WO2020260058A1 - Procede de production de 5-hydroxymethylfurfural - Google Patents

Procede de production de 5-hydroxymethylfurfural Download PDF

Info

Publication number
WO2020260058A1
WO2020260058A1 PCT/EP2020/066525 EP2020066525W WO2020260058A1 WO 2020260058 A1 WO2020260058 A1 WO 2020260058A1 EP 2020066525 W EP2020066525 W EP 2020066525W WO 2020260058 A1 WO2020260058 A1 WO 2020260058A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
chosen
solvent
fructose
fructosidic
Prior art date
Application number
PCT/EP2020/066525
Other languages
English (en)
Inventor
Marc Jacquin
Damien Delcroix
Kim LARMIER
Thierry Huard
Original Assignee
IFP Energies Nouvelles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles filed Critical IFP Energies Nouvelles
Priority to CN202080046540.7A priority Critical patent/CN113993855A/zh
Priority to EP20733922.7A priority patent/EP3986881A1/fr
Priority to US17/622,283 priority patent/US20220242840A1/en
Priority to BR112021024451A priority patent/BR112021024451A2/pt
Publication of WO2020260058A1 publication Critical patent/WO2020260058A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/46Doubly bound oxygen atoms, or two oxygen atoms singly bound to the same carbon atom

Definitions

  • the invention relates to a particular process for obtaining a mixture of 5-hydroxymethylfurfural and hexoses by converting mixtures of different sugars or oligomers of different sugars, more specifically mixtures of hexoses, and more particularly mixtures. of fructose and glucose or of mixed oligomers of these two sugars, such as sucrose, in a mixture of sugars and 5-hydroxymethylfurfural (hereinafter referred to as 5-HMF) in the presence of at least one aprotic polar solvent , and in the presence of one or more catalysts.
  • 5-HMF 5-hydroxymethylfurfural
  • 5-Hydroxymethylfurfural is a compound derived from biomass which can be valued in many fields as a precursor of active ingredients in pharmacy, agrochemistry or specialty chemicals. Its interest in recent years resides in its use as a precursor of 2,5-furan dicarboxylic acid (FDCA) which is used as a substitute for terephthalic acid as a monomer for the production of polyester fibers, convenience plastics or more plasticizers.
  • FDCA 2,5-furan dicarboxylic acid
  • fructose is the one which makes it possible to achieve the highest yields by reacting at moderate temperatures in the presence of a Bronsted or Lewis acid catalyst, in particular when the reaction solvent is dimethylsulfoxide (DMSO ).
  • DMSO dimethylsulfoxide
  • the article Bull. Chem. Soc. Japan., 1980, 53, 3705 describes obtaining yields of 5-HMF of 90% after reaction at 80 ° C.
  • the cost of hexose fillers can be very variable depending on their local abundance, their ease of extraction and their degree of purification.
  • Glucose is relatively abundant, whereas fructose must be obtained by isomerization of glucose, for example by means of enzymatic catalysis (Parker et al, Vol. 5 (5), pp. 71 - 78, December 2010 Biotechnol. Mol. Mol. . Biol. Rev). This isomerization is limited by thermodynamics, a mixture of glucose and fructose is obtained, and the fructose must then be separated from the residual glucose.
  • sucrose a very abundant disaccharide, consists of a unit of the fructose type and of a unit of the glucose type.
  • fructose It is possible to produce an equimolar mixture of glucose and fructose by hydrolysis (called invert sugar), but again, a separation step would be required to isolate the fructose. Due to the structural similarities of sugars, glucose / fructose separation processes make pure fructose feedstocks more expensive, which limits the attractiveness of processes for converting fructose to 5-HMF.
  • fructose Under the most common conditions for the transformation of fructose into 5-HMF at temperatures above 100 ° C), glucose is not or only slightly transformed into 5-HMF, but undergoes decomposition reactions into heavy polymeric species ( humins). Examples of reaction carried out under mild conditions (temperatures below 100 ° C.) show that fructose can nevertheless be transformed with good yields (Chemical Reviews, 2013, 113, 1499-1597). Nevertheless, these reactions are either carried out in aqueous solvent with high concentrations of acid catalyst, which is accompanied by side reactions of rehydration in levulinic and formic acids, or in solvents of the ionic liquid type or deep eutectic solvents, which pose problems well known for their application on an industrial scale.
  • the method according to the present invention aims to remedy the drawbacks of the prior art.
  • the Applicant has discovered a process for the production of 5-hydroxymethylfurfural (5-HMF) allowing the selective conversion of a fructosidic fraction to 5-HMF in the presence of a non-fructosidic fraction.
  • 5-HMF 5-hydroxymethylfurfural
  • the non-fructosidic fraction is weakly altered, that is to say weakly converted.
  • the differences in physicochemical properties between 5-HMF and the non-fructosidic fraction make it possible to facilitate the separation of these two compounds.
  • the process according to the present invention makes it possible to obtain very good yields of 5-HMF and of unconverted non-fructosidic fraction such as glucose.
  • Another advantage of the process according to the invention is to facilitate the separation between the 5-HMF and the unconverted non-fructosidic fraction obtained.
  • mass concentration of 5-HMF glucose or fructose is meant the ratio between the mass of 5-HMF, glucose or fructose, respectively, and the mass of reaction medium.
  • homogeneous catalyst is understood to mean a catalyst which is soluble in the reaction medium.
  • heterogeneous catalyst means a catalyst which is insoluble in the reaction medium.
  • Bronsted acid is meant a molecule of the Bronsted acid family capable of releasing an H + proton in the reaction medium.
  • inorganic catalyst a catalyst in which the function responsible for the catalytic dehydration activity is not linked to a hydrocarbon chain by a covalent bond.
  • inorganic Bronsted acid catalyst is meant a Bronsted acid catalyst not containing carbon atoms and capable of releasing an H + proton in the reaction medium.
  • inorganic Lewis acid catalyst is meant a Lewis acid catalyst containing an atom from the family of metals or lanthanides.
  • aprotic solvent a molecule playing the role of solvent and all of the hydrogens of which are carried by carbon atoms.
  • polar solvent is understood to mean a molecule acting as a solvent, the dipole moment m of which expressed in Debye has a numerical value greater than or equal to 2.00 measured at 25 ° C.
  • aprotic polar solvent therefore means a molecule acting as a solvent in which all the hydrogens are carried by carbon atoms and whose dipole moment m expressed in Debye has a numerical value greater than or equal to 2.00 measured at 25 ° vs.
  • wt% denotes a mass percentage (by weight).
  • the term “weakly converted” is understood to mean a non-fructosidic fraction which is converted in a proportion of less than 20%, preferably less than 16%, preferably comprised between 0 and 15%, preferably between 0.1 and 12.0%, so between 0.5 and 10.0%, very preferably between 0.5 and 5.0%.
  • the invention relates to a process for the production of 5-hydroxymethylfurfural comprising contacting, in a polar aprotic solvent having a boiling point of less than 300 ° C, a feed containing the free fructose taken in admixture with any saccharide species or polysaccharide, or any polysaccharide charge containing one or more non-fructosidic units and one or more fructosidic units, with at least one dehydration catalyst chosen from homogeneous or heterogeneous, organic or inorganic Bronsted acids, said process being carried out at a temperature between 50 and 90 ° C.
  • the process according to the present invention makes it possible to obtain very good yields of 5-HMF and of unconverted non-fructosidic fraction such as glucose.
  • Another advantage of the process according to the invention is to facilitate the separation between the 5-HMF and the unconverted non-fructosidic fraction obtained.
  • the process is carried out at a temperature between 60 and 85 ° C, preferably between 60 and 80 ° C, preferably between 65 and 75 ° C and very preferably at 70 ° C.
  • the dehydration catalyst has a pKa in DMSO between 0 and 5.0.
  • the aprotic polar solvent has a boiling point of less than 250 ° C, preferably less than 200 ° C.
  • the conversion of the fructosidic fraction to 5-HMF is greater than or equal to 70% and the conversion of the non-fructosidic fraction is less than or equal to 20%.
  • the charge is introduced into at an initial mass concentration of fructosidic unit greater than 7% by weight, preferably between 8 and 30% by weight relative to the total mass of solvent.
  • the filler is introduced in a solvent / filler mass ratio of between 0.1 and 200.
  • the filler is chosen from sucrose or a mixture of glucose and fructose.
  • the aprotic polar solvent is chosen from butan-2-one, acetone, acetic anhydride, 1a / V, / V, / V ', / V'-tetramethylurea, benzonitrile, acetonitrile, methyl ethyl ketone, propionitrile, hexamethylphosphoramide, nitrobenzene, nitromethane, / V, / V-dimethylformamide, / V, / V-dimethylacetamide, sulfolane, N-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate and y-valerolactone.
  • the aprotic polar solvent is dimethylsulfoxide.
  • the homogeneous Bronsted organic acid catalysts are chosen from organic acids of general formulas R'COOH, R'S0 2 H, R'S0 3 H, (R'S0 2 ) NH, (R'0) 2 P0 2 H, R'OH, in which R 'is chosen from the groups
  • alkyls preferably comprising between 1 and 15 carbon atoms, substituted or not by at least one substituent chosen from a hydroxyl, an amine, a nitro, a halogen, preferably fluorine and an alkyl halide,
  • alkenyls substituted or not by at least one group chosen from a hydroxyl, an amine, a nitro, an oxo, a halogen, preferably fluorine, and an alkyl halide,
  • - aryls preferably comprising between 5 and 15 carbon atoms, substituted or not by a substituent chosen from a hydroxyl, an amine, a nitro, an oxo, a halogen, preferably fluorine and an alkyl halide,
  • heteroaryls preferably comprising between 4 and 15 carbon atoms, substituted or not by a substituent chosen from a hydroxyl, an amine, a nitro, an oxo, a halogen, preferably fluorine and an alkyl halide.
  • homogeneous Bronsted inorganic catalysts are chosen from HF, HCl, H Br, Hl, H 2 S0 3 , H 2 S0 4 , H 3 P0 2 , H 3 P0 4 , HN0 2 , HN0 3 , H 2 W0 4 , H 4 SiW 12 O 40 , H 3 PW 12 O 40 , (NH 4 ) 6 (W 12 O 40 ) .XH 2 O, H 4 SiMo 12 O 40 , H 3 PMo 12 O 40 , (NH 4 ) 6 Mo 7 0 24 .xH 2 0, H 2 Mo0 4 , HRe0 4 , H 2 Cr0 4 , H 2 Sn0 3 , H 4 Si0 4 , H 3 B0 3 , HCI0 4 , HBF 4 , HSbF 5 , HPF 6 , H 2 F0 3 P, CIS0 3 H, FSO s H, HN (S0 2 F) 2 and HI0 3 .
  • the homogeneous Bronsted organic acid catalysts are chosen from formic acid, acetic acid, trifluoroacetic acid, lactic acid, levulinic acid, 2,5-furan dicarboxylic acid, methanesulfinic acid, methanesulfonic acid, trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) amine, benzoic acid, paratoluenesulfonic acid, 4-biphenylsulfonic acid, diphenylphosphate, and 1, 1 '-binaphthyl-2 , 2'-diyl hydrogenphosphate.
  • the dehydration catalyst (s) are introduced in a solvent / catalyst (s) mass ratio of between 20 and 10,000, in which the mass of solvent corresponds to the total mass of solvent used in the process.
  • the saccharide filler used in the method according to the invention comprises either a filler containing free fructose mixed with any saccharide or polysaccharide species, or any polysaccharide filler containing one or more non-fructosidic units and one or more fructosidic units which can release fructose by one or more hydrolysis steps.
  • the feed treated in the process is sucrose or a mixture of glucose and fructose.
  • the saccharide filler containing fructose comprises fructose in monomeric, oligomeric or polymeric form.
  • filler containing free (or monomeric) fructose taken as a mixture with any saccharide species is meant for example syrups of the High-Fructose-Corn-Syrup type containing fructose and glucose in different proportions (glucose / fructose in mass ratios or molars 58/42, 45/55, 10/90 for example).
  • syrup is meant a solution of sugar in water having a concentration of at least 30% by weight, preferably at least 50% by weight, preferably at least 70% by weight.
  • polysaccharide filler containing one or more non-fructosidic units and one or more fructosidic units capable of releasing fructose by one or more hydrolysis steps denotes the oligosaccharides and the polysaccharides in which at least one monosaccharide unit is fructose.
  • fillers such as sucrose, kestose, fructans, oligofructans and inulin are denoted.
  • the polysaccharide fillers listed above are capable of releasing monomeric fructose by hydrolysis, said fructose product being able to be converted into 5-HMF in the process according to the invention.
  • oligosaccharide denotes more particularly a carbohydrate having the crude formula (C 6m Hio m + 2 0 5m + i ) (C 5n H 8n + 2 0 4n + i ) where m and n are integers whose sum is between 2 and 6.
  • the monosaccharide units making up said oligosaccharide may or may not be identical, and at least one unit of formula (C 6m Hio m + 2 0 5m + i ) is fructose.
  • polysaccharide denotes a carbohydrate having the crude formula (C 6m Hio m + 2 0 5m + i ) (C 5n H 8n + 2 0 4n + i ) where m and n are integers whose sum is greater than or equal to 7.
  • the feed contains a mixture of fructosidic and glucosidic units so that the process according to the invention allows a mixture of 5-HMF and glucose to be obtained.
  • the process according to the invention can make it possible to produce an equimolar mixture of 5-HMF and glucose.
  • the filler is a High-Fructose-Corn-Syrup syrup
  • the process according to the invention makes it possible to produce a mixture of 5-HMF and glucose, the stoichiometry of which depends on the composition of the High- Starting Fructose-Corn-Syrup.
  • the feed is advantageously introduced into the process in a solvent / feed mass ratio of between 0.1 and 200.0, preferably between 0.3 and 100.0 and even more preferably between 1.0 and 50.0.
  • the process according to the invention is carried out in the presence of at least one aprotic polar solvent having a boiling point lower than 300 ° C, preferably lower than 250 ° C, preferably lower than 200 ° C.
  • the polar aprotic solvent is advantageously chosen from butan-2-one, acetone, acetic anhydride, 1a / V, / V, / V ', / V'-tetramethylurea, benzonitrile, acetonitrile, methyl ethyl ketone , propionitrile, hexamethylphosphoramide, nitrobenzene, nitromethane, / V, / V-dimethylformamide, / V, / V-dimethylacetamide, sulfolane, / V-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate and y - valerolactone.
  • the aprotic polar solvent is chosen from acetone, hexamethylphosphoramide, / V, / V-dimethylformamide, sulfolane, / V-methylpyrrolidone, dimethyl sulfoxide, propylene carbonate and g-valerolactone.
  • the aprotic polar solvent is dimethylsulfoxide (DMSO).
  • the process is carried out in the presence of at least one dehydration catalyst chosen from homogeneous or heterogeneous, organic or inorganic Bronsted acids, capable of catalyzing the dehydration of fructose to 5-hydroxymethylfurfural.
  • dehydration catalyst chosen from homogeneous or heterogeneous, organic or inorganic Bronsted acids, capable of catalyzing the dehydration of fructose to 5-hydroxymethylfurfural.
  • At least one dehydration catalyst is chosen from homogeneous or heterogeneous organic Bronsted acids, capable of catalyzing the dehydration of fructose to 5-hydroxymethylfurfural.
  • the homogeneous or heterogeneous Bronsted organic acids have a pKa in DMSO of between 0 and 5.0, preferably between 0.5 and 4.0 and more preferably between 1.0 and 3.0.
  • Said pKa are as defined in the article by F. G. Bordwell et al. (J. Am. Chem. Soc., 1991, 113, 8398-8401).
  • the homogeneous Bronsted organic acid catalysts are chosen from organic acids of general formulas R'COOH, R'S0 2 H, R'S0 3 H, (R'S0 2 ) NH, (R'0) 2 P0 2 H, R'OH, in which R 'is chosen from the groups
  • alkyls preferably comprising between 1 and 15 carbon atoms, preferably between 1 and 10, and preferably between 1 and 6, substituted or not by at least one substituent chosen from a hydroxyl, an amine, a nitro, a halogen, preferably fluorine and an alkyl halide,
  • alkenyls substituted or not by at least one group chosen from a hydroxyl, an amine, a nitro, an oxo, a halogen, preferably fluorine, and an alkyl halide,
  • - aryls comprising between 5 and 15 carbon atoms and preferably between 6 and 12 carbon atoms, substituted or not by a substituent chosen from a hydroxyl, an amine, a nitro, an oxo, a halogen, preferably fluorine and a alkyl halide,
  • the Bronsted organic acids are chosen from formic acid, acetic acid, trifluoroacetic acid, lactic acid, levulinic acid, 2,5-furan dicarboxylic acid, acid methanesulfinic, methanesulfonic acid, trifluoromethanesulfonic acid, bis (trifluoromethanesulfonyl) amine, benzoic acid, paratoluenesulfonic acid, 4-biphenylsulfonic acid, diphenylphosphate, and 1, 1 - binaphthyl-2,2 '-diyl hydrogenphosphate.
  • the homogeneous Brcnsted organic acid catalyst is chosen from methanesulfonic acid (CH 3 S0 3 H) and trifluoromethanesulfonic acid (CF 3 S0 3 H).
  • the heterogeneous Brcnsted organic acid catalysts are chosen from ion exchange resins, in particular from sulfonic acid resins based on a copolymer preferably of sulfonated styrene-divinylbenzene or of a sulfonated tetrafluoroethylene copolymer (such as, for example, following commercial resins: Amberlyst ® 15, 16, 35 or 36; Dowex® 50 WX2, WX4 or WX8, Nafion ® PFSA NR-40 or NR-50, Aquivion ® PFSA PW 66, 87 or 98), carbons functionalized by sulphonic and / or carboxylic groups, silicas functionalized by sulphonic and / or carboxylic groups.
  • the heterogeneous Bronsted organic acid catalyst is chosen from sulfonic acid resins.
  • At least one dehydration catalyst is chosen from homogeneous Bronsted inorganic acids capable of catalyzing the dehydration of fructose to 5-hydroxymethylfurfural.
  • the homogeneous Bronsted inorganic catalysts are chosen from HF, HCl, H Br, Hl, H 2 S0 3 , H 2 S0 4 , H 3 P0 2 , H 3 P0 4 , HN0 2 , HN0 3 , H 2 W0 4 , H 4 SiW 12 O 40 , H 3 PW 12 O 40 , (NH 4 ) 6 (W 12 O 40 ) .XH 2 O, H 4 SiMo 12 O 40 , H 3 PMO 12 O 40 , (NH 4 ) 6 MO 7 0 24 .XH 2 0, H 2 MO0 4 , HRe0 4 , H 2 Cr0 4 , H 2 Sn0 3 , H 4 Si0 4 , H 3 B0 3 , HCI0 4 , HBF 4 , HSbF 5 , HPF 6 , H 2 F0 3 P, CIS0 3 H, FSO s H, HN (S0 2 F) 2 and HI0 3 .
  • the inorganic acids of Bronsted are chosen from HCl, HBr, Hl, H 2 S0 4 , H 3 P0 4 , HN0 3 .
  • Bronsted's inorganic acid is HCl.
  • the dehydration catalyst (s) are introduced into the reaction mixture in a solvent / catalyst (s) mass ratio of between 20 and 10,000, preferably between 40 and 2000, preferably between 100 and 1000, in which the mass of solvent corresponds to the total mass of solvent used in the process.
  • Said method is carried out at a temperature between 50 and 90 ° C, preferably between 60 and 85 ° C, preferably between 60 and 80 ° C, preferably between 65 and 75 ° C, very preferably at 70 ° C and preferably at a pressure between 0.0001 and 8.0 MPa, preferably between 0.001 and 5.0 MPa, and more preferably between 0.01 and 3.0 MPa.
  • the implementation of the process according to the invention at temperatures below 90 ° C makes it possible to selectively transform the fructosidic fraction of the load while retaining the non-fructosidic fraction (for example glucosidic) not or weakly. converted.
  • the method makes it possible to achieve conversions of the fructosidic fraction to 5-HMF greater than or equal to 70%, preferably greater than or equal to 75%, more preferably greater than or equal to 80%.
  • Said conversions of the fructosidic fraction is accompanied by a conversion of the non-fructosidic fraction less than or equal to 20%, preferably less than or equal to 16%, preferably between 0 and 15%, preferably between 0.1 and 12.0%, between 0.5 and 10.0%, very preferably between 0.5 and 5.0%.
  • the method is carried out for a period of between 15 and 300 minutes (min), preferably between 20 and 260 min, preferably between 30 and 240 min, preferably between 30 and 200 min, preferably between 35 and 150 min and very preferably between 45 and 120 min.
  • the feeding of the saccharide feed into the reaction mixture can be carried out according to several methods of introducing said feed.
  • the feedstock is introduced into the process in at an initial mass concentration of fructosidic unit greater than 7% by weight, preferably between 8 and 30% by weight (wt) relative to the total mass of solvent, preferably between 9 and 26% by weight, preferably between 12 and 22% by weight.
  • the feed is introduced into the reaction mixture in solid form, optionally using a suitable device making it possible to control the feed rate.
  • this device can be an endless screw or a pneumatic system for transporting solid particles.
  • this embodiment is preferred for a filler of oligosaccharide or polysaccharide type.
  • the feed is introduced in liquid form into the reaction medium in solution in a solvent, called additional solvent, using a pump making it possible to control the rate of introduction of the solution containing the feed.
  • a solvent called additional solvent
  • This embodiment is particularly well suited to a feed of monosaccharide, or even oligosaccharide type, which can be dissolved in the additional solvent at high concentrations.
  • the gradual introduction of a load corresponding to a fructose and glucose syrup (of the High-Fructose-Corn-Syrup type according to the English name) by means of a pump is implemented. Said introduction can be carried out on one or more occasions, sequentially or even continuously.
  • the method also comprises the use of at least one additional solvent selected from aprotic or practical polar solvents.
  • Said additional solvent can in particular allow the solubilization of the feed before it is brought into contact with the aprotic polar solvent and the dehydration catalyst according to the invention.
  • said additional solvent is chosen from butan-2-one, acetone, acetic anhydride, 1a / V, / V, / V ', / V'-tetramethylurea, benzonitrile, acetonitrile, methyl ethyl ketone. , propionitrile, hexamethylphosphoramide, nitrobenzene, nitromethane, N, N- dimethylformamide, / V, / V-dimethylacetamide, sulfolane, / V-methylpyrrolidone, dimethylsulfoxide, propylene carbonate, g-valerolactone , water, methanol, ethanol, formic acid and acetic acid.
  • the additional solvent chosen from aprotic or practical polar solvents is acetone, hexamethylphosphoramide, / V, / V-dimethylformamide, sulfolane, / V-methylpyrrolidone, dimethylsulfoxide, propylene carbonate, g- valerolactone water, methanol and ethanol, preferably from / V, / V-dimethylformamide, sulfolane, / V-methylpyrrolidone, dimethylsulfoxide, water and methanol, and very preferably additional solvent is chosen from water and dimethylsulfoxide.
  • the additional solvent used corresponds to all or a fraction of the reaction mixture.
  • the additional solvent therefore contains at least the aprotic polar solvent, at least one dehydration catalyst used in the process, and optionally at least one unconverted feed fraction of the 5-HMF produced.
  • This embodiment advantageously makes it possible to gradually increase the amount of 5-HMF without increasing the volume of additional solvent.
  • This embodiment of the 5-HMF production process is carried out batchwise.
  • the hourly mass speed (mass feed rate / mass of catalysts) is between 0.01 h 1 and 5.0 h 1 and preferably between 0.02 h 1 and 2.0 h 1 .
  • the water contained in the reaction mixture is preferably removed, by any methods known to those skilled in the art, preferably continuously, in order to maintain a water content. less than 30.0% wt relative to the total mass of solvent, preferably less than 20.0% wt, more preferably less than 15.0% wt, and very preferably less than 10.0% wt.
  • the implementation of the 5-HMF and glucose production process makes it possible to obtain a good conversion of the fructose involved, as well as an excellent selectivity in favor of 5-HMF while limiting the conversion of glucose.
  • the product selectively obtained by the transformation process according to the invention is 5-hydroxymethylfurfural (5-HMF) and glucose.
  • the reaction medium is analyzed by high performance liquid chromatography (HPLC) to determine the conversion of the fructoside fraction of the feed. and the content of unconverted glucose and 5-HMF produced in the presence of an internal standard to quantify unwanted products (also called side products) such as levulinic acid, formic acid and any co-product containing sugars such as humins.
  • the humins are quantified by the difference in carbon balance with the carbon introduced initially.
  • glucose, fructose and sucrose used as filler are commercial and used without further purification.
  • Hydrochloric acid is used as a commercial solution concentrated to 1.0 M (mol / L) in diethyl ether.
  • Methanesulfonic acid, noted AMS in the examples, is commercial and used without further purification.
  • DMSO dimethyl sulfoxide
  • the mass concentrations of the constituents of the reaction mixtures are determined by high performance liquid chromatography (HPLC). Aliquots of the reaction mixture are taken at regular intervals to assess the composition by HPLC.
  • HPLC high performance liquid chromatography
  • the conversion rate of sucrose is 100%, the sucrose being converted into a mixture of glucose, fructose and their reaction products. It is understood that one mole of sucrose consists of one mole of glucosidic units and one mole of fructosidic units.
  • the fructose conversion rate (Conv FR u) is defined as the ratio of the molar concentration of fructose converted and of the molar concentration in fructosidic units present in the initial charge, expressed in%.
  • the glucose yield (Yield Gi _u) is defined as the ratio of the molar concentration of glucose measured in the samples and of the molar concentration of glucosidic units present in the initial charge, expressed in%.
  • the yield of 5-HMF Yield of HMF
  • Example 1 (compliant) Conversion of a 1: 1 qlucose / fructose mixture into 5-HMF and glucose in the presence of hydrochloric acid at 70 ° C
  • Methanesulfonic acid (2.60 mmol) is added to a solution of sucrose (9.0 g, 26.3 mmol) in DMSO (41.0 g). The initial mass concentration of sucrose is
  • Example 5 (compliant) Conversion of sucrose to 5-HMF and glucose in the presence of hydrochloric acid at 90 ° C. Hydrochloric acid (1.0 M in Et 2 0) (2.63 mmol) is added to a solution of Sucrose (9.0 g, 26.3 mmol) in DMSO (41.0 g). The initial sucrose mass concentration is 18.0% by weight. The catalyst / sucrose molar ratio is 0.100. The reaction medium is stirred at 90 ° C. for 4 hours. The yields at different reaction times are reported in Table 5.
  • Examples 1 to 4 (compliant) carried out at temperatures less than or equal to 80 ° C, the transformation carried out at low temperature makes it possible to obtain good glucose yields (Yield Gi _u> 80%), which is not transformed into unwanted products, while allowing to obtain a conversion of fructose into 5-HMF with yields of up to 77% under the most efficient conditions (Examples 1 and 2).
  • glucose is converted less rapidly in the presence of fructosidic units (Examples 1 and 2) than in its absence under the same conditions (Example 7).
  • the presence of glucose or glucosidic units does not appreciably affect the yields obtained from fructosidic units or fructose (Examples 1 and 2 vs. Example 8 with fructose alone), on the contrary the presence of glucose or units Glucosidics surprisingly improves fructose conversion after 30, 60 or 120 minutes, as well as the yield of 5-HMF. .
  • Example 5 In Example 5 (compliant) carried out at a temperature of 90 ° C, yields of 85% and 75% of glucose and 5-HMF respectively are obtained at the short reaction times, but a longer reaction time leads to degradation. glucose yield without significantly improving the 5-HMF yield.
  • Example 6 (non-compliant) carried out at a temperature above 90 ° C, in particular at 100 ° C, the glucose yield does not exceed 50% without the 5-HMF yield being significantly greater than 75-80% .
  • Example 7 In Example 7 (non-compliant) carried out at a temperature of 70 ° C., for 240 minutes, only with glucose, the glucose yield is less than 60% without production of 5-HMF.
  • Example 8 In Example 8 (non-compliant) carried out at a temperature of 70 ° C. only with fructose, the fructose yield does not exceed 50% after reaction for 30 minutes with an average fructose conversion of 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Saccharide Compounds (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de production d'un mélange de 5-hydroxyméthylfurfural et de glucose à partir d'une charge contenant du fructose en présence d'au moins un solvant polaire aprotique et d'au moins un catalyseur de déshydratation, procédé dans lequel la température de réaction est inférieure à 90 °C.

Description

PROCEDE DE PRODUCTION DE 5-HYDROXYMETHYLFURFURAL
Domaine technique
L’invention concerne un procédé particulier d’obtention d’un mélange de 5- hydroxyméthylfurfural et d'hexoses par transformation de mélanges de différents sucres ou d’oligomères de différents sucres, plus spécifiquement des mélanges d’hexoses, et plus particulièrement des mélanges de fructose et de glucose ou des oligomères mixtes de ces deux sucres comme le saccharose, en un mélange de sucres et de 5-hydroxyméthylfurfural (ci-après désigné par l’abréviation 5-HMF) en présence d’au moins un solvant polaire aprotique, et en présence d’un ou plusieurs catalyseurs. Art antérieur
Le 5-hydroxyméthylfurfural est un composé dérivé de la biomasse qui peut être valorisé dans de nombreux domaines comme précurseur de principes actifs en pharmacie, en agrochimie ou en chimie de spécialité. Son intérêt réside ces dernières années dans son utilisation comme précurseur de l’acide 2,5-furane dicarboxylique (FDCA) qui est utilisé comme substitut à l’acide téréphthalique en tant que monomère pour la production de fibres polyesters, de plastiques de commodité ou encore de plastifiants.
La production de 5-HMF par déshydratation d’hexoses est connue depuis de nombreuses années et a fait l’objet d’un nombre important de travaux de recherches.
Il est notamment connu que les différents types d’hexoses ont des réactivités différentes vis- à-vis de la formation de 5-HMF. Parmi les hexoses les plus courants, le fructose est celui qui permet d’arriver aux rendements les plus élevés en réagissant à températures modérées en présence d’un catalyseur acide de Bronsted ou de Lewis, en particulier quand le solvant réactionnel est le diméthylsulfoxide (DMSO). Par exemple, l’article Bull. Chem. Soc. Japan., 1980, 53, 3705 décrit l’obtention de rendements en 5-HMF de 90 % après réaction à 80 °C. II est également connu que le coût des charges hexoses (telles que le glucose et le fructose) peut être très variable selon leur abondance locale, leur facilité d’extraction et leur degré de purification. Le glucose est relativement abondant, tandis que le fructose doit être obtenu par isomérisation du glucose, par exemple au moyen d’une catalyse enzymatique (Parker et al, Vol. 5(5), pp. 71 - 78, December 2010 Biotechnol. Mol. Biol. Rev). Cette isomérisation est limitée par la thermodynamique, un mélange de glucose et de fructose est obtenu, et le fructose doit ensuite être séparé du glucose résiduel. De même, le saccharose, diholoside très abondant, est constitué d’une unité de type fructose et d’une unité de type glucose. Il est possible de produire un mélange équimolaire de glucose et de fructose par hydrolyse (appelé sucre inverti), mais là encore, une étape de séparation serait nécessaire pour isoler le fructose. En raison des similarités de structure des sucres, les procédés de séparation glucose/fructose rendent les charges de fructose pur plus coûteuses, ce qui limite l’attractivité des procédés de transformation de fructose en 5-HMF.
Dans les conditions les plus courantes de la transformation du fructose en 5-HMF à des températures supérieures à 100 °C), le glucose n’est pas ou peu transformé en 5-HMF, mais subit des réactions de décomposition en espèces polymériques lourdes (humines). Des exemples de réaction réalisés dans des conditions douces (températures inférieure à 100°C) montrent que le fructose peut néanmoins être transformé avec de bons rendements (Chemical Reviews, 2013, 113, 1499-1597). Néanmoins, ces réactions sont soit réalisées en solvant aqueux avec des concentrations élevées de catalyseur acide, ce qui s’accompagne de réactions secondaires de réhydratation en acides lévulinique et formique, soit dans des solvants de type liquide ionique ou solvants à eutectique profond, qui posent des problèmes bien connus pour leur application à l’échelle industrielle.
Le procédé selon la présent invention a pour but de remédier aux inconvénients de l’art antérieur.
De manière surprenante, la demanderesse a découvert un procédé de production de 5- hydroxyméthylfurfural (5-HMF) permettant la conversion sélective d’une fraction fructosidique en 5-HMF en présence d’une fraction non-fructosidique.
Avantageusement, la fraction non-fructosidique est faiblement altérée, c’est-à-dire faiblement converti. Ainsi les différences de propriétés physico-chimiques entre le 5-HMF et la fraction non-fructosidiques permettent de faciliter la séparation de ces deux composés.
Avantageusement, le procédé selon la présente invention permet l’obtention de très bons rendements en 5-HMF et en fraction non-fructosidique non convertie telle que le glucose.
Un autre avantage du procédé selon l’invention est de faciliter la séparation entre le 5-HMF et la fraction non-fructosidique non convertie obtenus. Définitions et Abréviations
On entend par concentration massique en 5-HMF, glucose ou fructose, le rapport entre la masse de 5-HMF, glucose ou fructose, respectivement, et la masse de milieu réactionnel.
On entend par catalyseur homogène un catalyseur soluble dans le milieu réactionnel. On entend par catalyseur hétérogène un catalyseur insoluble dans le milieu réactionnel.
On entend par acide de Bronsted une molécule de la famille des acides de Bronsted pouvant libérer un proton H+ dans le milieu réactionnel.
On entend par catalyseur inorganique, un catalyseur dans lequel la fonction responsable de l’activité catalytique de déshydratation n’est pas liée à une chaîne hydrocarbonée par une liaison covalente.
On entend par catalyseur acide de Bronsted inorganique, un catalyseur acide de Bronsted ne contenant pas d’atomes de carbone et pouvant libérer un proton H+ dans le milieu réactionnel.
On entend par catalyseur acide de Lewis inorganique, un catalyseur acide de Lewis contenant un atome de la famille des métaux ou des lanthanides.
On entend par solvant aprotique, une molécule jouant le rôle de solvant et dont tous les hydrogènes sont portés par des atomes de carbone.
On entend par solvant polaire, une molécule jouant le rôle de solvant dont le moment dipolaire m exprimé en Debye a une valeur numérique supérieure ou égale à 2,00 mesurée à 25°C.
On entend donc par solvant polaire aprotique, une molécule jouant le rôle de solvant dont tous les hydrogènes sont portés par des atomes de carbone et dont le moment dipolaire m exprimé en Debye a une valeur numérique supérieure ou égale à 2,00 mesurée à 25°C.
On désigne par %pds, un pourcentage massique (en poids). On entend par « faiblement convertie » une fraction non-fructosidique qui est convertie dans une proportion inférieure à 20 %, de préférence inférieure à 16 %, de préférence comprise entre 0 et 15%, de préférence entre 0,1 et 12,0%, de manière entre 0,5 et 10,0 %, de manière très préférée entre 0,5 et 5,0%.
Objet de l'invention
L’invention concerne un procédé de production de 5-hydroxyméthylfurfural comprenant la mise en contact dans un solvant polaire aprotique ayant une température d’ébullition inférieure à 300°C, d’une charge contenant le fructose libre pris en mélange avec toute espèce saccharidique ou polysaccharidique, soit toute charge polysaccharidique contenant une ou plusieurs unités non-fructosidiques et une ou plusieurs unités fructosidiques, avec au moins un catalyseur de déshydratation choisi parmi les acides de Bronsted homogènes ou hétérogènes, organiques ou inorganiques, ledit procédé étant mis en œuvre à une température comprise entre 50 et 90°C.
Avantageusement, le procédé selon la présente invention permet l’obtention de très bons rendements en 5-HMF et en fraction non-fructosidique non convertie telle que le glucose.
Un autre avantage du procédé selon l’invention est de faciliter la séparation entre le 5-HMF et la fraction non-fructosidique non convertie obtenus.
De préférence, le procédé est mis en œuvre à une température comprise entre 60 et 85°C, de préférence entre 60 et 80°C, de préférence entre 65 et 75°C et de manière très préférée à 70°C.
De préférence, le catalyseur de déshydratation a un pKa dans le DMSO compris entre 0 et 5,0.
De préférence, le solvant polaire aprotique a une température d’ébullition inférieure à 250°C, de préférence inférieure à 200°C.
De préférence, la conversion de la fraction fructosidique en 5-HMF est supérieure ou égale à 70% et la conversion de la fraction non-fructosidique est inférieure ou égale à 20 %. De préférence, la charge est introduite dans à une concentration massique initiale en unité fructosidique supérieure à 7 % poids, de manière préférée comprise entre 8 et 30 % poids par rapport à la masse totale de solvant. De préférence, la charge est introduite dans un rapport massique solvant/charge compris entre 0,1 et 200.
De préférence, la charge est choisi parmi le saccharose ou un mélange de glucose et de fructose. De préférence, le solvant polaire aprotique est choisi parmi la butan-2-one, l’acétone, l’anhydride acétique, la /V,/V,/V’,/V’-tétraméthylurée, le benzonitrile, l’acétonitrile, la méthyléthylcétone, le propionitrile, l’hexaméthylphosphoramide, le nitrobenzène, le nitrométhane, le /V,/V-diméthylformamide, le /V,/V-diméthylacétamide, le sulfolane, la N- méthylpyrrolidone, le diméthylsulfoxyde, le propylène carbonate et la y-valérolactone. De préférence, le solvant polaire aprotique est le diméthylsulfoxyde.
De préférence, les catalyseurs acides organiques de Bronsted homogènes sont choisis parmi les acides organiques de formules générales R’COOH, R’S02H, R’S03H, (R’S02)NH, (R’0)2P02H, R’OH, dans lesquels R’ est choisi parmi les groupements
- alkyles, de préférence comprenant entre 1 et 15 atomes de carbone, substitués ou non par au moins un substituant choisi parmi un hydroxyle, une amine, un nitro, un halogène, de préférence le fluor et un halogénure d’alkyle,
- alkényles, substitués ou non par au moins un groupement choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor, et un halogénure d’alkyle,
- aryles, comprenant de préférence entre 5 et 15 atomes de carbones, substitués ou non par un substituant choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor et un halogénure d’alkyle,
- hétéroaryles, comprenant de préférence entre 4 et 15 atomes de carbones, substitués ou non par un substituant choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor et un halogénure d’alkyle. De préférence, lequel les catalyseurs inorganiques de Bronsted homogènes sont choisis parmi HF, HCl, H Br, Hl, H2S03, H2S04, H3P02, H3P04, HN02, HN03, H2W04, H4SiW12O40, H3PW12O40, (NH4)6(W12O40).XH2O, H4SiMo12O40, H3PMo12O40, (NH4)6Mo7024.xH20, H2Mo04, HRe04, H2Cr04, H2Sn03, H4Si04, H3B03, HCI04, HBF4, HSbF5, HPF6, H2F03P, CIS03H, FSOsH, HN(S02F)2 et HI03. De préférence, les catalyseurs acides organiques de Bronsted homogènes sont choisis parmi l'acide formique, l'acide acétique, l'acide trifluoroacétique, l'acide lactique, l'acide lévulinique, l’acide 2,5-furane dicarboxylique, l'acide méthanesulfinique, l'acide méthanesulfonique, l'acide trifluorométhanesulfonique, la bis(trifluorométhanesulfonyl)amine, l'acide benzoïque, l'acide paratoluènesulfonique, l'acide 4-biphénylsulfonique, le diphénylphosphate, et le 1 ,1 '-binaphtyl-2,2'-diyl hydrogénophosphate.
De préférence, le ou les catalyseurs de déshydratation sont introduits dans un rapport massique solvant/catalyseur(s) compris entre 20 et 10000, dans lequel la masse de solvant correspond à la masse totale de solvant mis en œuvre dans le procédé.
Description détaillée de l'invention
Charge
La charge saccharidique mise en œuvre dans le procédé selon l’invention comprend soit en une charge contenant le fructose libre pris en mélange avec toute espèce saccharidique ou polysaccharidique, soit toute charge polysaccharidique contenant une ou plusieurs unités non-fructosidiques et une ou plusieurs unités fructosidiques pouvant libérer du fructose par une ou plusieurs étapes d’hydrolyse. Préférentiellement, la charge traitée dans le procédé est le saccharose ou un mélange de glucose et de fructose.
Avantageusement, la charge saccharidique contenant du fructose comprend du fructose sous forme monomérique, oligomérique ou polymérique.
Par charge contenant du fructose libre (ou monomérique) pris en mélange avec toute espèce saccharidique, on désigne par exemple des sirops de type High-Fructose-Corn- Syrup contenant du fructose et du glucose en différentes proportions (glucose/fructose dans des rapports massiques ou molaires 58/42, 45/55, 10/90 par exemple). On entend par sirop une solution de sucre dans l’eau ayant une concentration d’au moins 30 %pds, de préférence au moins 50 %pds, de préférence au moins 70 %pds.
Par charge polysaccharidique contenant une ou plusieurs unités non-fructosidiques et une ou plusieurs unités fructosidiques pouvant libérer du fructose par une ou plusieurs étapes d’hydrolyse, on désigne les oligosaccharides et les polysaccharides dans lesquels au moins une unité monosaccharidique est le fructose. On désigne par exemple des charges telles que le saccharose, le kestose, les fructanes, les oligofructanes, l’inuline. Avantageusement, les charges polysaccharidiques listées ci-dessus sont aptes à libérer du fructose monomérique par hydrolyse, ledit fructose produit pouvant être transformé en 5- HMF dans le procédé selon l’invention.
Par oligosaccharide, on désigne plus particulièrement un hydrate de carbone ayant pour formule brute (C6mHiom+205m+i)(C5nH8n+204n+i) où m et n sont des entiers dont la somme est comprise entre 2 et 6. Les unités monosaccharidiques composant ledit oligosaccharide sont identiques ou non, et au moins une unité de formule (C6mHiom+205m+i) est le fructose. Par extension, on désigne par polysaccharide, un hydrate de carbone ayant pour formule brute (C6mHiom+205m+i)(C5nH8n+204n+i) où m et n sont des entiers dont la somme est supérieure ou égale à 7.
Avantageusement, la charge contient un mélange d’unités fructosidique et glucosidique de sorte que, le procédé selon l’invention permette l’obtention un mélange de 5-HMF et de glucose. Par exemple, dans le cas où la charge est du saccharose, le procédé selon l’invention peut permettre de produire un mélange équimolaire de 5-HMF et de glucose. De même, dans le cas où la charge est un sirop de High-Fructose-Corn-Syrup, le procédé selon l’invention permet de produire un mélange de 5-HMF et de glucose, dont la stœchiométrie dépend de la composition du High-Fructose-Corn-Syrup de départ.
La charge est, avantageusement, introduite dans le procédé dans un rapport massique solvant/charge compris entre 0, 1 et 200,0, de préférence entre 0,3 et 100,0 et encore préférentiellement entre 1 ,0 et 50,0.
Solvants
Le procédé selon l’invention est mis en œuvre en présence d’au moins un solvant polaire aprotique ayant une température d’ébullition inférieure à 300°C, de préférence inférieure à 250°C, de préférence inférieure à 200°C. Le solvant polaire aprotique est avantageusement choisi parmi la butan-2-one, l’acétone, l’anhydride acétique, la /V,/V,/V’,/V’-tétraméthylurée, le benzonitrile, l’acétonitrile, la méthyléthylcétone, le propionitrile, l’hexaméthylphosphoramide, le nitrobenzène, le nitrométhane, le /V,/V-diméthylformamide, le /V,/V-diméthylacétamide, le sulfolane, la /V-méthylpyrrolidone, le diméthylsulfoxyde, le propylène carbonate et la y- valérolactone. De préférence, le solvant polaire aprotique est choisi parmi l’acétone, l’hexaméthylphosphoramide, /V,/V-diméthylformamide, le sulfolane, la /V-méthylpyrrolidone, le diméthylsulfoxyde, le propylène carbonate et la g-valérolactone. De manière préférée, le solvant polaire aprotique est le diméthylsulfoxide (DMSO).
Catalyseur de déshydratation
Selon l’invention, le procédé est mis en œuvre en présence d’au moins un catalyseur de déshydratation choisi parmi les acides de Bronsted homogènes ou hétérogènes, organiques ou inorganiques, aptes à catalyser la déshydratation du fructose en 5-hydroxyméthylfurfural.
Dans un mode de réalisation, au moins un catalyseur de déshydratation est choisi parmi les acides organiques de Bronsted homogènes ou hétérogènes, aptes à catalyser la déshydratation du fructose en 5-hydroxyméthylfurfural.
De préférence, les acides organiques de Bronsted homogènes ou hétérogènes ont un pKa dans le DMSO compris entre 0 et 5,0, de préférence entre 0,5 et 4,0 et de manière préférée entre 1 ,0 et 3,0. Lesdits pKa sont tel que définis dans l’article de F. G. Bordwell et al. (J. Am. Chem. Soc., 1991 , 113, 8398-8401).
De préférence, les catalyseurs acides organiques de Bronsted homogènes sont choisis parmi les acides organiques de formules générales R’COOH, R’S02H, R’S03H, (R’S02)NH, (R’0)2P02H, R’OH, dans lesquels R’ est choisi parmi les groupements
- alkyles, de préférence comprenant entre 1 et 15 atomes de carbone de préférence entre 1 et 10, et de préférence entre 1 et 6, substitués ou non par au moins un substituant choisi parmi un hydroxyle, une amine, un nitro, un halogène, de préférence le fluor et un halogénure d’alkyle,
- alkényles, substitués ou non par au moins un groupement choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor, et un halogénure d’alkyle,
- aryles comprenant entre 5 et 15 atomes de carbones et de préférence entre 6 et 12 atomes de carbones, substitués ou non par un substituant choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor et un halogénure d’alkyle,
- hétéroaryles comprenant entre 4 et 15 atomes de carbones et de préférence entre 4 et 12 atomes de carbones, substitués ou non par un substituant choisi parmi un hydroxyle, un acide, une amine, un nitro, un oxo, un halogène, de préférence le fluor et un halogénure d’alkyle. Lorsque les catalyseurs de type acides organiques de Bronsted sont choisis parmi les acides organiques de formules générales R’-COOH, R’ peut également être un hydrogène.
De manière préférée, les acides organiques de Bronsted sont choisis parmi l'acide formique, l'acide acétique, l'acide trifluoroacétique, l'acide lactique, l'acide lévulinique, l’acide 2,5- furane dicarboxylique, l'acide méthanesulfinique, l'acide méthanesulfonique, l'acide trifluorométhanesulfonique, la bis(trifluorométhanesulfonyl)amine, l'acide benzoïque, l'acide paratoluènesulfonique, l'acide 4-biphénylsulfonique, le diphénylphosphate, et le 1 , 1 - binaphtyl-2,2'-diyl hydrogénophosphate. De manière très préférée, le catalyseur acide organique de Brcnsted homogène est choisi parmi l'acide méthanesulfonique (CH3S03H) et l’acide trifluorométhanesulfonique (CF3S03H).
Les catalyseurs acides organiques de Brcnsted hétérogènes sont choisis parmi les résines échangeuses d’ions, en particulier parmi les résines acides sulfoniques à base d’un copolymère de préférence de styrène-divinylbenzène sulfoné ou d’un copolymère tetrafluoroethylène sulfoné (tels que par exemple les résines commerciales suivantes : Amberlyst ® 15, 16, 35 ou 36; Dowex® 50 WX2, WX4 ou WX8, Nafion ® PFSA NR-40 ou NR-50, Aquivion ® PFSA PW 66, 87 ou 98), les charbons fonctionnalisés par des groupements sulfoniques et/ou carboxyliques, les silices fonctionnalisées par des groupements sulfoniques et/ou carboxyliques. De préférence, le catalyseur acide organique de Bronsted hétérogène est choisi parmi les résines acides sulfoniques.
Dans un mode de réalisation, au moins un catalyseur de déshydratation est choisi parmi les acides inorganiques de Bronsted homogènes aptes à catalyser la déshydratation du fructose en 5-hydroxyméthylfurfural.
De préférence, les catalyseurs inorganiques de Bronsted homogènes sont choisis parmi HF, HCl, H Br, Hl, H2S03, H2S04, H3P02, H3P04, HN02, HN03, H2W04, H4SiW12O40, H3PW12O40, (NH4)6(W12O40).XH2O, H4SiMo12O40, H3PMO12O40, (N H4)6MO7024.XH20, H2MO04, HRe04, H2Cr04, H2Sn03, H4Si04, H3B03, HCI04, HBF4, HSbF5, HPF6, H2F03P, CIS03H, FSOsH, HN(S02F)2 et HI03. De manière préférée, les acides inorganiques de Bronsted sont choisis parmi HCl, HBr, Hl, H2S04, H3P04, HN03. De manière très préférée, l’acide inorganique de Bronsted est HCl.
Le ou les catalyseurs de déshydratation sont introduits dans le mélange réactionnel dans un rapport massique solvant/catalyseur(s) compris entre 20 et 10000, de préférence entre 40 et 2000, de préférence entre 100 et 1000, dans lequel la masse de solvant correspond à la masse totale de solvant mis en œuvre dans le procédé.
Mise en œuyre du procédé
Ledit procédé est mis en œuvre à une température comprise entre 50 et 90°C, de manière préférée entre 60 et 85°C, de manière préférée entre 60 et 80°C, de manière préférée entre 65 et 75°C, de manière très préférée à 70°C et de préférence à une pression comprise entre 0,0001 et 8,0 MPa, de préférence entre 0,001 et 5,0 MPa, et de manière préférée entre 0,01 et 3,0 MPa .
Sans être lié à aucune théorie, la mise en œuvre du procédé selon l’invention à des températures inférieures à 90°C permet de transformer sélectivement la fraction fructosidique de la charge en conservant la fraction non-fructosidique (par exemple glucosidique) non ou faiblement convertie.
De préférence, le procédé permet d’atteindre des conversions de la fraction fructosidique en 5-HMF supérieure ou égale à 70%, de préférence supérieure ou égale à 75%, de manière préférée supérieure ou égale à 80%. Lesdites conversions de la fraction fructosidique s’accompagne d’une conversion de la fraction non-fructosidique inférieure ou égale à 20 %, de préférence inférieure ou égale à 16 %, de préférence comprise entre 0 et 15%, de préférence entre 0,1 et 12,0%, de manière entre 0,5 et 10,0 %, de manière très préférée entre 0,5 et 5,0%. De préférence, le procédé est mis œuvre durant une durée comprise entre 15 et 300 minutes (min), de préférence entre 20 et 260 min, de préférence entre 30 et 240 min, de manière préférée entre 30 et 200 min, de manière préférée entre 35 et 150 min et de manière très préférée entre 45 et 120 min.
L’alimentation de la charge saccharidique dans le mélange réactionnel peut être effectuée selon plusieurs modes d’introduction de ladite charge.
De préférence, la charge est introduite dans le procédé dans à une concentration massique initiale en unité fructosidique supérieure à 7 % poids, de manière préférée comprise entre 8 et 30 % poids (pds) par rapport à la masse totale de solvant, de préférence entre 9 et 26 % poids, de manière préférée entre 12 et 22 % poids. Dans un premier mode de réalisation, la charge est introduite dans le mélange réactionnel sous forme solide, éventuellement à l’aide d’un dispositif adapté permettant de contrôler le débit de charge. De manière non limitative, ce dispositif peut être une vis sans fin ou un système pneumatique de transport de particules solides. De manière non limitative, ce mode de réalisation est préféré pour une charge de type oligosaccharide ou polysaccharide.
L’introduction d’une charge sous forme solide correspondant à du saccharose, à du kestose à partir desquels le fructose est libéré par hydrolyse est une possibilité. Ladite introduction peut être réalisée en une ou plusieurs fois, de manière séquentielle ou bien en continu.
Dans un second mode de réalisation, la charge est introduite sous forme liquide dans le milieu réactionnel en solution dans un solvant, appelé solvant additionnel, à l’aide d’une pompe permettant de contrôler le débit d’introduction de la solution contenant la charge. Ce mode de réalisation est particulièrement bien adapté à une charge de type monosaccharide, voire oligosaccharide, qui peut être dissoute dans le solvant additionnel à de fortes concentrations. De préférence, l’introduction progressive d’une charge correspondant à un sirop de fructose et de glucose (de type High-Fructose-Corn-Syrup selon l’appellation anglophone) par l’intermédiaire d’une pompe est mise en œuvre. Ladite introduction peut être réalisée en une ou plusieurs fois, de manière séquentielle ou bien en continu.
Solvant additionnel Dans un mode de réalisation particulier, le procédé comprend également l’utilisation d’au moins un solvant additionnel choisi parmi les solvants polaires aprotiques ou pratiques. Ledit solvant additionnel peut notamment permettre la solubilisation de la charge avant sa mise en contact avec le solvant polaire aprotique et le catalyseur de déshydratation selon l’invention.
De préférence ledit solvant additionnel est choisi parmi la butan-2-one, l’acétone, l’anhydride acétique, la /V,/V,/V’,/V’-tétraméthylurée, le benzonitrile, l’acétonitrile, la méthyléthylcétone, le propionitrile, l’hexaméthylphosphoramide, le nitrobenzène, le nitrométhane, le N,N- diméthylformamide, le /V,/V-diméthylacétamide, le sulfolane, la /V-méthylpyrrolidone, le diméthylsulfoxyde, le propylène carbonate, la g-valérolactone, l’eau, le méthanol, l’éthanol, l’acide formique et l’acide acétique. De préférence, le solvant additionnel choisi parmi les solvants polaires aprotiques ou pratiques est l’acétone, l’hexaméthylphosphoramide, /V,/V-diméthylformamide, le sulfolane, la /V-méthylpyrrolidone, le diméthylsulfoxyde, le propylène carbonate, la g-valérolactone l’eau, le méthanol et l’éthanol, de manière préférée parmi le /V,/V-diméthylformamide, le sulfolane, la /V-méthylpyrrolidone, le diméthylsulfoxyde, l’eau et le méthanol, et de manière très préférée le solvant additionnel est choisi parmi l’eau et le diméthylsulfoxyde.
Dans un troisième mode de réalisation, le solvant additionnel utilisé correspond à la totalité ou à une fraction du mélange réactionnel. Dans ce cas de figure, le solvant additionnel contient donc au moins le solvant polaire aprotique, au moins un catalyseur de déshydratation mis en œuvre dans le procédé, et éventuellement au moins une fraction de charge non convertie du 5-HMF produit. Ce mode de réalisation permet avantageusement d’augmenter progressivement la quantité de 5-HMF sans augmenter le volume de solvant additionnel. Ce mode de réalisation du procédé de production de 5-HMF est mis en œuvre en discontinu.
Dans une mise en œuvre en continu du procédé selon l’invention, la vitesse massique horaire (débit de charge massique/masse de catalyseurs) est comprise entre 0,01 h 1 et 5,0 h 1 et de préférence entre 0,02 h 1 et 2,0 h 1.
Quel que soit le mode de réalisation mis en œuvre du procédé, l’eau contenue dans le mélange réactionnel est de préférence éliminée, par toutes méthodes connues de l’homme du métier, de préférence de façon continue, afin de maintenir une teneur en eau inférieure à 30,0 %pds par rapport à la masse totale de solvant, de préférence inférieure à 20,0 %pds, de manière préférée inférieure à 15,0 %pds, et de manière très préférée inférieure à 10,0 %pds.
Avantageusement la mise en œuvre du procédé de production de 5-HMF et de glucose, permet d’obtenir une bonne conversion du fructose engagé, ainsi qu’une excellente sélectivité en faveur du 5-HMF tout en limitant la conversion du glucose.
Les produits obtenus et leur mode d'analyse
Le produit obtenu sélectivement par le procédé de transformation selon l'invention est le 5- hydroxyméthylfurfural (5-HMF) et du glucose. A l'issue de la réaction mise en œuvre dans le procédé selon l’invention, le milieu réactionnel est analysé par chromatographie liquide haute performance (HPLC) pour déterminer la conversion de la fraction fructosidique de la charge et la teneur en glucose non converti et en 5-HMF produit en présence d’un étalon interne pour quantifier les produits non désirés (encore appelés produits secondaires) comme l’acide lévulinique, l’acide formique et tout coproduit contenant des sucres tel que les humines. Les humines sont quantifiées par différence de bilan carbone avec le carbone introduit initialement.
EXEMPLES
Dans les exemples ci-dessous, le glucose, fructose et saccharose utilisés comme charge sont commerciaux et utilisés sans purification supplémentaire.
L’acide chlorhydrique est utilisé sous forme d’une solution commerciale concentrée à 1 ,0 M (mol/L) dans le diéthyléther. L’acide méthanesulfonique, noté AMS dans les exemples, est commercial et utilisé sans purification supplémentaire.
Le diméthylsulfoxyde, noté DMSO dans les exemples, utilisé comme solvant polaire aprotique, est commercial et utilisé sans purification supplémentaire.
Les concentrations massiques des constituants des mélanges réactionnels sont déterminées par chromatographie liquide haute performance (HPLC). Des prélèvements d’aliquots du mélange réactionnel sont réalisés à intervalles réguliers pour en évaluer la composition par HPLC. Dans les exemples ci-dessous dans lesquels la charge est du saccharose, le taux de conversion du saccharose est de 100%, le saccharose étant transformé en un mélange de glucose, de fructose et de leurs produits de réaction. On entend qu’une mole de saccharose est constituée d’une mole d’unités glucosidiques et d’une mole d’unités fructosidiques.
On définit le taux de conversion du fructose (ConvFRu) comme le rapport de la concentration molaire de fructose converti et de la concentration molaire en unités fructosidiques présentes dans la charge initiale, exprimé en %. On définit le rendement en glucose (RdtGi_u) comme le rapport de la concentration molaire en glucose mesurée dans les échantillons et de la concentration molaire en unités glucosidiques présentes dans la charge initiale, exprimé en %. On définit le rendement en 5-HMF (RdtHMF) comme le rapport de la concentration molaire en 5-HMF mesurée dans les échantillons et de la concentration molaire en unités fructosidiques seulement présentes dans la charge initiale, exprimé en %.
Exemple 1 (conforme) Conversion d’un mélange qlucose/fructose 1 :1 en 5-HMF et glucose en présence d’acide chlorhydrique à 70°C
L’acide chlorhydrique (1 ,0 M (mol/L) dans l’éther diéthylique (Et20)) (5,0 mmol) est ajouté à une solution de glucose (4,5 g, 25,0 mmol) et fructose (4,5 g, 25,0 mmol) dans le DMSO (41 ,0 g). La concentration massique initiale en fructose est de 9,0%pds. La concentration massique initiale en glucose est de 9,0%pds. Le rapport molaire catalyseur/ (glucose+fructose) est de 0,100. Le milieu réactionnel est agité à 70°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 1.
Figure imgf000015_0001
Tableau 1
Exemple 2 (conforme) Conversion du saccharose en 5-HMF et glucose en présence d’acide chlorhydrique à 70°C
L’acide chlorhydrique (1 ,0 M dans Et20) (2,65 mmol) est ajouté à une solution de saccharose (9,0 g, 26,3 mmol) dans le DMSO (41 ,0 g). La concentration massique initiale en saccharose est de 18,0%pds. Le rapport molaire catalyseur/saccharose est de 0,100. Le milieu réactionnel est agité à 70°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 2.
Figure imgf000016_0001
Tableau 2
Exemple 3 (conforme) Conversion de saccharose en 5-HMF et glucose en présence d’acide méthanesulfonique à 70°C
L’acide méthanesulfonique (2,60 mmol) est ajouté à une solution de saccharose (9,0 g, 26.3 mmol) dans le DMSO (41 ,0 g). La concentration massique initiale en saccharose est de
18,0%pds. Le rapport molaire catalyseur/saccharose est de 0,100. Le milieu réactionnel est agité à 70°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 3.
Figure imgf000016_0002
Tableau 3
Exemple 4 (conforme) Conversion de saccharose en 5-HMF et glucose en présence d’acide chlorhydrique à 50°C
L’acide chlorhydrique (1 ,0 M dans Et20) (2,63 mmol) est ajouté à une solution de saccharose (9,0 g, 26.3 mmol) dans le DMSO (41 ,0 g). La concentration massique initiale en saccharose est de 18,0%pds. Le rapport molaire catalyseur/saccharose est de 0,100. Le milieu réactionnel est agité à 50°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 4.
Figure imgf000017_0001
Tableau 4
Exemple 5 (conforme) Conversion de saccharose en 5-HMF et glucose en présence d’acide chlorhydrique à 90°C L’acide chlorhydrique (1 ,0 M dans Et20) (2,63 mmol) est ajouté à une solution de saccharose (9,0 g, 26.3 mmol) dans le DMSO (41 ,0 g). La concentration massique initiale en saccharose est de 18,0%pds. Le rapport molaire catalyseur/saccharose est de 0,100. Le milieu réactionnel est agité à 90°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 5.
Figure imgf000017_0002
Tableau 5
Exemple 6 (non conforme) Conversion de saccharose en 5-HMF et glucose en présence d’acide chlorhydrique à 120°C
L’acide chlorhydrique (1 ,0 M dans Et20) (2,63 mmol) est ajouté à une solution de saccharose (9,0 g, 26.3 mmol) dans le DMSO (41 ,0 g). La concentration massique initiale en saccharose est de 18,0%pds. Le rapport molaire catalyseur/saccharose est de 0,100. Le milieu réactionnel est agité à 120°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 6.
Figure imgf000018_0001
Tableau 6
Exemple 7 (non conforme) Conversion de glucose seul en 5-HMF en présence d’acide chlorhydrique à 70°C
L’acide chlorhydrique (1 ,0 M dans Et20) (2,50 mmol) est ajouté à une solution de glucose (4,5 g, 25,0 mmol) dans le DMSO (45,5 g). La concentration massique initiale en glucose est de 9,0%pds. Le rapport molaire catalyseur/glucose est de 0,100. Le milieu réactionnel est agité à 70°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 7.
Figure imgf000018_0002
Tableau 7
Exemple 8 (non conforme) Conversion de fructose seul en 5-HMF en présence d’acide chlorhydrique à 70°C
L’acide chlorhydrique (1 ,0 M dans Et20) (0.55 mmol) est ajouté à une solution de fructose (2,0 g, 11 ,1 mmol) dans le DMSO (20,0 g). La concentration massique initiale en fructose est de 9,1 %pds. Le rapport molaire catalyseur/fructose est de 0,050. Le milieu réactionnel est agité à 70°C pendant 4 heures. Les rendements à différents temps de réaction sont rapportés dans le Tableau 8.
Figure imgf000019_0001
Tableau 8
Dans les exemples 1 à 4 (conformes) réalisés à des températures inférieures ou égales à 80 °C, la transformation réalisée à basse température permet d’obtenir de bons rendements en glucose (RdtGi_u > 80%), lequel n’est pas transformé en produits non désirés, tout en permettant l’obtention d’une conversion du fructose en 5-HMF avec des rendements allant jusqu’à 77 % dans les conditions les plus performantes (Exemples 1 et 2).
De manière surprenante, le glucose est converti moins rapidement en présence d’unités fructosidiques (Exemples 1 et 2) qu’en son absence dans les mêmes conditions (Exemple 7). La présence de glucose ou d’unités glucosidiques n’affecte pas sensiblement les rendements obtenus à partir d’unités fructosidiques ou de fructose (Exemples 1 et 2 vs. Exemple 8 avec fructose seul), au contraire la présence de glucose ou d’unités glucosidiques améliore étonnament le conversion du fructose après 30, 60 ou 120 minutes, ainsi que le rendement en 5-HMF. .
Dans l’exemple 5 (conforme) réalisé à une température de 90°C, des rendements de 85% et 75% en glucose et 5-HMF respectivement sont obtenus aux temps de réaction courts, mais un temps de réaction plus important entraîne une dégradation du rendement en glucose sans pour autant améliorer sensiblement le rendement en 5-HMF.
Dans l’exemple 6 (non conforme) réalisé à une température supérieure à 90°C notamment à 100°C, le rendement en glucose n’excède pas 50 % sans que le rendement en 5-HMF soit sensiblement supérieur à 75-80%.
Dans l’exemple 7 (non conforme) réalisé à une température de 70°C, pendant 240 minutes, uniquement avec du glucose, le rendement en glucose est inférieur à 60 % sans production de en 5-HMF. Dans l’exemple 8 (non conforme) réalisé à une température de 70°C uniquement avec du fructose, le rendement en fructose n’excède pas 50 % après 30 minutes de réaction avec une conversion en fructose moyenne de 70%.

Claims

REVENDICATIONS
1. Procédé de production de 5-hydroxyméthylfurfural comprenant la mise en contact dans un solvant polaire aprotique ayant une température d’ébullition inférieure à 300°C, d’une charge contenant le fructose libre pris en mélange avec toute espèce saccharidique ou polysaccharidique, soit toute charge polysaccharidique contenant une ou plusieurs unités non-fructosidiques et une ou plusieurs unités fructosidiques, avec au moins un catalyseur de déshydratation choisi parmi les acides de Bronsted homogènes ou hétérogènes, organiques ou inorganiques, ledit procédé étant mis en œuvre à une température comprise entre 50 et 90°C.
2. Procédé selon la revendication 1 mis en œuvre à une température comprise entre 60 et 85°C, de préférence entre 60 et 80°C, et de préférence entre 65 et 75°C.
3. Procédé selon l’une quelconque des revendications précédentes dans lequel le catalyseur de déshydratation a un pKa dans le DMSO compris entre 0 et 5,0.
4. Procédé selon l’une quelconque des revendications précédentes dans lequel le solvant polaire aprotique a une température d’ébullition inférieure à 250°C, de préférence inférieure à 200°C.
5. Procédé selon l’une quelconque des revendications précédentes dans lequel la conversion de la fraction fructosidique en 5-HMF est supérieure ou égale à 70% et la conversion de la fraction non-fructosidique est inférieure ou égale à 20 %.
6. Procédé selon l’une quelconque des revendications précédentes dans lequel la charge est introduite dans une concentration massique initiale en unité fructosidique supérieure ou égale à 7 % poids, de manière préférée comprise entre 8 et 30 % poids par rapport à la masse totale de solvant.
7. Procédé selon l’une quelconque des revendications précédentes dans lequel la charge est introduite dans un rapport massique solvant/charge compris entre 0,1 et 200.
8. Procédé selon l’une quelconque des revendications précédentes dans lequel la charge est choisi parmi le saccharose ou un mélange de glucose et de fructose.
9. Procédé selon l’une quelconque des revendications précédentes dans lequel le solvant polaire aprotique est choisi parmi la butan-2-one, l’acétone, l’anhydride acétique, la /V,/V,/V’,/V’-tétraméthylurée, le benzonitrile, l’acétonitrile, la méthyléthylcétone, le propionitrile, l’hexaméthylphosphoramide, le nitrobenzène, le nitrométhane, le N,N- diméthylformamide, le /V,/V-diméthylacétamide, le sulfolane, la /V-méthylpyrrolidone, le diméthylsulfoxyde, le propylène carbonate et la y-valérolactone.
10. Procédé selon l’une quelconque des revendications précédentes dans lequel le solvant polaire aprotique est le diméthylsulfoxyde.
11. Procédé selon l’une quelconque des revendications précédentes dans lequel les catalyseurs acides organiques de Bronsted homogènes sont choisis parmi les acides organiques de formules générales R’COOH, R’S02H, R’S03H, (R’S02)NH, (R’0)2P02H, R’OH, dans lesquels R’ est choisi parmi les groupements
- alkyles, de préférence comprenant entre 1 et 15 atomes de carbone, substitués ou non par au moins un substituant choisi parmi un hydroxyle, une amine, un nitro, un halogène, de préférence le fluor et un halogénure d’alkyle,
- alkényles, substitués ou non par au moins un groupement choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor, et un halogénure d’alkyle,
- aryles, comprenant de préférence entre 5 et 15 atomes de carbones, substitués ou non par un substituant choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor et un halogénure d’alkyle,
- hétéroaryles, comprenant de préférence entre 4 et 15 atomes de carbones, substitués ou non par un substituant choisi parmi un hydroxyle, une amine, un nitro, un oxo, un halogène, de préférence le fluor et un halogénure d’alkyle.
12. Procédé selon l’une quelconque des revendications précédentes dans lequel les catalyseurs inorganiques de Bronsted homogènes sont choisis parmi HF, HCl, HBr, Hl, H2S03, H2S04, H3P02, H3P04, HN02, HN03, H2W04, H4SiW12O40, H3PW12O40, (NH4)6(W12O40).XH2O, H4SiMo12O40, H3PMo12O40, (NH4)6Mo7024.xH20, H2Mo04, HRe04, H2Cr04, H2Sn03, H4Si04, H3B03, HCI04, HBF4, HSbF5, HPF6, H2F03P, CIS03H, FS03H, HN(S02F)2 et HI03.
13. Procédé selon l’une quelconque des revendications précédentes dans lequel les catalyseurs acides organiques de Brcnsted homogènes sont choisis parmi l'acide formique, l'acide acétique, l'acide trifluoroacétique, l'acide lactique, l'acide lévulinique, l’acide 2,5- furane dicarboxylique, l'acide méthanesulfinique, l'acide méthanesulfonique, l'acide trifluorométhanesulfonique, la bis(trifluorométhanesulfonyl)amine, l'acide benzoïque, l'acide paratoluènesulfonique, l'acide 4-biphénylsulfonique, le diphénylphosphate, et le 1 ,1 - binaphtyl-2,2'-diyl hydrogénophosphate.
14. Procédé selon l’une quelconque des revendications précédentes dans lequel le ou les catalyseurs de déshydratation sont introduits dans un rapport massique solvant/catalyseur(s) compris entre 20 et 10000, dans lequel la masse de solvant correspond à la masse totale de solvant mis en œuvre dans le procédé.
PCT/EP2020/066525 2019-06-24 2020-06-15 Procede de production de 5-hydroxymethylfurfural WO2020260058A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080046540.7A CN113993855A (zh) 2019-06-24 2020-06-15 合成5-羟甲基糠醛的方法
EP20733922.7A EP3986881A1 (fr) 2019-06-24 2020-06-15 Procede de production de 5-hydroxymethylfurfural
US17/622,283 US20220242840A1 (en) 2019-06-24 2020-06-15 Process for synthesizing 5-hydroxymethylfurfural
BR112021024451A BR112021024451A2 (pt) 2019-06-24 2020-06-15 Processo de produção de 5-hidroximetilfurfural

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR1906806 2019-06-24
FR1906806A FR3097547B1 (fr) 2019-06-24 2019-06-24 Procede de production de 5-hydroxymethylfurfural

Publications (1)

Publication Number Publication Date
WO2020260058A1 true WO2020260058A1 (fr) 2020-12-30

Family

ID=68072751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/066525 WO2020260058A1 (fr) 2019-06-24 2020-06-15 Procede de production de 5-hydroxymethylfurfural

Country Status (6)

Country Link
US (1) US20220242840A1 (fr)
EP (1) EP3986881A1 (fr)
CN (1) CN113993855A (fr)
BR (1) BR112021024451A2 (fr)
FR (1) FR3097547B1 (fr)
WO (1) WO2020260058A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845497B (zh) * 2021-11-01 2023-09-15 沈阳化工大学 一种低温合成5-羟甲基糠醛方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071498A1 (fr) * 2017-09-28 2019-03-29 IFP Energies Nouvelles Procede de production de 5-hydroxymethylfurfural en presence d'un catalyseur de deshydratation organique et d'une source de chlorure
WO2019137810A1 (fr) * 2018-01-10 2019-07-18 IFP Energies Nouvelles Procede de production de 5-hydroxymethylfurfural

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2975396B1 (fr) * 2011-05-16 2013-12-27 Centre Nat Rech Scient Procede de preparation de 5-hydroxymethylfurfural
CN107163006B (zh) * 2017-06-20 2019-09-13 中国科学院长春应用化学研究所 一种催化糖合成5-羟甲基糠醛的催化剂以及一种催化糖合成5-羟甲基糠醛的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3071498A1 (fr) * 2017-09-28 2019-03-29 IFP Energies Nouvelles Procede de production de 5-hydroxymethylfurfural en presence d'un catalyseur de deshydratation organique et d'une source de chlorure
WO2019137810A1 (fr) * 2018-01-10 2019-07-18 IFP Energies Nouvelles Procede de production de 5-hydroxymethylfurfural

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
BULL.CHEM. SOC. JAPAN, vol. 53, 1980, pages 3705
CARUSO T ET AL: "Bronsted acidity of ceric ammonium nitrate in anhydrous DMF. The role of salt and solvent in sucrose cleavage", TETRAHEDRON, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 62, no. 10, 6 March 2006 (2006-03-06), pages 2350 - 2356, XP025001632, ISSN: 0040-4020, [retrieved on 20060306], DOI: 10.1016/J.TET.2005.12.001 *
CHAO WANG ET AL: "Efficient and selective conversion of sucrose to 5-hydroxymethylfurfural promoted by ammonium halides under mild conditions", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 347, no. 1, 12 November 2011 (2011-11-12), pages 182 - 185, XP028435044, ISSN: 0008-6215, [retrieved on 20111119], DOI: 10.1016/J.CARRES.2011.11.013 *
CHEMICAL REVIEWS, vol. 113, 2013, pages 1499 - 1597
CHHEDA ET AL: "An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates", CATALYSIS TODAY, ELSEVIER, AMSTERDAM, NL, vol. 123, no. 1-4, 19 May 2007 (2007-05-19), pages 59 - 70, XP022085575, ISSN: 0920-5861, DOI: 10.1016/J.CATTOD.2006.12.006 *
F. G. BORDWELL ET AL., J. AM. CHEM. SOC., vol. 113, 1991, pages 8398 - 8401
GUO QIU ET AL: "Niobium phosphotungstates: excellent solid acid catalysts for the dehydration of fructose to 5-hydroxymethylfurfural under mild conditions", RSC ADVANCES, vol. 8, no. 57, 1 January 2018 (2018-01-01), pages 32423 - 32433, XP055642246, DOI: 10.1039/C8RA05940C *
JAEWON JEONG ET AL: "Commercially attractive process for production of 5-hydroxymethyl-2-furfural from high fructose corn syrup", JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, vol. 19, no. 4, 1 July 2013 (2013-07-01), KOREA, pages 1106 - 1111, XP055642256, ISSN: 1226-086X, DOI: 10.1016/j.jiec.2012.12.004 *
PARKER ET AL., BIOTECHNOL. MOL. BIOL. REV, vol. 5, no. 5, December 2010 (2010-12-01), pages 71 - 78
XIAN-LEI SHI ET AL: "Bifunctional Polyacrylonitrile Fiber-Mediated Conversion of Sucrose to 5-Hydroxymethylfurfural in Mixed-Aqueous Systems", CHEMISTRY - AN ASIAN JOURNAL, vol. 10, no. 3, 8 January 2015 (2015-01-08), DE, pages 752 - 758, XP055642243, ISSN: 1861-4728, DOI: 10.1002/asia.201403338 *

Also Published As

Publication number Publication date
FR3097547B1 (fr) 2023-04-28
FR3097547A1 (fr) 2020-12-25
EP3986881A1 (fr) 2022-04-27
CN113993855A (zh) 2022-01-28
BR112021024451A2 (pt) 2022-01-18
US20220242840A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
FR3076554A1 (fr) Procede de production de 5-hydroxymethylfurfural
EP2709994B1 (fr) Procédé de préparation de 5-hydroxyméthylfurfural
EP2748153B1 (fr) Procede de preparation de furfural
FR3071498B1 (fr) Procede de production de 5-hydroxymethylfurfural en presence d'un catalyseur de deshydratation organique et d'une source de chlorure
EP0561928B1 (fr) Procede de preparation d'hydroxymethyl-5 furfural par catalyse heterogene
US9181210B2 (en) Processes for making furfurals
EP3371157B1 (fr) Procede de production de 5-hydroxymethylfurfural en presence de catalyseurs de la famille des acides sulfoniques homogenes en presence d'au moins un solvant polaire aprotique
FR3109778A1 (fr) Procede d’oxydation du 5-hydroxymethylfurfural
WO2017076625A1 (fr) Procede de production de 5-hydroxymethylfurfural en presence d'un catalyseur acide de lewis et/ou d'un catalyseur base heterogene et d'un catalyseur organique homogene acide de brønsted en presence d'au moins un solvant polaire aprotique
WO2020260058A1 (fr) Procede de production de 5-hydroxymethylfurfural
FR3071497A1 (fr) Procede de production de 5-hydroxymethylfurfural en presence d'un catalyseur inorganique de deshydratation et d'une source de chlorure
US10005748B2 (en) 5-hydroxymethylfurfural production using a multi-fluorinated alcohol compound
WO2012016881A1 (fr) Procede de preparation de l'acide difluoroacetique, ses sels ou ses esters
WO2017016924A1 (fr) Procede de production de 5-hydroxymethylfurfural en presence de catalyseurs organiques de la famille des thiourees
FR3024729A1 (fr) Procede de preparation du trioxane
EP4299566A1 (fr) Procede de production de 5-hydroxymethylfurfural
WO2017016923A1 (fr) Procede de production de 5-hydroxymethylfurfural en presence de catalyseurs organiques phosphores
WO2017016925A1 (fr) Procede de production de 5-hydroxymethylfurfural en presence de catalyseurs organiques de la famille des sulfonamides
FR3068036A1 (fr) Procede de production de 5-hydroxymethylfurfural 5 a partir d’hexoses
FR3113055A1 (fr) Procede comprenant une etape de retroaldolisation et une etape d’extraction reactive
FR3113056A1 (fr) Procede comprenant une etape de deshydratation et une etape d’extraction reactive

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20733922

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021024451

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021024451

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20211203

ENP Entry into the national phase

Ref document number: 2020733922

Country of ref document: EP

Effective date: 20220124