WO2021000517A1 - 色彩转换组件及显示装置 - Google Patents

色彩转换组件及显示装置 Download PDF

Info

Publication number
WO2021000517A1
WO2021000517A1 PCT/CN2019/123306 CN2019123306W WO2021000517A1 WO 2021000517 A1 WO2021000517 A1 WO 2021000517A1 CN 2019123306 W CN2019123306 W CN 2019123306W WO 2021000517 A1 WO2021000517 A1 WO 2021000517A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
color conversion
convex structure
conversion layer
Prior art date
Application number
PCT/CN2019/123306
Other languages
English (en)
French (fr)
Inventor
王涛
顾杨
姜博
李静静
王程功
Original Assignee
成都辰显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都辰显光电有限公司 filed Critical 成都辰显光电有限公司
Publication of WO2021000517A1 publication Critical patent/WO2021000517A1/zh
Priority to US17/375,267 priority Critical patent/US20210341653A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0215Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having a regular structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • This application relates to the field of display technology, in particular to a color conversion component and a display device.
  • Micro-Light Emitting Diode (Micro-LED) technology can realize display supporting color patterns through a variety of colorization schemes, for example, colorization can be achieved by adding a light conversion layer. Although this method can meet the requirements of colorization, the existing light conversion layer structure design is unreasonable, resulting in uneven light intensity distribution when the light emitted by the Micro-LED passes through the light conversion layer, which affects the display effect of the display device.
  • the embodiments of the present application provide a color conversion component and a display device.
  • the color conversion component can meet the color display requirements of the display device, and at the same time can make the light intensity distribution uniform, and ensure the display effect of the display device.
  • a color conversion component including a light conversion layer.
  • the light conversion layer includes a black matrix, a color conversion layer, and a concave-convex structure layer; the black matrix has a plurality of through holes arranged in an array; The layer is located in at least part of the through holes, and the color conversion layer can emit light with a wavelength range different from that of the incident light; and the concavo-convex structure layer is at least correspondingly disposed in each through hole containing the color conversion layer, and the concavo-convex structure layer is located in the light conversion layer.
  • the light incident side of the layer has an uneven structure surface facing the color conversion layer.
  • the color conversion component includes a light conversion layer. Since the light conversion layer includes a black matrix, a color conversion layer, and a concave-convex structure layer, the color conversion layer can emit and incident light wavelength range Different lights meet the full-color display requirements of the display device. At the same time, the correspondingly arranged concavo-convex structure layer can diffuse the light, thereby making the light intensity distribution uniform, and ensuring the display effect of the display device.
  • FIG. 1 is a schematic top view of the structure of a display panel according to an embodiment of the present application
  • FIG. 2 is a schematic cross-sectional structure diagram of a display panel of an embodiment of the present application.
  • FIG. 3 is a schematic cross-sectional structure diagram of a color conversion component of an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of a reflective layer added to the color conversion component shown in FIG. 3 of the present application;
  • An embodiment of the present application provides a display device including a backplane assembly 20 and a color conversion assembly 10.
  • the backplane assembly 20 includes a driving backplane 21 and a light-emitting layer 22 disposed on the driving backplane 21.
  • the light-emitting layer 22 includes a plurality of light-emitting units 221 and a barrier wall 222 distributed in an array, and adjacent light-emitting units 221 are separated from each other by the barrier wall 222.
  • the color conversion component 10 and the back plate component 20 are stacked and connected to each other.
  • the barrier wall 222 included in the light-emitting layer 22 may be made of organic materials, such as Cardo resin, polyimide resin, or acrylic resin, to improve the flatness of the backplane surface and facilitate connection with the color conversion component 10.
  • the retaining wall 222 defines a plurality of receiving parts.
  • the receiving parts may have a rectangular structure.
  • the height of the barrier 222 on the driving back plate 21 may be greater than or equal to the height of the light emitting unit 221 on the driving back plate 21.
  • a plurality of light emitting units 221 distributed in an array may be arranged in the receiving portion and electrically connected to the driving circuit, and each light emitting unit 221 is controlled by the driving circuit.
  • the barrier wall 222 is arranged between the adjacent light-emitting units 221 to prevent the light emitted by the light-emitting units 221 from crosstalking each other.
  • the light emitting unit 221 may be a micro light emitting diode chip.
  • each light-emitting unit 221 may be a blue micro-light-emitting diode chip, and one light-emitting unit 221 may be provided in each receiving portion.
  • more than two light-emitting units 221 can also be provided according to the size ratio of the receiving portion to the light-emitting unit 221, which is not specifically limited here.
  • the side of the light emitting layer 22 away from the driving back plate 21 is planarized, so that the light emitting layer 22 has a planarized surface.
  • the color conversion component 10 is located above the planarized surface of the light-emitting layer 22.
  • an embodiment of the present application further provides a color conversion component 10, which can be used as Independent components are produced and sold separately.
  • a color conversion component 10 which can be used as Independent components are produced and sold separately.
  • it can also be used in the display device of the foregoing embodiments and used as a component of the display device of the foregoing embodiments.
  • the black matrix 121 has a plurality of through holes arranged in an array.
  • the black matrix 121 may be made of black light-absorbing material, and may be a colorant of black pigment or dye.
  • the black matrix 121 is made of materials such as titanium black, lignin black, composite oxide pigments such as iron or manganese, and combinations of the foregoing pigments. By arranging the black matrix 121, it is possible to avoid mutual crosstalk of light passing through different through holes.
  • the color conversion layer 122 is located in at least part of the through holes. Moreover, the color conversion layer 122 can emit light with a wavelength range different from that of the incident light.
  • the concavo-convex structure layer 123 is at least correspondingly disposed in each through hole containing the color conversion layer 122, and the concavo-convex structure layer 123 is located on the light incident side of the light conversion layer 122 and has a concavo-convex structure surface facing the color conversion layer 122.
  • the color conversion component 10 When the color conversion component 10 provided by the embodiment of the present application is applied to a display device, the color conversion component 10 is stacked with the back plate component 20 along the thickness direction X of the light conversion layer 12, and in the thickness direction X, each light-emitting unit 221 are respectively arranged opposite to the through holes in the black matrix 121 of the color conversion component 10.
  • the light emitted by the light-emitting unit 221 can be used as the incident light of the color conversion component 10.
  • the color conversion layer 122 can convert at least a part of the light emitted by the light-emitting unit 221 into light with different wavelength ranges, thereby satisfying the full-color display device. Show requirements.
  • the correspondingly arranged concavo-convex structure layer 123 can diffuse light so that the light can be evenly distributed after passing through the light conversion layer, thereby making the light intensity distribution uniform and ensuring the display effect of the display device.
  • the color conversion layer 122 may include red conversion units and green conversion units distributed in an array.
  • the red conversion unit converts the light of its corresponding light-emitting unit 221 into red sub-pixels.
  • the green conversion unit converts the light of its corresponding light-emitting unit 221 into green sub-pixels.
  • No color conversion unit or a transparent color conversion unit may be provided above the remaining number of light-emitting units 221 to maintain the original color of the light-emitting unit 221 and form blue sub-pixels, thereby ensuring that the display device can achieve full-color display.
  • the red conversion unit includes a photoluminescent material for generating red light, for example, a material formed by mixing red quantum dots and photoresist or a material formed by mixing red organic photoluminescence material and photoresist. material.
  • the green conversion unit includes a photoluminescent material for generating green light, for example, a material formed by mixing green quantum dots and photoresist or a material formed by mixing green organic photoluminescence material and photoresist .
  • the photoresist is a negative adhesive
  • the quantum dot layer is a quantum dot material that can form a specific excitation wavelength, including but not limited to a shell made of zinc sulfide (ZnS), which can be cadmium selenide (CdSe) or cadmium telluride (CdTe), cadmium sulfide (CdS) and indium phosphide (InP), one or more of perovskite
  • the quantum dot material also includes scatterers, such as titanium oxide, or silicon dioxide.
  • each through hole may be provided with a concave-convex structure layer.
  • the light conversion layer 12 further includes a barrier layer 125 formed on the inner wall of the through hole.
  • a barrier layer 125 formed on the inner wall of the through hole.
  • the barrier layer 125 located inside the through hole is enclosed to form an opening.
  • the opening formed in each through hole may be arranged coaxially with the through hole.
  • the opening has a first opening 125a and a second opening 125b opposite to each other, and the size of the second opening 125b is larger than the size of the first opening 125a.
  • the concave-convex structure layer 123 is disposed close to the first opening 125a, and the color conversion layer 122 is disposed in the opening.
  • the arrangement of the uneven structure layer 123 close to the first opening 125a means that the distance between the uneven structure layer 123 and the first opening 125a is smaller than the distance between the uneven structure layer 123 and the second opening 125b.
  • the barrier layer 125 may be made of the same material as the uneven structure layer 123.
  • the connection between the concave-convex structure layer 123 and the barrier layer 125 is better realized, and the limiting effect on the color conversion layer 122 is better guaranteed.
  • the barrier layer 125 and the uneven structure layer 123 may be integrally formed.
  • the molding process of the color conversion component can be simplified, and the display effect of the display device can be further optimized.
  • a complete barrier material layer can be formed first.
  • a first groove with a concave-convex structure surface and a second groove for accommodating the black matrix are formed on the barrier material layer through an embossing process.
  • the black matrix material is filled in the second groove to realize the integral molding of the barrier layer 125 and the concave-convex structure layer 123.
  • a black matrix with through holes can also be formed first, and the through holes are filled with barriers.
  • an integrally formed barrier layer 125 and a concave-convex structure layer 123 are formed by embossing.
  • the uneven structure surface has protrusions 123a extending along the thickness direction of the light conversion layer.
  • the number of protrusions 123a included in each concave-convex structure surface may be one, and when there is one, it may be located in the middle of the corresponding through hole or close to the middle.
  • the number of protrusions 123a included in each concave-convex structure surface may also be multiple, and when there are multiple, multiple protrusions 123a may be distributed in rows and columns.
  • the cross section of the protrusion 123a included in the uneven structure surface in the thickness direction X of the light conversion layer 12 may be polygonal, such as a triangle, a rectangle, and a trapezoid. That is, the protrusion 123a may have a conical shape, a cylindrical shape, or a frustum shape.
  • the bumps 123a on the concave-convex structure surface adopt the above-mentioned structural form, which can diffuse the light emitted by the light-emitting unit 221 to form uniform light and then excite the color conversion layer 122, so that the light-emitting unit 221 can be converted by the color conversion layer 122. Evenly distributed.
  • the light conversion layer 12 of the color conversion device 10 provided in the above embodiments may further include a reflective layer 124.
  • the reflective layer 124 is disposed on the inner wall of the through hole and surrounds the uneven structure surface. By providing the reflective layer 124, the problem of light crosstalk between adjacent sub-pixels can also be prevented, and the light after color conversion by the light conversion layer 12 can also be reflected, which is beneficial to improve the luminous efficiency of the light conversion layer 12.
  • the first distributed Bragg reflective film is also configured to reflect light in at least one other wavelength range.
  • the first distributed Bragg reflective film allows the light emitted by the light-emitting unit 221 to enter the through hole, and reflects the light of other colors that has been converted in the through hole, so that the converted light is irradiated to the light-emitting side opposite to the back plate assembly 20. Improve the utilization of light energy.
  • the second distributed Bragg reflector film can be formed by stacking two kinds of films with high and low refractive index.
  • the combination of the two films includes but not limited to: TiO 2 film and Al 2 O 3 film, TiO 2 film and SiO 2 film, In each combination of Ta 2 O 5 film and Al 2 O 3 film, HfO 2 film and SiO 2 film, the former is a high refractive index film and the latter is a low refractive index film.
  • the second distributed Bragg reflective film is located on the side of the color conversion layer 122 facing away from the concavo-convex structure layer 123, that is, in some embodiments, is located on the side of the color conversion component 10 close to the emitted light.
  • the second distributed The Bragg reflective film may be located in the through hole or outside the through hole.
  • the second distributed Bragg reflective film allows the light emitted by the color conversion layer 122 in the corresponding through hole to pass through and reflect light of at least one other wavelength range, so that the purity of the light emitted from the corresponding through hole is higher. When the reflective film reflects incident light, it can also improve the utilization of light energy.
  • the cross-section of the protrusion 123a of the uneven structure surface in the thickness direction X of the light conversion layer 12 is illustrated as a polygon, which is an optional method, but is not limited to Therefore, in some other examples, the cross-section of the protrusion 123a in the thickness direction X of the light conversion layer 12 may also be arc-shaped, which may be a circular arc or an elliptical arc, which may be a superior arc or Inferior arc, correspondingly, the structural shape of each protrusion 123a can also be a spherical or ellipsoidal partial structure.
  • the color conversion component 10 of the above-mentioned structural form can also meet the requirements of the display device for the uniformity of light intensity distribution.
  • the baffle assembly 30 includes a first baffle layer 31 and a second baffle layer 32 stacked in a thickness direction X, and the first baffle layer 31 is located between the back plate assembly 20 and the second baffle layer 32.
  • the first baffle layer 31 is made of black light-absorbing material, for example, it can be a black pigment or a colorant of a dye, and it can be titanium black, lignin black, composite oxide pigments such as iron/manganese, and the above-mentioned pigments. Combinations and the like are used to block the light emitted by the lower light emitting unit 221, thereby reducing crosstalk between pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种色彩转换组件(10)及显示装置,包括光转换层(12),光转换层(12)包括黑矩阵(121)、色彩转化层(122)以及凹凸结构层(123);黑矩阵(121)具有阵列排布的多个贯穿孔;色彩转化层(122)位于至少部分贯穿孔内,且色彩转化层(122)能够发射与入射光线的波长范围不同的光线;以及凹凸结构层(123)至少对应设置在每个容纳色彩转化层(122)的贯穿孔内,且凹凸结构层(123)位于色彩转换层(122)的入光侧并具有面向色彩转化层(122)的凹凸结构面。上述设置能够满足显示装置的彩色化显示要求,同时能够使得光强分布均匀,保证显示装置的显示效果。

Description

色彩转换组件及显示装置
相关申请的交叉引用
本申请要求享有于2019年06月30日提交的名称为“色彩转换组件及显示装置”的中国专利申请第201910581659.3号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,特别是涉及一种色彩转换组件及显示装置。
背景技术
微发光二极管显示(Micro-Light Emitting Diode,Micro-LED)技术可以通过多种彩色化方案来实现支持彩色图案的显示,例如可以通过增加光转换层来实现彩色化。该种方式虽然能够满足彩色化要求,但也因现有光转换层结构设计不合理,导致Micro-LED发出的光经过光转换层时存在光强分布不均匀,影响显示装置的显示效果。
发明内容
本申请实施例提供一种色彩转换组件及显示装置,色彩转换组件能够满足显示装置的彩色化显示要求,同时能够使得光强分布均匀,保证显示装置的显示效果。
一方面,根据本申请实施例提出了一种色彩转换组件,包括光转换层,光转换层包括黑矩阵、色彩转化层以及凹凸结构层;黑矩阵具有阵列排布的多个贯穿孔;色彩转化层位于至少部分贯穿孔内,且色彩转化层能够发射与入射光线的波长范围不同的光线;以及凹凸结构层至少对应设置在每个容纳色彩转化层的贯穿孔内,且凹凸结构层位于光转换层的入光侧 并具有面向色彩转化层的凹凸结构面。
另一方面,根据本申请实施例提出了一种显示装置,包括:背板组件,包括驱动背板以及设置于驱动背板上的发光层,发光层包括呈阵列分布的多个发光单元及挡墙,相邻发光单元通过挡墙相互分离设置;上述的色彩转换组件,色彩转换组件沿光转换层的厚度方向与背板组件层叠设置相互对接,在厚度方向上,每个发光单元分别与色彩转换组件的黑矩阵中贯穿孔相对设置。
根据本申请实施例提供的色彩转换组件及显示装置,色彩转换组件包括光转换层,由于光转换层包括黑矩阵、色彩转化层以及凹凸结构层,通过色彩转化层能够发射与入射光线的波长范围不同的光线,满足显示装置的全彩化显示要求。同时,相应设置的凹凸结构层能够对光线进行扩散,进而使得光强分布均匀,保证显示装置的显示效果。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1是本申请实施例的显示面板的俯视结构示意图;
图2是本申请实施例的显示面板的剖视结构示意图;
图3是本申请实施例的色彩转换组件的剖视结构示意图;
图4是本申请图3所示色彩转换组件上增设反射层的剖视结构示意图;
图5是本申请凸起截面与图3不同的色彩转换组件的剖视结构示意图;
图6是本申请实施例的挡板组件的局部剖视图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅 被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
为了更好地理解本申请,下面结合图1至图6根据本申请实施例的色彩转换组件及显示装置进行详细描述。
请参阅图1以及图2,图1示出了本申请实施例的显示装置的俯视结构示意图,图2示出了本申请实施例的显示装置的剖视结构示意图。
本申请实施例提供一种显示装置,包括背板组件20以及色彩转换组件10。背板组件20包括驱动背板21以及设置于驱动背板21上的发光层22。发光层22包括呈阵列分布的多个发光单元221及挡墙222,相邻发光单元221通过挡墙222相互分离设置。色彩转换组件10与背板组件20层叠设置并相互对接。
可选的,背板组件20的驱动背板21可以包括衬底基板以及设置于衬底基板上的驱动电路。驱动电路具体可以包括主动驱动电路和/或被动驱动电路。
发光层22所包括的挡墙222可以是有机材料制成,诸如Cardo树脂、聚酰亚胺树脂或丙烯酸树脂等,用于改善背板表面的平坦性,便于与色彩转换组件10连接。挡墙222限定出多个容纳部,可选的,容纳部可以矩形结构。挡墙222在驱动背板21上的高度可以大于等于发光单元221在驱动背板21上的高度。
呈阵列分布的多个发光单元221可以设置在容纳部内且分别与驱动电路电连接,通过驱动电路控制各发光单元221。而在相邻的发光单元221之间设置挡墙222,可以防止发光单元221出射的光相互串扰。
发光单元221可以为微发光二极管芯片。在一些可选的示例中,每个发光单元221均可以为蓝光微发光二极管芯片,每个容纳部内可以设置一个发光单元221。当然,也可以根据容纳部与发光单元221的尺寸比例设置两个以上发光单元221,此处不做具体限定。为了便于色彩转换组件10的设置,可选的,发光层22远离驱动背板21的一侧平坦化处理,使得发 光层22具有平坦化表面。
可选的,色彩转换组件10位于发光层22的平坦化表面的上方。为了使得显示装置能够实现全彩化显示,同时能够使得光强分布均匀,保证显示装置的显示效果,可选的,本申请实施例还提供一种色彩转换组件10,该色彩转换组件10可以作为独立的构件单独生产、销售等。当然,也可以用于上述各实施例的显示装置并作为上述各实施例的显示装置的组成部分。
为了更好的理解本申请实施例提供的色彩转换组件10,以下将结合图3至图6对色彩转换组件10进行详细介绍。
请一并参阅图3,图3示出了本申请一个实施例的色彩转换组件10的剖视结构示意图。本申请实施例提供的色彩转换组件10包括光转换层12。光转换层12包括黑矩阵121(Black Matrix,BM)、色彩转化层122以及凹凸结构层123。
黑矩阵121具有阵列排布的多个贯穿孔。黑矩阵121可以黑色吸光材料制成,可以是黑色颜料或染料的着色剂。在一些实施例中,黑矩阵121的制作材料例如是钛黑、木质素黑、诸如铁或锰的复合氧化物颜料以及上述颜料的组合等。通过设置黑矩阵121,能够避免由不同贯穿孔穿过的光相互串扰。
色彩转化层122位于至少部分贯穿孔内。且色彩转化层122能够发射与入射光线的波长范围不同的光线。凹凸结构层123至少对应设置在每个容纳色彩转化层122的贯穿孔内,且凹凸结构层123位于光转换层122的入光侧并具有面向色彩转化层122的凹凸结构面。
本申请实施例提供的色彩转换组件10在应用至显示装置时,色彩转换组件10沿光转换层12的厚度方向X与背板组件20层叠设置,并且,在厚度方向X上,每个发光单元221分别与色彩转换组件10的黑矩阵121中贯穿孔相对设置。发光单元221出射的光线可以作为色彩转换组件10的入射光线,通过色彩转化层122能够实现将至少部分数量的发光单元221出射的光线转换为波长范围不同的光线,进而满足显示装置的全彩化显示要求。同时,相应设置的凹凸结构层123能够对光线进行扩散,使光 线经过光转换层后能够均匀分布,进而使得光强分布均匀,保证显示装置的显示效果。
作为一种可选的实施方式,当发光单元221采用蓝光微发光二极管芯片时,为满足显示装置的全彩化显示,色彩转化层122可以包括成阵列分布的红色转换单元以及绿色转换单元。红色转换单元将其对应的发光单元221的光线转换成红色子像素。绿色转换单元将其对应的发光单元221的光线转换成绿色子像素。在其余部分数量的发光单元221上方可以不设置色彩转换单元或者设置透明色彩转换单元,以保持发光单元221的本来色彩,形成蓝色子像素,进而保证显示装置能够实现全彩化显示。
在一些可选的示例中,红色转换单元包括用于产生红光的光致发光材料,例如,红色量子点与光刻胶混合形成的材料或者红色有机光致发光材料与光刻胶混合形成的材料。在一些可选的示例中,绿色转换单元包括用于产生绿光的光致发光材料,例如,绿色量子点与光刻胶混合形成的材料或者绿色有机光致发光材料光刻胶混合形成的材料。其中,光刻胶为负性胶,量子点层为可以形成特定激发波长的量子点材料,包括但不限于硫化锌(ZnS)制成的外壳,可以为硒化镉(CdSe)、碲化镉(CdTe)、硫化镉(CdS)和磷化铟(InP),钙钛矿中的一种或多种,该量子点材料还包括散射体,例如氧化钛,或者二氧化硅等。
当色彩转化层122包括透明转换单元时,可选的,透明转换单元包括透明材料,例如,透明光刻胶、透明聚合物(例如聚甲基丙烯酸甲酯(poly methyl meth acrylate,PMMA))等。应当理解的是,透明转换单元无需将蓝光微发光二极管出射的蓝光进行转化,而是用于将蓝光微发光二极管出射的蓝光直接透过。
在一些可选的示例中,每个贯穿孔内均可以设置有凹凸结构层。通过上述设置,能够对经过色彩转换组件10各贯穿孔的入射光线进行扩散,更好的满足显示装置光强分布的均匀性。
作为一种可选的实施方式,各凹凸结构层同层设置。通过限定各凹凸结构层同层设置,不仅能够更好的保证光强分布的均匀性,同时还能够使得各凹凸结构面同时制造成型,简化色彩转换组件10的成型工艺,节约 生产时间且能够提高生产效率。
在一些可选的实施例中,光转换层12还包括形成在贯穿孔内壁上的阻隔层125,通过设置阻隔层125,能够更好的满足色彩转化层122的成型。
在一些可选的实施例中,位于贯穿孔内部的阻隔层125围合形成开孔。可选的,每个贯穿孔内形成的开孔可以与该贯穿孔同轴设置。开孔具有相对的第一开口125a和第二开口125b,第二开口125b的尺寸大于第一开口125a的尺寸。凹凸结构层123靠近第一开口125a设置,色彩转化层122设置于开孔内。通过限定阻隔层125围合形成的开口采用上述结构形式,可以使得由第一开口125a进入开孔内的光线准直化地从第二开口125b向外照射出,提升显示效果。本申请中,凹凸结构层123靠近第一开口125a设置指凹凸结构层123与第一开口125a的距离小于凹凸结构层123与第二开口125b的距离。
作为一种可选的实施方式,阻隔层125可以与凹凸结构层123的材质相同。更好的实现凹凸结构层123与阻隔层125之间的连接,更好的保证对色彩转化层122的限定效果。
在一些可选的实施例中,阻隔层125与凹凸结构层123可以一体成型。能够简化色彩转换组件的成型工艺,且进一步优化显示装置的显示效果。在实际制备过程中,一种可选的实施方式,可以先成型完整的阻隔物材料层。再通过压印工艺在阻隔物材料层形成带有凹凸结构面的第一凹槽和用于容纳黑矩阵的第二凹槽。再在第二凹槽中填充黑矩阵材料,进而实现阻隔层125与凹凸结构层123的一体成型。当然,在一些其他的示例中,也可以先形成带有贯穿孔的黑矩阵,在贯穿孔中填充阻隔物。再通过压印的方式,形成一体成型的阻隔层125和凹凸结构层123。
作为一种可选的实施方式,相邻两个贯穿孔之间的黑矩阵121的宽度与厚度比为2。比如黑矩阵121的宽度为5um,深度可以做到10um。相比较于现有技术中黑矩阵121的结构形式,具有能够保证光阻隔效果且不会对显示装置的分辨率造成影响的优势。
作为一种可选的实施方式,凹凸结构面具有沿光转换层的厚度方向延 伸的凸起123a。通过上述设置,使得发光单元221出射的光线能够经过凸起123a并向凸起123a的四周散射,以克服微发光二极管的发光一般中间强四周弱的缺陷,保证经由光转换层12转换后的光强的均匀性。
可选的,每个凹凸结构面所包括的凸起123a的数量可以为一个,当为一个时,其可以位于相应贯穿孔的中部或者靠近中部的位置。当然,每个凹凸结构面所包括的凸起123a的数量也可以为多个,当为多个时,多个凸起123a可以呈行列分布。通过上述设置,能够补强发光单元221光线出射后环绕发光单元221四周的光强,进而保证彩色转换组件所应用显示装置的光强的均匀性,使其具有更好的显示效果。
请继续参阅图3,作为一种可选的实施方式,凹凸结构面所包括的凸起123a在光转换层12的厚度方向X上的截面可以为多边形,例如三角形、矩形及梯形等。即,凸起123a可以为圆锥形、柱形或者锥台形状。凹凸结构面的各凸起123a采用上述结构形式,能够对发光单元221出射的光线进行扩散,形成均匀的光再激发色彩转化层122,从而实现发光单元221经过色彩转化层122的颜色转换后能够均匀分布。
请一并参阅图4,上述各实施例提供的色彩转换组件10的光转换层12可进一步包括反射层124。所述反射层124设置于贯穿孔的内壁并环绕凹凸结构面设置。通过设置反射层124,同样能够起到防止相邻子像素之间光串扰的问题,同时还可以反射由光转换层12色彩转换后的光线,利于提高光转换层12的发光效率。
所述色彩转换组件10还可包括第一分布式布拉格反射膜,第一分布式布拉格反射膜与各贯穿孔一一对应设置,第一分布式布拉格反射膜位于色彩转化层122面向凹凸结构层123的一侧,第一分布式布拉格反射膜配置为允许与入射光线的波长范围相同的光线透过。
通过上述设置,使得入射光线如发光单元221出射的光线照射至色彩转化组件10时,依次经过第一分布式布拉格反射膜、凹凸结构层123入射至色彩转化层122。
第一分布式布拉格反射膜可以是由具有高低折射率的两种薄膜堆叠而成,两种薄膜的组合包括但不限于:TiO 2薄膜与Al 2O 3薄膜、TiO 2薄膜与 SiO 2薄膜、Ta 2O 5薄膜与Al 2O 3薄膜、HfO 2薄膜与SiO 2薄膜,每组组合中,前者为高折射率薄膜,后者为低折射率薄膜。
在一些实施例中,第一分布式布拉格反射膜还同时配置为反射其它至少一种波长范围的光线。
第一分布式布拉格反射膜位于凹凸结构层123的入光侧,即位于背板组件20与色彩转化层122之间。可选的,第一分布式布拉格反射膜可以设置在贯穿孔内,当然也可以设置在贯穿孔外并与贯穿孔相对设置。
第一分布式布拉格反射膜允许发光单元221出射的光线进入贯穿孔内,并且反射贯穿孔内已经转化得到的其它颜色的光,使得转化得到的光均照向背板组件20对侧的出光侧,提高光能的利用率。
在一些实施例中,色彩转化组件还可以包括第二分布式布拉格反射膜,第二分布式布拉格反射膜与色彩转化层122对应设置,第二分布式布拉格反射膜位于色彩转化层122背向凹凸结构层123的一侧,第二分布式布拉格反射膜配置为允许对应贯穿孔内色彩转化层122发射的光线透过。
第二分布式布拉格反射膜可以是由具有高低折射率的两种薄膜堆叠而成,两种薄膜的组合包括但不限于:TiO 2薄膜与Al 2O 3薄膜、TiO 2薄膜与SiO 2薄膜、Ta 2O 5薄膜与Al 2O 3薄膜、HfO 2薄膜与SiO 2薄膜,每组组合中,前者为高折射率薄膜,后者为低折射率薄膜。
第二分布式布拉格反射膜配置为允许对应贯穿孔内色彩转化层122发射的光线透过,在一些实施例中,第二分布式布拉格反射膜还同时配置为反射其它至少一种波长范围的光线。在一些实施例中,第二分布式布拉格反射膜可以配置为反射与入射光线波长范围相同的光线,从而使得未被色彩转化层122吸收的入射光线再次反射至色彩转化层122进行激发转化。
第二分布式布拉格反射膜其位于色彩转化层122背向凹凸结构层123的一侧,即在一些实施例中,位于色彩转化组件10中靠近出射光线的一侧,同样的,第二分布式布拉格反射膜可以位于贯穿孔内,也可以位于贯穿孔外。第二分布式布拉格反射膜允许对应贯穿孔内色彩转化层122发射的光线透过且反射其它至少一种波长范围的光线,使得对应贯穿孔发射的光线纯净度更高,当第二分布式布拉格反射膜反射入射光线时,还能够提 高光能的利用率。
上述各实施例提供的色彩转换组件10还可以包括第一基板11,第一基板11可以位于光转换层12在厚度方向X的一侧。可选的,色彩转换组件10还可以包括与第一基板11相对设置的第二基板13,第二基板13可以位于光转换层12在厚度方向X的另一侧。
可选的,第一基板11以及第二基板13均可以为彩色化基板,其材料可以是玻璃或高分子材料,比如聚碳酸酯,聚氯乙烯、聚酯、丙烯酸等。通过上述设置,能够更利于光转换层12的成型,同时能够便于色彩转换组件10在应用至显示装置时与显示装置相应部件之间的连接。
请一并参阅图5,上述各实施例均是以凹凸结构面的凸起123a在光转换层12的厚度方向X上的截面为多边形举例说明,其为一种可选的方式,但不限于此,在一些其他的示例中,凸起123a在光转换层12的厚度方向X上的截面还可以为弧形,其可以为圆弧形或者椭圆弧形,既可以为优弧,也可以为劣弧,相应的,每个凸起123a的结构形状也可以为球形或者椭球形的部分结构,上述结构形式的色彩转换组件10,同样能够满足显示装置对光强分布均匀性的要求。
请一并参阅图2及图6,图6示出了本申请实施例的挡板组件30的局部剖视图。本申请上述各实施例提供的显示装置还进一步包括挡板组件30所述挡板组件30设置于背板组件20与色彩转换组件10之间,挡板组件30上与每个发光单元221相对位置均设置有透光孔33。
所述挡板组件30包括沿厚度方向X层叠设置的第一挡板层31以及第二挡板层32,第一挡板层31位于背板组件20与第二挡板层32之间。可选的,第一挡板层31由黑色吸光材料制成,例如可以是黑色颜料或染料的着色剂,可以是钛黑、木质素黑、诸如铁/锰的复合氧化物颜料以及上述颜料的组合等,用于阻挡下方发光单元221发射的光,从而较少像素之间的串扰。
所述第二挡板层32由光反射材料制成,由于量子点材料的发光是全方位的,所以当光传播到第二挡板层32上时可以反射彩色化膜发射的光束,提高彩色化膜的发光效率。反射材料可以是银,铝等,用于反射来自 上方色彩转化层122的光,利于提高色彩转换组件10的发光效率。
以上各实施例均是以发光单元221采用蓝光微发光二极管芯片进行举例说明,其为一种可选的方式,在一些其他的示例中,发光单元221还可以采用紫外光微发光二极管,此时,色彩转化层位于每个贯穿孔内,色彩转换层包括有红色转换单元、绿色转换单元以及蓝色转换单元,同样能够满足显示装置的彩色化显示要求。
综上,本申请实施例提供的色彩转换组件10,因其包括光转换层12,且光转换层12包括黑矩阵121、色彩转化层122以及凹凸结构层123,通过色彩转化层122能够发射与入射光线的波长范围不同的光线,满足显示装置的全彩化显示要求。同时,相应设置的凹凸结构层123能够对光线进行扩散,使其经过光转换单元后能够均匀分布,进而使得光强分布均匀,保证显示装置的显示效果。
而本申请实施例提供的显示装置,因其包括上述各实施例的色彩转换组件10,使得其经过色彩转换组件10的光线光强均匀,并且,相应设置的挡板组件30既能够进一步避免子像素之间光的串扰,同时能够提高发光效率,使得显示装置整体具有更好的显示效果,故易于推广使用。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种色彩转换组件,其中,包括光转换层,所述光转换层包括黑矩阵、色彩转化层以及凹凸结构层;
    所述黑矩阵具有阵列排布的多个贯穿孔;
    所述色彩转化层位于至少部分所述贯穿孔内,且所述色彩转化层能够发射与入射光线的波长范围不同的光线;以及
    所述凹凸结构层至少对应设置在每个容纳所述色彩转化层的所述贯穿孔内,且所述凹凸结构层位于所述光转换层的入光侧并具有面向所述色彩转化层的凹凸结构面。
  2. 根据权利要求1所述的色彩转换组件,其中,每个所述贯穿孔内均设置有所述凹凸结构层。
  3. 根据权利要求2所述的色彩转换组件,其中,各所述凹凸结构层同层设置。
  4. 根据权利要求1至3任意一项所述的色彩转换组件,其中,所述光转换层还包括形成在所述贯穿孔内壁上的阻隔层。
  5. 根据权利要求4所述的色彩转换组件,其中,所述阻隔层与所述凹凸结构层材质相同。
  6. 根据权利要求4所述的色彩转换组件,其中,所述阻隔层与所述凹凸结构层一体成型。
  7. 根据权利要求4所述的色彩转换组件,其中,位于所述贯穿孔内部的所述阻隔层围合形成开孔,所述色彩转化层设置于所述开孔内,所述开孔具有相对的第一开口和第二开口,所述第二开口的尺寸大于所述第一开口的尺寸,所述凹凸结构层与所述第一开口之间的距离小于所述凹凸结构层与第二开口之间的距离。
  8. 根据权利要求1至3任意一项所述的色彩转换组件,其中,所述凹凸结构面具有沿所述光转换层的厚度方向延伸的凸起。
  9. 根据权利要求8所述的色彩转换组件,其中,所述凸起在所述光转换层的厚度方向上的截面为弧形或者多边形。
  10. 根据权利要求8所述的色彩转换组件,其中,每个所述凹凸结构面分别包括多个所述凸起且多个所述凸起呈行列分布。
  11. 根据权利要求8所述的色彩转换组件,其中,每个所述凹凸结构面分别包括一个凸起,一个所述凸起位于其所在贯通孔的中部。
  12. 根据权利要求1至3任意一项所述的色彩转换组件,其中,相邻两个所述贯穿孔之间的所述黑矩阵的宽度与厚度比为2。
  13. 根据权利要求1至3任意一项所述的色彩转换组件,其中,所述光转换层进一步包括反射层,所述反射层设置于所述贯穿孔的内壁并环绕所述凹凸结构面设置。
  14. 根据权利要求1所述的色彩转化组件,其中,还包括:
    第一分布式布拉格反射膜,与各所述贯穿孔一一对应设置,所述第一分布式布拉格反射膜位于所述的凹凸结构层的入光侧,所述第一分布式布拉格反射膜配置为允许与所述入射光线的波长范围相同的光线透过;
    和/或,第二分布式布拉格反射膜,与所述色彩转化层一一对应设置,所述第二分布式布拉格反射膜位于所述色彩转化层背向所述凹凸结构层的一侧,所述第二分布式布拉格反射膜配置为允许对应所述贯穿孔内所述色彩转化层发射的光线透过。
  15. 根据权利要求1所述的色彩转化组件,其中,还包括:
    第一基板,位于所述光转换层在自身厚度方向的一侧并与所述光转换层连接;
    第二基板,与所述第一基板相对设置,所述第二基板位于所述光转换层在自身厚度方向的另一侧并与所述光转换层连接。
  16. 根据权利要求15所述的色彩转化组件,其中,所述第一基板以及所述第二基板分别为彩色化基板。
  17. 一种显示装置,其中,包括:
    背板组件,包括驱动背板以及设置于所述驱动背板上的发光层,所述发光层包括呈阵列分布的多个发光单元及挡墙,相邻所述发光单元通过所述挡墙相互分离设置;
    如权利要求1至16任意一项所述的色彩转换组件,所述色彩转换组件沿所述光转换层的厚度方向与所述背板组件层叠设置并相互对接,在所述厚度方向上,每个所述发光单元分别与所述色彩转换组件的所述贯穿孔相对设置。
  18. 根据权利要求17所述的显示装置,其中,还包括挡板组件,所述挡板组件设置于所述背板组件与所述色彩转换组件之间,所述挡板组件上与每个所述发光单元相对位置均设置有透光孔。
  19. 根据权利要求18所述的显示装置,其中,所述挡板组件包括沿所述厚度方向层叠设置的第一挡板层以及第二挡板层,所述第一挡板层位于所述背板组件与所述第二挡板层之间,所述第一挡板层由黑色吸光材料制成,所述第二挡板层由光反射材料制成。
  20. 根据权利要求17所述的显示装置,其中,所述发光单元为蓝光微发光二极管芯片或者紫外光微发光二极管。
PCT/CN2019/123306 2019-06-30 2019-12-05 色彩转换组件及显示装置 WO2021000517A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/375,267 US20210341653A1 (en) 2019-06-30 2021-07-14 Color conversion component and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910581659.3A CN112234078B (zh) 2019-06-30 2019-06-30 色彩转换组件及显示装置
CN201910581659.3 2019-06-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/375,267 Continuation US20210341653A1 (en) 2019-06-30 2021-07-14 Color conversion component and display device

Publications (1)

Publication Number Publication Date
WO2021000517A1 true WO2021000517A1 (zh) 2021-01-07

Family

ID=74100481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/123306 WO2021000517A1 (zh) 2019-06-30 2019-12-05 色彩转换组件及显示装置

Country Status (3)

Country Link
US (1) US20210341653A1 (zh)
CN (1) CN112234078B (zh)
WO (1) WO2021000517A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022056834A (ja) * 2020-09-30 2022-04-11 日亜化学工業株式会社 発光装置
CN113437052B (zh) * 2021-05-06 2024-01-30 福州大学 改善微小型led背光或显示均匀性的色转换层及其制备方法
CN114203926A (zh) * 2021-11-22 2022-03-18 合肥维信诺科技有限公司 一种显示面板
WO2023180015A1 (en) * 2022-03-24 2023-09-28 Micledi Microdisplays Bv An optoelectronic device with color conversion and with conformal dbr and an associated fabrication method
EP4250379A1 (en) * 2022-03-24 2023-09-27 Micledi Microdisplays BV An optoelectronic device with color conversion and with conformal dbr and an associated fabrication method
WO2023230932A1 (zh) * 2022-05-31 2023-12-07 京东方科技集团股份有限公司 芯片结构、芯片制备方法、显示基板和显示装置
TWI807911B (zh) * 2022-07-08 2023-07-01 友達光電股份有限公司 微發光二極體顯示器及其製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051602A (ko) * 2013-11-05 2015-05-13 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
CN106684108A (zh) * 2015-11-05 2017-05-17 群创光电股份有限公司 发光二极管显示设备
CN107731993A (zh) * 2016-08-11 2018-02-23 三星电子株式会社 制造发光装置封装件的方法
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置
CN208953836U (zh) * 2018-10-19 2019-06-07 深圳市珏琥显示技术有限公司 一种背光模组和显示装置
CN109920813A (zh) * 2017-12-12 2019-06-21 三星电子株式会社 制造发光器件封装的方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4139151B2 (ja) * 2002-07-08 2008-08-27 大日本印刷株式会社 有機エレクトロルミネッセント画像表示装置
JP4357854B2 (ja) * 2003-02-28 2009-11-04 大日本印刷株式会社 光学フィルターおよびこれを用いた有機elディスプレイ
US9698204B2 (en) * 2013-12-06 2017-07-04 Sharp Kabushiki Kaisha Light-emitting substrate, photovoltaic cell, display device, lighting device, electronic device, organic light-emitting diode, and method of manufacturing light-emitting substrate
CN105118928B (zh) * 2015-07-29 2018-02-09 京东方科技集团股份有限公司 彩膜基板、其制作方法、oled显示面板及显示装置
KR102291493B1 (ko) * 2016-08-11 2021-08-20 삼성디스플레이 주식회사 컬러 필터 및 이를 포함하는 표시 장치
KR102472606B1 (ko) * 2016-10-26 2022-11-30 삼성디스플레이 주식회사 색변환 패널, 이의 제조 방법 및 색변환 패널을 포함하는 표시 장치
CN106773306B (zh) * 2017-01-03 2018-11-23 青岛海信电器股份有限公司 一种封装有量子点层的显示面板和液晶显示装置
CN107357080A (zh) * 2017-08-30 2017-11-17 京东方科技集团股份有限公司 彩膜片及其制作方法和彩膜基板
CN108172608A (zh) * 2018-01-31 2018-06-15 武汉华星光电半导体显示技术有限公司 高对比度的有机发光显示装置
CN108538875B (zh) * 2018-03-30 2021-04-30 京东方科技集团股份有限公司 光路控制结构、像素结构及其制备方法、显示面板
CN109256455B (zh) * 2018-09-19 2020-06-12 福州大学 一种光效提取和无像素干扰的全彩化Micro-LED显示结构及其制造方法
CN109256456B (zh) * 2018-09-19 2020-04-10 福州大学 一种实现Micro-LED显示出光效率提升和窜扰降低的微结构及其制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150051602A (ko) * 2013-11-05 2015-05-13 엘지디스플레이 주식회사 유기전계발광표시장치 및 그 제조방법
CN106684108A (zh) * 2015-11-05 2017-05-17 群创光电股份有限公司 发光二极管显示设备
CN107731993A (zh) * 2016-08-11 2018-02-23 三星电子株式会社 制造发光装置封装件的方法
CN109920813A (zh) * 2017-12-12 2019-06-21 三星电子株式会社 制造发光器件封装的方法
CN108573992A (zh) * 2018-05-08 2018-09-25 业成科技(成都)有限公司 显示面板、制备方法及应用该显示面板的电子装置
CN208953836U (zh) * 2018-10-19 2019-06-07 深圳市珏琥显示技术有限公司 一种背光模组和显示装置

Also Published As

Publication number Publication date
US20210341653A1 (en) 2021-11-04
CN112234078A (zh) 2021-01-15
CN112234078B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
WO2021000517A1 (zh) 色彩转换组件及显示装置
US11774068B2 (en) Light source device and display unit
US9541790B2 (en) Direct-type backlight module and manufacturing method thereof
CN108873465B (zh) 量子点显示基板及其制作方法、显示装置
CN113325628B (zh) 一种高亮度的直下式背光模组
TWI640972B (zh) 顯示裝置及其光源模組
CN108878626A (zh) 一种显示面板及制作方法、显示装置
CN112133811B (zh) 显示面板、显示装置及显示面板的制备方法
KR20120078883A (ko) 디스플레이 장치
WO2017024654A1 (zh) 导光板和背光模组
KR20120075317A (ko) 디스플레이 장치
KR20200106843A (ko) 발광 모듈
CN112582441A (zh) 一种显示面板、显示装置及显示面板的制备方法
CN110707146B (zh) 盖板、有机发光显示面板、显示装置
US20190011779A1 (en) Optical member, display device including the same, and method of manufacturing the optical member
CN113451489A (zh) 显示面板及电子设备
US20240047626A1 (en) Color film substrate, method for preparing color film substrate, and display panel
CN112150937A (zh) 色彩转化组件及显示面板
CN112216774A (zh) 色彩转换组件、显示面板及制作方法
KR102236357B1 (ko) 색변환 기능을 갖는 마이크로 렌즈 어레이 제조 방법
WO2019221304A1 (ja) 面状照明装置および液晶表示装置
KR102391399B1 (ko) 색변환 기능을 갖는 마이크로 렌즈 어레이 및 이를 구비하는 마이크로 엘이디 디스플레이 모듈
TWI837550B (zh) Led顯示裝置
CN113936567B (zh) 一种显示面板及显示装置
TWI770968B (zh) 背光模組以及顯示裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19936112

Country of ref document: EP

Kind code of ref document: A1