WO2020261710A1 - 化学強化ガラスの製造方法および化学強化ガラス - Google Patents

化学強化ガラスの製造方法および化学強化ガラス Download PDF

Info

Publication number
WO2020261710A1
WO2020261710A1 PCT/JP2020/016054 JP2020016054W WO2020261710A1 WO 2020261710 A1 WO2020261710 A1 WO 2020261710A1 JP 2020016054 W JP2020016054 W JP 2020016054W WO 2020261710 A1 WO2020261710 A1 WO 2020261710A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
chemically strengthened
less
mpa
strengthened glass
Prior art date
Application number
PCT/JP2020/016054
Other languages
English (en)
French (fr)
Inventor
拓実 馬田
雄介 荒井
清 李
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2021527401A priority Critical patent/JPWO2020261710A1/ja
Priority to DE112020003081.4T priority patent/DE112020003081T5/de
Priority to CN202311062526.8A priority patent/CN117069379A/zh
Priority to CN202080045850.7A priority patent/CN114007994B/zh
Publication of WO2020261710A1 publication Critical patent/WO2020261710A1/ja
Priority to US17/562,240 priority patent/US20220119307A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0009Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing silica as main constituent
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/18Compositions for glass with special properties for ion-sensitive glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties

Definitions

  • the present invention relates to a method for producing chemically strengthened glass and chemically strengthened glass.
  • a cover glass made of chemically tempered glass is used for the purpose of protecting display devices such as mobile phones, smartphones, and tablet terminals and enhancing their aesthetic appearance.
  • Patent Document 1 describes that the surface compressive stress can be increased while suppressing the internal tensile stress by forming a stress profile represented by a bent line by two-step chemical strengthening. Specifically, a method has been proposed in which a KNO 3 / NaNO 3 mixed salt having a low K concentration is used for chemical strengthening in the first stage, and a KNO 3 / NaNO 3 mixed salt having a high K concentration is used for chemical strengthening in the second stage. ing.
  • Patent Document 2 discloses lithium aluminosilicate glass in which a relatively large surface compressive stress and compressive stress layer depth can be obtained by two-step chemical strengthening.
  • Lithium aluminosilicate glass uses a sodium salt for the first-stage chemical strengthening treatment and a potassium salt for the second-stage chemical strengthening treatment.
  • CS 0 and DOL are suppressed while suppressing CT. Both can be made larger.
  • the present inventors have found that by using a base glass of chemically tempered glass as a glass having high fracture toughness, explosive crushing at the time of injury can be suppressed even when a larger compressive stress is introduced into the glass. It was. That is, it was found that the CT limit is increased by increasing the fracture toughness value of the mother glass of the chemically strengthened glass.
  • the fracture toughness value of the base material can be significantly improved.
  • the weather resistance may be significantly lowered as compared with that before the chemical strengthening.
  • the present invention provides a chemically strengthened glass that is not easily crushed when injured and has excellent strength and weather resistance, and a method for producing the same.
  • the present inventors have stated that the main cause of the decrease in weather resistance when chemically strengthening lithium aluminosilicate glass is the potassium ions introduced into the glass surface by chemical strengthening using a strengthening salt containing potassium. It was found that the precipitate was formed by the reaction between the glass and the components in the air. Furthermore, the lithium aluminosilicate glass having a fracture toughness value of a specific range or more is chemically strengthened with a tempered salt containing sodium and a potassium content of less than 5% by mass to crush it at the time of injury. It was found that chemically strengthened glass can be obtained in which the amount of potassium is suppressed and the strength and weather resistance are also excellent. Based on these findings, the present invention has been completed.
  • the present invention is as follows. 1.
  • a method for producing chemically strengthened glass which chemically strengthens lithium aluminosilicate glass having a thickness of t [unit: ⁇ m].
  • the lithium aluminosilicate glass has a fracture toughness value (K1c) of 0.80 MPa / m 1/2 or more.
  • the chemical fortification is a chemical fortification using a fortifying salt containing sodium and having a potassium content of less than 5% by mass.
  • the obtained chemically strengthened glass has a surface compressive stress value (CS 0 ) of 500 to 1000 MPa and A method for producing chemically strengthened glass, wherein the depth DOL [unit: ⁇ m] at which the compressive stress value becomes zero is 0.06 to 0.2 t. 2.
  • the lithium aluminosilicate glass is In molar% display based on oxides, SiO 2 40-65%, Al 2 O 3 15-45%, Contains 2-15% Li 2 O, The method for producing chemically strengthened glass according to 1 above. 7. Chemically tempered glass with a thickness of t [unit: ⁇ m] Lithium aluminosilicate glass, Surface compressive stress value (CS 0 ) is 500 to 1000 MPa, The compressive stress value (CS 50 ) at a depth of 50 ⁇ m from the glass surface is 150 to 230 MPa, and The depth DOL [unit: ⁇ m] at which the compressive stress value becomes zero is 0.06t to 0.2t.
  • the mother glass of the chemically strengthened glass is displayed as an oxide-based molar percentage. Any one of 7 to 9 above, which contains 40 to 65% of SiO 2 , 15 to 45% of Al 2 O 3 , 2 to 15% of Li 2 O, and K1c of 0.80 MPa ⁇ m 1/2 or more.
  • Chemically tempered glass as described in.
  • a tempered salt containing sodium and having a potassium content of less than 5% by mass is used for chemicals with respect to lithium aluminosilicate glass having a fracture toughness value of a specific range or more.
  • Strengthen As a result, crushing at the time of injury can be suppressed, and chemically strengthened glass having excellent strength and weather resistance as compared with the conventional one can be efficiently produced.
  • the chemically strengthened glass of the present invention is not easily crushed when damaged, and is also excellent in strength and weather resistance, and is suitable for a cover glass.
  • FIG. 1 is a diagram showing a stress profile of chemically strengthened glass according to one aspect of the present invention.
  • FIG. 2 is a diagram showing an example of a powder X-ray diffraction pattern of crystallized glass.
  • FIG. 3 is a diagram showing an example of the DSC curve of the amorphous glass according to the present invention.
  • FIG. 4 is a diagram showing an example of the result of damaging the glass, (A) is a diagram showing a case where the CT is below the CT limit, and (B) is a diagram showing the case where the CT is above the CT limit. It is a figure which shows the case.
  • chemically tempered glass refers to glass that has been chemically strengthened. Further, “chemically strengthened glass” refers to glass before being chemically strengthened.
  • the glass composition of the chemically strengthened glass may be referred to as the mother composition of the chemically strengthened glass.
  • a compressive stress layer is usually formed on the glass surface portion by ion exchange, so that the glass composition of the non-ion exchanged portion matches the matrix composition of the chemically strengthened glass.
  • the concentration of components other than the alkali metal oxide basically does not change even in the ion-exchanged portion.
  • the glass composition is indicated by an oxide-based molar percentage display, and mol% may be simply described as%. Further, "-" indicating a numerical range is used to mean that the numerical values described before and after the numerical range are included as the lower limit value and the upper limit value.
  • substantially not contained means that it is not contained except for unavoidable impurities contained in raw materials and the like, that is, it is not intentionally contained. Except for transition metal oxides that cause coloring, for example, the content in the glass composition is less than 0.1 mol%.
  • the "stress profile” is a pattern expressing the compressive stress value with the depth from the glass surface as a variable.
  • a negative compressive stress value means tensile stress.
  • the “compressive stress layer depth (DOC)” is the depth at which the compressive stress value (CS) becomes zero.
  • “Internal tensile stress value (CT)” refers to a tensile stress value at a depth of 1/2 of the glass plate thickness t.
  • the stress profile is often measured using an optical waveguide surface stress meter (for example, FSM-6000 manufactured by Orihara Seisakusho Co., Ltd.).
  • the optical waveguide surface stress meter cannot measure the stress unless the refractive index decreases from the surface to the inside in principle of measurement.
  • compressive stress cannot be measured when lithium aluminosilicate glass is chemically strengthened with sodium salt. Therefore, in the present specification, the stress profile is measured using a scattered light photoelastic stress meter (for example, SLP-1000 manufactured by Orihara Seisakusho Co., Ltd.). According to the scattered light photoelastic stress meter, the stress value can be measured regardless of the refractive index distribution inside the glass.
  • the scattered light photoelastic stress meter is easily affected by the surface scattered light, it is difficult to accurately measure the stress value near the glass surface.
  • the stress value can be estimated by extrapolation using the complementary error function based on the measured value of the deeper portion.
  • the chemically strengthened glass of this embodiment has a thickness of t [unit: ⁇ m] and has a thickness of t [unit: ⁇ m].
  • Lithium aluminosilicate glass, Surface compressive stress value (CS 0 ) is 500 to 1000 MPa
  • the compressive stress value (CS 50 ) at a depth of 50 ⁇ m from the glass surface is 150 to 230 MPa
  • the depth DOL [unit: ⁇ m] at which the compressive stress value becomes zero is 0.06t to 0.2t.
  • (CS 0 ⁇ DOL) / K1c [unit: ⁇ m / m 1/2 ] is 40,000 to 70,000.
  • K1c is a fracture toughness value [unit: ⁇ m / m 1/2 ].
  • the K concentration on the glass surface is preferably 1% by mass or less.
  • the chemically strengthened glass of this embodiment is Chemically tempered glass with a thickness of t [unit: ⁇ m] Lithium aluminosilicate glass, Surface compressive stress value (CS 0 ) is 500 to 1000 MPa, The compressive stress value (CS 50 ) at a depth of 50 ⁇ m from the glass surface is 150 to 230 MPa, and The ratio CT / X of the internal compressive stress value CT [unit: MPa] to X represented by the following formula is 0.7 to 1.
  • X ⁇ (1 / 2a (1- ⁇ ) (t-2 ⁇ DOL)) K1c
  • a 0.11 and ⁇ is Poisson's ratio.
  • FIG. 1 is a diagram showing a stress profile of the chemically strengthened glass according to one aspect of the present invention.
  • an example is a stress profile of a chemically strengthened glass (chemically strengthened glass SG5 described later) according to one aspect of the present invention.
  • a reference example is a stress profile of chemically strengthened glass obtained by chemically strengthening the glass G21 described later in two stages without crystallizing it.
  • glass fracture by bending mode When the glass plate is bent by an impact, if the amount of bending becomes large, a large tensile stress is applied to the glass surface and the glass breaks. In the present specification, such fracture is referred to as "glass fracture by bending mode".
  • the chemically strengthened glass of the present invention has a higher CS on the outermost surface of the glass as compared with the chemically strengthened glass of the reference example, so that glass breakage due to the bending mode is suppressed.
  • the chemically strengthened glass of the present invention since the CS 50 is 150 to 230 MPa, the internal tensile stress area (St) can be suppressed, and as a result, CT can be reduced and crushing at the time of injury can be suppressed.
  • St is a value obtained by integrating the tensile stress values in the region from DOL to the plate thickness center t / 2 in the stress profile.
  • the thickness (t) of the chemically strengthened glass of the present invention is, for example, 2 mm or less, preferably 1.5 mm or less, more preferably 1 mm or less, still more preferably 0.9 mm or less, particularly preferably 0.8 mm or less, most preferably. It is preferably 0.7 mm or less. Further, in order to obtain sufficient strength, the thickness is, for example, 0.1 mm or more, preferably 0.2 mm or more, more preferably 0.4 mm or more, still more preferably 0.5 mm or more, and particularly preferably 0. It is 6 mm or more.
  • the chemically strengthened glass of the present invention is produced by subjecting lithium aluminosilicate glass to ion exchange treatment.
  • Lithium aluminosilicate glass has a large fracture toughness value and tends to be hard to break even if it is scratched, as compared with sodium aluminosilicate glass which has been widely used as a chemically strengthened glass.
  • the CT limit described later is large, and even if the compressive stress value of the glass surface is increased, severe crushing tends to be less likely to occur.
  • the chemically strengthened glass of the present invention has a CS 0 of 500 MPa or more, preferably 550 MPa or more, and more preferably 600 MPa or more.
  • CS 0 500 MPa or more
  • the tensile stress generated by the drop is canceled out, so that it becomes difficult to crush and the fracture due to the bending mode can be suppressed.
  • the total amount of compressive stress on the glass surface layer is constant, and if CS 0 is too high, CS 50, which is the CS inside the glass, decreases. Therefore, from the viewpoint of preventing crushing at the time of impact, CS 0 is 1000 MPa or less, preferably 800 MPa or less, and more preferably 750 MPa or less.
  • the chemically strengthened glass of the present invention has a CS 50 of 150 MPa or more, preferably 160 MPa or more, and more preferably 170 MPa or more.
  • CS 50 is 150 MPa or more, the strength can be improved.
  • CS 50 is too high, the internal tensile stress CT increases and crushing becomes easy.
  • CS 50 is 230 MPa or less, preferably 220 MPa or less, and more preferably 210 MPa or less.
  • the depth (DOL) at which the compressive stress value becomes 0 is 0.2 t or less, preferably 0.19 t or less, more preferably 0.19 t or less, because if it is too large with respect to the thickness t [unit: ⁇ m], CT will increase. Is 0.18 tons or less. Specifically, for example, when the plate thickness t is 0.8 mm, the DOL is preferably 160 ⁇ m or less. Further, from the viewpoint of improving the strength, the DOL is 0.06 tons or more, preferably 0.08 tons or more, more preferably 0.10 tons or more, and further preferably 0.12 tons or more.
  • FIG. 4 shows an example of the result of damaging the chemically strengthened glass by the method described later in the examples using a Vickers tester.
  • (A) of FIG. 4 is a case of glass having a CT of less than or equal to the CT limit
  • (B) of FIG. 4 is a case of glass having a CT of exceeding the CT limit. Since the total amount of compressive stress on the surface layer is determined by the CT limit, crushing at the time of injury can be achieved by lowering the CT with the total amount of compressive stress on the surface layer within a certain range or raising the CT limit by increasing the fracture toughness. Can be suppressed.
  • the chemically strengthened glass of the present invention has (CS 0 ⁇ DOL) / K1c [unit: ⁇ m / m 1/2 ] of 40,000 to 70,000, preferably 42,000 to 58,000, and more preferably 44,000 to 55,000.
  • (CS 0 ⁇ DOL) / K1c is in the above range, CS of the surface layer of the glass is improved to suppress fracture due to the bending mode, drop strength is improved, St is suppressed, and CT is suppressed to a low level. Crushing at the time of injury can be suppressed.
  • the value of (t-2 ⁇ DOL) ⁇ CT / 2 [unit: ⁇ m ⁇ MPa] is preferably 20000 to 30000.
  • the value of (t-2 ⁇ DOL) ⁇ CT / 2 [unit: ⁇ m ⁇ MPa] is more preferably 25,000 or less.
  • (T-2 ⁇ DOL) ⁇ CT / 2 approximates the integral value St of tensile stress.
  • chemically reinforced glass of the present invention preferably has a fracture toughness of the mother glass is 0.80 MPa ⁇ m 1/2 or more, more preferably 0.85 MPa ⁇ m 1 It is / 2 or more, more preferably 0.90 MPa ⁇ m 1/2 or more.
  • the fracture toughness value is usually 2.0 MPa ⁇ m 1/2 or less, and typically 1.5 MPa ⁇ m 1/2 or less.
  • the fracture toughness value can be measured using, for example, the DCDC method (Acta metal.Matter. Vol.43, pp.3453-3458, 1995).
  • the fracture toughness value can be easily evaluated by the indenter press-fitting method.
  • a method of setting the breaking toughness value in the above range for example, a method of adjusting the crystallization rate, virtual temperature, etc. by adjusting the crystal conditions (heat treatment time and temperature), glass composition, cooling rate, etc. of the crystallized glass is used.
  • the crystallization rate of the crystallized glass described later is preferably 15% or more, more preferably 18% or more, still more preferably 20% or more.
  • the crystallization rate of the crystallized glass is preferably 60% or less, more preferably 55% or less, still more preferably 50% or less, and particularly preferably 40% or less in order to secure the transmittance.
  • the CT limit value is substantially equal to the value of X represented by the following formula.
  • X ⁇ (1 / 2a (1- ⁇ ) (t-2 ⁇ DOL)) K1c
  • a 0.11 and ⁇ are Poisson's ratios. That is, when the ratio CT / X of CT and X is 1 or less, severe crushing is unlikely to occur. Therefore, by setting CT / X to 0.7 to 1, CS can be increased while suppressing crushing.
  • the CT / X is preferably 0.95 or less, more preferably 0.9 or less.
  • the weather resistance of the chemically strengthened glass obtained by subjecting the lithium aluminosilicate glass to a two-step ion exchange treatment may be lower than that before the chemical strengthening.
  • a precipitate containing potassium was formed on the glass surface. It is presumed that this is because a large amount of potassium ions present on the glass surface chemically react with the components in the air to form precipitates.
  • the content ratio of alkali to alumina in the mother composition is large, and the weather resistance is particularly liable to decrease.
  • the chemically strengthened glass of the present invention has a low K concentration on the glass surface, it prevents a chemical reaction with components in the air and exhibits excellent weather resistance.
  • the chemically strengthened glass of the present invention has a K concentration on the glass surface of 1% by mass or less, more preferably 0.8% by mass or less, and further preferably 0.6% by mass or less.
  • the "K concentration on the glass surface” means the K concentration from the glass surface to a depth of 1 ⁇ m.
  • the lower limit of the K concentration on the glass surface is usually 1/1000 or more of the K concentration (mass%) originally contained in the glass composition.
  • the K concentration originally contained in the glass composition means the K concentration of the glass before chemical strengthening.
  • the K concentration on the glass surface can be measured by EPMA (electron probe microanalyzer).
  • the weather resistance of chemically strengthened glass can be evaluated by a weather resistance test.
  • the chemically strengthened glass of the present invention has a haze value difference of 5% or less before and after standing at a humidity of 80% and 80 ° C. for 120 hours (that is,
  • the haze value is measured with a C light source in accordance with JIS K7136 (2000) using a haze meter.
  • the shape of the chemically strengthened glass of the present invention may be a shape other than a plate shape, depending on the product to which it is applied, the application, and the like. Further, the glass plate may have a edging shape or the like having a different outer peripheral thickness.
  • the form of the glass plate is not limited to this, and for example, the two main surfaces may not be parallel to each other, and one or both of the two main surfaces may be a curved surface in whole or in part. More specifically, the glass plate may be, for example, a flat glass plate having no warp, or a curved glass plate having a curved surface.
  • the chemically strengthened glass of the present invention can be used as a cover glass used in mobile electronic devices such as mobile phones, smartphones, personal digital assistants (PDAs), and tablet terminals. It is also useful as a cover glass for electronic devices such as televisions (TVs), personal computers (PCs), and touch panels that are not intended to be carried. It is also useful as building materials such as window glass, table tops, interiors of automobiles and airplanes, and their cover glass.
  • mobile electronic devices such as mobile phones, smartphones, personal digital assistants (PDAs), and tablet terminals. It is also useful as a cover glass for electronic devices such as televisions (TVs), personal computers (PCs), and touch panels that are not intended to be carried. It is also useful as building materials such as window glass, table tops, interiors of automobiles and airplanes, and their cover glass.
  • the chemically strengthened glass of the present invention can be bent or molded before or after chemical strengthening to form a shape other than a flat plate shape, it is also useful for applications such as a housing having a curved surface shape.
  • the chemically strengthened glass of the present invention is lithium aluminosilicate glass.
  • the form of the lithium aluminosilicate glass is not particularly limited as long as it is a glass containing SiO 2 , Al 2 O 3 and Li 2 O, and examples thereof include crystallized glass and amorphous glass.
  • crystallized glass and amorphous glass will be described.
  • the lithium aluminosilicate glass in the present invention is a crystallized glass
  • SiO 2 is 40 to 72% in molar% representation based on oxides.
  • Al 2 O 3 0.5-10%, Those containing 15 to 50% of Li 2 O are preferable.
  • the present crystallized glass preferably contains any one or more of lithium silicate crystal, lithium aluminosilicate crystal and lithium phosphate crystal.
  • the lithium silicate crystal a lithium metasilicate crystal is more preferable.
  • the lithium aluminosilicate crystal petalite crystal or ⁇ -spodium crystal is preferable.
  • As the lithium phosphate crystal a lithium orthophosphate crystal is preferable. Crystallized glass containing lithium metasilicate crystals is more preferable in order to increase the transparency.
  • Crystallized glass is obtained by heat-treating amorphous glass, which will be described later, to crystallize it. Since the glass composition of the crystallized glass is the same as the composition of the amorphous glass before crystallization, it will be described in the section of the amorphous glass.
  • the crystallized glass has a visible light transmittance (total light visible light transmittance including diffused transmitted light) of preferably 85% or more when the thickness is converted to 0.7 mm, so that the cover of the portable display is covered.
  • the visible light transmittance is more preferably 88% or more, further preferably 90% or more. The higher the visible light transmittance, the more preferable, but usually it is 93% or less.
  • the visible light transmittance of ordinary amorphous glass is about 90% or more. If the thickness of the crystallized glass is not 0.7 mm, Lambert-Beer-Lambert's law can be used to calculate the transmittance at 0.7 mm from the measured transmittance. Further, in the case of glass having a plate thickness t larger than 0.7 mm, the plate thickness may be adjusted to 0.7 mm by polishing, etching or the like, and the actual measurement may be performed.
  • the haze value is preferably 1.0% or less, more preferably 0.4% or less, further preferably 0.3% or less, and 0.2% when converted to a thickness of 0.7 mm.
  • the following is particularly preferable, and 0.15% or less is most preferable.
  • the haze value when the thickness is 0.7 mm is preferably 0.02% or more, more preferably 0.03% or more.
  • the haze value is a value measured according to JIS K7136 (2000).
  • H 0.7 100 ⁇ [1- (1-H) ⁇ ((1-R) 2-T0.7) / ((1-R) 2-T) ⁇ ] [%] Further, in the case of glass having a plate thickness t larger than 0.7 mm, the plate thickness may be adjusted to 0.7 mm by polishing, etching or the like, and the actual measurement may be performed.
  • the refractive index of the present crystallized glass is preferably 1.52 or more, more preferably 1.55 or more, and even more preferably 1.57 or more at a wavelength of 590 nm.
  • the crystallized glass is preferably crystallized glass containing lithium metasilicate crystals.
  • Lithium metasilicate crystals are represented as Li 2 SiO 3, and generally have Bragg angles (2 ⁇ ) of 26.98 ° ⁇ 0.2 ° and 18.88 ° ⁇ 0.2 ° in the powder X-ray diffraction spectrum. It is a crystal showing a diffraction peak at 33.05 ° ⁇ 0.2 °.
  • FIG. 2 is an example of the X-ray diffraction spectrum of the crystallized glass, and the diffraction peak of the lithium metasilicate crystal is recognized.
  • Crystallized glass containing lithium metasilicate crystals has a higher fracture toughness value than general amorphous glass, and even if a large compressive stress is formed by chemical strengthening, severe fracture is unlikely to occur.
  • Amorphous glass in which lithium metasilicate crystals can be precipitated may have lithium disilicate precipitated depending on heat treatment conditions and the like.
  • Lithium disilicate is represented as Li 2 Si 2 O 5, and generally has Bragg angles (2 ⁇ ) of 24.89 ° ⁇ 0.2 ° and 23.85 ° ⁇ 0.2 in the powder X-ray diffraction spectrum. It is a crystal showing a diffraction peak at °, 24.40 ° ⁇ 0.2 °.
  • the lithium disilicate crystal particle size determined by the Scherrer equation from the X-ray diffraction peak width is 45 nm or less because transparency is easily obtained, and 40 nm or less is more preferable.
  • Scherrer's equation has a scherrer, but in this case, it may be represented by dimensionless 0.9 (that is, the crystal grains are assumed to be spherical).
  • lithium metasilicate crystals When lithium metasilicate crystals are contained in the crystallized glass, it is preferable not to contain lithium disilicate because the transparency of the crystallized glass tends to decrease if the lithium disilicate crystals are also contained.
  • does not contain lithium disilicate means that the diffraction peak of the lithium disilicate crystal is not detected in the X-ray diffraction spectrum.
  • the crystallization rate of the crystallized glass is preferably 5% or more, more preferably 10% or more, further preferably 15% or more, and particularly preferably 20% or more in order to increase the mechanical strength. In order to increase the transparency, 70% or less is preferable, 60% or less is more preferable, and 50% or less is particularly preferable.
  • the low crystallization rate is also excellent in that it can be easily bent and molded by heating.
  • the crystallization rate can be calculated by the Rietveld method from the X-ray diffraction intensity.
  • the Rietveld method is described in the "Crystal Analysis Handbook” (Kyoritsu Shuppan, 1999, pp. 492-499), edited by the Editorial Committee of the "Crystal Analysis Handbook” of the Crystallographic Society of Japan.
  • the average particle size of the precipitated crystals of the crystallized glass is preferably 80 nm or less, more preferably 60 nm or less, further preferably 50 nm or less, particularly preferably 40 nm or less, and most preferably 30 nm or less.
  • the average particle size of the precipitated crystals is determined from a transmission electron microscope (TEM) image.
  • the average particle size of the precipitated crystals can be estimated from a scanning electron microscope (SEM) image.
  • the average coefficient of thermal expansion of the crystallized glass at 50 ° C. to 350 ° C. is preferably 90 ⁇ 10-7 / ° C. or higher, more preferably 100 ⁇ 10-7 / ° C. or higher, and further preferably 110 ⁇ 10-7 / ° C. or higher. Particularly preferably, it is 120 ⁇ 10 -7 / ° C. or higher, and most preferably 130 ⁇ 10 -7 / ° C. or higher.
  • the coefficient of thermal expansion is preferably 160 ⁇ 10-7 / ° C or less, more preferably 150 ⁇ 10-7 / ° C or less. More preferably, it is 140 ⁇ 10 -7 / ° C. or less.
  • the Vickers hardness is preferably 600 or more, more preferably 700 or more, further preferably 730 or more, particularly preferably 750 or more, and most preferably 780 or more.
  • the Vickers hardness of the crystallized glass is preferably 1100 or less, more preferably 1050 or less, and further preferably 1000 or less.
  • the Young's modulus of the crystallized glass is preferably 85 GPa or more, more preferably 90 GPa or more, still more preferably 95 GPa or more, and particularly preferably 100 GPa or more, in order to suppress warpage due to strengthening during chemical strengthening.
  • Crystallized glass may be polished and used.
  • Young's modulus is preferably 130 GPa or less, more preferably 125 GPa or less, and even more preferably 120 GPa or less.
  • Fracture toughness of the crystallized glass is preferably 0.8 MPa ⁇ m 1/2 or more, more preferably 0.85 MPa ⁇ m 1/2 or more, further preferably is 0.9 MPa ⁇ m 1/2 or more, When chemically strengthened, it is preferable because debris does not easily scatter when cracked.
  • SiO 2 is 40 to 72%
  • Al 2 O 3 is 0.5 to 10%
  • Li 2 O is expressed in molar% based on oxide. Is preferably contained in an amount of 15 to 50%, P 2 O 5 in an amount of 0 to 4%, ZrO 2 in an amount of 0 to 6%, Na 2 O in an amount of 0 to 7%, and K 2 O in an amount of 0 to 5%. That is, in terms of oxide-based mol%, SiO 2 is 40 to 72%, Al 2 O 3 is 0.5 to 10%, Li 2 O is 15 to 50%, P 2 O 5 is 0 to 4%, and ZrO. 2 0-6% the Na 2 O 0 ⁇ 7% of K 2 O (sometimes referred crystalline amorphous glass below) amorphous glass containing 0-5% Cooked crystals It is preferable to make it.
  • SiO 2 is 40 to 72%
  • Al 2 O 3 is 0.5 to 10%
  • Li 2 O is 15 to 50 in terms of oxide-based mol%.
  • P 2 O 5 is preferably 0 to 4%
  • ZrO 2 is 0 to 6%
  • Na 2 O is 0 to 7%
  • K 2 O is 0 to 5%.
  • the glass composition will be described below.
  • SiO 2 is a component that forms a network structure of glass. It is also a component that enhances chemical durability and is also a component of lithium silicate crystals and lithium aluminosilicate crystals.
  • the content of SiO 2 is preferably 40% or more.
  • the content of SiO 2 is more preferably 42% or more, still more preferably 45% or more.
  • the content of SiO 2 is preferably 72% or less.
  • the content of SiO 2 is preferably 60% or less, more preferably 58% or less, still more preferably 55% or less.
  • Al 2 O 3 is a component that increases the surface compressive stress due to chemical strengthening and is indispensable.
  • the content of Al 2 O 3 is preferably 0.5% or more.
  • the content of Al 2 O 3 is more preferably 1% or more, still more preferably 2% or more.
  • the content of Al 2 O 3 is preferably 10% or less, more preferably 8% or less, still more preferably 6% or less.
  • Li 2 O is a component that forms surface compressive stress by ion exchange, is a component of lithium silicate crystal, lithium aluminosilicate crystal, and lithium phosphate crystal, and is indispensable.
  • the content of Li 2 O is preferably 15% or more, more preferably 20% or more, still more preferably 25% or more.
  • the content of Li 2 O is preferably 50% or less, more preferably 45% or less, still more preferably 40% or less.
  • Na 2 O is a component that improves the meltability of glass.
  • the content of Na 2 O is preferably 0.5% or more, more preferably 1% or more, and particularly preferably 2% or more. If the amount of Na 2 O is too large, lithium metasilicate crystals are difficult to precipitate or the chemical strengthening property is deteriorated. Therefore, the content of Na 2 O is preferably 7% or less, more preferably 6% or less, and 5% or less. More preferred.
  • K 2 O is a component that lowers the melting temperature of glass and may be contained.
  • the content is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, and particularly preferably 2% or more. If the amount of K 2 O is too large, the chemical strengthening property is deteriorated. Therefore, the content of K 2 O is preferably 5% or less, more preferably 4% or less, further preferably 3% or less, and particularly preferably 2% or less. ..
  • the total content of Na 2 O and K 2 O, Na 2 O + K 2 O, is preferably 0.5% or more, more preferably 1% or more. Further, Na 2 O + K 2 O is preferably 7% or less, more preferably 6% or less, still more preferably 5% or less.
  • the mol% ratio of Li 2 O and SiO 2 Li 2 O / SiO 2 is preferably 0.4 or more, more preferably 0.45 or more, and even more preferably 0.5 or more. Further, Li 2 O / SiO 2 is preferably 0.85 or less, more preferably 0.80 or less, still more preferably 0.75 or less. As a result, when heat-treated, lithium metasilicate crystals are easily precipitated, and highly transparent crystallized glass can be easily obtained.
  • Li 2 O and Na 2 O in mol% ratio Li 2 O / Na 2 O is preferably 4 or more, more preferably 8 or more, more preferably 12 or more.
  • Li 2 O / Na 2 O is also preferably 30 or less, more preferably 28 or less, and even more preferably 25 or less. This makes it easier to obtain a stress profile in which the surface stress is relaxed while sufficiently applying the compressive stress due to chemical strengthening.
  • P 2 O 5 is not essential in the case of crystallized glass containing lithium silicate or lithium aluminosilicate, but it has an effect of promoting phase separation of the glass and promoting crystallization, and may be contained. Further, in the case of crystallized glass containing lithium phosphate crystals, it is an essential component.
  • the content is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more.
  • the content of P 2 O 5 is preferably 5% or less, more preferably 4% or less, still more preferably 3% or less.
  • ZrO 2 is a component that can form a crystal nucleus during the crystallization treatment and may be contained.
  • the content of ZrO 2 is preferably 1% or more, more preferably 2% or more, still more preferably 2.5% or more, and particularly preferably 3% or more.
  • the content of ZrO 2 is preferably 6% or less, more preferably 5.5% or less, still more preferably 5% or less.
  • TiO 2 is a component that can form a crystal nucleus during the crystallization treatment and may be contained. TiO 2 is not essential, but when it is contained, it is preferably 0.5% or more, more preferably 1% or more, further preferably 2% or more, particularly preferably 3% or more, and most preferably 4 % Or more. On the other hand, in order to suppress devitrification during melting, the content of TiO 2 is preferably 10% or less, more preferably 8% or less, still more preferably 6% or less.
  • SnO 2 has an action of promoting the formation of crystal nuclei and may be contained.
  • SnO 2 is not essential, but when it is contained, it is preferably 0.5% or more, more preferably 1% or more, further preferably 1.5% or more, and particularly preferably 2% or more.
  • the SnO 2 content is preferably 6% or less, more preferably 5% or less, further preferably 4% or less, and particularly preferably 3% or less.
  • Y 2 O 3 is a component that makes it difficult for debris to scatter when the chemically strengthened glass is broken, and may be contained.
  • the content of Y 2 O 3 is preferably 1% or more, more preferably 1.5% or more, still more preferably 2% or more, particularly preferably 2.5% or more, and extremely preferably 3% or more. Meanwhile, in order to suppress devitrification during melting, the content of Y 2 O 3 is preferably 5% or less, more preferably 4% or less.
  • B 2 O 3 is a component that improves the chipping resistance of the chemically strengthened glass or the chemically strengthened glass and also improves the meltability, and may be contained.
  • the content is preferably 0.5% or more, more preferably 1% or more, still more preferably 2% or more in order to improve the meltability.
  • the content of B 2 O 3 exceeds 5%, veins occur at the time of melting and the quality of the chemically strengthened glass tends to deteriorate, so the content is preferably 5% or less.
  • the content of B 2 O 3 is more preferably 4% or less, further preferably 3% or less, and particularly preferably 2% or less.
  • BaO, SrO, MgO, CaO, ZnO are components that improve the meltability of glass and may be contained.
  • the total content of BaO, SrO, MgO, CaO, and ZnO BaO + SrO + MgO + CaO + ZnO is preferably 0.5% or more, more preferably 1% or more, still more preferably 1.5% or more, and particularly preferably. Is more than 2%.
  • the content of BaO + SrO + MgO + CaO + ZnO is preferably 8% or less, more preferably 6% or less, further preferably 5% or less, and particularly preferably 4% or less.
  • BaO, SrO, and ZnO may be contained in order to improve the transmittance of the crystallized glass and lower the haze value by improving the refractive index of the residual glass and bringing it closer to the precipitated crystal phase.
  • the total content of BaO + SrO + ZnO is preferably 0.3% or more, more preferably 0.5% or more, further preferably 0.7% or more, and particularly preferably 1% or more.
  • these components may reduce the rate of ion exchange.
  • BaO + SrO + ZnO is preferably 2.5% or less, more preferably 2% or less, further preferably 1.7% or less, and particularly preferably 1.5% or less.
  • CeO 2 has the effect of oxidizing glass and may suppress coloring.
  • the content is preferably 0.03% or more, more preferably 0.05% or more, still more preferably 0.07% or more.
  • CeO 2 is used as an oxidizing agent, the content of CeO 2 is preferably 1.5% or less, more preferably 1.0% or less in order to increase transparency.
  • a coloring component may be added within a range that does not hinder the achievement of the desired chemically strengthened properties.
  • the coloring component include Co 3 O 4 , MnO 2 , Fe 2 O 3 , NiO, CuO, Cr 2 O 3 , V 2 O 5 , Bi 2 O 3 , SeO 2 , Er 2 O 3 , Nd 2 O. 3 is mentioned as a suitable one.
  • the total content of coloring components is preferably in the range of 1% or less. If it is desired to increase the visible light transmittance of the glass, it is preferable that these components are not substantially contained.
  • SO 3 , chloride, fluoride and the like may be appropriately contained as a fining agent or the like when melting the glass. It is preferable that As 2 O 3 is not contained. When Sb 2 O 3 is contained, it is preferably 0.3% or less, more preferably 0.1% or less, and most preferably not contained.
  • the lithium aluminosilicate glass in the present invention may be a high toughness amorphous glass.
  • the high toughness amorphous glass include glass containing 40 to 65% of SiO 2 , 15 to 45% of Al 2 O 3 , and 2 to 15% of Li 2 O in terms of molar% based on oxides. Be done.
  • the toughness amorphous glass preferably contains 1 to 15% in total of one or more components selected from Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3. ..
  • SiO 2 is a component forming a network structure of glass. It is also a component that increases chemical durability.
  • the content of SiO 2 is preferably 40% or more.
  • the content of SiO 2 is more preferably 42% or more, still more preferably 45% or more.
  • the content of SiO 2 is preferably 65% or less, more preferably 60% or less, still more preferably 55% or less.
  • Al 2 O 3 is a component that increases the surface compressive stress due to chemical strengthening and is indispensable.
  • the content of Al 2 O 3 is preferably 15% or more. Further, in order to increase the fracture toughness value, the content of Al 2 O 3 is more preferably 20% or more, further preferably 22% or more, and particularly preferably 25% or more.
  • the content of Al 2 O 3 is preferably 45% or less, more preferably 40% or less, still more preferably 35% or less.
  • Li 2 O is a component that forms surface compressive stress by ion exchange and is indispensable.
  • the content of Li 2 O is preferably 2% or more, more preferably 4% or more, still more preferably 7% or more.
  • the Li 2 O content is preferably 15% or less, more preferably 13% or less, still more preferably 11% or less.
  • the glass of the present invention contains at least 1% of one or more components selected from Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3 in total, which is the devitrification temperature. It is preferable to lower the temperature. It is more preferably 2% or more, still more preferably 3% or more.
  • Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3 are cations with large field strength.
  • Field strength is the valence of a cation divided by the ionic radius, and is the strength with which it attracts surrounding oxygen ions. Since these components improve the oxygen filling density, they have the effect of improving Young's modulus and fracture toughness.
  • the total content of one or more components selected from Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3 is 15 to keep the Young's modulus improvement in the proper range. % Or less is preferable. Such a content is more preferably 13% or less, further preferably 12% or less, and particularly preferably 11% or less.
  • the ratio of the total content of Y 2 O 3 , La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3 to the Al 2 O 3 content ([Y 2 O). 3 ] + [La 2 O 3 ] + [Nb 2 O 5 ] + [Ta 2 O 5 ] + [WO 3 ]) / [Al 2 O 3 ] is 0 to form a glass structure with high packing density. .2 or more is preferable, 0.25 or more is more preferable, and 0.3 or more is further preferable.
  • La 2 O 3 , Nb 2 O 5 , Ta 2 O 5 and WO 3 are not essential components, but they may be included to adjust the properties of chipping and scratch tests as they significantly affect the brittleness of glass. ..
  • Alkali metal oxides such as Li 2 O, Na 2 O and K 2 O (collectively referred to as R 2 O) are components that lower the melting temperature of glass, although they are not essential. Can contain more than seeds.
  • the glass transition point Tg of amorphous glass is preferably 390 ° C or higher, more preferably 410 ° C or higher, and even more preferably 420 ° C or higher.
  • the glass transition point Tg is high, stress relaxation during the chemical strengthening treatment is unlikely to occur, so that high strength can be easily obtained.
  • the Tg is preferably 650 ° C or lower, more preferably 600 ° C or lower.
  • the average coefficient of thermal expansion of amorphous glass from 50 ° C. to 350 ° C. is preferably 90 ⁇ 10-7 / ° C. or higher, more preferably 100 ⁇ 10-7 / ° C. or higher, and further preferably 110 ⁇ 10-7 / ° C. or higher. preferable.
  • the coefficient of thermal expansion is preferably 150 ⁇ 10 -7 / ° C. or less, and more preferably 140 ⁇ 10 -7 / ° C. or less. If the difference in thermal expansion coefficient between amorphous glass and lithium metasilicate crystal is large, cracks are likely to occur due to the difference in thermal expansion coefficient during the crystallization process.
  • the (Tc—Tg) of the amorphous glass is preferably 80 ° C. or higher, more preferably 85 ° C. or higher, further preferably 90 ° C. or higher, and particularly preferably 95 ° C. or higher. When (Tc-Tg) is large, the crystallized glass is easily reheated and bent.
  • (Tc—Tg) is preferably 150 ° C. or lower, more preferably 140 ° C. or lower.
  • FIG. 3 is an example of the DSC curve of amorphous glass.
  • the Tg DSC shown in FIG. 3 may not match the glass transition point (Tg) obtained from the thermal expansion curve. Further, since Tg DSC is measured by crushing glass, the measurement error tends to be large, but in order to evaluate the relationship with the crystallization peak temperature, the same DSC measurement is performed as compared with Tg obtained from the thermal expansion curve. It is appropriate to use the Tg DSC obtained in.
  • the Young's modulus of the amorphous glass is preferably 75 GPa or more, more preferably 80 GPa or more, and even more preferably 85 GPa or more.
  • the Vickers hardness of the amorphous glass is preferably 500 or more, more preferably 550 or more.
  • the chemically strengthened glass of the present invention is produced by heat-treating the above-mentioned crystalline amorphous glass to obtain crystallized glass, and then chemically strengthening the obtained crystallized glass.
  • the above-mentioned high toughness amorphous glass is chemically strengthened to produce it.
  • Amorphous glass can be produced, for example, by the following method.
  • the manufacturing method described below is an example of manufacturing a plate-shaped chemically strengthened glass.
  • the glass raw material is mixed so that a glass having a preferable composition can be obtained, and the glass is melted by heating in a glass melting kiln. Then, the molten glass is homogenized by bubbling, stirring, addition of a fining agent, etc., molded into a glass plate having a predetermined thickness by a known molding method, and slowly cooled. Alternatively, the molten glass may be formed into a block shape, slowly cooled, and then cut into a plate shape.
  • Examples of the method for forming the plate-shaped glass include a float method, a press method, a fusion method and a down draw method.
  • the float method is preferable.
  • continuous molding methods other than the float method, for example, the fusion method and the down draw method are also preferable.
  • the crystallinized glass can be obtained by heat-treating the crystalline amorphous glass obtained by the above procedure.
  • the heat treatment is preferably carried out by a two-step heat treatment in which the temperature is raised from room temperature to the first treatment temperature and held for a certain period of time, and then held at a second treatment temperature higher than the first treatment temperature for a certain period of time. ..
  • the first treatment temperature is preferably a temperature range in which the crystal nucleation rate is high in the glass composition
  • the second treatment temperature is a temperature range in which the crystal growth rate is high in the glass composition. Is preferable.
  • the holding time at the first treatment temperature is preferably held long so that a sufficient number of crystal nuclei are formed. By forming a large number of crystal nuclei, the size of each crystal becomes smaller, and a highly transparent crystallized glass can be obtained.
  • the first treatment temperature is, for example, 450 ° C. to 700 ° C.
  • the second treatment temperature is, for example, 600 ° C. to 800 ° C.
  • the second treatment temperature after holding at the first treatment temperature for 1 to 6 hours, the second treatment temperature. Hold for 1 to 6 hours.
  • the crystallized glass obtained in the above procedure is ground and polished as necessary to form a crystallized glass plate.
  • the end face is also compressed by the subsequent chemical strengthening treatment. It is preferable because a layer is formed.
  • the chemically strengthened glass of the present invention is produced by chemically strengthening lithium aluminosilicate glass.
  • a preferred embodiment of the lithium aluminosilicate glass in the present production method is the same as that described above.
  • the lithium aluminosilicate glass in the present production method preferably has the above-mentioned composition.
  • Lithium aluminosilicate glass can be manufactured by the usual method. For example, the raw materials of each component of glass are mixed and heated and melted in a glass melting kiln. Then, the glass is homogenized by a known method, formed into a desired shape such as a glass plate, and slowly cooled.
  • the glass forming method examples include a float method, a pressing method, a fusion method and a down drawing method.
  • the float method suitable for mass production is preferable.
  • continuous molding methods other than the float method, for example, the fusion method and the down draw method are also preferable.
  • the molded glass is ground and polished as necessary to form a glass substrate.
  • the subsequent chemical strengthening treatment is performed. This is preferable because a compressive stress layer is also formed on the end face.
  • the chemical strengthening in the method for producing chemically strengthened glass of the present invention is a chemical strengthening using a strengthened salt containing sodium and having a potassium content of less than 5% by mass.
  • the chemical strengthening treatment may be carried out in two or more steps, but in order to increase productivity, strengthening in one step is preferable.
  • CS 0 is 500 to 1000 MPa by chemically strengthening lithium aluminosilicate glass having K1c of 0.80 MPa / m 1/2 or more with the tempered salt.
  • a chemically strengthened glass having a DOL [unit: ⁇ m] of 0.06 t to 0.2 t with respect to a glass thickness t [unit: ⁇ m] can be obtained.
  • the chemical strengthening treatment is carried out, for example, by immersing the glass plate in a molten salt such as sodium nitrate heated to 360 to 600 ° C. for 0.1 to 500 hours.
  • a molten salt such as sodium nitrate heated to 360 to 600 ° C. for 0.1 to 500 hours.
  • the heating temperature of the molten salt is preferably 375 to 500 ° C.
  • the immersion time of the glass plate in the molten salt is preferably 0.3 to 200 hours.
  • the tempered salt used in the method for producing chemically tempered glass of the present invention is a tempered salt containing sodium and having a potassium content of less than 5% by mass in terms of potassium nitrate.
  • the potassium content is preferably less than 2% by mass, more preferably substantially free.
  • substantially free of potassium means that it does not contain potassium at all, or that potassium may be contained as an impurity unavoidably mixed in the production.
  • Examples of the fortified salt include nitrates, sulfates, carbonates, chlorides and the like.
  • examples of the nitrate include lithium nitrate, sodium nitrate, and the like.
  • examples of the sulfate include lithium sulfate, sodium sulfate, and the like.
  • Examples of the carbonate include lithium carbonate, sodium carbonate, and the like.
  • Examples of the chloride include lithium chloride, sodium chloride, cesium chloride, silver chloride and the like.
  • treatment conditions for the chemical strengthening treatment appropriate conditions may be selected in consideration of the composition (characteristics) of the glass, the type of molten salt, the desired chemical strengthening characteristics, and the like.
  • G1 to G26 are amorphous glass
  • GC1 to GC19 are crystallized glass
  • SG1 to SG21, SG25, SG31, and SG32 are examples of the chemically strengthened glass of the present invention
  • SG22 to SG24 and SG26 to 30 are comparative examples.
  • the blank indicates that the measurement has not been performed.
  • a glass plate was prepared by blending, melting, and polishing a glass raw material so as to have the glass composition shown in Tables 1 to 3 in terms of molar percentage display based on oxides.
  • a general glass raw material such as an oxide, a hydroxide, and a carbonate was appropriately selected, and the amount of the glass was weighed to 900 g.
  • the mixed glass raw material was placed in a platinum crucible, melted at 1700 ° C., and defoamed. The glass was poured onto a carbon board to obtain a glass block.
  • Tables 1 to 3 show the results of evaluating the Young's modulus, Vickers hardness, and fracture toughness value of the amorphous glass using a part of the obtained blocks. Blanks in the table indicate unevaluated.
  • Young's modulus Young's modulus was measured by ultrasonic method.
  • Vickers hardness The measurement of Vickers hardness conforms to the test method specified in JIS-Z-2244 (2009) (ISO6507-1, ISO6507-4, ASTM-E-384), and is a Vickers hardness tester (MICRO HARDNESS) manufactured by Shimadzu Corporation. The measurement was carried out using ASTM MV-2) at room temperature and in a normal humidity environment (in this case, the room temperature was maintained at 25 ° C. and the humidity was maintained at 60% RH). The measurement was performed at 10 points per sample, and the average thereof was taken as the Vickers hardness of the prototype. The press-fitting load of the Vickers indenter was 0.98N for 15 seconds.
  • the fracture toughness value was measured by the DCDC method by preparing a sample of 6.5 mm ⁇ 6.5 mm ⁇ 65 mm. At that time, a through hole of 2 mm ⁇ was formed on a 65 mm ⁇ 6.5 mm surface of the sample for evaluation.
  • the obtained crystallized glass was processed and mirror-polished to obtain a crystallized glass plate having a thickness t of 0.7 mm (700 ⁇ m). A part of the remaining crystallized glass was pulverized and used for analysis of precipitated crystals. The results of evaluating the crystallized glass are shown in Tables 4 and 5. Blanks indicate unevaluated.
  • a 150 mm integrating sphere unit was used as a detector in a spectrophotometer (manufactured by PerkinElmer; LAMBDA950), and a crystallized glass plate was brought into close contact with the integrating sphere to measure the transmittance at a wavelength of 380 to 780 nm.
  • the average transmittance which is the arithmetic mean value of the transmittance, was defined as the visible light transmittance [unit:%].
  • the hertz value [unit:%] at the C light source was measured using a haze meter (manufactured by Suga Test Instruments Co., Ltd .; HZ-V3).
  • the detected crystals are shown in the column of main crystals in Tables 4 and 5. However, LS in the table indicates lithium metasilicate.
  • the tempered glasses SG1 to SG32 were obtained by chemically strengthening GC1 to GC19 and G22 to 26 under the strengthening conditions shown in Tables 6 to 9.
  • SG1 to SG21, SG25, SG31, and SG32 are examples, and SG22 to SG24 and SG26 to SG30 are comparative examples.
  • Tables 6-9 "100% Na” is a molten salt of 100% sodium nitrate, and "99.7% Li 0.3%” is a molten salt of 99.7 wt% sodium nitrate mixed with 0.3 wt% lithium nitrate.
  • K100% indicates a molten salt of 100% potassium nitrate.
  • Blanks indicate unevaluated.
  • Stress profile The stress value was measured using a measuring instrument SLP-2000 manufactured by KK Orihara Seisakusho, compressive stress of the glass surface value CS 0 [Unit: MPa], the compression stress value CS 50 [Unit: MPa] at depth 50 ⁇ m and compression Tables 6 to 9 show the results of reading the depth DOL [unit: ⁇ m] at which the stress value becomes zero.
  • the stress profile of SG5 is shown in FIG.
  • the reference example in FIG. 1 is a stress profile of chemically strengthened glass obtained by two-step chemical strengthening without crystallizing G21 (amorphous glass) shown in Table 2.
  • Table 2 As a condition for the two-step chemical strengthening, after the first-stage chemical strengthening with 100% sodium nitrate at 450 ° C for 2.5 hours, the second-stage chemical strengthening with 100% potassium nitrate at 450 ° C for 1.5 hours. went.
  • EPMA surface K concentration The K concentration on the glass surface was measured using EPMA (JXA-8500F manufactured by JEOL Ltd.). After chemically strengthening the sample, it was embedded in resin and the cross section perpendicular to the main surface was mirror-polished. Since it is difficult to accurately measure the concentration on the outermost surface, the signal strength of K at the position where the signal strength of Si, which is considered to have almost no change in content, is half the signal strength at the center of the plate thickness, is K on the outermost surface. Assuming that it corresponds to the density, the signal intensity at the center of the plate thickness corresponds to the glass composition before strengthening, and the K concentration on the outermost surface was calculated.
  • the chemically strengthened glass of the present invention has CS 0 and CS 50 equivalent to those of the comparative example, exhibits excellent strength, has a low DOL as compared with the comparative example, and is injured. It turned out to be difficult to crush. Further, the chemically strengthened glass of the present invention had a lower haze change rate in the weather resistance test as compared with the comparative example, and was also excellent in weather resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

本発明は、厚さがt[単位:μm]の化学強化ガラスであって、リチウムアルミノシリケートガラスであり、表面圧縮応力値(CS)、ガラス表面から深さ50μmにおける圧縮応力値(CS50)、DOL[単位:μm]および(CS×DOL)/K1c[単位:μm/m1/2]が特定の範囲であり、ガラス表面のK濃度が1質量%以下である化学強化ガラスに関する。

Description

化学強化ガラスの製造方法および化学強化ガラス
 本発明は、化学強化ガラスの製造方法および化学強化ガラスに関する。
 携帯電話、スマートフォン、タブレット端末等のディスプレイ装置の保護ならびに美観を高める目的で、化学強化ガラスからなるカバーガラスが用いられている。
 化学強化ガラスにおいては、表面圧縮応力(値)(CS)や圧縮応力層深さ(DOL)が大きくなるほど強度が高くなる傾向がある。一方で、ガラス表層の圧縮応力との均衡を保つように、ガラス内部には内部引張応力(値)(CT)が発生するので、CSやDOLが大きいほどCTが大きくなる。CTが大きいガラスは加傷時の破砕数が爆発的に大きくなり、破片が飛散する危険性が高くなる。
 特許文献1には、2段階の化学強化により、折れ曲がった線で表される応力プロファイルを形成することで、内部引張応力を抑制しながら表面圧縮応力を大きくできることが記載されている。具体的には、K濃度の低いKNO/NaNO混合塩を1段目の化学強化に、K濃度の高いKNO/NaNO混合塩を2段目の化学強化に用いる方法などが提案されている。
 また、特許文献2には2段階の化学強化により、比較的大きい表面圧縮応力と圧縮応力層深さが得られるリチウムアルミノシリケートガラスが開示されている。リチウムアルミノシリケートガラスは、1段目の化学強化処理にナトリウム塩を用い、2段目の化学強化処理にカリウム塩を用いる2段階の化学強化処理によって、CTを抑制しつつ、CS及びDOLをともに大きくできる。
米国特許出願公開第2015/0259244号明細書 日本国特表2013-520388号公報
 しかしながら、2段階の化学強化は処理が煩雑であり、生産効率の点で課題がある。また、上記したように、化学強化によりガラス表層に圧縮応力を発生させると、ガラス内部では引張応力が発生し、引張応力がその閾値(「CTリミット」とよばれることがある)を超えると加傷時の破砕数が爆発的に増加する。
 本発明者らは、化学強化ガラスの母ガラスを高破壊靱性のガラスとすることにより、より大きな圧縮応力をガラス中に導入した場合にも、加傷時の爆発的な破砕を抑制できることを見出した。すなわち、化学強化ガラスの母ガラスの破壊靱性値を大きくすることでCTリミットが大きくなることを見出した。化学強化ガラスの母材としてリチウムアルミノシリケートガラスを用いることで、母材の破壊靱性値を大幅に向上できる。しかし、リチウムアルミノシリケートガラスに化学強化を施すと、化学強化前と比較して耐候性が著しく低下する場合がある。
 したがって、本発明は、加傷時に破砕しにくく、かつ強度および耐候性に優れた化学強化ガラス及びその製造方法を提供する。
 上記課題について、本発明者らは、リチウムアルミノシリケートガラスを化学強化した場合に耐候性の低下をもたらす主原因は、カリウムを含有する強化塩を用いた化学強化によりガラス表面に導入されたカリウムイオンと空気中の成分との反応による析出物であることを見出した。さらに、破壊靱性値が特定範囲以上であるリチウムアルミノシリケートガラスに対し、ナトリウムを含有し、かつカリウム含有量が5質量%未満の強化塩を用いた化学強化をすることにより、加傷時の破砕が抑制され、かつ強度および耐候性においても優れた化学強化ガラスが得られることを見出した。これらの知見に基づき、本発明を完成させた。
 すなわち、本発明は下記の通りである。
 1.厚さがt[単位:μm]のリチウムアルミノシリケートガラスを化学強化する、化学強化ガラスの製造方法であって、
 前記リチウムアルミノシリケートガラスは、破壊靱性値(K1c)が0.80MPa/m1/2以上であり、
 前記化学強化は、ナトリウムを含有し、かつカリウム含有量が5質量%未満である強化塩を用いた化学強化であり、
 得られる化学強化ガラスは、表面圧縮応力値(CS)が500~1000MPa、かつ、
 圧縮応力値がゼロとなる深さDOL[単位:μm]が0.06t~0.2tである、化学強化ガラスの製造方法。
 2.前記リチウムアルミノシリケートガラスは、結晶化ガラスである前記1に記載の化学強化ガラスの製造方法。
 3.前記結晶化ガラスは、
 酸化物基準のモル%表示で、
 SiOを40~72%、
 Alを0.5~10%、
 LiOを15~50%含有する、
 前記2に記載の化学強化ガラスの製造方法。
 4.前記結晶化ガラスは、厚さ0.7mmに換算した場合の可視光透過率が85%以上である、前記2または3に記載の化学強化ガラスの製造方法。
 5.前記結晶化ガラスは、メタケイ酸リチウム結晶を含有する前記2~4のいずれか1に記載の化学強化ガラスの製造方法。
 6.前記リチウムアルミノシリケートガラスは、
 酸化物基準のモル%表示で、
 SiOを40~65%、
 Alを15~45%、
 LiOを2~15%含有する、
 前記1に記載の化学強化ガラスの製造方法。
 7.厚さがt[単位:μm]の化学強化ガラスであって、
 リチウムアルミノシリケートガラスであり、
 表面圧縮応力値(CS)が500~1000MPa、
 ガラス表面から深さ50μmにおける圧縮応力値(CS50)が150~230MPa、かつ、
 圧縮応力値がゼロとなる深さDOL[単位:μm]が0.06t~0.2tであり、
 (CS×DOL)/K1c[単位:μm/m1/2]が40000~70000である化学強化ガラス。
 8.表面のK濃度が1質量%以下である前記7に記載の化学強化ガラス。
 9.厚さがt[単位:μm]の化学強化ガラスであって、
 リチウムアルミノシリケートガラスであり、
 表面圧縮応力値(CS)が500~1000MPa、
 ガラス表面から深さ50μmにおける圧縮応力値(CS50)が150~230MPa、かつ、
 内部圧縮応力値CT[単位:MPa]と下記式で表されるXとの比CT/Xが0.7~1である化学強化ガラス。
 X=√(1/2a(1-ν)(t-2×DOL))K1c
 ここでa=0.11、
 νはポアソン比[単位:-]、
 DOLは圧縮応力値がゼロとなる深さ[単位:μm]、
 K1cは破壊靱性値[単位:MPa/m1/2]である。
 10.前記化学強化ガラスの母ガラスは、K1cが0.85MPa・m1/2以上の結晶化ガラスである前記7~9のいずれか1に記載の化学強化ガラス。
 11.前記結晶化ガラスは、メタケイ酸リチウム結晶を含有する前記10に記載の化学強化ガラス。
 12.前記結晶化ガラスは、酸化物基準のモル%表示で、
 SiOを40~72%、
 Alを0.5~10%、
 LiOを15~50%含有し、KOを実質的に含有しない前記10または11に記載の化学強化ガラス。
 13.前記化学強化ガラスの母ガラスは、酸化物基準のモル百分率表示で、
 SiOを40~65%、Alを15~45%、LiOを2~15%含有し、K1cが0.80MPa・m1/2以上である前記7~9のいずれか1に記載の化学強化ガラス。
 本発明の化学強化ガラスの製造方法によれば、破壊靱性値が特定範囲以上であるリチウムアルミノシリケートガラスに対し、ナトリウムを含有し、かつカリウム含有量が5質量%未満の強化塩を用いて化学強化をする。このことにより、加傷時の破砕を抑制できるとともに、従来と比較して、強度および耐候性においても優れた化学強化ガラスを効率的に製造できる。本発明の化学強化ガラスは、加傷時に破砕しにくく、かつ強度および耐候性においても優れており、カバーガラスに好適である。
図1は、本発明の一態様の化学強化ガラスの応力プロファイルを示す図である。 図2は、結晶化ガラスの粉末X線回折パターンの一例を示す図である。 図3は、本発明に係る非晶質ガラスのDSC曲線の一例を示す図である。 図4は、ガラスを加傷した結果の一例を示す図であり、(A)は、CTがCTリミット以下のガラスの場合を示す図であり、(B)はCTがCTリミット超のガラスの場合を示す図である。
 以下に、本発明の化学強化ガラスについて詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。
 本明細書において、「化学強化ガラス」は、化学強化処理を施した後のガラスを指す。また、「化学強化用ガラス」は、化学強化処理を施す前のガラスを指す。
 本明細書において化学強化用ガラスのガラス組成を、化学強化ガラスの母組成ということがある。化学強化ガラスでは通常、ガラス表面部分にイオン交換による圧縮応力層が形成されるので、イオン交換されていない部分のガラス組成は化学強化ガラスの母組成と一致する。また、イオン交換された部分でもアルカリ金属酸化物以外の成分の濃度は、基本的に変化しない。
 本明細書において、ガラス組成は酸化物基準のモル百分率表示で示し、モル%を単に%と記載することがある。また、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
 ガラス組成において「実質的に含有しない」とは、原材料等に含まれる不可避の不純物を除いて含有しない、すなわち、意図的に含有させたものではないことを意味する。着色を生じる遷移金属酸化物等以外では、例えば、ガラス組成中の含有量が、0.1モル%未満である。
 本明細書において「応力プロファイル」は、ガラス表面からの深さを変数として圧縮応力値を表したパターンである。負の圧縮応力値は、引張応力を意味する。また、「圧縮応力層深さ(DOC)」は、圧縮応力値(CS)がゼロとなる深さである。「内部引張応力値(CT)」は、ガラスの板厚tの1/2の深さにおける引張応力値をいう。
 応力プロファイルは、一般的には、光導波表面応力計(例えば、株式会社折原製作所製FSM-6000)を用いて測定されることが多い。しかし、光導波表面応力計は、測定原理上、表面から内部に向かって屈折率が低くなる場合でなければ、応力を測定できない。結果的に、リチウムアルミノシリケートガラスをナトリウム塩で化学強化した場合には、圧縮応力を測定できない。そこで、本明細書では、散乱光光弾性応力計(例えば、株式会社折原製作所製SLP-1000)を用いて応力プロファイルを測定する。散乱光光弾性応力計によれば、ガラス内部の屈折率分布と関わりなく、応力値を測定できる。しかし、散乱光光弾性応力計は表面散乱光の影響を受けやすいので、ガラス表面付近の応力値を正確に測定することが困難である。表面からの深さが10μmまでの表層部分については、それより深い部分の測定値をもとに、相補誤差関数を用いて外挿する方法で応力値を見積ることができる。
 <化学強化ガラス>
 本態様の化学強化ガラスは、厚さがt[単位:μm]であって、
 リチウムアルミノシリケートガラスであり、
 表面圧縮応力値(CS)が500~1000MPa、
 ガラス表面から深さ50μmにおける圧縮応力値(CS50)が150~230MPa、かつ、
 圧縮応力値がゼロとなる深さDOL[単位:μm]が0.06t~0.2tであり、
 (CS×DOL)/K1c[単位:μm/m1/2]が40000~70000である。
 ここで、K1cは破壊靱性値[単位:μm/m1/2]である。
 本化学強化ガラスは、ガラス表面のK濃度が1質量%以下であることが好ましい。
 または、本態様の化学強化ガラスは、
 厚さがt[単位:μm]の化学強化ガラスであって、
 リチウムアルミノシリケートガラスであり、
 表面圧縮応力値(CS)が500~1000MPa、
 ガラス表面から深さ50μmにおける圧縮応力値(CS50)が150~230MPa、かつ、
 内部圧縮応力値CT[単位:MPa]と下記式で表されるXとの比CT/Xが0.7~1である。
 X=√(1/2a(1-ν)(t-2×DOL))K1c
 ここでaは0.11、νはポアソン比である。
 図1は本発明の一態様の化学強化ガラスの応力プロファイルを示す図である。図1において、実施例は本発明の一態様の化学強化ガラス(後述する化学強化ガラスSG5)の応力プロファイルである。また、参考例は、後述するガラスG21を結晶化せずに2段階の化学強化をして得られた化学強化ガラスの応力プロファイルである。
 ガラス板が衝撃を受けて撓む場合、その撓み量が大きくなると、ガラス表面に大きな引張応力が加わることでガラスが破壊する。本明細書では、このような破壊を「曲げモードによるガラス破壊」という。
 図1に示すように、本発明の化学強化ガラスは、参考例の化学強化ガラスと比較して、ガラスの最表面のCSが高いことから、曲げモードによるガラス破壊が抑制されている。また、本発明の化学強化ガラスは、CS50が150~230MPaであることにより、内部引張応力面積(St)を抑制でき、結果としてCTを低減し、加傷時の破砕を抑制できる。ここで、Stは応力プロファイルにおいてDOLから板厚中心t/2までの領域の引張応力値を積分した値である。
 本発明の化学強化ガラスの厚さ(t)は、例えば2mm以下であり、好ましくは1.5mm以下、より好ましくは1mm以下、さらに好ましくは0.9mm以下、特に好ましくは0.8mm以下、最も好ましくは0.7mm以下である。また、充分な強度を得るために、厚さは、例えば0.1mm以上であり、好ましくは0.2mm以上、より好ましくは0.4mm以上、さらに好ましくは0.5mm以上、特に好ましくは0.6mm以上である。
 本発明の化学強化ガラスは、リチウムアルミノシリケートガラスにイオン交換処理を施して製造される。リチウムアルミノシリケートガラスは、従来から化学強化用ガラスとして広く用いられているナトリウムアルミノシリケートガラスと比較して、破壊靱性値が大きく、傷がついても割れにくい傾向がある。また、後述のCTリミットが大きく、ガラス表面の圧縮応力値を大きくしても、激しい破砕が生じにくい傾向がある。
 本発明の化学強化ガラスは、CSが500MPa以上であり、好ましくは550MPa以上であり、より好ましくは600MPa以上である。CSが500MPa以上であることにより、落下によって生じる引張応力が相殺されるために破砕しにくくなるとともに、曲げモードによる破壊を抑制できる。また、ガラス表層における圧縮応力の総量は一定であり、CSが高すぎるとガラス内部のCSであるCS50が低下する。したがって、衝撃時の破砕を防止する点から、CSは1000MPa以下であり、好ましくは800MPa以下であり、より好ましくは750MPa以下である。
 本発明の化学強化ガラスは、CS50が150MPa以上であり、好ましくは160MPa以上であり、より好ましくは170MPa以上である。CS50が150MPa以上であることにより、強度を向上させることができる。しかし、CS50が高すぎると内部引張応力CTが増加して破砕しやすくなる。破砕(加傷時の爆発的な破壊)を抑制する点から、CS50は230MPa以下であり、好ましくは220MPa以下であり、より好ましくは210MPa以下である。
 圧縮応力値が0となる深さ(DOL)は、厚さt[単位:μm]に対して大きすぎるとCTの増加を招くので0.2t以下であり、好ましくは0.19t以下、より好ましくは0.18t以下である。具体的には、例えば板厚tが0.8mmの場合は、DOLは160μm以下が好ましい。また、強度を向上する点から、DOLは0.06t以上であり、好ましくは0.08t以上、より好ましくは0.10t以上、さらに好ましくは0.12t以上である。
 化学強化でガラス表層に圧縮応力を発生させるとガラス内部ではCTが発生し、CTがCTリミットを超えると加傷時の破砕数が爆発的に増加する。図4に、ビッカース試験機を用いて、実施例において後述する方法により化学強化後のガラスを加傷した結果の一例を示す。図4の(A)は、CTがCTリミット以下のガラスの場合であり、図4の(B)はCTがCTリミット超のガラスの場合である。表層の圧縮応力の総量はCTリミットにより決定されることから、表層の圧縮応力の総量を一定範囲としてCTを下げ、または高破壊靱性とすることによりCTリミットを上げることによって、加傷時の破砕を抑制できる。
 本発明の化学強化ガラスは、(CS×DOL)/K1c[単位:μm/m1/2]が40000~70000であり、好ましくは42000~58000であり、より好ましくは44000~55000である。(CS×DOL)/K1cが前記範囲であることにより、ガラスの表層のCSを向上して曲げモードによる破壊を抑制するとともに、落下強度を向上し、Stを抑制してCTを低めに抑え加傷時の破砕を抑制できる。
 また、落下強度を向上しながら、破砕を抑制するために、(t-2×DOL)×CT/2[単位:μm・MPa]の値は、20000~30000が好ましい。(t-2×DOL)×CT/2[単位:μm・MPa]の値は、25000以下がより好ましい。(t-2×DOL)×CT/2は、引張応力の積分値Stと近似する。
 破壊靱性値が大きいガラスはCTリミットが大きいので、化学強化によって大きな表面圧縮応力をガラス中に導入しても、激しい破砕が生じにくい。加傷時の破砕を抑制する点から、本発明の化学強化ガラスは、母ガラスの破壊靱性値が0.80MPa・m1/2以上であることが好ましく、より好ましくは0.85MPa・m1/2以上、さらに好ましくは0.90MPa・m1/2以上である。また、破壊靱性値は通常、2.0MPa・m1/2以下であり、典型的には1.5MPa・m1/2以下である。
 破壊靱性値は、例えば、DCDC法(Acta metall.mater. Vol.43、pp.3453-3458、1995)を用いて測定できる。破壊靱性値は、簡易的には、圧子圧入法によって評価できる。破壊靱性値を上記範囲とする方法としては、例えば、結晶化ガラスの結晶条件(熱処理の時間及び温度)、ガラス組成、冷却速度等の調整により、結晶化率、仮想温度等を調整する方法が挙げられる。具体的には例えば、結晶化ガラスである場合、後述する結晶化ガラスの結晶化率を好ましくは15%以上、より好ましくは18%以上、さらに好ましくは20%以上とする。また、結晶化ガラスの結晶化率は透過率の確保のために、60%以下が好ましく、より好ましくは55%以下、さらに好ましくは50%以下、特に好ましくは40%以下である。
 本発明者等は、CTリミット値が下記式で表されるXの値とほぼ等しくなることを実験的に見出した。
 X=√(1/2a(1-ν)(t-2×DOL))K1c
 ここでa=0.11、νはポアソン比である。
 すなわちCTとXの比CT/Xが1以下であると、激しい破砕が生じにくい。そこでCT/Xを0.7~1とすることで、破砕を抑制しながら、CSを大きくできる。
 破砕を防止するためには、CT/Xは0.95以下が好ましく、0.9以下がより好ましい。
 リチウムアルミノシリケートガラスに2段階のイオン交換処理を施した化学強化ガラスは、化学強化前と比較して耐候性が低下する場合があった。耐候性が低下した化学強化ガラスについて、本発明者らが調査したところ、ガラス表面にカリウムを含有する析出物が生成していることを見出した。これは、ガラス表面に多量に存在するカリウムイオンが空気中の成分と化学反応して析出物を生成するためと推察される。本発明の化学強化ガラスの一態様は、母組成におけるアルミナに対するアルカリの含有量比が大きく、特に耐候性が低下しやすい。
 本発明の化学強化ガラスは、ガラス表面のK濃度が低いので、空気中の成分との化学反応が防止され、優れた耐候性を示す。本発明の化学強化ガラスは、ガラス表面のK濃度が1質量%以下であり、より好ましくは0.8質量%以下であり、さらに好ましくは0.6質量%以下である。
 本明細書において、「ガラス表面のK濃度」とは、ガラス表面から深さ1μmまでのK濃度をいう。ガラス表面のK濃度の下限は、通常、ガラス組成にもともと含まれるK濃度(質量%)の1000分の1以上である。ここで、ガラス組成にもともと含まれるK濃度とは、化学強化前のガラスのK濃度をいう。ガラス表面のK濃度は、EPMA(electron probe micro analyzer)により測定できる。
 化学強化ガラスの耐候性は、耐候性試験により評価できる。本発明の化学強化ガラスは、湿度80%、80℃にて120時間静置した前後のヘーズ値の差が5%以下(すなわち、|試験後のヘーズ値[%]-試験前のヘーズ値[%]|≦5)であることが好ましく、より好ましくは4%以下であり、さらに好ましくは3%以下である。ヘーズ値は、ヘーズメーターを用いて、JIS K7136(2000年)に準拠し、C光源でのヘーズ値を測定する。
 本発明の化学強化ガラスの形状は、適用される製品や用途等に応じて、板状以外の形状でもよい。またガラス板は、外周の厚みが異なる縁取り形状などを有していてもよい。また、ガラス板の形態はこれに限定されず、例えば2つの主面は互いに平行でなくともよく、また、2つの主面の一方又は両方の全部又は一部が曲面であってもよい。より具体的には、ガラス板は、例えば、反りの無い平板状のガラス板であってもよく、また、湾曲した表面を有する曲面ガラス板であってもよい。
 本発明の化学強化ガラスは、携帯電話、スマートフォン、携帯情報端末(PDA)、タブレット端末等のモバイル電子機器に用いられるカバーガラスとして用いることができる。携帯を目的としない、テレビ(TV)、パーソナルコンピュータ(PC)、タッチパネル等の電子機器のカバーガラスにも有用である。また、窓ガラス等の建築用資材、テーブルトップ、自動車や飛行機等の内装等やそれらのカバーガラスとしても有用である。
 本発明の化学強化ガラスは、化学強化の前または後に曲げ加工や成形をおこなって平板状以外の形状にできるので、曲面形状を有する筺体等の用途にも有用である。
 <リチウムアルミノシリケートガラス>
 本発明の化学強化ガラスは、リチウムアルミノシリケートガラスである。リチウムアルミノシリケートガラスはSiO、Al及びLiOを含有するガラスであればその形態は特に限定されないが、例えば、結晶化ガラス、非晶質ガラスが挙げられる。以下、結晶化ガラス及び非晶質ガラスについて説明する。
 <<結晶化ガラス>>
 本発明におけるリチウムアルミノシリケートガラスが結晶化ガラスである場合、一態様として、酸化物基準のモル%表示で
 SiOを40~72%、
 Alを0.5~10%、
 LiOを15~50%含有するものが好ましい。
 本結晶化ガラスは、ケイ酸リチウム結晶、アルミノケイ酸リチウム結晶またはリン酸リチウム結晶のいずれか1種以上を含有することが好ましい。ケイ酸リチウム結晶としては、メタケイ酸リチウム結晶がより好ましい。アルミノケイ酸リチウム結晶としては、ペタライト結晶またはβスポジュメン結晶が好ましい。リン酸リチウム結晶としてはオルトリン酸リチウム結晶が好ましい。
 透明性を高くするためにはメタケイ酸リチウム結晶を含有する結晶化ガラスがより好ましい。
 結晶化ガラスは、後に説明する非晶質ガラスを加熱処理して結晶化することで得られる。結晶化ガラスのガラス組成は、結晶化前の非晶質ガラスの組成と同じであることから、非晶質ガラスの項で説明する。
 結晶化ガラスは可視光透過率(拡散透過光も含めた全光線可視光透過率)が、厚さが0.7mmに換算した場合に、好ましくは85%以上であることにより、携帯ディスプレイのカバーガラスに用いた場合に、ディスプレイの画面が見えやすい。可視光透過率は88%以上がより好ましく、90%以上がさらに好ましい。可視光透過率は、高い程好ましいが、通常、93%以下である。なお、通常の非晶質ガラスの可視光透過率は90%程度以上である。
 結晶化ガラスの厚さが0.7mmではない場合は、ランベルト・ベールの法則(Lambert-Beer law)を用いて、測定された透過率から0.7mmの場合の透過率を計算できる。
 また、板厚tが0.7mmよりも大きいガラスの場合は、研磨やエッチングなどで板厚を0.7mmに調整して、実際に測定してもよい。
 また、ヘーズ値は、厚さ0.7mmに換算した場合に、1.0%以下であることが好ましく、0.4%以下がより好ましく、0.3%以下がさらに好ましく、0.2%以下が特に好ましく、0.15%以下が最も好ましい。ヘーズ値は小さい程好ましいが、ヘーズ値を小さくするために結晶化率を下げたり、結晶粒径を小さくしたりすると、機械的強度が低下する。機械的強度を高くするためには、厚さ0.7mmの場合のヘーズ値は0.02%以上が好ましく、0.03%以上がより好ましい。ヘーズ値はJIS K7136(2000年)にしたがい測定された値である。
 なお、板厚t[mm]の結晶化ガラスの全光線可視光透過率が100×T[%]、ヘーズ値が100×H[%]の場合、ランベルト・ベールの法則を援用することにより、定数αを用いて、T=(1-R)2×exp(-αt)と記載できる。この定数αを使って、
 dH/dt∝exp(-αt)×(1-H)
 と表すことができる。
 すなわち、ヘーズ値は、板厚が増すごとに内部直線透過率に比例した分増えると考えることができるので、0.7mmの場合のヘーズ値H0.7は、以下の式で求められる。
 H0.7=100×[1-(1-H){((1-R)2-T0.7)/((1-R)2-T)}][%]
 また、板厚tが0.7mmよりも大きいガラスの場合は、研磨やエッチングなどで板厚を0.7mmに調整して、実際に測定してもよい。
 結晶化ガラスを強化した強化ガラスを携帯ディスプレイのカバーガラスに用いる場合、プラスチックと異なる質感・高級感を持つことが好ましい。そのため、本結晶化ガラスの屈折率は波長590nmにて1.52以上が好ましく、1.55以上がより好ましく、1.57以上がさらに好ましい。
 結晶化ガラスは、メタケイ酸リチウム結晶を含有する結晶化ガラスが好ましい。メタケイ酸リチウム結晶は、LiSiOと表され、一般的には、粉末X線回折スペクトルにおいてブラッグ角(2θ)が26.98°±0.2°、18.88°±0.2°、33.05°±0.2°に回折ピークを示す結晶である。図2は、結晶化ガラスのX線回折スペクトルの一例であり、メタケイ酸リチウム結晶の回折ピークが認められる。
 メタケイ酸リチウム結晶を含有する結晶化ガラスは、一般的な非晶質ガラスに比べて破壊靱性値が高く、化学強化によって大きな圧縮応力を形成しても激しい破壊が生じにくい。メタケイ酸リチウム結晶が析出し得る非晶質ガラスは、熱処理条件等によって二ケイ酸リチウムが析出する場合がある。二ケイ酸リチウムはLiSiと表され、一般的には、粉末X線回折スペクトルにおいてブラッグ角(2θ)が24.89°±0.2°、23.85°±0.2°、24.40°±0.2°に回折ピークを示す結晶である。
 二ケイ酸リチウム結晶を含有する場合は、X線回折ピーク幅からScherrerの式で求められる二ケイ酸リチウム結晶粒子径が45nm以下であると、透明性が得られやすいので好ましく、40nm以下がより好ましい。Scherrerの式には形状因子が存在するが、この場合は無次元の0.9で代表させる(すなわち、結晶粒を球状と仮定する)こととしてよい。
 結晶化ガラス中にメタケイ酸リチウム結晶が含まれる場合には、二ケイ酸リチウム結晶も含まれると、結晶化ガラスの透明性が低下しやすいため、二ケイ酸リチウムを含有しないことが好ましい。ここで「二ケイ酸リチウムを含有しない」とは、X線回折スペクトルにおいて二ケイ酸リチウム結晶の回折ピークが検出されないことをいう。
 結晶化ガラスの結晶化率は、機械的強度を高くするために、5%以上が好ましく、10%以上がより好ましく、15%以上がさらに好ましく、20%以上が特に好ましい。透明性を高くするために、70%以下が好ましく、60%以下がより好ましく、50%以下が特に好ましい。結晶化率が小さいことは、加熱して曲げ成形等しやすい点でも優れている。
 結晶化率は、X線回折強度からリートベルト法で算出できる。リートベルト法については、日本結晶学会「結晶解析ハンドブック」編集委員会編、「結晶解析ハンドブック」(協立出版 1999年刊、p492~499)に記載されている。
 結晶化ガラスの析出結晶の平均粒径は、80nm以下が好ましく、60nm以下がより好ましく、50nm以下がさらに好ましく、40nm以下が特に好ましく、30nm以下がもっとも好ましい。析出結晶の平均粒径は、透過型電子顕微鏡(TEM)像から求められる。析出結晶の平均粒径は、走査型電子顕微鏡(SEM)像から推定できる。
 結晶化ガラスの50℃~350℃における平均熱膨張係数は、90×10-7/℃以上が好ましく、より好ましくは100×10-7/℃以上、さらに好ましくは110×10-7/℃以上、特に好ましくは120×10-7/℃以上、最も好ましくは130×10-7/℃以上である。
 熱膨張係数が大き過ぎると化学強化の過程で熱膨張率差により割れが発生する可能性があるため、好ましくは160×10―7/℃以下、より好ましくは150×10-7/℃以下、さらに好ましくは140×10-7/℃以下である。
 結晶化ガラスは、結晶を含むので硬度が大きい。そのために傷つきにくく、耐摩耗性にも優れる。耐摩耗性を大きくするために、ビッカース硬度は600以上が好ましく、700以上がより好ましく、730以上がさらに好ましく、750以上が特に好ましく、780以上が最も好ましい。
 硬度が高過ぎると加工しにくくなるため、結晶化ガラスのビッカース硬度は、1100以下が好ましく、1050以下がより好ましく、1000以下がさらに好ましい。
 結晶化ガラスのヤング率は、化学強化時の強化による反りを抑制するために、好ましくは85GPa以上、より好ましくは90GPa以上、さらに好ましくは95GPa以上、特に好ましくは100GPa以上である。結晶化ガラスは研磨して用いることがある。研磨しやすさのために、ヤング率は130GPa以下が好ましく、125GPa以下がより好ましく、120GPa以下がさらに好ましい。
 結晶化ガラスの破壊靱性値は、好ましくは0.8MPa・m1/2以上、より好ましくは0.85MPa・m1/2以上、さらに好ましくは0.9MPa・m1/2以上であると、化学強化した場合に、割れた際に破片が飛散しにくいので好ましい。
 本発明におけるリチウムアルミノシリケートガラスが結晶化ガラスである場合、一態様として、酸化物基準のモル%表示でSiOを40~72%、Alを0.5~10%、LiOを15~50%、Pを0~4%、ZrOを0~6%、NaOを0~7%、KOを0~5%含有することが好ましい。すなわち、酸化物基準のモル%表示でSiOを40~72%、Alを0.5~10%、LiOを15~50%、Pを0~4%、ZrOを0~6%、NaOを0~7%、KOを0~5%含有する非晶質ガラス(以下において結晶性非晶質ガラスということがある)を加熱処理して結晶化することが好ましい。
 <結晶性非晶質ガラス>
 本発明における結晶性非晶質ガラスは、一態様として、酸化物基準のモル%表示でSiOを40~72%、Alを0.5~10%、LiOを15~50%、Pを0~4%、ZrOを0~6%、NaOを0~7%、KOを0~5%含有することが好ましい。
 以下、このガラス組成を説明する。
 結晶性非晶質ガラスにおいて、SiOはガラスのネットワーク構造を形成する成分である。また、化学的耐久性を上げる成分であり、ケイ酸リチウム結晶やアルミノケイ酸リチウム結晶の構成成分でもある。SiOの含有量は40%以上が好ましい。SiOの含有量は、より好ましくは42%以上、さらに好ましくは45%以上である。化学強化による応力を十分に大きくするためには、SiOの含有量は72%以下が好ましい。メタケイ酸リチウム結晶を析出させるためにはSiOの含有量は60%以下が好ましく、より好ましくは58%以下、さらに好ましくは55%以下である。
 Alは化学強化による表面圧縮応力を大きくする成分であり、必須である。Alの含有量は0.5%以上が好ましい。化学強化による応力を大きくするためには、Alの含有量は、より好ましくは、1%以上、さらに好ましくは2%以上である。一方、結晶化ガラスのヘーズ値を小さくするためには、Alの含有量は、10%以下が好ましく、8%以下がより好ましく、6%以下がさらに好ましい。
 LiOは、イオン交換により表面圧縮応力を形成させる成分であり、ケイ酸リチウム結晶、アルミノケイ酸リチウム結晶、リン酸リチウム結晶の構成成分であり、必須である。LiOの含有量は、好ましくは15%以上であり、より好ましくは20%以上、さらに好ましくは25%以上である。一方、化学的耐久性を保持するためには、LiOの含有量は、50%以下が好ましく、より好ましくは45%以下、さらに好ましくは40%以下である。
 NaOは、ガラスの溶融性を向上させる成分である。NaOは必須ではないが、好ましくはNaOの含有量は0.5%以上、より好ましくは1%以上であり、特に好ましくは2%以上である。NaOは多すぎるとメタケイ酸リチウム結晶が析出しにくくなり、または化学強化特性が低下するため、NaOの含有量は7%以下が好ましく、6%以下がより好ましく、5%以下がさらに好ましい。
 KOは、NaOと同じくガラスの溶融温度を下げる成分であり、含有してもよい。KOを含有する場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上である。KOは多すぎると化学強化特性が低下するため、KOの含有量は好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2%以下である。
 またNaOとKOとの合計の含有量NaO+KOは0.5%以上が好ましく、1%以上がより好ましい。また、NaO+KOは7%以下が好ましく、6%以下がより好ましく、5%以下がさらに好ましい。
 またLiOとSiOのmol%比LiO/SiOは、0.4以上が好ましく、0.45以上がより好ましく、0.5以上がさらに好ましい。また、LiO/SiOは、0.85以下が好ましく、0.80以下がより好ましく、0.75以下が更に好ましい。これによって加熱処理した際に、メタケイ酸リチウム結晶が析出しやすくなり、透明性の高い結晶化ガラスを得やすい。
 また、LiOとNaOのmol%比LiO/NaOは、4以上が好ましく、8以上がより好ましく、12以上がさらに好ましい。LiO/NaOはまた、30以下が好ましく、28以下がより好ましく、25以下が更に好ましい。これにより、化学強化による圧縮応力を十分にいれながら、表面の応力が緩和した応力プロファイルを得やすくなる。
 Pは、ケイ酸リチウムまたはアルミノケイ酸リチウムを含有する結晶化ガラスの場合は必須ではないが、ガラスの分相を促して結晶化を促進する効果があり、含有してよい。また、リン酸リチウム結晶を含有する結晶化ガラスの場合は必須成分である。Pを含有する場合の含有量は、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上である。一方、Pの含有量が多すぎると、溶融時に分相しやすくなり、また耐酸性が著しく低下する。Pの含有量は、好ましくは5%以下、より好ましくは4%以下、さらに好ましくは3%以下である。
 ZrOは、結晶化処理に際して、結晶核を構成し得る成分であり、含有してもよい。ZrOの含有量は、好ましくは1%以上であり、より好ましくは2%以上、さらに好ましくは2.5%以上、特に好ましくは3%以上である。一方、溶融時の失透を抑制するために、ZrOの含有量は6%以下が好ましく、5.5%以下がより好ましく、5%以下がさらに好ましい。
 TiOは結晶化処理に際して、結晶核を構成し得る成分であり、含有してもよい。TiOは必須ではないが、含有する場合は、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは2%以上、特に好ましくは3%以上であり、もっとも好ましくは4%以上である。一方、溶融時の失透を抑制するために、TiOの含有量は10%以下が好ましく、8%以下がより好ましく、6%以下がさらに好ましい。
 SnOは結晶核の生成を促進する作用があり、含有しても良い。SnOは必須ではないが、含有する場合、好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上である。一方、溶融時の失透を抑制するために、SnOの含有量は6%以下が好ましく、5%以下がより好ましく、4%以下がさらに好ましく、3%以下が特に好ましい。
 Yは化学強化ガラスが破壊した時に破片が飛散しにくくする成分であり、含有させてもよい。Yの含有量は、好ましくは1%以上、より好ましくは1.5%以上、さらに好ましくは2%以上、特に好ましくは2.5%以上、極めて好ましくは3%以上である。一方、溶融時の失透を抑制するために、Yの含有量は5%以下が好ましく、4%以下がより好ましい。
 Bは、必須ではないが、化学強化用ガラスまたは化学強化ガラスのチッピング耐性を向上させ、また溶融性を向上させる成分であり、含有してもよい。Bを含有する場合の含有量は、溶融性を向上するために好ましくは0.5%以上であり、より好ましくは1%以上、さらに好ましくは2%以上である。一方、Bの含有量は5%を超えると溶融時に脈理が発生し化学強化用ガラスの品質が低下しやすいため5%以下が好ましい。Bの含有量は、より好ましくは4%以下、さらに好ましくは3%以下であり、特に好ましくは2%以下である。
 BaO、SrO、MgO、CaO、ZnOはガラスの溶融性を向上する成分であり含有してもよい。これらの成分を含有させる場合、BaO、SrO、MgO、CaO、ZnOの含有量の合計BaO+SrO+MgO+CaO+ZnOは好ましくは0.5%以上、より好ましくは1%以上、さらに好ましくは1.5%以上、特に好ましくは2%以上である。一方、イオン交換速度が低下するため、BaO+SrO+MgO+CaO+ZnOの含有量は8%以下が好ましく、6%以下がより好ましく、5%以下がさらに好ましく、4%以下が特に好ましい。
 このうちBaO、SrO、ZnOは、残留ガラスの屈折率を向上させて析出結晶相に近づけることにより結晶化ガラスの透過率を向上して、ヘーズ値を下げるために含有してもよい。その場合、合計の含有量BaO+SrO+ZnOは0.3%以上が好ましく、0.5%以上がより好ましく、0.7%以上がさらに好ましく、1%以上が特に好ましい。一方で、これらの成分は、イオン交換速度を低下させる場合がある。化学強化特性を良くするために、BaO+SrO+ZnOは2.5%以下が好ましく、2%以下がより好ましく、1.7%以下がさらに好ましく、1.5%以下が特に好ましい。
 また、CeOを含有してもよい。CeOはガラスを酸化する効果があり、着色を抑える場合がある。CeOを含有する場合の含有量は0.03%以上が好ましく、0.05%以上がより好ましく、0.07%以上がさらに好ましい。CeOを酸化剤として用いる場合には、CeOの含有量は、透明性を高くするために1.5%以下が好ましく、1.0%以下がより好ましい。
 強化ガラスを着色して使用する際は、所望の化学強化特性の達成を阻害しない範囲において着色成分を添加してもよい。着色成分としては、例えば、Co、MnO、Fe、NiO、CuO、Cr、V、Bi、SeO、Er、Ndが好適なものとして挙げられる。
 着色成分の含有量は、合計で1%以下の範囲が好ましい。ガラスの可視光透過率をより高くしたい場合は、これらの成分は実質的に含有しないことが好ましい。
 また、ガラスの溶融の際の清澄剤等として、SO、塩化物、フッ化物などを適宜含有してもよい。Asは含有しないことが好ましい。Sbを含有する場合は、0.3%以下が好ましく、0.1%以下がより好ましく、含有しないことが最も好ましい。
 <<高靱性非晶質ガラス>>
 本発明におけるリチウムアルミノシリケートガラスは高靱性非晶質ガラスでもよい。高靱性非晶質ガラスとしては、例えば、酸化物基準のモル%表示でSiOを40~65%、Alを15~45%、LiOを2~15%含有するガラスがあげられる。高靱性非晶質ガラスは、Y、La、Nb、TaおよびWOから選ばれる1種以上の成分を合計で1~15%含有することが好ましい。
 高靱性非晶質ガラスにおいて、SiOはガラスのネットワーク構造を形成する成分である。また、化学的耐久性を上げる成分である。SiOの含有量は40%以上が好ましい。SiOの含有量は、より好ましくは42%以上、さらに好ましくは45%以上である。化学強化による応力を十分に大きくするためには、SiOの含有量は65%以下が好ましく、より好ましくは60%以下、さらに好ましくは55%以下である。
 Alは化学強化による表面圧縮応力を大きくする成分であり、必須である。Alの含有量は15%以上が好ましい。また、破壊靱性値を大きくするためには、Alの含有量は、より好ましくは、20%以上、さらに好ましくは22%以上、特に好ましくは25%以上である。一方、ガラスを溶融しやすくするためには、Alの含有量は、45%以下が好ましく、40%以下がより好ましく、35%以下がさらに好ましい。
 LiOは、イオン交換により表面圧縮応力を形成させる成分であり、必須である。LiOの含有量は、好ましくは2%以上であり、より好ましくは4%以上、さらに好ましくは7%以上である。一方、化学的耐久性を保持するためには、LiOの含有量は、15%以下が好ましく、より好ましくは13%以下、さらに好ましくは11%以下である。
 本発明のガラスは、Y、La、Nb、TaおよびWOから選ばれる1種以上の成分を合計で1%以上含有することが、失透温度を下げるために好ましい。より好ましくは2%以上、更に好ましくは3%以上である。
 Y、La、Nb、TaおよびWOは、フィールドストレングスが大きいカチオンである。フィールドストレングスとは、陽イオンの価数をイオン半径で割ったものであり、周囲の酸素イオンを引き付ける強さである。これらの成分は、酸素の充填密度を向上させるため、ヤング率や破壊靱性を向上させる効果がある。
 ヤング率が向上しすぎると、加工の難度が増加し、結果として歩留まりを下げる。Y、La、Nb、TaおよびWOから選ばれる1種以上の成分の合計の含有量は、ヤング率の向上を適切な範囲に収めるために15%以下が好ましい。かかる含有量は、より好ましくは13%以下であり、更に好ましくは12%以下であり、特に好ましくは11%以下である。
 本発明のガラス組成において、Y、La、Nb、TaおよびWOの合計の含有量と、Al含有量との比([Y]+[La]+[Nb]+[Ta]+[WO])/[Al]は、充填密度の高いガラス構造を形成するために0.2以上が好ましく、0.25以上がより好ましく、0.3以上が更に好ましい。([Y]+[La]+[Nb]+[Ta]+[WO])/[Al]はガラスが必要以上に高ヤング率化することを防ぐために0.6以下が好ましく、0.55以下がより好ましく、0.5以下が更に好ましい。
 La、Nb、TaおよびWOは必須の成分ではないが、ガラスの脆性に大きく影響するため、チッピングやスクラッチ試験の特性を調整するために含有させてもよい。
 LiO、NaOおよびKO等のアルカリ金属酸化物(まとめてROと記載することがある)は、いずれも必須ではないがガラスの溶解温度を低下させる成分であり、1種以上を含有できる。
 非晶質ガラスのガラス転移点Tgは、390℃以上が好ましく、410℃以上がより好ましく、420℃以上がさらに好ましい。ガラス転移点Tgが高いと化学強化処理中の応力緩和が起こりにくいため、高い強度が得られやすい。一方でTgが高すぎると、ガラスの成形等がしにくいため、Tgは650℃以下が好ましく、600℃以下がより好ましい。
 非晶質ガラスの50℃~350℃における平均熱膨張係数は、90×10-7/℃以上が好ましく、100×10-7/℃以上がより好ましく、110×10-7/℃以上がさらに好ましい。一方で、熱膨張係数が大きすぎるとガラスの成形中に割れやすいため、熱膨張係数は150×10-7/℃以下が好ましく、140×10-7/℃以下がより好ましい。非晶質ガラスとメタケイ酸リチウム結晶の熱膨張係数の差が大きいと結晶化の過程で熱膨張率差による割れが生じやすい。
 非晶質ガラスを粉砕し、示差走査熱量計を用いて得られるDSC曲線から求められるガラス転移点(TgDSC)と、そのDSC曲線においてもっとも低温度域にあらわれる結晶化ピーク温度(Tc)との差を(Tc-Tg)とする。非晶質ガラスの(Tc-Tg)は、80℃以上が好ましく、85℃以上がより好ましく、90℃以上がさらに好ましく、95℃以上が特に好ましい。(Tc-Tg)が大きいと、結晶化ガラスを再加熱して曲げ加工等しやすい。(Tc-Tg)は、150℃以下が好ましく、140℃以下がより好ましい。
 図3は、非晶質ガラスのDSC曲線の一例である。図3に示すTgDSCは、熱膨張曲線から求められるガラス転移点(Tg)と一致しない場合がある。また、TgDSCはガラスを粉砕して測定するために、測定誤差が大きくなりやすいが、結晶化ピーク温度との関係を評価するためには、熱膨張曲線から求められるTgよりも、同じDSC測定で求められるTgDSCを用いるのが適切である。
 非晶質ガラスのヤング率は、75GPa以上が好ましく、80GPa以上がより好ましく、85GPa以上がさらに好ましい。
 非晶質ガラスのビッカース硬度は、500以上が好ましく、550以上がより好ましい。
 <化学強化ガラスの製造方法>
 本発明の化学強化ガラスは、上記の結晶性非晶質ガラスを加熱処理して結晶化ガラスを得、得られた結晶化ガラスを化学強化処理して製造する。または前述の高靱性非晶質ガラスを化学強化処理して製造する。
 (非晶質ガラスの製造)
 非晶質ガラスは、例えば、以下の方法で製造できる。なお、以下に記す製造方法は、板状の化学強化ガラスを製造する場合の例である。
 好ましい組成のガラスが得られるようにガラス原料を調合し、ガラス溶融窯で加熱溶融する。その後、バブリング、撹拌、清澄剤の添加等により溶融ガラスを均質化し、公知の成形法により所定の厚さのガラス板に成形し、徐冷する。または、溶融ガラスをブロック状に成形して、徐冷した後に切断する方法で板状に成形してもよい。
 板状ガラスの成形法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、大型のガラス板を製造する場合は、フロート法が好ましい。また、フロート法以外の連続成形法、例えば、フュージョン法及びダウンドロー法も好ましい。
 (結晶化処理)
 本発明におけるリチウムアルミノシリケートガラスが結晶化ガラスである場合は、上記の手順で得られた結晶性非晶質ガラスを加熱処理することで結晶化ガラスが得られる。
 加熱処理は、室温から第一の処理温度まで昇温して一定時間保持した後、第一の処理温度より高温である第二の処理温度に一定時間保持する2段階の加熱処理によることが好ましい。
 2段階の加熱処理による場合、第一の処理温度は、そのガラス組成において結晶核生成速度が大きくなる温度域が好ましく、第二の処理温度は、そのガラス組成において結晶成長速度が大きくなる温度域が好ましい。また、第一の処理温度での保持時間は、充分な数の結晶核が生成するように長く保持することが好ましい。多数の結晶核が生成することで、各結晶の大きさが小さくなり、透明性の高い結晶化ガラスが得られる。
 第一の処理温度は、例えば450℃~700℃であり、第二の処理温度は、例えば600℃~800℃であり、第一処理温度で1時間~6時間保持した後、第二処理温度で1時間~6時間保持する。
 上記手順で得られた結晶化ガラスを必要に応じて研削及び研磨処理して、結晶化ガラス板を形成する。結晶化ガラス板を所定の形状及びサイズに切断したり、面取り加工を行ったりする場合、化学強化処理を施す前に、切断や面取り加工を行えば、その後の化学強化処理によって端面にも圧縮応力層が形成されるため、好ましい。
 <化学強化ガラスの製造方法>
 本発明の化学強化ガラスは、リチウムアルミノシリケートガラスを、化学強化して製造される。本製造方法におけるリチウムアルミノシリケートガラスの好ましい態様は前述のものと同様である。本製造方法におけるリチウムアルミノシリケートガラスは、前述の組成を有するものが好ましい。
 リチウムアルミノシリケートガラスは、通常の方法で製造できる。例えば、ガラスの各成分の原料を調合し、ガラス溶融窯で加熱溶融する。その後、公知の方法によりガラスを均質化し、ガラス板等の所望の形状に成形し、徐冷する。
 ガラスの成形法としては、例えば、フロート法、プレス法、フュージョン法及びダウンドロー法が挙げられる。特に、大量生産に適したフロート法が好ましい。また、フロート法以外の連続成形法、例えば、フュージョン法およびダウンドロー法も好ましい。
 その後、成形したガラスを必要に応じて研削および研磨処理して、ガラス基板を形成する。なお、ガラス基板を所定の形状及びサイズに切断したり、ガラス基板の面取り加工を行う場合、後述する化学強化処理を施す前に、ガラス基板の切断や面取り加工を行えば、その後の化学強化処理によって端面にも圧縮応力層が形成されることから、好ましい。
 本発明の化学強化ガラスの製造方法における化学強化は、ナトリウムを含有し、かつカリウム含有量が5質量%未満の強化塩を用いた化学強化である。本発明の化学強化ガラスの製造方法において、化学強化処理は2段階以上行ってもよいが、生産性を高めるためには1段階の強化が好ましい。
 本発明の化学強化ガラスの製造方法によれば、K1cが0.80MPa/m1/2以上であるリチウムアルミノシリケートガラスを、前記強化塩を用いて化学強化することにより、CSが500~1000MPaであり、かつガラスの厚さt[単位:μm]に対しDOL[単位:μm]が0.06t~0.2tである化学強化ガラスが得られる。
 化学強化処理は、例えば、360~600℃に加熱された硝酸ナトリウム等の溶融塩中に、ガラス板を0.1~500時間浸漬することによって行う。なお、溶融塩の加熱温度としては、375~500℃が好ましく、また、溶融塩中へのガラス板の浸漬時間は、0.3~200時間が好ましい。
 本発明の化学強化ガラスの製造方法に用いる強化塩は、ナトリウムを含有し、かつカリウム含有量が硝酸カリウム換算で5質量%未満の強化塩である。カリウム含有量は2質量%未満が好ましく、実質的に含有しないことがより好ましい。「カリウムを実質的に含有しない」とは、カリウムを全く含まないこと、またはカリウムを製造上不可避的に混入した不純物として含んでいてもよいことを意味する。
 強化塩としては、例えば、硝酸塩、硫酸塩、炭酸塩、塩化物などが挙げられる。このうち硝酸塩としては、例えば、硝酸リチウム、硝酸ナトリウム、などが挙げられる。硫酸塩としては、例えば、硫酸リチウム、硫酸ナトリウム、などが挙げられる。炭酸塩としては、例えば、炭酸リチウム、炭酸ナトリウム、などが挙げられる。塩化物としては、例えば、塩化リチウム、塩化ナトリウム、塩化セシウム、塩化銀などが挙げられる。これらの強化塩は、単独で用いてもよいし、複数種を組み合わせて用いてもよい。
 化学強化処理の処理条件は、ガラスの組成(特性)や溶融塩の種類、ならびに、所望の化学強化特性などを考慮して、適切な条件を選択すればよい。
 以下、実施例を用いて本発明を説明するが、本発明はこれにより限定されるものではない。G1~G26は非晶質ガラスであり、GC1~GC19は結晶化ガラスである。SG1~SG21、SG25、SG31、SG32は、本発明の化学強化ガラスの実施例であり、SG22~SG24、SG26~30は比較例である。なお、表中の各測定結果について、空欄は未測定であることを表す。
 [非晶質ガラスの作製及び評価]
 表1~3に酸化物基準のモル百分率表示で記載したガラス組成となるように、ガラス原料を調合し、溶解、研磨加工してガラス板を作製した。ガラス原料としては、酸化物、水酸化物、炭酸塩等の一般的なガラス原料を適宜選択し、ガラスとして900gとなるように秤量した。混合したガラス原料を白金坩堝に入れ、1700℃で溶融し、脱泡した。そのガラスをカーボンボード上に流して、ガラスブロックを得た。得られたブロックの一部を用いて、非晶質ガラスのヤング率、ビッカース硬度、破壊靱性値を評価した結果を表1~3に示す。表における空欄は未評価を示す。
 (ヤング率)
 ヤング率は、超音波法で測定した。
 (ビッカース硬度)
 ビッカース硬度の測定は、JIS-Z-2244(2009)(ISO6507-1、ISO6507-4、ASTM-E-384)に規定する試験法に準拠し、株式会社島津製作所製のビッカース硬度計(MICRO HARDNESS TESTERHMV-2)を用い、常温、常湿環境下(この場合、室温25℃、湿度60%RHに維持した)で測定した。1サンプル当たり10箇所で測定し、その平均を当該試作例のビッカース硬度とした。また、ビッカース圧子の圧入荷重を0.98N、15秒間の圧入とした。
 (破壊靱性値)
 破壊靱性値は、6.5mm×6.5mm×65mmのサンプルを作製し、DCDC法で測定した。その際、サンプルの65mm×6.5mmの面に、2mmΦの貫通穴を開けて評価した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 [結晶化ガラスの作製]
 得られたガラスブロックを50mm×50mm×1.5mmに加工してから、表4及び5に記載した条件で熱処理して結晶化ガラスを得た。表の結晶化条件欄は、上段が核生成処理条件、下段が結晶成長処理条件であり、例えば上段に550-2、下段に730-2と記載した場合は、550℃で2時間保持した後、730℃に2時間保持したことを意味する。得られた結晶化ガラスの一部を用いて、粉末X線回折によりメタケイ酸リチウムが含まれていることを確認した。
 得られた結晶化ガラスを加工し、鏡面研磨して厚さtが0.7mm(700μm)の結晶化ガラス板を得た。残った結晶化ガラスの一部は粉砕して、析出結晶の分析に用いた。結晶化ガラスを評価した結果を表4及び5に示す。空欄は未評価を示す。
 (可視光透過率)
 分光光度計(PerkinElmer社製;LAMBDA950)に検出器として150mm積分球ユニットを用い、積分球に結晶化ガラス板を密着させて波長380~780nmにおける透過率を測定した。該透過率の算術平均値である平均透過率を可視光透過率[単位:%]とした。
 (ヘーズ値)
 ヘーズメーター(スガ試験機株式会社製;HZ-V3)を用いて、C光源でのヘーズ値[単位:%]を測定した。
 (X線回折:析出結晶および結晶化率)
 以下の条件で粉末X線回折を測定し、析出結晶を同定した。また、得られた回折強度からリートベルト法で結晶化率を算出した。
   測定装置:株式会社リガク製 SmartLab
   使用X線:CuKα線
   測定範囲:2θ=10°~80°
   スピード:10°/分
   ステップ:0.02°
 検出された結晶を表4及び5における主結晶の欄に示す。ただし、表中LSはメタケイ酸リチウムを示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 [化学強化ガラスの作製]
 GC1~GC19、G22~26について、表6~9に記載の強化条件にて化学強化処理を施して強化ガラスSG1~SG32を得た。SG1~SG21、SG25、SG31、SG32は実施例、SG22~SG24、SG26~SG30は比較例である。表6~9において、「Na100%」は硝酸ナトリウム100%の溶融塩を、「Na99.7%Li0.3%」は硝酸ナトリウム99.7wt%に硝酸リチウム0.3wt%を混合した溶融塩を、「K100%」は硝酸カリウム100%の溶融塩を示す。得られた化学強化ガラスを評価した結果を表6~9に示す。空欄は未評価を示す。
 (応力プロファイル)
 株式会社折原製作所製の測定機SLP-2000を用いて応力値を測定し、ガラス表面の圧縮応力値CS[単位:MPa]、深さ50μmにおける圧縮応力値CS50[単位:MPa]および圧縮応力値がゼロになる深さDOL[単位:μm]を読み取った結果を表6~9に示す。
 また、SG5の応力プロファイルを図1に示す。図1における参考例は、表2に示すG21(非晶質ガラス)を結晶化せずに、2段階の化学強化により得られた化学強化ガラスの応力プロファイルである。2段階の化学強化の条件としては、450℃の硝酸ナトリウム100%により2.5時間の1段目の化学強化後、450℃の硝酸カリウム100%により1.5時間の2段目の化学強化を行った。
 (EPMA表面K濃度)
 ガラス表面のK濃度は、EPMA(日本電子株式会社製JXA-8500F)を用いて測定した。サンプルに化学強化を施した後、樹脂に包埋して主面に対して垂直な断面を鏡面研磨した。最表面の濃度は正確に測定しにくいことから、含有量の変化がほとんどないと考えられるSiの信号強度が板厚中心部の信号強度の半分になる位置のKの信号強度が最表面のK濃度に対応すると仮定し、板厚中心部の信号強度は強化前のガラス組成に対応するものとして最表面のK濃度を算出した。
 (耐候性試験)
 湿度80%、80℃にて120時間静置した後、ヘーズ値を測定した。ヘーズ値は化学強化処理によっては変化しないが、湿度80%、80℃にて120時間静置すると上昇する。試験前のヘーズ値との差(すなわち、|試験後のヘーズ値[%]-試験前のヘーズ値[%]|)を[Haze変化(%)]として、表に示す。
 (破砕数)
 ビッカース試験機を用いて、試験用ガラス板の中央部分に、先端の角度が90°のビッカース圧子を打ち込んでガラス板を破壊させ、破片の個数を破砕数とした。(ガラス板が二つに割れた場合の破砕数は2である。)非常に細かい破片が生じた場合は、1mmの篩を通過しなかった個数を数えて破砕数とした。
 また、ビッカース圧子の打ち込み荷重は3kgfから試験を開始し、ガラス板が割れなかった場合は、打ち込み荷重を1kgfずつ増やして、ガラス板が割れるまで試験を繰り返し、最初に割れた時の破片数を数えた。
 (落下試験)
 落下試験は、得られた120×60×0.6mmtのガラスサンプルを現在使用されている一般的なスマートフォンのサイズに質量と剛性を調節した構造体にはめ込み、疑似スマートフォンを用意した上で#180SiCサンドペーパーの上に自由落下させた。落下高さは、5cmの高さから落下させて割れなかった場合は5cm高さを上げて再度落下させる作業を割れるまで繰り返し、初めて割れたときの高さの10枚の平均値を表6~9に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表6~9に示すように、本発明の化学強化ガラスは、CS及びCS50が比較例と同等であり、優れた強度を示すとともに、比較例と比較してDOLが低く、加傷時に破砕しにくいことがわかった。また、本発明の化学強化ガラスは、耐候性試験によるヘーズ変化率が比較例と比較して低く、耐候性においても優れていた。
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2019年6月26日出願の日本特許出願(特願2019-118969)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (13)

  1.  厚さがt[単位:μm]のリチウムアルミノシリケートガラスを化学強化する、化学強化ガラスの製造方法であって、
     前記リチウムアルミノシリケートガラスは、破壊靱性値(K1c)が0.80MPa/m1/2以上であり、
     前記化学強化は、ナトリウムを含有し、かつカリウム含有量が5質量%未満である強化塩を用いた化学強化であり、
     得られる化学強化ガラスは、表面圧縮応力値(CS)が500~1000MPa、かつ、
     圧縮応力値がゼロとなる深さDOL[単位:μm]が0.06t~0.2tである、化学強化ガラスの製造方法。
  2.  前記リチウムアルミノシリケートガラスは、結晶化ガラスである請求項1に記載の化学強化ガラスの製造方法。
  3.  前記結晶化ガラスは、
     酸化物基準のモル%表示で、
     SiOを40~72%、
     Alを0.5~10%、
     LiOを15~50%含有する、
     請求項2に記載の化学強化ガラスの製造方法。
  4.  前記結晶化ガラスは、厚さ0.7mmに換算した場合の可視光透過率が85%以上である、請求項2または3に記載の化学強化ガラスの製造方法。
  5.  前記結晶化ガラスは、メタケイ酸リチウム結晶を含有する請求項2~4のいずれか1項に記載の化学強化ガラスの製造方法。
  6.  前記リチウムアルミノシリケートガラスは、
     酸化物基準のモル%表示で、
     SiOを40~65%、
     Alを15~45%、
     LiOを2~15%含有する、
     請求項1に記載の化学強化ガラスの製造方法。
  7.  厚さがt[単位:μm]の化学強化ガラスであって、
     リチウムアルミノシリケートガラスであり、
     表面圧縮応力値(CS)が500~1000MPa、
     ガラス表面から深さ50μmにおける圧縮応力値(CS50)が150~230MPa、かつ、
     圧縮応力値がゼロとなる深さDOL[単位:μm]が0.06t~0.2tであり、
     (CS×DOL)/K1c[単位:μm/m1/2]が40000~70000である化学強化ガラス。
  8.  表面のK濃度が1質量%以下である請求項7に記載の化学強化ガラス。
  9.  厚さがt[単位:μm]の化学強化ガラスであって、
     リチウムアルミノシリケートガラスであり、
     表面圧縮応力値(CS)が500~1000MPa、
     ガラス表面から深さ50μmにおける圧縮応力値(CS50)が150~230MPa、かつ、
     内部圧縮応力値CT[単位:MPa]と下記式で表されるXとの比CT/Xが0.7~1である化学強化ガラス。
     X=√(1/2a(1-ν)(t-2×DOL))K1c
     ここでa=0.11、
     νはポアソン比[単位:-]、
     DOLは圧縮応力値がゼロとなる深さ[単位:μm]、
     K1cは破壊靱性値[単位:MPa/m1/2]である。
  10.  前記化学強化ガラスの母ガラスは、K1cが0.85MPa・m1/2以上の結晶化ガラスである請求項7~9のいずれか1項に記載の化学強化ガラス。
  11.  前記結晶化ガラスは、メタケイ酸リチウム結晶を含有する請求項10に記載の化学強化ガラス。
  12.  前記結晶化ガラスは、酸化物基準のモル%表示で、
     SiOを40~72%、
     Alを0.5~10%、
     LiOを15~50%含有し、KOを実質的に含有しない請求項10または11に記載の化学強化ガラス。
  13.  前記化学強化ガラスの母ガラスは、酸化物基準のモル百分率表示で、
     SiOを40~65%、Alを15~45%、LiOを2~15%含有し、K1cが0.80MPa・m1/2以上である請求項7~9のいずれか1項に記載の化学強化ガラス。
PCT/JP2020/016054 2019-06-26 2020-04-09 化学強化ガラスの製造方法および化学強化ガラス WO2020261710A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021527401A JPWO2020261710A1 (ja) 2019-06-26 2020-04-09
DE112020003081.4T DE112020003081T5 (de) 2019-06-26 2020-04-09 Verfahren zur herstellung eines chemisch gehärteten glases und chemisch gehärtetes glas
CN202311062526.8A CN117069379A (zh) 2019-06-26 2020-04-09 化学强化玻璃的制造方法和化学强化玻璃
CN202080045850.7A CN114007994B (zh) 2019-06-26 2020-04-09 化学强化玻璃的制造方法和化学强化玻璃
US17/562,240 US20220119307A1 (en) 2019-06-26 2021-12-27 Method for producing chemically strengthened glass and chemically strengthened glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-118969 2019-06-26
JP2019118969 2019-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/562,240 Continuation US20220119307A1 (en) 2019-06-26 2021-12-27 Method for producing chemically strengthened glass and chemically strengthened glass

Publications (1)

Publication Number Publication Date
WO2020261710A1 true WO2020261710A1 (ja) 2020-12-30

Family

ID=74060213

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/016055 WO2020261711A1 (ja) 2019-06-26 2020-04-09 化学強化ガラスおよびその製造方法
PCT/JP2020/016054 WO2020261710A1 (ja) 2019-06-26 2020-04-09 化学強化ガラスの製造方法および化学強化ガラス

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/016055 WO2020261711A1 (ja) 2019-06-26 2020-04-09 化学強化ガラスおよびその製造方法

Country Status (6)

Country Link
US (2) US20220119306A1 (ja)
JP (2) JPWO2020261711A1 (ja)
CN (4) CN117069379A (ja)
DE (1) DE112020003081T5 (ja)
TW (2) TW202100482A (ja)
WO (2) WO2020261711A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594406A (zh) * 2021-07-08 2023-01-13 荣耀终端有限公司(Cn) 化学强化微晶玻璃及其制备方法与应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210088040A (ko) * 2020-01-03 2021-07-14 삼성디스플레이 주식회사 유리 제품 및 이의 제조 방법
CN114180826A (zh) * 2020-09-14 2022-03-15 肖特股份有限公司 低光损耗玻璃制品
CN114907016B (zh) * 2022-06-24 2023-08-01 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN115432945B (zh) * 2022-09-30 2023-08-18 成都光明光电股份有限公司 一种改善纳米微晶玻璃耐候性的化学强化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254984A (ja) * 2007-04-06 2008-10-23 Ohara Inc 無機組成物物品
WO2018074335A1 (ja) * 2016-10-18 2018-04-26 旭硝子株式会社 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法
WO2018199046A1 (ja) * 2017-04-28 2018-11-01 Agc株式会社 化学強化ガラスおよび化学強化用ガラス
JP2019011249A (ja) * 2016-01-21 2019-01-24 Agc株式会社 化学強化ガラスおよび化学強化用ガラス
JP2019081705A (ja) * 2013-09-06 2019-05-30 コーニング インコーポレイテッド 二ケイ酸リチウム及びβ‐スポジュメン構造を有する高強度ガラスセラミック

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2307328A1 (en) * 2008-07-11 2011-04-13 Corning Incorporated Glass with compressive surface for consumer applications
DE102010009584B4 (de) * 2010-02-26 2015-01-08 Schott Ag Chemisch vorgespanntes Glas, Verfahren zu seiner Herstellung sowie Verwendung desselben
US8883663B2 (en) * 2010-11-30 2014-11-11 Corning Incorporated Fusion formed and ion exchanged glass-ceramics
US10202303B2 (en) * 2012-10-04 2019-02-12 Corning Incorporated Compressively stressed laminated glass article via photosensitive glass and method of making the article
US9604871B2 (en) * 2012-11-08 2017-03-28 Corning Incorporated Durable glass ceramic cover glass for electronic devices
US11079309B2 (en) * 2013-07-26 2021-08-03 Corning Incorporated Strengthened glass articles having improved survivability
KR101524482B1 (ko) * 2013-10-14 2015-06-02 주식회사 하스 지르코니아 상단에 안착되는 리튬 실리케이트 유리 또는 리튬 실리케이트 결정화 유리 및 이의 제조방법
US9517968B2 (en) * 2014-02-24 2016-12-13 Corning Incorporated Strengthened glass with deep depth of compression
CN104108883B (zh) * 2014-08-11 2019-03-08 中国地质大学(北京) 一种高强度二硅酸锂玻璃陶瓷及其制备方法
KR20200130746A (ko) * 2014-10-08 2020-11-19 코닝 인코포레이티드 금속 산화물 농도 구배를 포함한 유리 및 유리 세라믹
CN115259673A (zh) * 2014-10-08 2022-11-01 康宁股份有限公司 具有透锂长石和硅酸锂结构的高强玻璃-陶瓷
CN115572078A (zh) * 2014-11-04 2023-01-06 康宁股份有限公司 深层非易碎应力曲线及其制造方法
JP6694448B2 (ja) * 2015-06-04 2020-05-13 コーニング インコーポレイテッド イオン交換により化学強化されたリチウム含有ガラスを特徴付ける方法
EP3909927A1 (en) * 2015-12-11 2021-11-17 Corning Incorporated Fusion-formable glass-based articles including a metal oxide concentration gradient
CN108463439B (zh) * 2016-01-08 2022-07-22 康宁股份有限公司 具有固有抗损坏性的可化学强化锂铝硅酸盐玻璃
WO2017123573A2 (en) * 2016-01-12 2017-07-20 Corning Incorporated Thin thermally and chemically strengthened glass-based articles
KR20220113539A (ko) * 2016-04-08 2022-08-12 코닝 인코포레이티드 금속 산화물 농도 구배를 포함하는 유리-계 제품
US11059744B2 (en) * 2016-06-14 2021-07-13 Corning Incorporated Glasses having improved drop performance
CN106365456B (zh) * 2016-08-31 2019-06-25 东北大学秦皇岛分校 二硅酸锂微晶玻璃、其制备方法及用于牙科材料的应用
WO2018056168A1 (ja) * 2016-09-21 2018-03-29 旭硝子株式会社 化学強化用ガラスおよび化学強化ガラス
EP3526171B1 (en) * 2016-10-12 2023-12-13 Corning Incorporated Glass ceramic
TWI749160B (zh) * 2017-01-31 2021-12-11 美商康寧公司 具有工程應力分佈的塗層玻璃基底製品及包含其之消費性電子產品
JP6794866B2 (ja) * 2017-02-15 2020-12-02 Agc株式会社 化学強化ガラスおよびその製造方法
KR102638938B1 (ko) * 2017-07-26 2024-02-22 에이지씨 가부시키가이샤 결정화 유리 및 화학 강화 유리
CN110958992A (zh) * 2017-07-26 2020-04-03 Agc株式会社 化学强化玻璃及其制造方法
WO2019022033A1 (ja) * 2017-07-26 2019-01-31 Agc株式会社 化学強化用ガラス、化学強化ガラスおよび電子機器筐体
US10857259B2 (en) * 2017-11-28 2020-12-08 Corning Incorporated Chemically strengthened bioactive glass-ceramics
US10723649B2 (en) * 2017-11-30 2020-07-28 Corning Incorporated Black lithium silicate glass ceramics
JP6539719B1 (ja) 2017-12-28 2019-07-03 東日本電信電話株式会社 二軸自在工具
WO2019191480A1 (en) * 2018-03-29 2019-10-03 Corning Incorporated Glasses having high fracture toughness
CN112166091A (zh) * 2018-06-01 2021-01-01 日本电气硝子株式会社 强化玻璃以及强化用玻璃
WO2020018309A2 (en) * 2018-07-16 2020-01-23 Corning Incorporated Glass-ceramic articles with increased resistance to fracture and methods for making the same
CN112608032B (zh) * 2018-10-26 2022-04-22 成都光明光电股份有限公司 微晶玻璃、微晶玻璃制品及其制造方法
CN114349351A (zh) * 2019-03-06 2022-04-15 株式会社小原 无机组成物产品以及结晶化玻璃

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008254984A (ja) * 2007-04-06 2008-10-23 Ohara Inc 無機組成物物品
JP2019081705A (ja) * 2013-09-06 2019-05-30 コーニング インコーポレイテッド 二ケイ酸リチウム及びβ‐スポジュメン構造を有する高強度ガラスセラミック
JP2019011249A (ja) * 2016-01-21 2019-01-24 Agc株式会社 化学強化ガラスおよび化学強化用ガラス
WO2018074335A1 (ja) * 2016-10-18 2018-04-26 旭硝子株式会社 化学強化用ガラス、化学強化ガラスおよび化学強化ガラスの製造方法
WO2018199046A1 (ja) * 2017-04-28 2018-11-01 Agc株式会社 化学強化ガラスおよび化学強化用ガラス

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115594406A (zh) * 2021-07-08 2023-01-13 荣耀终端有限公司(Cn) 化学强化微晶玻璃及其制备方法与应用
CN115959831A (zh) * 2021-07-08 2023-04-14 荣耀终端有限公司 素微晶玻璃、化学强化微晶玻璃及其制备方法与应用

Also Published As

Publication number Publication date
CN114007994B (zh) 2023-09-12
CN117585914A (zh) 2024-02-23
US20220119306A1 (en) 2022-04-21
DE112020003081T5 (de) 2022-03-10
JPWO2020261710A1 (ja) 2020-12-30
TW202100482A (zh) 2021-01-01
CN114096493A (zh) 2022-02-25
CN114007994A (zh) 2022-02-01
CN114096493B (zh) 2023-12-01
JPWO2020261711A1 (ja) 2020-12-30
WO2020261711A1 (ja) 2020-12-30
TW202100485A (zh) 2021-01-01
US20220119307A1 (en) 2022-04-21
CN117069379A (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
JP7059993B2 (ja) 化学強化ガラスおよび化学強化用ガラス
US20220064054A1 (en) Crystallized glass of three-dimensional shape, chemically strengthened glass of three-dimensional shape, and method for producing crystallized glass of three-dimensional shape and chemically strengthened glass of three-dimensional shape
WO2020261710A1 (ja) 化学強化ガラスの製造方法および化学強化ガラス
JP7115479B2 (ja) 結晶化ガラスおよび化学強化ガラス
EP3100985B1 (en) Crystallized glass and crystallized glass substrate
KR102453883B1 (ko) 이온 교환 가능한 유리, 유리-세라믹 및 이의 제조방법
JP7067665B2 (ja) 結晶化ガラス、化学強化ガラスおよび半導体支持基板
WO2019022033A1 (ja) 化学強化用ガラス、化学強化ガラスおよび電子機器筐体
WO2019022035A1 (ja) 化学強化ガラスおよびその製造方法
WO2020121888A1 (ja) 化学強化ガラス板、並びに化学強化ガラスを含むカバーガラス及び電子機器
WO2020203200A1 (ja) 結晶化ガラス及び化学強化ガラス並びにそれらの製造方法
JPWO2019194110A1 (ja) 化学強化用ガラス
WO2019003565A1 (ja) 結晶化ガラス基板
WO2019172426A1 (ja) カバーガラスおよび無線通信機器
US20230060972A1 (en) Chemically strengthened glass article and manufacturing method thereof
JP7074269B1 (ja) 化学強化ガラスおよび結晶化ガラス並びにそれらの製造方法
WO2020246274A1 (ja) ガラス、化学強化ガラスおよびその製造方法
WO2022215717A1 (ja) 化学強化ガラス及びその製造方法
WO2022215575A1 (ja) 結晶化ガラスからなる化学強化ガラス及びその製造方法
WO2024004965A1 (ja) 結晶化ガラス、化学強化ガラス及び結晶化ガラスの製造方法
WO2023113041A1 (ja) 結晶化ガラス、3次元形状の結晶化ガラスおよびその製造方法
WO2024014507A1 (ja) 無機組成物物品
CN116253518A (zh) 具有不规则应力分布的盖片、其生产方法及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20832755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021527401

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20832755

Country of ref document: EP

Kind code of ref document: A1