preset corresponding relationship between the braking parameter and the acceleration coefficient in the braking mode, so it can be determined corresponding to the current braking parameter according to the current braking mode.
  • the target acceleration coefficient according to the target acceleration coefficient and the current acceleration parameter, the target acceleration parameter is generated, and the driving torque output by the engine is controlled by the target acceleration coefficient and the current acceleration parameter, so that it can be based on the current braking mode and braking parameters Controlling the driving torque output by the engine avoids the problem of sudden power interruption caused by directly clearing the driving torque of the engine after the brake pedal is depressed, and effectively improves the driving experience.
  • the application also discloses a vehicle including the above-mentioned brake control system.
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units.
  • Some or all of the modules can be selected according to actual needs to achieve one of the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.
  • Each component embodiment of the present application may be implemented by hardware, or by software modules running on one or more processors, or by a combination of them.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all of the functions of some or all of the components in the computing processing device according to the embodiments of the present application.
  • This application can also be implemented as a device or device program (for example, a computer program and a computer program product) for executing part or all of the methods described herein.
  • Such a program for realizing the present application may be stored on a computer-readable medium, or may have the form of one or more signals. Such signals can be downloaded from Internet websites, or provided on carrier signals, or provided in any other form.
  • FIG. 5 shows a computing processing device that can implement the method according to the present application.
  • the computing processing device traditionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer readable medium.
  • the memory 1020 may be an electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for executing program codes 1031 of any method steps in the above methods.
  • the storage space 1030 for program codes may include various program codes 1031 for implementing various steps in the above method. These program codes can be read out from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks.
  • Such a computer program product is usually a portable or fixed storage unit as described with reference to FIG. 6.
  • the storage unit may have storage segments, storage spaces, etc., arranged similarly to the memory 1020 in the computing processing device of FIG. 5.
  • the program code can be compressed in an appropriate form, for example.
  • the storage unit includes computer-readable codes 1031', that is, codes that can be read by, for example, a processor such as 1010. These codes, when run by a computing processing device, cause the computing processing device to execute the method described above. The various steps.
  • any reference signs placed between parentheses should not be constructed as a limitation to the claims.
  • the word “comprising” does not exclude the presence of elements or steps not listed in the claims.
  • the word “a” or “an” preceding an element does not exclude the presence of multiple such elements.
  • the application can be implemented by means of hardware including several different elements and by means of a suitably programmed computer. In the unit claims enumerating several devices, several of these devices may be embodied by the same hardware item.
  • the use of the words first, second, and third, etc. do not indicate any order. These words can be interpreted as names.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种制动控制方法、系统及车辆,方法包括:获取当前加速参数、当前制动参数以及当前制动模式;其中,制动模式内预设有制动参数与加速系数的对应关系;根据当前制动模式,确定与当前制动参数对应的目标加速系数;根据目标加速系数与当前加速参数,生成目标加速参数;根据目标加速参数控制发动机输出的驱动扭矩。根据当前制动模式和制动参数控制发动机输出的驱动扭矩,避免了制动踏板踩下后发动机驱动扭矩直接清零导致的动力突然中断的问题,有效提高了驾驶感受。

Description

一种制动控制方法、系统及车辆
本申请要求在2019年07月01日提交中国专利局、申请号为201910584320.9、发明名称为“一种制动控制方法、系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆技术领域,特别涉及一种制动控制方法、系统及车辆。
背景技术
随着车辆技术的高速发展,用户对于车辆的安全性和舒适性要求也越来越高。
现有车辆为了提高行车安全性,大多采用制动优先系统,别称刹车优先系统(Brake Override System,BOS),即当车辆正常行驶时,无论加速踏板处于何种状态,当遇到紧急情况踩下制动踏板时,都会使发动机进入怠速状态,同时车辆的制动系统开始工作,以达到最快的制动效果。但是制动优先系统的控制策略是制动踏板踩下后,直接将发动机驱动扭矩清零,这样就会存在制动踏板踩下后,动力突然中断导致驾驶感受差的问题。
发明内容
有鉴于此,本申请旨在提出一种制动控制方法、系统及车辆,以解决当前制动优先系统中制动踏板踩下后,动力突然中断导致的驾驶感受差的问题。
为达到上述目的之一,本申请的技术方案是这样实现的:
一种制动控制方法,所述方法包括:
获取当前加速参数、当前制动参数以及当前制动模式;其中,制动模式内预设有制动参数与加速系数的对应关系;
根据所述当前制动模式,确定与所述当前制动参数对应的目标加速系数;
根据所述目标加速系数与所述当前加速参数,生成目标加速参数;
根据所述目标加速参数控制发动机输出的驱动扭矩。
进一步的,所述制动参数与所述加速系数的对应关系,包括:
在所述制动参数小于或等于第一预设制动阈值时,所述加速系数为1;
在所述制动参数大于所述第一预设制动阈值且小于第二预设制动阈值时,所述加速系数与所述制动参数呈负相关关系;其中,所述第一预设制动阈值小于所述第二预设制动阈值;
在所述制动参数大于或等于所述第二预设制动阈值时,所述加速系数为0。
进一步的,所述获取当前加速参数、当前制动参数以及当前制动模式的步骤,包括:
获取当前加速参数、当前制动参数;
根据所述当前加速参数以及所述当前制动参数,确定当前行驶状态;
根据所述当前行驶状态,获取与所述当前行驶状态对应的当前制动模式。
进一步的,所述加速参数包括加速踏板开度值、发动机转速中的至少一个;
所述制动参数包括:制动踏板开度值、制动主缸压力值中的至少一个。
进一步的,所述根据所述目标加速系数与所述当前加速参数,生成目标加速参数的步骤,包括:
根据所述目标加速系数与所述当前加速参数的乘积,生成目标加速参数。
相对于现有技术,本申请所述的制动控制方法具有以下优势:
本申请实施例中所述的制动控制方法,由于制动模式内预设有制动参数与加速系数的对应关系,因此可以根据当前制动模式,确定与所述当前制动参数对应的目标加速系数;根据所述目标加速系数与所述当前加速参数,生成目标加速参数,由目标加速系数和当前加速参数控制发动机输出的驱动扭矩,这样就可以根据当前制动模式和制动参数控制发动机输出的驱动扭矩,避免了制动踏板踩下后发动机驱动扭矩直接清零导致的动力突然中断的问题,有效提高了驾驶感受。
本申请的另一目的之一在于提出一种制动控制系统,以解决当前制动优先系统中制动踏板踩下后,动力突然中断导致的驾驶感受差的问题。
为了达到上述目的之一,本申请的技术方案是这样实现的:
一种制动控制系统,包括:
获取模块,配置为获取当前加速参数、当前制动参数以及当前制动模式;其中,制动模式内预设有制动参数与加速系数的对应关系;
查找模块,配置为根据所述当前制动模式,确定与所述当前制动参数对应的目标加速系数;
生成模块,配置为根据所述目标加速系数与所述当前加速参数,生成目标加速参数;
控制模块,配置为根据所述目标加速参数控制发动机输出的驱动扭矩。
进一步的,所述制动参数与所述加速系数的对应关系,包括:
在所述制动参数小于或等于第一预设制动阈值时,所述加速系数为1;
在所述制动参数大于所述第一预设制动阈值且小于第二预设制动阈值时,所述加速系数与所述制动参数呈负相关关系;其中,所述第一预设制动阈值小于所述第二预设制动阈值;
在所述制动参数大于或等于所述第二预设制动阈值时,所述加速系数为0。
进一步的,所述获取模块包括:
第一获取模块,配置为获取当前加速参数、当前制动参数;
第一查找模块,配置为根据所述当前加速参数以及所述当前制动参数,确定当前行驶状态;
第二获取模块,配置为根据所述当前行驶状态,获取与所述当前行驶状态对应的当前制动模式。
进一步的,所述加速参数包括加速踏板开度值、发动机转速中的至少一个;
所述制动参数包括:制动踏板开度值、制动主缸压力值中的至少一个。
所述制动控制系统与上述制动控制方法相对于现有技术所具有的优势相同,在此不再赘述。
本申请的另一目的之一在于提出一种车辆,以解决现有的车辆中制动优先系统中制动踏板踩下后,动力突然中断导致的驾驶感受差的问题。
为达到上述目的之一,本申请的技术方案是这样实现的:
一种车辆,包括:上述制动控制系统。
所述车辆与上述制动控制控制系统相对于现有技术所具有的优势相同,在此不再赘述。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技 术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的之一、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例所述的一种制动控制方法的步骤流程图;
图2为本申请实施例所述的一种制动模式的示意图;
图3为本申请实施例所述的另一种制动控制方法的步骤流程图;
图4为本申请实施例所述的一种制动控制系统的结构框图;
图5示意性地示出了用于执行根据本申请的方法的计算处理设备的框图;以及
图6示意性地示出了用于保持或者携带实现根据本申请的方法的程序代码的存储单元。
具体实施例
为使本申请实施例的目的之一、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
下面将参考附图并结合实施例来详细说明本申请。
参照图1,本申请实施例提供了一种制动控制方法的步骤流程图,所述方法具体可以包括:
步骤101,获取当前加速参数、当前制动参数以及当前制动模式;其中,制动模式内预设有制动参数与加速系数的对应关系。
本申请实施例中的加速参数为可以反映车辆加速度或者行驶速度的参 数,具体可以包括加速踏板开度值、发动机转速中的至少一个。当然,加速参数还可以是可以反映车辆加速度的其他参数值,本申请实施例仅以加速参数为加速踏板开度值为例进行阐述,加速参数为其他参数值时参照执行即可。
本申请实施例中的制动参数为可以反映车辆制动或者速度衰减的参数,具体可以包括制动踏板开度值、制动主缸压力值、制动扭矩值中的至少一个。所述制动参数还可以是反映车辆制动或者车辆速度衰减的其他参数值,本申请实施例仅以制动参数为制动踏板开度值进行阐述,制动参数为其他参数值时参照执行即可。
本申请实施例中制动模式可以表征车辆当前的制动速率,不同的制动模式内预设有不同的制动参数与不同加速系数的对应关系。
本申请实施例中,加速系数可以反映车辆加速参数的衰减速率,当加速参数为加速踏板开度值,制动参数为制动踏板开度值时,加速系数即反应加速踏板开度值的衰减速率。
在实际应用中,为了匹配不同的车辆行驶状态,制动模式可以有多种,例如,当紧急踩刹车时的制动模式为紧急制动模式,当加速踏板失效时对应的制动模式为失效制动模式,当误踩踏加速踏板时对应的制动模式为误踩踏制动模式。具体的,每一种制动模式内预设有一种制动参数与加速系数的对应关系,其中不同制动模式内预设的制动参数与加速系数的对应关系可以相同或不同。其中,需要说明的是,每种制动模式都是通过大量车辆安全实验验证后的设置的。
可选的,由于制动模式内预设有制动参数与加速系数的对应关系,所述制动参数与所述加速系数的对应关系,具体可以包括:
在所述制动参数小于或等于第一预设制动阈值时,所述加速系数为1;
在所述制动参数大于所述第一预设制动阈值且小于第二预设制动阈值时,所述加速系数与所述制动参数呈负相关关系;其中,所述第一预设制动阈值小于所述第二预设制动阈值;
在所述制动参数大于或等于所述第二预设制动阈值时,所述加速系数为0。
在实际应用中,第一预设制动阈值与第二预设制动阈值为可标定量,即根据不同的需求可以适应性标定。例如,当制动模式为紧急制动模式时,可标定第一预设制动阈值为5%,第二预设制动阈值为15%;当制动模式为失效制动模式时,为了达到根据制动踏板开度对车辆车速的控制,可以标定第一预设制动阈值为8%,第二预设制动阈值为85%;当制动模式为误踩踏制动模式时,为了避免误踩踏对人员或者车辆造成伤害,提高车辆安全系数,可以标定第一预设制动阈值为3%,第二预设制动阈值为10%。可以理解的是,每种制动模式内,其第一预设制动阈值与第二预设制动阈值都是根据车辆安全检验标准验证后,由车辆出厂参数统一设定的,出厂后不可以随意更改的。
此外,在所述制动参数大于所述第一预设制动阈值且小于第二预设制动阈值时,所述加速系数与所述制动参数呈负相关关系,也就是说随着制动参数的增大,加速系数随之减小,加速系数与制动参数可以为按照预设比例线性变化,也可能为指数或者对数的曲线变化,本申请实施例对具体变化曲线不作限定。
在实际应用中,通常采用如下方法预设加速系数与制动参数的对应关系:获取第一预设制动阈值与第二预设制动阈值之间的多个制动参数,通过标定法标定多个制动参数对应的加速系数,对于未标定的制动参数通过插值法计算得到。本申请实施例中,通过标定法标定的多个制动参数对应的加速系数,均是通过车辆安全验证的,可以理解的是,标定法标定时获取的制动参数的数量越多,所述制动参数对应的加速系数的值越精确,车辆安全系数越高。
参照图2,示出了本申请实施例的一种制动模式的示意图。如图所示,A表示加速系数,B表示制动踏板开度,第一预设制动阈值为5%,第二预设制动阈值为15%。在制动踏板开度值小于或等于5%时,加速系数为1;在制动踏板开度值大于5%且小于15%时,加速系数与制动参数呈负相关,具体的,加速系数=1/(5%-15%)*制动参数+1.5;在制动踏板开度值大于或等于15%时,加速系数为0。
具体的,车辆在正常行驶过程中,如果遇到突发情况(例如车辆的加速 踏板失效或者加速校验系统故障等)需要紧急制动时,可以通过获取当前加速参数、当前制动参数以及当前制动模式,来进一步判断下一步动作。
本申请实施例中的加速参数、制动参数,可以通过车辆内设置相应的传感器来探测,例如可以设置加速踏板开度传感器、制动踏板开度传感器,从而由加速踏板开度传感器和制动踏板开度传感器直接获取,也可以通过加速踏板开度传感器和制动踏板开度传感器连接车辆中控系统,由车辆的中控系统获取对应的参数,本申请实施例对上述参数的具体获取方式不作限定。
步骤102,根据所述当前制动模式,确定与所述当前制动参数对应的目标加速系数。
本申请实施例中,由于在每一种制动模式内预设有制动参数与加速系数的对应关系,因此,可以根据当前制动模式,确定制动模式内预设的制动参数与加速系数的对应关系,进而可以根据当前制动参数确定与其对应的加速系数作为目标加速系数。
例如,假设当前制动模式为如图2所示的制动模式时,此制动模式下,当制动踏板开度大于5%且小于15%范围内时,目标加速系数和制动模式为线性变换关系,具体的,当前制动踏板开度值为10%时,则对应的目标加速系数即为0.5;当制动踏板开度为12%时,则对应的目标加速系数即为0.3。在实际应用中,驾驶者踩踏制动踏板时,制动踏板的开度应该是由小变大,其对应的加速系数也会由1变化逐步变换到0。
步骤103,根据所述目标加速系数与所述当前加速参数,生成目标加速参数。
本申请实施例中,当获取到目标加速系统以及当前加速参数后,就可以根据目标加速系数与当前加速参数计算生成目标加速参数。在实际应用中,即根据目标加速系数与当前加速踏板开度值计算生成目标加速踏板开度值。
步骤104,根据所述目标加速参数控制发动机输出的驱动扭矩。
本申请实施例中,当目标加速参数生成后,就可以根据目标加速参数控制发动机输出的驱动扭矩,以开始对发动机输出的驱动扭矩进行调节, 从而达到对车辆车速的控制。
在实际应用中,获取当前加速踏板开度值、当前制动踏板开度值以及当前制动模式,由于制动模式内预设有制动踏板开度值与加速系数的对应关系,因此,可以根据获取到的当前制动模式,确定与当前制动踏板开度值对应的目标加速系数,根据目标加速系数与当前加速踏板开度值,生成目标加速踏板开度值,根据目标加速踏板开度值控制发动机输出的驱动扭矩;如果制动踏板开度值是由小到大的过程,则其对应的加速系数由1逐渐减小到0的过程,生成的目标加速踏板开度值逐渐变小,最终达到控制发动机输出的驱动扭矩变小,也就是说本申请实施例中,可以通过踩踏制动踏板,达到控制车辆行驶车速的技术效果,避免了当前制动优先系统中,制动踏板踩下后即发动机驱动扭矩直接清零,导致动力突然中断驾驶感受差的问题,有效提高了驾驶感受。
本申请实施例提供的制动控制方法,由于制动模式内预设有制动参数与加速系数的对应关系,因此可以根据当前制动模式,确定与所述当前制动参数对应的目标加速系数;根据所述目标加速系数与所述当前加速参数,生成目标加速参数,由目标加速系数和当前加速参数控制发动机输出的驱动扭矩,这样就可以根据当前制动模式和制动参数控制发动机输出的驱动扭矩,避免了制动踏板踩下后发动机驱动扭矩直接清零导致的动力突然中断的问题,有效提高了驾驶感受。
参照图3,示出了本申请实施例的另一种制动控制方法,所述方法包括:
步骤301,获取当前加速参数、当前制动参数;
本申请实施例中的加速参数、制动参数,可以通过车辆内设置相应的传感器来探测,例如可以设置加速踏板开度传感器、制动踏板开度传感器,从而由加速踏板开度传感器和制动踏板开度传感器直接获取,也可以通过加速踏板开度传感器和制动踏板开度传感器连接车辆中控系统,由车辆的中控系统获取对应的参数,本申请实施例对上述参数的具体获取方式不作限定。
可选的,在获取当前加速参数、当前制动参数的步骤之前,还可以检 测用户是否触发开启操作,例如,当用户没有触发开启操作时,车辆以制动优先策略进行制动,当用户触发开启操作后,车辆开启获取当前加速参数、当前制动参数的制动模式,从而达到不同的制动控制效果。
步骤302,根据所述当前加速参数以及所述当前制动参数,确定当前行驶状态。
在实际应用中,由于当前加速参数、当前制动参数可以在一定程度上反映车辆当前的行驶状态,因此可以根据当前加速参数以及当前制动参数,确定当前行驶状态。例如,正常情况下车辆正常行驶过程中,加速参数不为零时,其对应的制动参数应该为零,或者加速参数为零时,其对应的制动参数应该不为零。以加速踏板开度值作为加速参数,制动踏板开度值作为制动参数为例进行说明:正常情况下,加速踏板和制动踏板是不会同时踩下的,换句话说就是,车辆正常行驶过程中,加速踏板开度值或制动踏板开度值必有一个为零。
本申请实施例中,如果同时获取到当前加速参数和当前制动参数均大于零,即可以通过当前加速参数和当前制动参数,判断当前行驶状态为车辆异常状态,可以理解的是,一种情况为驾驶者误操作(如驾校学员练习过程中,加速踏板和制动踏板同时踩踏),或者还可以为加速踏板失效(油门拉线故障、油门拉杆被顶死等)等情况。再或者,如果获取到变速箱控制发动机转速在增大,并且同时制动踏板开度在变小,此时可以确定当前行驶状态为弹射起步状态。
当然了,如果同一时刻获取到的当前加速参数为零,当前制动参数不为零,即说明车辆在正常制动过程中;如果同一时刻获取到的当前加速参数不为零,而当前制动参数为零,即说明车辆在正常加速或者匀速行驶过程中,本申请实施例仅以车辆行驶状态异常为例对制动控制方法进行阐述说明,车辆正常行驶和制动时,参照执行即可。
可选的,根据当前加速参数、当前制动参数确定当前行驶状态为车辆异常状态时,还可以获取车辆的其他性能参数(例如持续制动时间、持续加速时间,加速参数变化等),进而进一步精准判别,车辆异常状态具体是加速踏板误踩踏的情况还是加速踏板失效的情况,进而可以后续根据车辆进 一步判别的状态,采取不同的制动步骤,达到更为精准控制车辆和安全驾驶的效果。
本申请实施例仅以当前加速参数以及当前制动参数简单示例,不同行驶状态的判别和确定,可以理解的是,在实际应用中,除了当前加速参数以及当前制动参数,还可以有其他的车辆性能参数以及判别条件,从而可以更为精准和快速的确定当前行驶状态。
步骤303,根据所述当前行驶状态,获取与所述当前行驶状态对应的当前制动模式。
本申请实施例中,可以设置不同的行驶状态对应不同的制动模式,这样就可以实现根据行驶状态采取不同制动模式,进而达到不同制动效果。例如,当前行驶状态为车辆异常状态时,对应的制动模式可以设置为快速/紧急制动模式,即在较短的时间内制动车辆,以使车速降为零,以保证驾乘人员的安全;当前行驶状态为弹射起步状态时,对应的制动模式可以设置为慢速制动模式,即在制动踏板开度还没有到零,即可控制车辆的加速参数增大,从而达到车辆以更高的车速启动的技术效果。
在实际应用中,当制动模式为快速/紧急制动模式时,可以设置制动参数为制动踏板开度值,第一预设制动阈值为5%,第二预设制动阈值为15%,也就是说,在制动踏板开度小于或等于5%时,对应的加速系数为1;在制动踏板开度大于5%且小于15%时,加速系数可以按照如图2所示的线性变化,加速系数=1/(5%-15%)*制动参数+1.5;在制动踏板开度大于或等于15%时,加速系数为0。也就是说,当快速/紧急制动模式时,制动踏板开度由0增大到大于5%时,加速系数一直为1,一旦制动踏板开度位于5%~15%范围内时,加速系数按照图2中所示的斜率减小,当制动踏板开度大于或等于15%时,加速系数减小到0,后面无论制动踏板如何增大,其对应的加速系数一直为0,不再变化,从而达到快速制动车辆的效果。
当制动模式为慢速制动模式时,可以设置在制动踏板开度小于或等于10%时,对应的加速系数为1;在制动踏板开度大于10%且小于90%时,加速系数为0.9;在制动踏板开度大于或等于90%时,加速系数为0。也就是说,在慢速制动模式时或弹射起步模式时,制动踏板开度由100%逐渐减小 到0的过程中,一旦制动踏板开度为100%衰减到90%以内时,加速系数即由0增大到0.9,一旦制动踏板开度小于或等于10%时,加速系数即为1,加速系数逐渐增大,从而达到在制动模式下,即开启加速系数增大,从而达到车辆以一定速度起步,减小车辆启动时加速时间的技术效果。
可以理解的是,上述第一预设制动阈值与第二预设制动阈值仅为示意性设置,从而对制动控制原理进行阐述,在实际应用中,第一预设制动阈值与第二预设制动阈值均是通过车辆安全实验后设置的。
步骤304,根据所述当前制动模式,确定与所述当前制动参数对应的目标加速系数。
在实际应用中,正常行驶的车辆,如果遇到突发情况需要紧急制动时,或者在加速踏板失效等车辆异常状态时,由于驾驶者踩踏制动踏板,制动踏板的开度值的变化为由零变大的过程,因此可以在此模式下,确定与当前制动参数对应的目标加速系数。
例如,当第一预设制动阈值为5%,第二预设制动阈值为15%时,对应的加速系数即由1减小到0.33再减小到0,具体的,当获取到当前制动踏板开度小于或等于5%时,加速系数为1;当获取到当前制动踏板开度位于5%~15%范围内时,加速系数=1/(5%-15%)*制动参数+1.5,加速系数随着制动参数的增大而减小;当前制动踏板开度大于或等于15%时,加速系数为0。
步骤305,根据所述目标加速系数与所述当前加速参数的乘积,生成目标加速参数。
本申请实施例中,当获取到目标加速系数以及当前加速参数后,就可以根据目标加速系数与当前加速参数乘积,生成目标加速参数。具体的,当目标加速参数为加速踏板开度时,根据目标加速系数与当前加速踏板开度的乘积,生成目标加速踏板开度;当目标加速参数为发动机转速时,根据目标加速系数与当前发动机转速的乘积,生成目标发动机转速。
可选的,还可以根据实际情况设置衰减系数,根据所述目标加速系数、所述衰减系数以及所述当前加速参数的乘积,生成目标加速参数,从而使目标加速参数更为接近车辆实际行驶需求。
步骤306,根据所述目标加速参数控制发动机输出的驱动扭矩。
在实际应用中,当生成目标加速参数后,就可以根据目标加速参数控制发动机输出的驱动扭矩,从而达到对车辆行驶速度的控制,所述目标加速参数控制发动机输出的驱动扭矩与现有技术相同,本申请实施例不再赘述。
综上所述,本申请实施例提供的制动控制方法,由于制动模式内预设有制动参数与加速系数的对应关系,因此可以根据当前制动模式,确定与所述当前制动参数对应的目标加速系数;根据所述目标加速系数与所述当前加速参数,生成目标加速参数,由目标加速系数和当前加速参数控制发动机输出的驱动扭矩,这样就可以根据当前制动模式和制动参数控制发动机输出的驱动扭矩,避免了制动踏板踩下后发动机驱动扭矩直接清零导致的动力突然中断的问题,有效提高了驾驶感受。
参照图4,示出了本申请实施例的一种制动控制系统的结构框图,制动控制系统400具体可以包括:
获取模块401,配置为获取当前加速参数、当前制动参数以及当前制动模式;其中,制动模式内预设有制动参数与加速系数的对应关系;
查找模块402,配置为根据所述当前制动模式,确定与所述当前制动参数对应的目标加速系数;
生成模块403,配置为根据所述目标加速系数与所述当前加速参数,生成目标加速参数;
控制模块404,配置为根据所述目标加速参数控制发动机输出的驱动扭矩。
可选的,所述制动参数与所述加速系数的对应关系,包括:
在所述制动参数小于或等于第一预设制动阈值时,所述加速系数为1;
在所述制动参数大于所述第一预设制动阈值且小于第二预设制动阈值时,所述加速系数与所述制动参数呈负相关关系;其中,所述第一预设制动阈值小于所述第二预设制动阈值;
在所述制动参数大于或等于所述第二预设制动阈值时,所述加速系数为0。
可选的,获取模块401还包括:
第一获取模块,配置为获取当前加速参数、当前制动参数;
第一查找模块,配置为根据所述当前加速参数以及所述当前制动参数,确定当前行驶状态;
第二获取模块,配置为根据所述当前行驶状态,获取与所述当前行驶状态对应的当前制动模式。
可选的,所述加速参数包括加速踏板开度值、发动机转速中的至少一个;
所述制动参数包括:制动踏板开度值、制动主缸压力值中的至少一个。
可选的,生成模块403包括:
第一生成模块,配置为根据所述目标加速系数与所述当前加速参数的乘积,生成目标加速参数。
综上所述,本申请实施例提供的制动系统,由于制动模式内预设有制动参数与加速系数的对应关系,因此可以根据当前制动模式,确定与所述当前制动参数对应的目标加速系数;根据所述目标加速系数与所述当前加速参数,生成目标加速参数,由目标加速系数和当前加速参数控制发动机输出的驱动扭矩,这样就可以根据当前制动模式和制动参数控制发动机输出的驱动扭矩,避免了制动踏板踩下后发动机驱动扭矩直接清零导致的动力突然中断的问题,有效提高了驾驶感受。
此外,本申请还公开了一种车辆,所述车辆包括上述制动控制系统。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多 个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的之一。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图5示出了可以实现根据本申请的方法的计算处理设备。该计算处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图6所述的便携式或者固定存储单元。该存储单元可以具有与图5的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本文中所称的“一个实施例”、“实施例”或者“一个或者多个实施例”意味着,结合实施例描述的特定特征、结构或者特性包括在本申请的至 少一个实施例中。此外,请注意,这里“在一个实施例中”的词语例子不一定全指同一个实施例。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下被实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的元件或步骤。位于元件之前的单词“一”或“一个”不排除存在多个这样的元件。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (13)

  1. 一种制动控制方法,应用于车辆,其特征在于,所述方法包括:
    获取当前加速参数、当前制动参数以及当前制动模式;其中,制动模式内预设有制动参数与加速系数的对应关系;
    根据所述当前制动模式,确定与所述当前制动参数对应的目标加速系数;
    根据所述目标加速系数与所述当前加速参数,生成目标加速参数;
    根据所述目标加速参数控制发动机输出的驱动扭矩。
  2. 根据权利要求1所述的方法,其特征在于,所述制动参数与所述加速系数的对应关系,包括:
    在所述制动参数小于或等于第一预设制动阈值时,所述加速系数为1;
    在所述制动参数大于所述第一预设制动阈值且小于第二预设制动阈值时,所述加速系数与所述制动参数呈负相关关系;其中,所述第一预设制动阈值小于所述第二预设制动阈值;
    在所述制动参数大于或等于所述第二预设制动阈值时,所述加速系数为0。
  3. 根据权利要求1所述的方法,其特征在于,所述获取当前加速参数、当前制动参数以及当前制动模式的步骤,包括:
    获取当前加速参数、当前制动参数;
    根据所述当前加速参数以及所述当前制动参数,确定当前行驶状态;
    根据所述当前行驶状态,获取与所述当前行驶状态对应的当前制动模式。
  4. 根据权利要求1所述的方法,其特征在于,所述加速参数包括加速踏板开度值、发动机转速中的至少一个;
    所述制动参数包括:制动踏板开度值、制动主缸压力值中的至少一个。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述目标加速系数与所述当前加速参数,生成目标加速参数的步骤,包括:
    根据所述目标加速系数与所述当前加速参数的乘积,生成目标加速参数。
  6. 一种制动控制系统,其特征在于,所述系统包括:
    获取模块,配置为获取当前加速参数、当前制动参数以及当前制动模式;其中,制动模式内预设有制动参数与加速系数的对应关系;
    查找模块,配置为根据所述当前制动模式,确定与所述当前制动参数对应的目标加速系数;
    生成模块,配置为根据所述目标加速系数与所述当前加速参数,生成目标加速参数;
    控制模块,配置为根据所述目标加速参数控制发动机输出的驱动扭矩。
  7. 根据权利要求6所述的系统,其特征在于,所述制动参数与所述加速系数的对应关系,包括:
    在所述制动参数小于或等于第一预设制动阈值时,所述加速系数为1;
    在所述制动参数大于所述第一预设制动阈值且小于第二预设制动阈值时,所述加速系数与所述制动参数呈负相关关系;其中,所述第一预设制动阈值小于所述第二预设制动阈值;
    在所述制动参数大于或等于所述第二预设制动阈值时,所述加速系数为0。
  8. 根据权利要求6所述的系统,其特征在于,所述获取模块包括:
    第一获取模块,配置为获取当前加速参数、当前制动参数;
    第一查找模块,配置为根据所述当前加速参数以及所述当前制动参数,确定当前行驶状态;
    第二获取模块,配置为根据所述当前行驶状态,获取与所述当前行驶状态对应的当前制动模式。
  9. 根据权利要求6所述的系统,其特征在于,所述加速参数包括加速踏板开度值、发动机转速中的至少一个;所述制动参数包括:制动踏 板开度值、制动主缸压力值中的至少一个。
  10. 一种车辆,其特征在于,包括:权利要求6-9任一项所述的制动控制系统。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-5中任一项所述的制动控制方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-5中的任一个所述的制动控制方法。
  13. 一种计算机可读介质,其中存储了如权利要求12所述的计算机程序。
PCT/CN2020/099223 2019-07-01 2020-06-30 一种制动控制方法、系统及车辆 WO2021000853A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20835031.4A EP3992047A4 (en) 2019-07-01 2020-06-30 BRAKE AND VEHICLE CONTROL METHOD AND SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910584320.9 2019-07-01
CN201910584320.9A CN111422193B (zh) 2019-07-01 2019-07-01 一种制动控制方法、系统及车辆

Publications (1)

Publication Number Publication Date
WO2021000853A1 true WO2021000853A1 (zh) 2021-01-07

Family

ID=71546784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099223 WO2021000853A1 (zh) 2019-07-01 2020-06-30 一种制动控制方法、系统及车辆

Country Status (3)

Country Link
EP (1) EP3992047A4 (zh)
CN (1) CN111422193B (zh)
WO (1) WO2021000853A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896165A (zh) * 2021-02-23 2021-06-04 恒大新能源汽车投资控股集团有限公司 车辆控制方法及装置、车辆
CN113460024A (zh) * 2021-07-06 2021-10-01 东风汽车集团股份有限公司 汽车制动优先控制系统及其控制方法
CN113715871A (zh) * 2021-09-24 2021-11-30 青岛海信微联信号有限公司 一种列车控制方法、装置、设备、系统及存储介质
CN113938079A (zh) * 2021-09-26 2022-01-14 三一汽车起重机械有限公司 电机转速控制方法、装置、系统和作业机械
CN114030476A (zh) * 2021-10-27 2022-02-11 东风汽车集团股份有限公司 一种车辆加速度控制方法及相关设备
CN114776458A (zh) * 2022-03-23 2022-07-22 潍柴动力股份有限公司 工程车辆发动机修正方法、装置、电子设备和存储介质
CN114771484A (zh) * 2022-06-06 2022-07-22 东风汽车有限公司东风日产乘用车公司 车辆的制动控制方法、车辆以及存储介质
CN114876658A (zh) * 2022-04-26 2022-08-09 潍柴动力股份有限公司 一种制动工况下增压器放气阀卡滞的保护方法及系统
CN115217655A (zh) * 2022-04-18 2022-10-21 广州汽车集团股份有限公司 发动机缸盖垫片密封性能的保护方法及发动机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355094B (zh) * 2022-07-05 2024-05-17 潍柴动力股份有限公司 一种发动机速度控制方法和系统
CN116749788B (zh) * 2023-06-27 2024-04-05 广州汽车集团股份有限公司 弹射控制的方法、装置、电子设备及存储介质
CN116620281B (zh) * 2023-07-21 2023-10-20 科大国创合肥智能汽车科技有限公司 自适应巡航系统平顺性控制方法、电子设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057539A (zh) * 2011-10-21 2013-04-24 本田技研工业株式会社 控制车辆制动的方法
US20130296105A1 (en) * 2012-05-07 2013-11-07 Ford Global Technologies, Llc Adjusting Motor Torque to Compensate for Uphill and Downhill Demands During Cruise Control in Hybrid Vehicle
US20140330472A1 (en) * 2011-12-09 2014-11-06 Toyota Jidosha Kabushiki Kaisha Vehicle control device
CN104828073A (zh) * 2014-04-10 2015-08-12 北汽福田汽车股份有限公司 车辆的控制方法及系统
CN107199893A (zh) * 2017-05-27 2017-09-26 北京新能源汽车股份有限公司 能量回收方法及装置
CN108297860A (zh) * 2018-03-27 2018-07-20 北京长安汽车工程技术研究有限责任公司 一种油门踏板开度解析控制方法、装置及系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5012849B2 (ja) * 2009-05-13 2012-08-29 トヨタ自動車株式会社 車両走行制御装置
US8554419B2 (en) * 2010-05-28 2013-10-08 Ford Global Technologies, Llc Control of a vehicle powertrain in response to brake pedal input
WO2012057301A1 (ja) * 2010-10-29 2012-05-03 株式会社 アドヴィックス 車両制御装置および車両制御方法
WO2013000042A1 (en) * 2011-06-29 2013-01-03 Olofsson Erland Improved accelerator pedal with braking action
KR101543160B1 (ko) * 2014-05-08 2015-08-07 현대자동차주식회사 속도 연동형 브레이크 제동력 제어 방법
CN109435938B (zh) * 2017-08-28 2020-09-15 比亚迪股份有限公司 制动控制方法和装置
CN109249922B (zh) * 2018-08-27 2020-04-10 北京理工大学 一种混动无人履带车辆机电联合线控化制动系统及方法
KR102525980B1 (ko) * 2018-08-27 2023-04-26 에이치엘만도 주식회사 전자식 브레이크 시스템
CN109278725B (zh) * 2018-11-21 2020-04-17 重庆长安新能源汽车科技有限公司 车辆动力控制的方法、系统、计算机可读存储介质及车辆
CN109765800A (zh) * 2018-12-28 2019-05-17 长安大学 一种基于驾驶操作数据实时采集的车辆运行仿真计算系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103057539A (zh) * 2011-10-21 2013-04-24 本田技研工业株式会社 控制车辆制动的方法
US20140330472A1 (en) * 2011-12-09 2014-11-06 Toyota Jidosha Kabushiki Kaisha Vehicle control device
US20130296105A1 (en) * 2012-05-07 2013-11-07 Ford Global Technologies, Llc Adjusting Motor Torque to Compensate for Uphill and Downhill Demands During Cruise Control in Hybrid Vehicle
CN104828073A (zh) * 2014-04-10 2015-08-12 北汽福田汽车股份有限公司 车辆的控制方法及系统
CN107199893A (zh) * 2017-05-27 2017-09-26 北京新能源汽车股份有限公司 能量回收方法及装置
CN108297860A (zh) * 2018-03-27 2018-07-20 北京长安汽车工程技术研究有限责任公司 一种油门踏板开度解析控制方法、装置及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3992047A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112896165A (zh) * 2021-02-23 2021-06-04 恒大新能源汽车投资控股集团有限公司 车辆控制方法及装置、车辆
CN112896165B (zh) * 2021-02-23 2022-07-22 恒大新能源汽车投资控股集团有限公司 车辆控制方法及装置、车辆
CN113460024B (zh) * 2021-07-06 2022-08-30 东风汽车集团股份有限公司 汽车制动优先控制系统及其控制方法
CN113460024A (zh) * 2021-07-06 2021-10-01 东风汽车集团股份有限公司 汽车制动优先控制系统及其控制方法
CN113715871A (zh) * 2021-09-24 2021-11-30 青岛海信微联信号有限公司 一种列车控制方法、装置、设备、系统及存储介质
CN113715871B (zh) * 2021-09-24 2023-08-15 青岛海信微联信号有限公司 一种列车控制方法、装置、设备、系统及存储介质
CN113938079A (zh) * 2021-09-26 2022-01-14 三一汽车起重机械有限公司 电机转速控制方法、装置、系统和作业机械
CN113938079B (zh) * 2021-09-26 2023-11-24 三一汽车起重机械有限公司 电机转速控制方法、装置、系统和作业机械
CN114030476A (zh) * 2021-10-27 2022-02-11 东风汽车集团股份有限公司 一种车辆加速度控制方法及相关设备
CN114030476B (zh) * 2021-10-27 2023-06-20 东风汽车集团股份有限公司 一种车辆加速度控制方法及相关设备
CN114776458A (zh) * 2022-03-23 2022-07-22 潍柴动力股份有限公司 工程车辆发动机修正方法、装置、电子设备和存储介质
CN114776458B (zh) * 2022-03-23 2024-03-19 潍柴动力股份有限公司 工程车辆发动机修正方法、装置、电子设备和存储介质
CN115217655A (zh) * 2022-04-18 2022-10-21 广州汽车集团股份有限公司 发动机缸盖垫片密封性能的保护方法及发动机
CN115217655B (zh) * 2022-04-18 2024-01-16 广州汽车集团股份有限公司 发动机缸盖垫片密封性能的保护方法及发动机
CN114876658A (zh) * 2022-04-26 2022-08-09 潍柴动力股份有限公司 一种制动工况下增压器放气阀卡滞的保护方法及系统
CN114771484A (zh) * 2022-06-06 2022-07-22 东风汽车有限公司东风日产乘用车公司 车辆的制动控制方法、车辆以及存储介质

Also Published As

Publication number Publication date
EP3992047A4 (en) 2023-02-15
CN111422193A (zh) 2020-07-17
EP3992047A1 (en) 2022-05-04
CN111422193B (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
WO2021000853A1 (zh) 一种制动控制方法、系统及车辆
KR101360683B1 (ko) 차량의 상태정보 기반 긴급제동 제어 장치 및 그 방법
CN110103931B (zh) 一种检测车辆制动异常的方法、装置
CN112879173B (zh) 一种控制油门滤波的方法及相关装置
US8457851B2 (en) Method and device for controlling the braking system of a vehicle
US20060155451A1 (en) Vehicle control apparatus
US8200386B2 (en) Control device of a four-wheel drive electric vehicle and method thereof
JP5288289B2 (ja) 車両の制御装置
US9651015B2 (en) Apparatus and method for preventing sudden start of automatic transmission vehicle
KR101583942B1 (ko) 구동모터 제어방법 및 제어장치
CN109353217A (zh) 一种行车安全控制方法、装置及系统
CN109552307B (zh) 基于电机扭矩的安全控制方法、装置和系统
JP7188511B2 (ja) 運転支援用のプログラム
CN111873982B (zh) 一种起步控制方法、装置、车辆和存储介质
JP2015206303A (ja) 車速制限装置の作動中における燃料噴射カットの制御装置および方法
CN109927654A (zh) 车辆自适应巡航控制噪声消除
US11794743B2 (en) Vehicle control method and vehicle control apparatus
CN115402095A (zh) 一种车辆的加速踏板开度信号控制方法及装置、电子设备
CN115123175A (zh) 车辆控制方法、装置和车辆
JP2004515412A (ja) 車両のブレーキ装置を制御するための方法及び装置
US20210086625A1 (en) Controller and method of controlling speed of a vehicle
EP0574150A1 (en) Method of and apparatus for traction control
WO2022156514A1 (zh) 离合器过热监测方法、装置、引擎控制模块及车辆
JP2003280891A (ja) 電子制御装置及び制御プログラム
KR102140318B1 (ko) 차량 제어 장치 및 차량 제어 장치를 통한 엔진 출력 토크 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20835031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020835031

Country of ref document: EP

Effective date: 20211227