WO2021000458A1 - Procédé de préparation d'oxyde composite de silicium de cérium et produit ainsi qu'application associés - Google Patents

Procédé de préparation d'oxyde composite de silicium de cérium et produit ainsi qu'application associés Download PDF

Info

Publication number
WO2021000458A1
WO2021000458A1 PCT/CN2019/112305 CN2019112305W WO2021000458A1 WO 2021000458 A1 WO2021000458 A1 WO 2021000458A1 CN 2019112305 W CN2019112305 W CN 2019112305W WO 2021000458 A1 WO2021000458 A1 WO 2021000458A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite oxide
cerium
silicon composite
preparing
ammonium nitrate
Prior art date
Application number
PCT/CN2019/112305
Other languages
English (en)
Chinese (zh)
Inventor
董林
谭伟
刘安鼐
高飞
汤常金
Original Assignee
南京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京大学 filed Critical 南京大学
Publication of WO2021000458A1 publication Critical patent/WO2021000458A1/fr

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8621Removing nitrogen compounds
    • B01D53/8625Nitrogen oxides
    • B01D53/8628Processes characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Definitions

  • the invention belongs to the field of flue gas denitration catalysts, and specifically relates to a preparation method of a cerium-silicon composite oxide and its products and applications.
  • the most mature commercial catalyst used to catalyze the NH 3 -SCR reaction is the V 2 O 5 -WO 3 (MoO 3 )/TiO 2 catalyst.
  • the catalyst has good activity in the middle and high temperature section (300-400°C).
  • its N 2 selectivity is poor in the middle and high temperature section, and its activity in the low temperature section is not ideal.
  • V 2 O 5 is also biologically toxic.
  • CeO 2 has a special octahedral configuration, which is easy to produce oxygen defects in the crystal, so it has good redox ability. And Ce, as the rare earth element with the largest reserves, is relatively cheap. CeO 2 has been used as an auxiliary, carrier or active component in the NH 3 -SCR field, but the surface of pure CeO 2 is weaker and has a smaller specific surface area. Incorporating SiO 2 into Ce/TiO 2 or V/TiO 2 can effectively increase the acid sites of the catalyst, increase the specific surface area of the catalyst, and further enhance the NH 3 -SCR activity of the catalyst. Moreover, neither CeO 2 nor SiO 2 has biological toxicity, and CeO 2 also exhibits good sulfur resistance potential. Therefore, the cerium-silicon composite oxide combining CeO 2 and SiO 2 may be a potential NH 3 -SCR catalyst with good application prospects.
  • the objective of the present invention is to provide a method for preparing a cerium-silicon composite oxide, which has simple raw materials, low cost and simple method.
  • Another object of the present invention is to provide a cerium-silicon composite oxide as a flue gas denitration catalyst with better low-temperature activity, high N 2 selectivity, and superior sulfur poisoning resistance, which can be used in flue gas denitration in coal-fired power plants.
  • a preparation method of cerium-silicon composite oxide includes the following steps:
  • Step 1) Add concentrated ammonia water dropwise to the resulting mixed solution under stirring to cause precipitation and aging precipitation;
  • Step 2) The obtained precipitate is filtered, washed, dried and calcined to obtain a cerium-silicon composite oxide.
  • the concentration of the cerium ammonium nitrate ethanol solution is 0.005 mol/L to 0.2 mol/L.
  • the duration of the continued stirring is 1 h.
  • the dropping of concentrated ammonia water is stopped when the pH of the mixed solution is 10, and the concentration of the concentrated ammonia water is 13.2 mol/L.
  • the time for the aging precipitation is 12h.
  • the washing is 3 times with deionized water, and the drying is drying in an oven at 100° C. for 12 hours.
  • the roasting is in a muffle furnace with a temperature of 550°C and a duration of 4 hours.
  • the cerium-silicon composite oxide is obtained by the preparation method of the cerium-silicon composite oxide.
  • the cerium-silicon composite oxide is Ce-2Si.
  • cerium-silicon composite oxide as a flue gas denitration catalyst.
  • both cerium ammonium nitrate and TEOS can be dissolved in ethanol, and after adding concentrated ammonia to the solution, both cerium ammonium nitrate and TEOS can be hydrolyzed and precipitated quickly, so the co-precipitation method is adopted to combine the cerium ammonium nitrate and TEOS in After dissolving and mixing uniformly in ethanol, an excessive amount of ammonia is added dropwise to make the precipitation complete, and then the cerium-silicon composite oxide catalyst can be prepared by aging, washing, drying and roasting.
  • the method for preparing a cerium-silicon composite oxide provided by the present invention has simple raw materials, low cost, environmentally friendly, simple preparation method, and large-scale production;
  • the cerium-silicon composite oxide provided by the present invention has a larger specific surface area, stronger acidity and special surface adsorption mechanism due to the doping of SiO 2 , which effectively improves the CeO 2
  • the NH 3 -SCR activity further improves the water and sulfur resistance of the catalyst; as a flue gas denitration catalyst, the cerium-silicon composite oxide has good activity at medium and low temperatures, high N 2 selectivity, superior sulfur poisoning resistance, and environmentally friendly , Has a wide range of industrial application prospects.
  • Figure 1 shows the X-ray diffraction (XRD) results of the cerium-silicon composite oxide catalyst and pure CeO 2 ;
  • Figure 2 is a graph showing the results of Raman spectra of the cerium-silicon composite oxide catalyst and pure CeO 2 ;
  • Figure 3 is the result of the NH 3 -SCR reaction between a cerium-silicon composite oxide catalyst and pure CeO 2 , where (a) is the NO conversion rate and (b) is the N 2 selectivity;
  • Figure 4 is a graph showing the test results of the sulfur resistance of the cerium-silicon composite oxide catalyst at 250°C.
  • XRD X-ray diffraction
  • Raman spectroscopy Raman spectroscopy
  • NH 3 -SCR reaction catalytic performance test
  • sulfur poisoning performance test sulfur poisoning performance test and other characterization methods to evaluate its bulk structure and catalytic performance
  • Fig. 1 The XRD results in Fig. 1 show that within the range of the feed concentration mentioned in the present invention, Ce and Si can be mixed together well, the degree of crystallization of CeO 2 is very low, and SiO 2 reduces the degree of crystallization of CeO 2 .
  • the result of Raman in Fig. 2 also shows that the crystal structure of CeO 2 is destroyed, a strong interaction occurs between CeO 2 and SiO 2 and the oxygen defect concentration increases.
  • the result of the NH 3 -SCR reaction in Figure 3 shows that the catalytic performance of the cerium-silicon composite oxide catalyst is significantly better than that of CeO 2.
  • the NO conversion rate of the cerium-silicon composite oxide is as high as about 90%, and its N 2 selectivity is close to 100%.
  • the NO conversion rate of pure CeO 2 is less than 30%, and the N 2 selectivity decreases rapidly as the temperature increases.
  • XRD results in Figure 1 show that Ce and Si can be mixed together well within the feeding concentration range mentioned in the present invention.
  • the degree of crystallization of CeO 2 is very high. Low, SiO 2 reduces the crystallinity of CeO 2 .
  • the result of Raman in Fig. 2 also shows that the crystal structure of CeO 2 is destroyed, a strong interaction occurs between CeO 2 and SiO 2 and the oxygen defect concentration increases.
  • the results of the NH 3 -SCR reaction in Figure 3 show that the catalytic performance of the cerium-silicon composite oxide catalyst is significantly better than that of CeO 2.
  • the NO conversion rate of the cerium-silicon composite oxide is as high as about 90%, and its N 2 selectivity is close to 100%.
  • the NO conversion rate of pure CeO 2 is less than 30%, and the N 2 selectivity decreases rapidly as the temperature increases.
  • Figure 4 shows that the cerium-silicon composite oxide exhibits excellent sulfur poisoning resistance at 250°C, and the NO conversion rate has been stable above 90% for a long time without a significant downward trend. However, the NO conversion rate of CeO 2 has dropped seriously, showing Obvious characteristics of sulfur poisoning.
  • Example 7 Determination of catalytic performance of cerium-silicon composite oxide for denitration
  • the prepared cerium-silicon composite oxide catalyst was applied to the NH 3 -SCR reaction, and the specific reaction conditions were as follows: the catalytic reaction test was carried out in a fixed-bed continuous flow quartz reactor. The particle size of the catalyst is 60-80 mesh, and the dosage is 250 mg.
  • the reaction gas composition is: 500 ppm NO, 500 ppm NH 3 , 200 ppm SO 2 , 5% O 2 , and N 2 as the balance gas, and the gas space velocity in the reaction is 30000 mL ⁇ g -1 ⁇ h -1 . Before the reaction, the catalyst needs to be purged with high purity N 2 at 200°C for 1 h.
  • the catalytic reaction is carried out at 50-450°C, and the activity data is collected after the reaction reaches equilibrium.
  • the product was detected and analyzed by Thermofisher IS10 FTIR, and the NO conversion rate and N 2 selectivity were calculated by the following formula:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

L'invention concerne un procédé de préparation d'oxyde composite de silicium de cérium et un produit ainsi qu'une application associés. Selon le procédé, du nitrate d'ammonium et de cérium et de l'orthosilicate de tétraéthyle (TEOS) sont mélangés et dissous dans de l'alcool éthylique, puis dans un état d'agitation, de l'eau ammoniacale plus forte est ajoutée goutte à goutte jusqu'à ce que la précipitation soit achevée, puis l'oxyde composite de silicium de cérium est obtenu par vieillissement, filtration, lavage, séchage et calcination. Par rapport au CeO2 pur, l'oxyde composite de silicium de cérium a une surface spécifique plus grande, une acidité plus élevée, et un mécanisme d'adsorption de surface spécial, et l'activité de CeO2 pour catalyser une réaction de NH3-SCR est efficacement améliorée. L'oxyde composite de silicium de cérium sert de catalyseur de dénitration de gaz de combustion, et a une meilleure activité à moyenne et faible température, une sélectivité élevée de N2, une résistance supérieure à l'empoisonnement par le soufre et respecte l'environnement. Le procédé de préparation de l'oxyde composite de silicium de cérium est simple, les matières premières sont simples et faciles à obtenir, et l'oxyde composite de silicium de cérium peut être produit à grande échelle et présente une large perspective d'application industrielle.
PCT/CN2019/112305 2019-07-04 2019-10-21 Procédé de préparation d'oxyde composite de silicium de cérium et produit ainsi qu'application associés WO2021000458A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910602488.8 2019-07-04
CN201910602488.8A CN110270321A (zh) 2019-07-04 2019-07-04 一种铈硅复合氧化物的制备方法及其产物和应用

Publications (1)

Publication Number Publication Date
WO2021000458A1 true WO2021000458A1 (fr) 2021-01-07

Family

ID=67963015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112305 WO2021000458A1 (fr) 2019-07-04 2019-10-21 Procédé de préparation d'oxyde composite de silicium de cérium et produit ainsi qu'application associés

Country Status (2)

Country Link
CN (1) CN110270321A (fr)
WO (1) WO2021000458A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774932A (zh) * 2022-03-15 2022-07-22 宁波吉海金属科技有限公司 一种航空航天不锈钢管道用酸洗钝化剂

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110270321A (zh) * 2019-07-04 2019-09-24 南京大学 一种铈硅复合氧化物的制备方法及其产物和应用
CN111217377B (zh) * 2020-02-24 2023-02-07 宝鸡文理学院 铈掺杂介孔氧化硅材料的一步绿色合成方法
CN113000044B (zh) * 2021-03-15 2023-01-24 四川大学 二氧化碳氧化乙烷脱氢催化剂及其制备方法
CN113209961A (zh) * 2021-04-13 2021-08-06 苏州西热节能环保技术有限公司 一种高抗硫超宽温结构化改性scr催化剂及制备方法
CN113828130A (zh) * 2021-10-28 2021-12-24 辽宁基伊能源科技有限公司 基于石墨烯改性碳酸钙脱硝剂的制备方法及其应用
CN114904540A (zh) * 2022-05-10 2022-08-16 福州大学 一种低温锰基催化剂及其制备方法和应用
CN115518652A (zh) * 2022-06-13 2022-12-27 安徽理工大学 一种硅铈复合微孔材料封装金属催化剂及其制备方法与应用
CN116371399A (zh) * 2023-03-28 2023-07-04 南京大学 一种铌改性铈硅混合氧化物催化剂的制备方法及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020090512A1 (en) * 2000-11-15 2002-07-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide powder, a method for producing the same and a catalyst using the same
CN102407101A (zh) * 2011-10-09 2012-04-11 南京大学 一种纳米级铈基复合氧化物及其制法和用途
CN102770373A (zh) * 2009-12-25 2012-11-07 阿南化成株式会社 复合氧化物、其制备方法及排气净化用催化剂
WO2014057839A1 (fr) * 2012-10-08 2014-04-17 株式会社三徳 Procédé de production d'oxyde composite et de catalyseur d'oxyde composite
WO2014202149A1 (fr) * 2013-06-21 2014-12-24 Rhodia Operations Oxyde composite a base d'oxyde de cerium, d'oxyde de silicium et d'oxyde de titane
CN102711983B (zh) * 2009-11-25 2015-04-22 阿南化成株式会社 复合氧化物、其制备方法和废气净化用催化剂
CN110270321A (zh) * 2019-07-04 2019-09-24 南京大学 一种铈硅复合氧化物的制备方法及其产物和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102101048B (zh) * 2011-01-25 2013-04-03 清华大学 一种以钛硅复合氧化物为载体的铈基脱硝催化剂及其制备和应用
CN109277098B (zh) * 2018-08-20 2019-11-12 四川大学 高温水热稳定的硅改性scr催化剂及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020090512A1 (en) * 2000-11-15 2002-07-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Composite oxide powder, a method for producing the same and a catalyst using the same
CN102711983B (zh) * 2009-11-25 2015-04-22 阿南化成株式会社 复合氧化物、其制备方法和废气净化用催化剂
CN102770373A (zh) * 2009-12-25 2012-11-07 阿南化成株式会社 复合氧化物、其制备方法及排气净化用催化剂
CN102407101A (zh) * 2011-10-09 2012-04-11 南京大学 一种纳米级铈基复合氧化物及其制法和用途
WO2014057839A1 (fr) * 2012-10-08 2014-04-17 株式会社三徳 Procédé de production d'oxyde composite et de catalyseur d'oxyde composite
WO2014202149A1 (fr) * 2013-06-21 2014-12-24 Rhodia Operations Oxyde composite a base d'oxyde de cerium, d'oxyde de silicium et d'oxyde de titane
CN110270321A (zh) * 2019-07-04 2019-09-24 南京大学 一种铈硅复合氧化物的制备方法及其产物和应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774932A (zh) * 2022-03-15 2022-07-22 宁波吉海金属科技有限公司 一种航空航天不锈钢管道用酸洗钝化剂

Also Published As

Publication number Publication date
CN110270321A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
WO2021000458A1 (fr) Procédé de préparation d'oxyde composite de silicium de cérium et produit ainsi qu'application associés
Xu et al. Development of wide-temperature vanadium-based catalysts for selective catalytic reducing of NOx with ammonia
CN105561983B (zh) 一种Mn-Ce负载型低温脱硝催化剂及其制备方法
WO2021088277A1 (fr) Catalyseur de dénitration à base de tio2 hydrogéné, son procédé de préparation et application associé
CN105642299A (zh) 一种镍掺杂的铁酸镧/粘土纳米结构复合材料及其制备方法和应用
CN107456964A (zh) 用于碳氢化合物低温氧化的超大比表面积钙钛矿型复合氧化物催化剂及其制备
CN105413715B (zh) 低温烟气脱硝用复合载体负载型酸化锰钴铈的耐硫催化剂及其制备方法
CN110773153B (zh) 一种担载型锰基中低温脱硝催化剂、制备方法及其应用
KR102033967B1 (ko) 탄소 재료에 촉매 활성물질이 담지된 선택적 촉매환원반응용 저온 탈질촉매 및 그 제조방법
CN105797714B (zh) 一种钬改性的锰钛复合氧化物低温脱硝催化剂及其制备方法
CN113413904A (zh) 一种g-C3N4负载型锰铈复合氧化物低温NH3-SCR催化剂及其制备方法与应用
CN104209115A (zh) 一种钒系负载型高温scr催化剂及其制备方法
CN107126959A (zh) 一种凹凸棒石负载CoTiO3‑CeO2‑异质结SCR低温脱硝催化剂及其制备方法
CN103801325A (zh) 复合氧化物脱硝催化剂的共沉淀制备方法
CN110368933A (zh) 一种以Ce-Ti复合氧化物为载体的钌基氨合成催化剂及其制备方法
CN108380204B (zh) 一种Mn基凹凸棒石催化剂的制备及表征
CN105233814A (zh) 一种核壳结构的铈基氧化物催化剂、制备方法及其用途
WO2015131484A1 (fr) Catalyseur d'oxyde composite de cérium-molybdène-zirconium, son procédé de préparation et son application
CN112473682B (zh) 一种高性能中低温nh3-scr催化剂及其制备方法和应用
CN110548521B (zh) 一种高性能的低温nh3-scr催化剂及其制法和用途
CN108579756B (zh) 一种海带状Mn-Fe双金属氧化物负载CeO2催化剂及制备方法和应用
Qing et al. Depth investigation of the regulation mechanism of SiO2 on the denitrification performance and sulfur resistance of MnCe/Ti SCR catalyst
CN107185555B (zh) 一种铜掺杂的硫化铈基纳米晶脱硝催化剂的制备方法
CN103357419B (zh) 一种氧化铬担载锰铜催化剂及其制备和应用
CN111036231B (zh) 一种抗硫抗碱金属低温脱硝催化剂及其制备方法及应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19935992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19935992

Country of ref document: EP

Kind code of ref document: A1