WO2020255848A1 - 抗菌塗装物、抗菌塗料、抗菌塗料の製造法及び抗菌塗装物の製造法 - Google Patents

抗菌塗装物、抗菌塗料、抗菌塗料の製造法及び抗菌塗装物の製造法 Download PDF

Info

Publication number
WO2020255848A1
WO2020255848A1 PCT/JP2020/022984 JP2020022984W WO2020255848A1 WO 2020255848 A1 WO2020255848 A1 WO 2020255848A1 JP 2020022984 W JP2020022984 W JP 2020022984W WO 2020255848 A1 WO2020255848 A1 WO 2020255848A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
coating film
paint
ceramic composite
composite powder
Prior art date
Application number
PCT/JP2020/022984
Other languages
English (en)
French (fr)
Inventor
要 窪井
奴間 伸茂
柴田 薫
Original Assignee
久保井塗装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 久保井塗装株式会社 filed Critical 久保井塗装株式会社
Priority to US15/733,823 priority Critical patent/US20210261792A1/en
Priority to CN202080002894.1A priority patent/CN112437794A/zh
Publication of WO2020255848A1 publication Critical patent/WO2020255848A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6216Polymers of alpha-beta ethylenically unsaturated carboxylic acids or of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/062Copolymers with monomers not covered by C09D133/06
    • C09D133/066Copolymers with monomers not covered by C09D133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/031Powdery paints characterised by particle size or shape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/03Powdery paints
    • C09D5/032Powdery paints characterised by a special effect of the produced film, e.g. wrinkle, pearlescence, matt finish
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2355/00Characterised by the use of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08J2323/00 - C08J2353/00
    • C08J2355/02Acrylonitrile-Butadiene-Styrene [ABS] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2475/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2475/04Polyurethanes
    • C08J2475/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0806Silver
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates
    • C08K2003/325Calcium, strontium or barium phosphate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Definitions

  • the present invention relates to an antibacterial coating material, an antibacterial coating material, a method for producing an antibacterial coating material, and a method for producing an antibacterial coating material, wherein the antibacterial activity value of the coating film (JIS Z 2801: 2010 compliant) is 2.0 or more.
  • Conventional antibacterial coatings have a problem that it is difficult to uniformly disperse the antibacterial agent over the entire surface of the coating film, and the antibacterial action is not exhibited in the portion where the antibacterial agent does not exist.
  • an antibacterial agent with a heavy specific gravity when used, the antibacterial agent settles in the coating film and the antibacterial agent on the surface of the coating film becomes diluted in the usual coating method, and when an antibacterial agent having a light specific gravity is used or a special one.
  • the antibacterial agent is unevenly distributed on the surface layer of the coating film by the coating method, the antibacterial agent in the lower layer of the coating film becomes diluted, so that it is difficult to stably exhibit the antibacterial performance for a long period of time.
  • a technique has also been developed in which an antibacterial agent is eluted from a coating film to impart antibacterial properties to the surface of the coating film.
  • an antibacterial agent is eluted from a coating film to impart antibacterial properties to the surface of the coating film.
  • problems that it takes time to start elution, the amount of elution is not stable, the end of elution is difficult to understand, and there is a concern that skin disorders such as rash may occur due to the eluted antibacterial agent.
  • antibacterial coatings having an antibacterial coating film containing a photocatalytic compound on the surface have also been put into practical use.
  • ordinary photocatalytic compounds exhibit a photocatalytic effect by irradiation with ultraviolet light, and it is difficult to exhibit a sufficient photocatalytic effect in an indoor environment.
  • Visible light-responsive photocatalysts have also been developed, but the range of excitation wavelengths is narrow, and sufficient photocatalytic effects cannot be obtained under general indoor lighting.
  • the coating film containing the photocatalytic compound is usually white and has a problem of poor transparency.
  • Patent Documents 1 to 4 are available.
  • Patent Document 1 and apatite-covered photocatalyst titanium dioxide particles of a particular range of median diameter D 50, and a silver particle of a particular range of average particle diameter D 50, at least a part of the apatite-coated photocatalyst titanium dioxide particles of the silver particles
  • An antibacterial coating material coated with a water-based paint supported on the apatite of No. 1 is disclosed.
  • a water-based paint obtained by mixing and stirring an apatite-coated photocatalytic titanium dioxide particle dispersion having a D 50 of 0.2423 ⁇ m, a nano-silver particle dispersion having a D 50 of 48 nm, and a component such as a binder.
  • the applied antibacterial coating is disclosed.
  • the dispersed particle size of the apatite-coated photocatalytic titanium dioxide particles on which the silver particles are supported and the antibacterial activity value of the coating film are not disclosed.
  • problems such as coloring of the coating film due to the free silver particles that are not supported are predicted, and the transparency and abrasion resistance of the coating film are not considered at all.
  • Patent Document 2 describes a composite material in which a photocatalyst having metal particles supported on its surface is coated with an inorganic adsorbent, such as calcium phosphate (hydroxyapatite) -coated anatase-type titanium oxide supporting silver particles, and a resin binder.
  • an inorganic adsorbent such as calcium phosphate (hydroxyapatite) -coated anatase-type titanium oxide supporting silver particles
  • a resin binder a resin binder
  • Patent Document 3 describes a disinfectant produced by binding metal particles such as silver to ceramic particles such as photocatalyst titanium dioxide by a predetermined method, and further contains an adsorbent such as hydroxyapatite. Paints containing are listed. However, the dispersed particle size in the paint of the disinfectant (ceramic particles in which metal particles are bonded) containing the adsorbent and the antibacterial activity value of the coating film are not disclosed at all.
  • Patent Document 4 describes an antibacterial coating in which a coating material having a transmittance of 90% or more, which contains silver ultrafine particles having an average particle diameter of 100 nm or less and having a fatty acid component bonded to the particle surface, is applied to a specific organic solvent.
  • An antibacterial coating material having an antibacterial activity value of 2.0 or more of the coating material is described.
  • this antibacterial coating uses a bactericidal action based on silver fine particles.
  • the present invention provides an antibacterial coating material, an antibacterial coating material, a method for producing an antibacterial coating material, and a method for producing an antibacterial coating material, wherein the antibacterial activity value of the coating film (JIS Z 2801: 2010 compliant) is 2.0 or more.
  • the purpose is.
  • the present invention relates to an antibacterial coating material, an antibacterial coating material, a method for producing an antibacterial coating material, and a method for producing an antibacterial coating material, which have an antibacterial activity value of 2.0 or more and are excellent in transparency of the coating material.
  • the purpose is to provide.
  • the present invention can constitute an antibacterial coated product which has been subjected to an antibacterial treatment having an antibacterial activity value of 2.0 or more simply by painting the surface of an article or the like requiring an antibacterial treatment.
  • An antibacterial paint that does not cause skin damage due to elution of antibacterial components and can exhibit an antibacterial effect for a long period of time immediately after the formation of a coating film, a method for producing the antibacterial paint, an antibacterial coating using the antibacterial paint, and It is an object of the present invention to provide a method for producing an antibacterial coating.
  • an antibacterial coating material containing a ceramic composite powder containing a photocatalyst component, an adsorbent component and a metal component, an antibacterial coating material containing a binder, and a coating film containing the antibacterial coating material is provided on a substrate, and the antibacterial coating material satisfies a specific requirement. It was found that the above-mentioned problems can be solved by the thing. Specifically, it is as shown below.
  • a coating film of an antibacterial coating film containing at least a ceramic composite powder containing a photocatalytic component, an adsorbent component and a metal component and a binder is provided on a substrate, and the antibacterial activity value of the coating film (JIS Z 2801: 2010 compliant) is 2.0 or higher, and antibacterial coatings that meet the following requirements (1) and / or (2): (1)
  • the volume average dispersed particle diameter (D 50 ) is 250 nm or less, and the ratio D of the integrated volume 90% particle diameter (D 90 ) and the volume average dispersed particle diameter (D 50 ).
  • a ceramic composite powder containing a photocatalyst component, an adsorbent component and a metal component, and a binder are contained at least.
  • the volume average dispersed particle diameter (D 50 ) of the ceramic composite powder in the antibacterial coating is 250 nm or less, and the ratio of the cumulative volume 90% particle diameter (D 90 ) of the ceramic composite powder to the volume average dispersed particle diameter (D 50 ).
  • D 90 / D 50 is 1.5 or less
  • a step of mixing an antibacterial paint component containing at least a ceramic composite powder containing a photocatalyst component, an adsorbent component and a metal component and a binder using a disperser is included.
  • the volume average dispersed particle diameter (D 50 ) of the ceramic composite powder in the antibacterial coating is 250 nm or less, and the ratio of the integrated volume 90% particle diameter (D 90 ) of the ceramic composite powder to the volume average dispersed particle diameter (D 50 ).
  • a method for producing an antibacterial paint wherein the antibacterial activity value of the coating film (JIS Z 2801: 2010 compliant) is 2.0 or more.
  • a method for producing an antibacterial coating material wherein the coating material containing the antibacterial coating material of [2] is applied to a base material, and the antibacterial activity value (JIS Z 2801: 2010 compliant) of the coating film is 2.0 or more.
  • the present invention provides a method for producing an antibacterial coating material, an antibacterial coating material, an antibacterial coating material, and a method for producing an antibacterial coating material, wherein the antibacterial activity value of the coating film is 2.0 or more. Further, the present invention provides a method for producing an antibacterial coating material, an antibacterial coating material, an antibacterial coating material, and a method for producing an antibacterial coating material, which have an antibacterial activity value of 2.0 or more and are excellent in transparency. Since the coating film of the present invention is excellent in transparency, it can be not only a colorless transparent coating film that requires visibility and the like, but also an arbitrarily colored coating film.
  • an antibacterial coating product which has been subjected to antibacterial treatment having an antibacterial activity value of 2.0 or more simply by painting the surface of an article or the like requiring antibacterial treatment.
  • Antibacterial coatings, antibacterial coatings, antibacterial coating manufacturing methods, and antibacterial coating manufacturing methods that do not cause skin damage due to elution of antibacterial components and can exhibit antibacterial effects for a long period of time immediately after coating film formation.
  • the antibacterial coating film of the present invention contains a photocatalytic component and an adsorbent component in the coating film, it has a function of adsorbing / decomposing a causative substance of chemical sensitivity (sick house syndrome) and a function of removing malodor.
  • the antibacterial activity value means a JIS Z 2801: 2010 compliant index value
  • Haze means a JIS K 7136: 2000 compliant index value.
  • the antibacterial coating material of the present invention has a coating film of an antibacterial coating material containing at least a ceramic composite powder containing a photocatalyst component, an adsorbent component and a metal component, and a binder on the substrate.
  • the antibacterial activity value of is 2.0 or more, and the following requirements (1) and / or (2): (1)
  • the volume average dispersed particle diameter (D 50 ) is 250 nm or less, and the ratio D of the integrated volume 90% particle diameter (D 90 ) and the volume average dispersed particle diameter (D 50 ).
  • 90 / D 50 is 1.5 or less
  • the photocatalytic component is a substance that absorbs light such as ultraviolet light and visible light and exhibits a photocatalytic action. Excited electrons and holes generated in the photocatalyst due to the absorption of light exert a reducing action and an oxidizing action, respectively, to initiate a reaction, and organic substances and bacteria adsorbed on the surface of the adsorbent are decomposed.
  • the photocatalytic component is a compound that exhibits photocatalytic activity such as a metal oxide, a metal oxynitride, and various semiconductor compounds.
  • titanium oxide titanium peroxide, vanadium oxide, iron oxide, copper oxide, zinc oxide, tungsten oxide, niobium oxide, tin oxide, gallium oxide, alkali titanate (earth) metal salt, etc. 1
  • compounds exhibiting photocatalytic activity include V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Ru, Rh, Pd, Ag, Ir, Pt, Au, B, C, N, halogen (F, etc.).
  • P, S and the like may be doped with one or more elements selected from the group.
  • photocatalyst component Only one type of photocatalyst component may be used, or two or more types may be used in combination.
  • one or more selected from the group consisting of anatase-type titanium oxide, zinc oxide and tungsten oxide, which may be doped with the above elements is used.
  • one or more selected from the group consisting of anatase-type titanium oxide and zinc oxide, which may be doped with the above elements is used.
  • the adsorbent component is a substance that has an action of adsorbing organic substances, bacteria, and the like on the surface.
  • the adsorbed organic substances, bacteria, etc. are decomposed or sterilized by the action of the photocatalytic compound and / or the metal constituting the ceramic composite powder.
  • the adsorbent component may be any of an inorganic type, an organic type, an organic-inorganic composite type, and a natural product type.
  • calcium phosphate-based such as apatite, hydroxyapatite, halogenated apatite, metal-modified apatite, tricalcium phosphate, calcium hydrogen phosphate
  • silicate-based such as diatomaceous earth, zeolite, sepiolite, porous silica or silicate-based aluminum.
  • Carbon type such as activated carbon and carbon nanotubes
  • Metal oxide type such as tungsten oxide, niobium oxide, zinc oxide, tin oxide and porous glass
  • Titanate type such as strontium titanate
  • Chelate compound type such as EDTA, polystyrene
  • sulfonic acid-based resins ion exchange resins such as NAFION (registered trademark), and the like
  • NAFION registered trademark
  • one or more selected from the group consisting of apatite, hydroxyapatite, diatomaceous earth, zeolite, activated carbon and silica is used.
  • one or more selected from the group consisting of apatite, hydroxyapatite and zeolite is used.
  • the metal component exerts a bactericidal action and an antibacterial action when it comes into contact with bacteria, and is either a simple substance of a metal, a metal ion, or a precursor capable of forming these (for example, a metal salt, a metal oxide, etc.). .. It is preferably a simple substance of a metal or a metal ion, and more preferably a simple substance of a metal.
  • the metal of the metal component is usually a transition metal and is selected from the group consisting of, for example, gold, silver, copper, zinc, platinum, iron, nickel, chromium, cobalt, manganese, rhodium, palladium, ruthenium and iridium.
  • One or more types can be mentioned, but there is no particular limitation. Only one kind of metal component may be used, or two or more kinds may be used in combination. Preferably, one or more selected from the group consisting of silver, copper, platinum and nickel is used. Particularly preferably, one or more selected from the group consisting of silver and copper is used.
  • the ceramic composite powder is a powder obtained by arbitrarily combining the photocatalyst component, the adsorbent component, and the metal component and compounding them.
  • a known binder or the like can be used for compounding, if necessary.
  • the ceramic composite powder only one kind may be used, or two or more kinds may be used in combination.
  • the photocatalytic component is photocatalytic titanium dioxide and / or photocatalytic zinc oxide
  • the adsorbent component is hydroxyapatite and / or apatite
  • the metal component is silver and / or copper. Be done.
  • the composite form of the ceramic composite powder may be arbitrary, for example, (1) a photocatalyst component, an adsorbent component and a metal component bonded to each other, and (2) a part of the surface of the photocatalyst component is an adsorbent component. And those coated with a metal component, (3) a part of the surface of the conjugate of the photocatalyst component and the metal component coated with an adsorbent component, (4) a part of the surface of the photocatalyst component is an adsorbent component.
  • the ratio of each amount of the photocatalyst component, the adsorbent component and the metal component can be adjusted according to desired characteristics and the like.
  • the photocatalyst component is 0.01 to 99.9% by mass, preferably 1 to 99% by mass, more preferably 1 to 90% by mass, and most preferably 20 to 90% by mass with respect to the entire ceramic composite powder. Can be done.
  • the adsorbent component is 0.01 to 99.9% by mass, preferably 0.5 to 90% by mass, more preferably 1 to 80% by mass, and most preferably 5 to 75% by mass with respect to the entire ceramic composite powder.
  • the metal component is 0.01 to 99.9% by mass, preferably 1 to 99% by mass, more preferably 3 to 95% by mass, and more preferably 5 to 75% by mass with respect to the entire ceramic composite powder. Can be done.
  • the ceramic composite powder may be prepared by a known method, or a commercially available product may be used.
  • Examples of the method for preparing the ceramic composite powder include the photocatalyst component in powder and / or dispersed liquid, the adsorbent component in powder and / or dispersed liquid, and the metal component in powder and / or dispersed liquid.
  • adjust the temperature and / or pressure, and if necessary, use various mixing devices, and one or more selected from the group consisting of a method of compounding each component and the like can be mentioned. There is no particular limitation.
  • Examples of various mixing devices include paint shakers, butterfly mixers, planetary mixers, pony mixers, dissolvers, tank mixers, homomixers, homodispers and other mixers, attritors, roll mills, sand mills, ball mills, bead mills, line mills, and ultrasonic waves. Examples include mills, dyno mills, shot mills and other mills, kneaders, mixing and kneading machines, high-pressure collision dispersers, and the like.
  • the mixing order and amount of each component at the time of compounding can be appropriately set.
  • the powdery and / or dispersed liquid photocatalyst component, the powdery and / or dispersed liquid adsorbent component, and the powdery and / or dispersed liquid metal component are all mixed at the same time.
  • (3) Mix some or all of any one component and some or all of any one component Examples include a method of mixing the remaining components.
  • the mixing process may be performed once or a plurality of times by one type of mixing device, or may be performed a plurality of times by using two or more types of mixing devices in combination.
  • a liquid component or various additive components may be further added, and if necessary, mixing may be performed using any of the above-mentioned mixing devices.
  • Examples of commercially available ceramic composite powders or products containing ceramic composite powders include Apatec (manufactured by Marutake Sangyo Co., Ltd.), Earth Plus (manufactured by Shinshu Ceramics Co., Ltd.), and Superluminitanium powder (manufactured by Sasamic Co., Ltd.). Be done.
  • the content of the ceramic composite powder in the antibacterial paint is not particularly limited, but is 0.1 to 30% by mass, preferably 0, based on the entire antibacterial paint from the viewpoint of antibacterial property, dispersibility, paint productivity and the like. It can be .5 to 15% by mass, more preferably 1 to 10% by mass, and even more preferably 1 to 5% by mass. Further, the solid content ratio of the antibacterial coating material can be 1 to 95% by mass, preferably 1 to 50% by mass, more preferably 3 to 30% by mass, and further preferably 5 to 20% by mass. If the content of the ceramic composite powder is too large, it may be disadvantageous in terms of the strength and cost of the coating film, and if the content is too small, the desired antibacterial activity may not be obtained.
  • the binder may be any binder known as a component of the coating material, and an inorganic and / or organic binder is used.
  • the binder has an action of fixing the ceramic composite powder in the coating film and the like.
  • the form of the binder may be any of solvent type, emulsion (dispersion) type, solvent-free type, one-component type, multi-component type, and powder type.
  • the inorganic binder examples include one or more selected from the group consisting of silica binder, zirconia binder, alumina binder, titania binder, water glass (soda silicate, potassium silicate, lithium silicate) and the like, but are particularly limited. Not done.
  • organic binder examples include (meth) acrylic type, styrene type, vinyl acetate type, rubber type, vinyl chloride type, vinyl alcohol type, polyolefin type, polyester type, fluororesin type, silicone type, urethane type, and epoxy type. , One or more selected from the group consisting of core-shell polymer type, curable compound type having ethylenically unsaturated bond ((meth) acrylate monomer type, vinyl type monomer type, etc.), etc., but are not particularly limited.
  • the organic binder may further contain a curing agent used in the coating field.
  • curing agent examples include, but are not limited to, one or more selected from the group consisting of polyisocyanate compounds, polyol compounds, polycarboxylic acid compounds, melamine compounds, epoxy compounds, aldehyde compounds, aziridine compounds and the like.
  • the binder one or more selected from the group consisting of (meth) acrylic type, polyester type, fluororesin type, silicone type, urethane type, epoxy type, acrylate monomer type and the like, which may preferably contain a curing agent.
  • a curing agent e.g., one or more selected from the group consisting of (meth) acrylic, urethane, fluororesin, and acrylate monomer, which may contain a curing agent.
  • the content of the binder is 1 to 50% by mass, preferably 5 to 40% by mass, and more preferably 10 to 30% by mass with respect to the entire antibacterial coating material from the viewpoint of antibacterial property, dispersibility, coating film forming property and the like. can do.
  • the solid content ratio of the antibacterial coating material can be 50 to 99% by mass, preferably 70 to 97% by mass, and preferably 80 to 95% by mass. If the content of the binder is too high, the desired antibacterial activity cannot be obtained, which may be disadvantageous in terms of the strength and cost of the coating film. If the content is too low, the desired antibacterial activity can be obtained. However, there may be a problem in terms of the strength and dispersibility of the coating film.
  • ⁇ Other ingredients> Various components used for forming the paint may be added to the antibacterial paint constituting the antibacterial paint, depending on the required purpose and the like.
  • fillers such as solvents, colorants, and extender pigments, viscosity modifiers, sterilizers / fungicides other than the ceramic composite powder, surface conditioners, dispersants, surfactants, ultraviolet absorbers, and light stabilizers. , Antifoaming agent, etc., but are not particularly limited.
  • the content of each component can be arbitrarily adjusted according to the purpose of addition and the like.
  • the solvent is not particularly limited, and one or more selected from the group consisting of water, organic solvents, carbon dioxide and the like is used for the purpose of viscosity adjustment, dilution and the like.
  • the organic solvent is, for example, an alcohol system such as ethanol, propanol and butanol; a ketone system such as acetone, methyl ethyl ketone and cyclohexanone; a halogenated hydrocarbon system such as methylene chloride; an aromatic hydrocarbon system such as benzene, toluene and xylene; methyl.
  • Amidos such as pyrrolidone and dimethylacetamide
  • Esters such as ethyl acetate and butyl acetate
  • Ethers such as diethyl ether, tetrahydrofuran and dioxane
  • Glycol ethers such as ethylene glycol monomethyl ether and ethylene glycol dimethyl ether
  • Cyclic such as ⁇ -butyrolactone
  • solvents such as ester type
  • aliphatic hydrocarbon type such as mineral spirit; and the like can be mentioned, but is not particularly limited.
  • the colorant is not particularly limited, and is selected from the group consisting of, for example, red, blue, yellow, green, purple, black, white, orange, and brown for the purpose of imparting a desired color tone to the coating film.
  • One or more selected from the group consisting of inorganic coloring pigments, organic coloring pigments, fluorescent pigments, bright pigments, colored resin particles, dyes and the like having one or more kinds of colors are used.
  • the pigment may be a self-dispersing type in which at least one hydrophilic group or lipophilic group is directly bonded to the surface of the pigment or by various atomic groups, and the surface of the pigment may be various. It may be modified with a surface modifier.
  • filler for the extender pigment examples include one or more selected from the group consisting of talc, mica, barium sulfate, clay, calcium carbonate, kaolin, silica, bentonite, barium carbonate, zirconia, alumina and the like. Not limited. Further, the surface of the pigment may be modified with various surface modifiers.
  • viscosity modifier examples include one or more selected from the group consisting of compounds such as cellulose-based, polyamine-based, starch-based, alginic acid-based, fatty acid ester-based, polyvinyl alcohol-based, and polyacrylic acid (salt) -based compounds. Is not particularly limited.
  • examples of bactericidal and fungicides other than the ceramic composite powder include sodium dehydroacetate, sodium benzoate, sodium pyridinethione-1-oxide, p-hydroxybenzoic acid ethyl ester, 1, 2 and 2.
  • -One or more selected from the group consisting of benzisothiazolin-3-one and salts thereof and the like can be mentioned, but is not particularly limited.
  • the base material on which the antibacterial paint is applied may be any base material to which antibacterial performance is desired and the paint can be applied.
  • the material constituting the base material is not particularly limited, and examples thereof include metals such as iron and aluminum, glass, concrete, various plastics, paper, wood, and the like, and laminates and compositions containing one or more of these. It may be a composite material such as, or a painted surface.
  • the base material constituting the antibacterial coating is not particularly limited, but for example, medical institutions, commercial facilities, schools, public facilities, food factories, etc., nursing care sites, cooking sites, food and beverage related sites, transportation facilities, etc.
  • a coating film forming method As a coating film forming method, a general method for providing a coating film of a paint film on an article / base material or the like can be adopted depending on the shape of the article / base material or the like and its use. For example, one selected from the group consisting of air spray, airless spray, electrostatic, rotary atomization, brush, roller, hand gun, universal gun, immersion, roll coater, curtain flow coater, roller curtain coater, die coater, inkjet, etc. The above can be mentioned, but there is no particular limitation. Preferably, one or more selected from the group consisting of air spray, airless spray, electrostatic, rotary atomization, brush, hand gun, universal gun, and inkjet can be mentioned.
  • the antibacterial paint When the antibacterial paint is applied to the base material, if the painted surface is contaminated with pollutants such as oil, it is preferable to degreas and clean it with alcohol or the like.
  • pollutants such as oil
  • known surface treatments such as roughening treatment, plasma treatment, flame treatment, and primer treatment may be performed.
  • the coating film After the antibacterial paint is applied, the coating film may be dried by means such as room temperature drying or forced drying to form a coating material. In the case of drying at room temperature, it may be allowed to stand at room temperature (for example, less than 10 to 40 ° C.).
  • the binder In the case of forced drying, it may be dried using a blower or the like, or may be baked and dried by heating at a temperature exceeding room temperature, for example, 50 ° C. or higher for 1 minute or longer.
  • the binder When the binder is curable, it may be cured by energy rays such as ultraviolet rays or heat. From the viewpoint of finishability, it may be set (standing) at room temperature in advance before drying or curing.
  • the coating film When forming the coating film, it may be provided by one coating or two or more coatings. When the coating is performed twice or more, a drying step may be provided in the middle, or a Wet on Wet may be performed without providing a drying step in the middle, or these may be combined.
  • the thickness (dry film thickness) of the coating film formed by the antibacterial coating material is not particularly limited and can be appropriately adjusted according to the application and the like.
  • the dry film thickness can be 0.1 to 1000 ⁇ m, and can be 80 ⁇ m or less, preferably 50 ⁇ m or less, more preferably 30 ⁇ m or less, and further preferably 1 to 20 ⁇ m.
  • the transparency of the coating film in the antibacterial coating material can be further increased.
  • the antibacterial coating film can be formed without affecting the moving portion. If the dry coating film exceeds 100 ⁇ m, it may be disadvantageous in terms of cost, transparency, and the like. If the dry film thickness is less than 1 ⁇ m, advanced coating technology is required, which may be disadvantageous in terms of cost.
  • the antibacterial activity value of the coating film of the antibacterial coating material in the antibacterial coating material is 2.0 or more.
  • the antibacterial activity value may be 4.0 or more, and in some cases, the antibacterial activity value may be 6.0 or more.
  • the antibacterial activity value in the present invention is an index value based on the test method in JIS Z 2801: 2010 "Antibacterial processed product-antibacterial test method / antibacterial effect".
  • the antibacterial activity value is a value obtained as the difference between the logarithmic values of the viable cell counts of the antibacterial processed product and the unprocessed product after inoculating a predetermined bacterium and culturing for 24 hours. When is 2.0 or more, it is said to have an antibacterial effect.
  • an antibacterial coated product having an antibacterial activity value of 2.0 or more can be formed only by coating the surface of an article or the like that requires antibacterial treatment.
  • antibacterial coatings, antibacterial coatings, antibacterial coating manufacturing methods, and antibacterial coating manufacturing methods that do not cause skin damage due to elution of antibacterial components and can exhibit antibacterial effects for a long period of time immediately after the formation of a coating film.
  • various equipment and facilities used in medical settings and the like can be easily made to have an antibacterial activity value of 2.0 or more only by post-processing by painting with the antibacterial paint of the present invention.
  • the volume average dispersed particle diameter (D 50 ) of the ceramic composite powder in the antibacterial coating material constituting the coating film in the antibacterial coating material is not particularly limited, but is 250 nm or less, preferably 30 to 220 nm or less. It can be preferably 50 to 210 nm.
  • the volume average dispersed particle size (D 50 ) of the ceramic composite powder exceeds 250 nm, the storage stability of the paint deteriorates, the dispersion in the paint or the coating film becomes non-uniform, and the transparency due to the white turbidity of the paint or the coating film becomes transparent.
  • the volume average dispersed particle diameter (D 50 ) is 100 to 250 nm, it is possible to form a slightly colored transparent coating film based on the material color of the ceramic composite powder.
  • a slightly colored transparent coating film can be a clean antibacterial coating film without impairing the visibility of characters and patterns on the surface of the base material, and the presence of the coating film can be easily grasped. It also has the effect of appealing antibacterial treatment.
  • volume average dispersed particle size is less than 100 nm
  • a colorless transparent coating film can be formed, and it can be applied to a base material which dislikes coloring. Further, by using a colorant, a coating film having an arbitrary color tone can be easily formed.
  • the ratio of the integrated volume 90% particle diameter (D 90 ) to the volume average dispersed particle diameter (D 50 ) of the ceramic composite powder in the antibacterial paint constituting the antibacterial coating material, D 90 / D 50 is 1.5 or less. , It can be preferably 1.3 or less, and more preferably 1.2 or less.
  • D 90 / D 50 approaches 1.0, the particle size distribution becomes sharp and the particle size becomes close to uniform.
  • fine ceramic composite powder can be uniformly dispersed in the coating film, the transparency of the coating film can be improved, and the antibacterial activity of the coating film can be easily made uniform.
  • the variation in the particle size of the ceramic composite powder contained in the paint becomes large. For this reason, since coarse particles having a large particle size are present in the coating film, the dispersion of the ceramic composite powder in the coating film becomes non-uniform, the coating film becomes cloudy and the transparency is lowered, and the antibacterial effect of the coating film is reduced.
  • the activity may be non-uniform.
  • the ceramic composite powder which is an antibacterial agent can be uniformly dispersed in the coating film, and the antibacterial property can be uniformly provided over the entire coating film. It can be expressed and the antibacterial activity value can be increased.
  • the haze of the coating film of the antibacterial coating material in the antibacterial coating material is not particularly limited, but can be 25 or less, preferably 20 or less, and more preferably 10 or less.
  • the haze of the coating film of the antibacterial paint is an index value based on the test method in JIS K 7136: 2000 “Plastic-How to determine the haze of transparent material”.
  • the haze is an index indicating the transparency / cloudiness of the coating film, and it can be said that the lower the haze, the higher the transparency. Generally, it can be measured with a haze meter.
  • the coating film of the antibacterial paint In order to reduce the haze of the coating film of the antibacterial paint to 25 or less, a highly transparent binder or the like is used, and the average particle size (volume average dispersed particle size) of the ceramic composite powder is made extremely larger than the wavelength of visible light. It is preferable that the size is a small Rayleigh scattering region (about 1/10 of the wavelength of light).
  • the antibacterial coating film By setting the haze of the coating film to 25 or less, the antibacterial coating film can be provided on articles such as touch panels that require transparency. Further, in an article such as a keyboard, an antibacterial coating film can be formed without hiding symbols and the like on the surface of the article. Further, since the coating film of the antibacterial coating film of the present invention is excellent in transparency, it is possible to easily form an antibacterial coating film colored to an arbitrary level by adding a colorant to the antibacterial coating film.
  • the antibacterial coating of the present invention satisfies the following requirements (1) and / or (2): (1)
  • the volume average dispersed particle diameter (D 50 ) is 250 nm or less, and the ratio D of the integrated volume 90% particle diameter (D 90 ) and the volume average dispersed particle diameter (D 50 ).
  • 90 / D 50 is 1.5 or less
  • the film thickness of the coating film is 80 ⁇ m or less, and the haze of the antibacterial coating film or the coating film (JIS K 7136: 2000 compliant) is 25 or less. In the present invention, it is particularly preferable to satisfy the requirements of (1) and (2).
  • the ceramic composite powder which is an antibacterial agent, can be uniformly dispersed in the coating film, the antibacterial properties can be uniformly exhibited in the entire coating film, and a coating film having a large antibacterial activity value is formed. It is possible to form a coating film having excellent transparency.
  • the reflection haze value of the coating film of the antibacterial coating material in the antibacterial coating material may be adjusted to be 50 to 600. It is preferably 100 to 600, more preferably 150 to 500.
  • the reflection haze value of the coating film of the antibacterial paint is based on the measuring method described in ASTM E430. Specifically, a luminous flux having a specified opening angle is incident on the sample surface at an incident angle of 20 degrees, and is reflected in a direction deviated by 0.9 degrees from the specular reflection direction in the forward and reverse directions. The luminous flux of the opening angle can be measured with a receiver and calculated from the measured value using a specific formula.
  • haze gloss (trade name; gloss meter manufactured by Gardner) or the like.
  • the reflection haze value 50 to 600, particularly 150 to 500, a coating film having excellent design can be formed, and in particular, a coating film having an aesthetic impression similar to lacquer ware can be formed.
  • the antibacterial paint of the present invention contains at least a ceramic composite powder containing a photocatalytic component, an adsorbent component and a metal component, and a binder.
  • the volume average dispersed particle diameter (D 50 ) of the ceramic composite powder in the antibacterial coating is 250 nm or less, and the ratio of the cumulative volume 90% particle diameter (D 90 ) of the ceramic composite powder to the volume average dispersed particle diameter (D 50 ).
  • D 90 / D 50 is 1.5 or less
  • "ceramic composite powder", "binder”, "volume average dispersed particle size” and "D 90 / D 50 " are the same as those described in the above "1 antibacterial coating material”.
  • an antibacterial coating material component containing at least a ceramic composite powder containing a photocatalytic component, an adsorbent component and a metal component and a binder is used in a disperser. Including the step of mixing
  • the volume average dispersed particle diameter (D 50 ) of the ceramic composite powder in the antibacterial coating is 250 nm or less, and the ratio of the integrated volume 90% particle diameter (D 90 ) of the ceramic composite powder to the volume average dispersed particle diameter (D 50 ).
  • Disperser As the disperser used in the mixing step, a disperser generally used in the production of paint can be used.
  • Dispersers include media-type dispersers such as ball mills, attritors, bead mills, and sand mills; shearing of planetary mixers, homomixers, dispersers, high-speed dispersers, homogenizers, roll mills, cone mills, colloid mills, kneaders, etc.
  • Type disperser One or more selected from the group consisting of a paint shaker, a wet jet mill, an ultrasonic disperser, and the like can be used.
  • a media type disperser When a media type disperser is used, one or more kinds of dispersion media selected from the group consisting of alumina, zirconia, glass, silica, ceramic and the like can be used. Preferably, one or more selected from the group consisting of media type dispersers such as ball mills, attritors, paint shakers, bead mills, and sand mills are used.
  • media type dispersers such as ball mills, attritors, paint shakers, bead mills, and sand mills are used.
  • the volume average dispersed particle size (D 50 ) of the ceramic composite powder in the antibacterial coating material is adjusted by adjusting the type of the disperser, the type / shape of the disperse media, the operating conditions of the disperser, and the like. It can be 250 nm or less. Further, the ratio of the integrated volume 90% particle diameter (D 90 ) to the volume average dispersed particle diameter (D 50 ) of the ceramic composite powder in the antibacterial paint, D 90 / D 50 is 1.5 or less. be able to. In the antibacterial paint produced in this way, the ceramic composite powder is dispersed in the paint without agglomeration, and it is considered that the ceramic composite powder is dispersed in the coating film in a substantially unchanged dispersed state. It is advantageous in terms of activity value.
  • the manufacturing method of the antibacterial coating material of the present invention is a manufacturing method of an antibacterial coating material having an antibacterial activity value of 2.0 or more, in which a coating material containing the antibacterial coating material is applied to a base material. is there.
  • the antibacterial paint used here is the same as that described in “2 Antibacterial paint” above.
  • the base material and the coating film forming method are the same as those described in “1 Antibacterial coating material” above.
  • Example 1 Photocatalyst 2.85% by mass of ceramic composite powder compounded with titanium dioxide, hydroxyapatite and silver, 14.29% by mass of binder containing hydroxyl group-containing acrylic resin (acrylic polyol) and polyisocyanate curing agent, ethyl acetate ( Solvent) was blended in an amount (remaining amount) of 100% by mass as a whole, and dispersed with a bead mill to prepare an antibacterial paint.
  • Examples 2 and 3 An antibacterial coating material was prepared in the same manner as in Example 1 except that the operating conditions for dispersing each component were changed using a bead mill.
  • Ceramic composite powder that is a composite of titanium dioxide, hydroxyapatite and silver, 14.29% by mass of binder, which is a paint containing a hydroxyl group-containing acrylic resin (acrylic polyol) and a polyisocyanate curing agent.
  • binder which is a paint containing a hydroxyl group-containing acrylic resin (acrylic polyol) and a polyisocyanate curing agent.
  • An amount (remaining amount) of ethyl acetate (solvent) to be 100% by mass as a whole was blended and dispersed with a bead mill to prepare an antibacterial paint.
  • test bacterial solution 0.4 mL of the test bacterial solution was inoculated on the sample sample, a coating film was placed on the sample, and the sample was allowed to stand at 35 ⁇ 1 ° C. and a relative humidity of 90% or more. Immediately after inoculation, 0.5 hours later.
  • viable cell vs. numerical value and the viable cell conversion value after 1, 1 hour, 2 hours, 4 hours, 6 hours and 24 hours were determined. Similarly, the viable cell log value and the viable cell conversion value were obtained for the unprocessed test piece (Control) containing no antibacterial agent and having no antibacterial property.
  • the antibacterial activity value (from the logarithmic value (Ut) of the viable cell count after 24 hours of the unprocessed test piece containing no antibacterial agent and having no antibacterial property to the logarithmic value of the viable cell count after 24 hours of the sample sample (
  • the antibacterial activity value R Ut-At, which is the value obtained by dividing At), was determined. The results are shown in Table 3.
  • Specimen sample (50 x 50 mm) which is an antibacterial coating product obtained from the antibacterial coatings of Examples 1 and 2 according to the film adhesion method based on JIS Z 2801: 2010 "Antibacterial processed product-antibacterial test method / antibacterial effect”. , Medium (1/500 NB medium), Escherichia coli NBRC 3972. The number of sample samples was 3. In the test, 0.4 mL of the test bacterial solution was inoculated on the sample sample, a coating film was placed on the sample, and the sample was allowed to stand at 35 ⁇ 1 ° C. and a relative humidity of 90% or more for 24 hours, and then the viable cell count was measured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Plant Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法を提供することを目的とする。解決手段として、光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含む抗菌塗料の塗膜を基材上に有し、塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上であり、さらに、下記(1)及び/又は(2)の要件を満たす抗菌塗装物を提供する:(1)抗菌塗料中のセラミックス複合粉体について、体積平均分散粒子径(D50)が250nm以下、積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下、(2)塗膜の膜厚が80μm以下、抗菌塗装物又は塗膜のヘーズ(JIS K 7136:2000準拠)が25以下。

Description

抗菌塗装物、抗菌塗料、抗菌塗料の製造法及び抗菌塗装物の製造法
 本発明は、塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法に関する。
 近年、医療機関、商業施設、学校、公共施設、食品工場、交通機関等において、感染症の発生・拡大防止等の衛生上の観点から、手すり、操作ボタン等の不特定多数の人が触れる物品等や、携帯通信端末、キーボード、マウス、タッチパネル等の手指で直接触れる物品等に、抗菌性能を付与するニーズが増加している。
 物品等に付着した雑菌の増加又は繁殖を抑制する、一般的な基準の抗菌性能を付与する技術は、各種のものが公知である。このうち、抗菌塗料を塗布し抗菌塗装物を構成する技術は、後加工により手軽に抗菌性能を付与することができ、複雑な形状の物品の表面であっても抗菌性能を付与し得るものである。
 これまでの抗菌塗装物は、抗菌剤を塗膜表面全体に均一分散させることが困難で、抗菌剤が存在していない部分は抗菌作用が発揮されないという問題があった。
 また、比重の重い抗菌剤を用いた場合、通常の塗装法では塗膜中に抗菌剤が沈降して塗膜表面の抗菌剤が希薄になり、比重が軽い抗菌剤を用いた場合や特殊な塗装法で抗菌剤を塗膜表層に偏在させた場合、塗膜下層の抗菌剤が希薄になるため、長期間安定して抗菌性能を発揮することが困難であった。
 塗膜から抗菌剤を溶出させて、塗膜表面に抗菌性を付与する技術も開発されている。しかし、溶出開始まで時間を要する、溶出量が安定しない、溶出の終了がわかりづらい、溶出した抗菌剤に起因してかぶれ等の皮膚障害が起きる懸念がある等の問題があった。
 医療機関では、院内感染防止のため、不特定多数の人が触れる物品等だけではなく、医療関係者が使用するパソコン、電子カルテ、医療機器、携帯通信端末等の操作ボタン、キーボード、マウス、タッチパネル、筐体等を、抗菌活性値2.0以上の抗菌仕様とするニーズが存在している。さらに、抗菌活性値2.0以上の抗菌性能仕様に加えて、後加工により容易に抗菌性能を長期間付与でき、化学物質過敏症(シックハウス症候群)に対応でき、抗菌加工部分が高度な透明性を有し、悪臭除去機能を有し、透明性を有しつつ抗菌加工部を可視化でき、抗菌加工部の外観に清潔感を有する、等のニーズも存在している。
 抗菌性能、化学物質過敏症対応、悪臭防止機能等の観点から、光触媒化合物を含む抗菌塗膜を表面に形成した抗菌塗装物も実用化されている。しかし、通常の光触媒化合物は、紫外光の照射により光触媒効果が発現するものであり、屋内環境では十分な光触媒効果を発現させることが困難である。可視光応答型光触媒も開発されているが、励起波長の範囲が狭く、一般的な屋内照明下では十分な光触媒効果の発現が得られない。また、光触媒化合物を含む塗膜は、通常は白色であり透明性が悪いという問題点もある。
 抗菌塗料・抗菌塗装物に関する先行技術として、例えば、特許文献1~4がある。
 特許文献1には、メジアン径D50が特定範囲のアパタイト被覆光触媒二酸化チタン粒子と、平均粒子径D50が特定範囲の銀粒子とを含み、銀粒子の少なくとも一部がアパタイト被覆光触媒二酸化チタン粒子のアパタイトに担持されている水系塗料を塗布した抗菌塗装物が開示されている。具体的には、D50が0.2423μmのアパタイト被覆光触媒二酸化チタン粒子分散液と、D50が48nmのナノ銀粒子分散体と、バインダー等の成分とを混合し撹拌して得られる水系塗料を塗布した抗菌塗装物が開示されている。しかし、銀粒子が担持されているアパタイト被覆光触媒二酸化チタン粒子の分散粒子径や塗膜の抗菌活性値は開示されていない。また、その製造法から、担持されなかった遊離の銀粒子に起因して、塗膜が着色する等の問題が予測され、塗膜の透明性や耐摩耗性も何ら考慮されていない。
 特許文献2には、銀粒子を担持したリン酸カルシウム(ハイドロキシアパタイト)被覆アナターゼ型酸化チタン等の、表面に金属粒子が担持されている光触媒を無機吸着剤で被覆してなる複合材料と、樹脂バインダーと、を含有する塗料を塗布して得られる殺菌フィルムにおいて、複合材料を構成する各成分の粒径をそれぞれ特定の範囲とすることが開示されている。しかし、塗料(塗膜)中における、複合材料自体の分散粒子径や塗膜の抗菌活性値は何も開示されていない。
 特許文献3には、光触媒二酸化チタン等のセラミック粒子に、所定の方法により銀等の金属粒子を結合して製造された殺菌剤であって、ハイドロキシアパタイト等の吸着材をさらに含んでなる殺菌剤を含む塗料が記載されている。しかしながら、吸着材を含んでなる殺菌剤(金属粒子を結合したセラミック粒子)の塗料中での分散粒子径や塗膜の抗菌活性値は何ら開示されていない。
 特許文献4には、特定の有機溶媒中に、粒子表面に脂肪酸成分が結合された平均粒径が100nm以下の銀超微粒子を含有する、透過率が90%以上である塗料を塗布した抗菌塗装物であって、塗膜の抗菌活性値が2.0以上である抗菌塗装物が記載されている。
 しかし、この抗菌塗装物は、銀微粒子に基づく殺菌作用を用いるものである。
特許第5207744号公報 特開2014-065182号公報 特開2014-040416号公報 特開2017-128809号公報
 本発明は、塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法を提供することを目的とする。
 また、本発明は、塗膜の前記抗菌活性値が2.0以上であり、塗膜の透明性に優れる、抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法を提供することを目的とする。
 さらに、本発明は、抗菌処理が必要な物品等の表面を塗装するだけで、前記抗菌活性値が2.0以上である抗菌処理が行われた、抗菌塗装物を構成することができ、しかも、抗菌成分の溶出による皮膚障害等が起きず、塗膜形成直後から長期にわたり抗菌効果を発現させることができる抗菌塗料、該抗菌塗料の製造法、該抗菌塗料を用いた抗菌塗装物、及び、抗菌塗装物の製造法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。
 そして、光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーとを含む抗菌塗料、該抗菌塗料を含む塗料の塗膜を基材上に有し、特定の要件を満たす抗菌塗装物により、上記の課題を解決できることを見出した。
 具体的には、以下に示すとおりである。
[1]光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含む抗菌塗料の塗膜を基材上に有し、塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上であり、さらに、下記(1)及び/又は(2)の要件を満たす抗菌塗装物:
(1)抗菌塗料中のセラミックス複合粉体について、体積平均分散粒子径(D50)が250nm以下、積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下、
(2)塗膜の膜厚が80μm以下、抗菌塗装物又は塗膜のヘーズ(JIS K 7136:2000準拠)が25以下。
[2]光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含み、
 抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)が250nm以下、セラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下であり、
 塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗料。
[3]光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含む抗菌塗料構成成分を、分散機を用いて混合する工程を含み、
 抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)を250nm以下、セラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50を1.5以下とする、
 塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗料の製造法。
[4][2]の抗菌塗料を含有する塗料を基材に塗装する、塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である抗菌塗装物の製造法。
 本発明により、塗膜の前記抗菌活性値が2.0以上である、抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法が提供される。
 また、本発明により、塗膜の前記抗菌活性値が2.0以上で透明性に優れる、抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法が提供される。本発明の塗膜は、透明性に優れることから、視認性等が必要な無色透明塗膜だけでなく、任意に着色された塗膜とすることができる。
 さらに、本発明により、抗菌処理が必要な物品等の表面を塗装するだけで、前記抗菌活性値が2.0以上である抗菌処理が行われた、抗菌塗装物を構成することができ、しかも、抗菌成分の溶出による皮膚障害等が起きず、塗膜形成直後から長期にわたり抗菌効果を発現させることができる抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法が提供される。
 本発明の抗菌塗装物は、塗膜中に光触媒成分と吸着剤成分とを含むから、化学物質過敏症(シックハウス症候群)の原因物質の吸着・分解等や悪臭除去機能等を備える。
 本発明の実施形態について説明する。なお、本発明は、以下の実施形態及び実施態様に限定されず、適宜変更を加えて実施することができる。
 本明細書において、抗菌活性値は、JIS Z 2801:2010準拠の指標値を、ヘーズは、JIS K 7136:2000準拠の指標値を、それぞれ意味する。
1 抗菌塗装物
 本発明の抗菌塗装物は、光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含む抗菌塗料の塗膜を基材上に有し、塗膜の抗菌活性値が2.0以上であり、さらに、下記(1)及び/又は(2)の要件:
(1)抗菌塗料中のセラミックス複合粉体について、体積平均分散粒子径(D50)が250nm以下、積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下、
(2)塗膜の膜厚が80μm以下、抗菌塗装物又は塗膜のヘーズが25以下
を満たす抗菌塗装物である。
[抗菌塗料]
<セラミックス複合粉体>
(光触媒成分)
 光触媒成分は、紫外光や可視光等の光を吸収して光触媒作用を示す物質である。光の吸収により光触媒中に生じた励起電子と正孔が、それぞれ還元作用と酸化作用を発揮して反応が開始され、吸着剤の表面に吸着された有機物や細菌が分解される。
 光触媒成分は、金属酸化物、金属酸窒化物、各種の半導体化合物等で光触媒活性を示す化合物である。例えば、酸化チタン、過酸化チタン、酸化バナジウム、酸化鉄、酸化銅、酸化亜鉛、酸化タングステン、酸化ニオブ、酸化錫、酸化ガリウム、チタン酸アルカリ(土類)金属塩等からなる群より選ばれる1種以上があげられるが特に限定されない。また、光触媒活性を示す化合物に、V、Cr、Mn、Fe、Co、Ni、Cu、Nb、Ru、Rh、Pd、Ag、Ir、Pt、Au、B、C、N、ハロゲン(F等)、P、S等からなる群より選ばれる1種以上の元素をドーピングしたものでもよい。光触媒成分は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 好ましくは、前記の元素でドーピングされていてもよい、アナターゼ型酸化チタン、酸化亜鉛及び酸化タングステンからなる群より選ばれる1種以上が用いられる。特に好ましくは、前記の元素でドーピングされていてもよい、アナターゼ型酸化チタン及び酸化亜鉛からなる群より選ばれる1種以上が用いられる。
(吸着剤成分)
 吸着剤成分は、有機物や細菌等を表面に吸着する作用を示す物質である。吸着された有機物や細菌等は、セラミックス複合粉体を構成する光触媒化合物及び/又は金属の作用により分解又は殺菌されることとなる。
 吸着剤成分は、無機系、有機系、有機無機複合系、天然物系のいずれでもよい。例えば、アパタイト、ハイドロキシアパタイト、ハロゲン化アパタイト、金属修飾アパタイト、リン酸三カルシウム、リン酸水素カルシウム等のリン酸カルシウム系;珪藻土、ゼオライト、セピオライト、多孔質シリカ等のケイ酸塩又はアルミのケイ酸塩系;活性炭、カーボンナノチューブ等の炭素系;酸化タングステン、酸化ニオブ、酸化亜鉛、酸化錫、多孔質ガラス等の金属酸化物系;チタン酸ストロンチウム等のチタン酸塩系;EDTA等のキレート化合物系、ポリスチレンスルホン酸系樹脂やNAFION(登録商標)等のイオン交換樹脂系等からなる群より選ばれる1種以上があげられるが特に限定されない。吸着剤成分は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 好ましくは、アパタイト、ハイドロキシアパタイト、珪藻土、ゼオライト、活性炭及びシリカからなる群より選ばれる1種以上が用いられる。特に好ましくは、アパタイト、ハイドロキシアパタイト及びゼオライトからなる群より選ばれる1種以上が用いられる。
(金属成分)
 金属成分は、細菌と接触することで殺菌作用・抗菌作用を発揮するもので、金属単体、金属イオン又はこれらを形成し得る前駆体(例えば、金属塩、金属酸化物等)のいずれかである。好ましくは、金属単体又は金属イオン、より好ましくは、金属単体である。
 金属成分の金属は、通常は遷移金属であって、例えば、金、銀、銅、亜鉛、白金、鉄、ニッケル、クロム、コバルト、マンガン、ロジウム、パラジウム、ルテニウム及びイリジウム等からなる群より選ばれる1種以上があげられるが特に限定されない。金属成分は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 好ましくは、銀、銅、白金及びニッケルからなる群より選ばれる1種以上が用いられる。特に好ましくは、銀及び銅からなる群より選ばれる1種以上が用いられる。
(セラミックス複合粉体の形態)
 セラミックス複合粉体は、前記の光触媒成分、吸着剤成分及び金属成分をそれぞれ任意に組み合わせて複合化して得られた粉体である。複合化に際して、必要に応じて公知の結着材等を用いることもできる。
 セラミックス複合粉体は、1種のみを用いてもよく、2種以上を組み合わせて用いてもよい。
 セラミックス複合粉体として、好ましくは、光触媒成分が光触媒二酸化チタン及び/又は光触媒酸化亜鉛であり、吸着剤成分がハイドロキシアパタイト及び/又はアパタイトであり、金属成分が銀及び/又は銅であるものが用いられる。
 セラミックス複合粉体における複合化形態は任意のものでよく、例えば、(1)光触媒成分、吸着剤成分及び金属成分がそれぞれ互いに結合したもの、(2)光触媒成分の表面の一部が吸着剤成分及び金属成分で被覆されたもの、(3)光触媒成分と金属成分との結合体の表面の一部が吸着剤成分で被覆されたもの、(4)光触媒成分の表面の一部が吸着剤成分で被覆され、その表面の一部が金属成分で被覆されたもの、(5)吸着剤成分に光触媒成分と金属成分とが吸着されたもの、等からなる群から選ばれる1種以上があげられるが特に限定されない。
(セラミックス複合粉体の組成)
 光触媒成分、吸着剤成分及び金属成分の各量比は、所望の特性等に応じて調整できる。
 光触媒成分は、セラミックス複合粉体全体に対して0.01~99.9質量%、好ましくは1~99質量%、より好ましくは1~90質量%、最も好ましくは20~90質量%とすることができる。
 吸着剤成分は、セラミックス複合粉体全体に対して0.01~99.9質量%、好ましくは0.5~90質量%、より好ましくは1~80質量%、最も好ましくは5~75質量%とすることができる。
 金属成分は、セラミックス複合粉体全体に対して0.01~99.9質量%、好ましくは1~99質量%、より好ましくは3~95質量%、より好ましくは5~75質量%とすることができる。
(セラミックス複合粉体の調製)
 セラミックス複合粉体は、公知の方法で調製してもよく、市販品を用いてもよい。
 セラミックス複合粉体の調製方法としては、例えば、粉末状及び/又は分散液状の前記光触媒成分と、粉末状及び/又は分散液状の前記吸着剤成分と、粉末状及び/又は分散液状の前記金属成分とを、混合し、必要に応じて温度及び/又は圧力を調整し、必要に応じて各種混合装置を用い、各成分を複合化する方法等からなる群から選ばれる1種以上があげられるが特に限定されない。
 各種混合装置としては、例えば、ペイントシェーカー、バタフライミキサー、プラネタリーミキサー、ポニーミキサー、ディゾルバー、タンクミキサー、ホモミキサー、ホモディスパー等のミキサー、アトライター、ロールミル、サンドミル、ボールミル、ビーズミル、ラインミル、超音波ミル、ダイノミル、ショットミル等のミル、ニーダー、混合混錬機、高圧衝突分散機等があげられる。
 複合化する際の各成分の混合順序や量は、適宜設定できる。例えば、(1)粉末状及び/又は分散液状の前記光触媒成分と、粉末状及び/又は分散液状の前記吸着剤成分と、粉末状及び/又は分散液状の前記金属成分とを、すべて同時に混合する、(2)任意の2成分を混合してからその余の成分を混合する、(3)任意の1成分の一部または全部と、任意の1成分の一部または全部とを混合してからその余の成分を混合する、等の方法等があげられる。また、1種類の混合装置によって1回又は複数回混合処理してもよく、2種以上の混合装置を併用して複数回混合処理してもよい。必要であれば、さらに液体成分や各種添加剤成分を加え、必要であれば前記混合装置のいずれかを用いて混合してもよい。
 セラミックス複合粉体又はセラミックス複合粉体を含む製品の市販品としては、例えば、アパテック(丸武産業社製)、アースプラス(信州セラミックス社製)、スーパールミチタンパウダー(ササミック社製)等があげられる。
(セラミックス複合粉体の含有量)
 セラミックス複合粉体の抗菌塗料中の含有量は、特に限定されないが、抗菌性、分散性、塗料の生産性等の観点から、抗菌塗料全体に対して0.1~30質量%、好ましくは0.5~15質量%、より好ましくは1~10質量%、さらに好ましくは1~5質量%とすることができる。また、抗菌塗料の固形分比率で1~95質量%、好ましくは1~50質量%、より好ましくは3~30質量%、さらに好ましくは5~20質量%とすることができる。セラミックス複合粉体の含有量が多すぎると、塗膜の強度やコストの点で不利となるおそれがあり、含有量が少なすぎると、所期の抗菌活性が得られないおそれがある。
<バインダー>
 バインダー(結合剤)は、塗料の成分として公知のバインダーであればいずれでもよく、無機系及び/又は有機系のバインダーが用いられる。バインダーは、前記セラミックス複合粉体を塗膜中に固定する作用等を有する。バインダーの形態としては、溶剤型、エマルジョン(分散体)型、無溶剤型、1液型、多液型、粉体型のいずれでもよい。
 無機系バインダーは、例えば、シリカバインダー、ジルコニアバインダー、アルミナバインダー、チタニアバインダー、水ガラス(ケイ酸ソーダ、ケイ酸カリウム、ケイ酸リチウム)等からなる群より選ばれる1種以上があげられるが特に限定されない。
 有機系バインダーとしては、例えば、(メタ)アクリル系、スチレン系、酢酸ビニル系、ゴム系、塩化ビニル系、ビニルアルコール系、ポリオレフィン系、ポリエステル系、フッ素樹脂系、シリコーン系、ウレタン系、エポキシ系、コアシェルポリマー系、エチレン性不飽和結合を有する硬化性化合物系((メタ)アクリレートモノマー系、ビニル系モノマー系等)等からなる群より選ばれる1種以上があげられるが特に限定されない。
 有機系バインダーは、塗料分野で使用されている硬化剤をさらに含んでいてもよい。硬化剤としては、例えば、ポリイソシアネート化合物、ポリオール化合物、ポリカルボン酸化合物、メラミン化合物、エポキシ化合物、アルデヒド化合物、アジリジン化合物等からなる群より選ばれる1種以上があげられるが特に限定されない。
 バインダーとして、好ましくは、硬化剤を含んでいてもよい、(メタ)アクリル系、ポリエステル系、フッ素樹脂系、シリコーン系、ウレタン系、エポキシ系、アクリレートモノマー系等からなる群より選ばれる1種以上が用いられる。特に好ましくは、硬化剤を含んでいてもよい、(メタ)アクリル系、ウレタン系、フッ素樹脂系、アクリレートモノマー系からなる群より選ばれる1種以上が用いられる。
 バインダーの含有量は、抗菌性、分散性、塗膜形成性等の観点から、抗菌塗料全体に対して1~50質量%、好ましくは5~40質量%、より好ましくは10~30質量%とすることができる。また、抗菌塗料の固形分比率で50~99質量%、好ましくは70~97質量%、好ましくは80~95質量%とすることができる。バインダーの含有量が多すぎると、所期の抗菌活性が得られず、塗膜の強度やコストの点で不利となるおそれがあり、含有量が少なすぎると、所期の抗菌活性が得られず、塗膜の強度や分散性の点で問題が生じるおそれがある。
<その他の成分>
 抗菌塗装物を構成する抗菌塗料には、さらに要求される目的等に応じて、塗料を形成するために用いられている各種成分を添加して用いてもよい。例えば、溶剤、着色剤、体質顔料等の充填剤、粘度調整剤、前記セラミックス複合粉体以外の殺菌・防黴剤、表面調整剤、分散剤、界面活性剤、紫外線吸収剤、光安定化剤、消泡剤等があげられるが特に限定されない。各成分の含有量は、添加目的等に応じて、任意に調整することができる。
 溶剤としては、特に限定されず、粘度調整や希釈等を目的として、水、有機溶剤、二酸化炭素等からなる群より選ばれる1種以上が用いられる。
 有機溶剤は、例えば、エタノール、プロパノール、ブタノール等のアルコール系;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン系;塩化メチレン等のハロゲン化炭化水素系;ベンゼン、トルエン、キシレン等の芳香族炭化水素系;メチルピロリドン、ジメチルアセトアミド等のアミド系;酢酸エチル、酢酸ブチル等のエステル系;ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系;エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系;γ―ブチロラクトン等の環状エステル系;ミネラルスピリット等の脂肪族炭化水素系;等の溶剤からなる群より選ばれる1種以上があげられるが特に限定されない。
 着色剤としては、特に限定されず、塗膜に所望の色調を付与することを目的として、例えば、赤、青、黄、緑、紫、黒、白、橙、茶等からなる群より選ばれる1種以上の色を有する、無機着色顔料、有機着色顔料、蛍光顔料、光輝顔料、着色樹脂粒子、染料等からなる群より選ばれる1種以上が用いられる。このうち、顔料は、少なくとも1種の親水性基又は親油性基が顔料の表面に直接又は種々の原子団により結合している自己分散型のものであってもよく、顔料の表面を種々の表面改質剤で改質したものであってもよい。
 体質顔料等の充填剤としては、例えば、タルク、マイカ、硫酸バリウム、クレー、炭酸カルシウム、カオリン、シリカ、ベントナイト、炭酸バリウム、ジルコニア、アルミナ等からなる群より選ばれる1種以上があげられるが特に限定されない。また、顔料の表面を種々の表面改質剤で改質したものであってもよい。
 粘度調整剤としては、例えば、セルロース系、ポリアミン系、デンプン系、アルギン酸系、脂肪酸エステル系、ポリビニルアルコール系、ポリアクリル酸(塩)系等の化合物からなる群より選ばれる1種以上があげられるが特に限定されない。
 その他の成分のうち、前記セラミックス複合粉体以外の殺菌・防黴剤としては、例えば、デヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオン-1-オキサイド、p-ヒドロキシ安息香酸エチルエステル、1,2-ベンズイソチアゾリン-3-オン及びその塩等からなる群より選ばれる1種以上があげられるが特に限定されない。
[基材]
 抗菌塗料が塗装される基材としては、抗菌性能を付与したいものであって、塗料を塗装できるものであればどのようなものでもよい。
 基材を構成する素材としては、特に限定されないが、例えば、鉄、アルミニウム等の金属、ガラス、コンクリート、各種プラスチック、紙、木材等があげられ、これらの1種以上を含む積層体、組成物等の複合材、塗装面でもよい。
 抗菌塗装物を構成する基材としては、特に限定されないが、例えば、医療機関、商業施設、学校、公共施設、食品工場等、さらには、介護現場、調理現場、飲食料品関連現場、交通機関(船、飛行機、バス、鉄道等)、自動車の車内等に設置されている及び/又は使用される各種の物品、生活用品、衛生機器、医療機器、歯科医療機器、人が触れる各種物品・部位、菌が付着する可能性がある各種物品・部位等があげられる。
 このような物品等としては、例えば、ドア、ドアノブ、手すり、ハンドル、壁、床、ガラス、建材、テーブル、いす、家電、筆記具、文房具、事務用品、医療機器、押しボタン、パソコン、キーボード、マウス、タッチパネル、携帯通信機器、電子カルテ、表示装置、机、引き出し、ファイル、名札・表示板、操作ボタン、スイッチ、ディスプレイ、リモコン、遊具、ゲーム機、生活用品、調理器具、食器、喫煙具、各種容器、清掃用具、内装材、自動車内装物品、自動車部品、車載物品、便器、トイレ内装物品、船内物品、飛行機内装物品、これらの周辺物品等があげられる。
[塗膜形成方法]
 塗膜形成方法としては、物品・基材等の形状やその用途等に応じて、塗料の塗膜を物品・基材等の上に設けるための一般的な方法を採用することができる。例えば、エアスプレー、エアレススプレー、静電、回転霧化、ハケ、ローラー、ハンドガン、万能ガン、浸漬、ロールコーター、カーテンフローコーター、ローラーカーテンコーター、ダイコーター、インクジェット等からなる群より選ばれる1種以上があげられるが特に限定されない。
好ましくは、エアスプレー、エアレススプレー、静電、回転霧化、ハケ、ハンドガン、万能ガン、インクジェットからなる群より選ばれる1種以上があげられる。
 抗菌塗料を基材に塗装する際、油等の汚染物質で塗装面が汚染されている場合は、アルコール等で脱脂・清浄化するのが好ましい。基材と塗膜との間の付着性、耐食性を改善するために、粗面化処理、プラズマ処理、火炎処理、プライマー処理等の公知の表面処理を行ってもよい。
 抗菌塗料を塗装後、常温乾燥又は強制乾燥等の手段で塗膜を乾燥させて塗装物を形成してもよい。常温乾燥の場合は、常温(例えば、10~40℃未満)で静置すればよい。強制乾燥の場合は、ブロアー等を用いて乾燥してもよく、常温を超える温度、例えば50℃以上で1分以上加熱することで焼付け乾燥してもよい。また、バインダーが硬化性のものである場合には、紫外線等のエネルギー線や熱により硬化してもよい。仕上り性の点から、乾燥や硬化前に予め常温でセッティング(静置)してもよい。
 塗膜形成に際しては、1回の塗装で設けてもよく、2回以上の塗装で設けてもよい。2回以上の塗装を行う場合には、途中で乾燥工程を設けてもよく、また、途中で乾燥工程を設けることなくWet on Wetで行ってもよく、これらを組み合わせてもよい。
[塗膜の膜厚]
 抗菌塗装物において、抗菌塗料により形成される塗膜の厚さ(乾燥膜厚)は、特に限定されず、用途等に合わせて適宜調整することができる。例えば、乾燥膜厚で0.1~1000μmとすることができ、80μm以下、好ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは1~20μmの範囲内とすることができる。
 乾燥膜厚を80μm以下とすることで、抗菌塗装物における塗膜の透明性をより高くすることができる。また、キーボード等の可動部を有する物品に塗膜を設けた場合であっても、可動部に影響を与えることなく抗菌塗膜を形成することができる。
 乾燥塗膜が100μm超の場合、コストや透明性等の点で不利になるおそれがある。
 乾燥膜厚が1μm未満の場合、高度な塗装技術を必要とし、コストの点で不利になるおそれがある。
[抗菌活性値]
 本発明において、抗菌塗装物における抗菌塗料の塗膜の抗菌活性値は、2.0以上である。抗菌活性値4.0以上、場合により抗菌活性値6.0以上とすることもできる。
 本発明における抗菌活性値は、JIS Z 2801:2010「抗菌加工製品―抗菌性試験方法・抗菌効果」における試験方法に準拠した指標値である。
 抗菌活性値は、抗菌加工製品と無加工製品とに所定の細菌を接種し24時間培養した後、両者の生菌数の対数値の平均値の差として求められる値であって、抗菌活性値が2.0以上のとき抗菌効果があるとされる。
 本発明は、抗菌処理が必要な物品等の表面を塗装するだけで、抗菌活性値が2.0以上である抗菌処理が行われた、抗菌塗装物を構成することができる。しかも、抗菌成分の溶出による皮膚障害等が起きず、塗膜形成直後から長期にわたり抗菌効果を発現させることができる抗菌塗装物、抗菌塗料、抗菌塗料の製造法、及び、抗菌塗装物の製造法が提供される。特に、医療現場等で用いられている各種機材や設備品等を、本発明の抗菌塗料で塗装する後加工だけで、容易に抗菌活性値2.0以上の抗菌仕様とすることができる。
[体積平均分散粒子径]
 本発明において、抗菌塗装物における塗膜を構成する抗菌塗料中の、セラミックス複合粉体の体積平均分散粒子径(D50)は、特に限定されないが、250nm以下、好ましくは30~220nm以下、より好ましくは50~210nmとすることができる。
 セラミックス複合粉体の体積平均分散粒子径(D50)が250nmを超えると、塗料の保存安定性の低下、塗料や塗膜中での分散の不均一化、塗料や塗膜の白濁による透明性の低下、塗膜の抗菌性能の低下等のおそれがある。一方、体積平均分散粒子径(D50)を30nm未満とするには高度な分散技術が必要となり、コストの点等で問題が生じる。
 体積平均分散粒子径が100~250nmの場合、セラミックス複合粉体の素材色に基づき、わずかに着色した微着色透明塗膜を構成することが可能である。このような微着色透明塗膜は、基材表面の文字や模様等の視認性を妨げることなく、清潔感のある抗菌塗装物とすることができ、塗膜の存在を容易に把握できることから、抗菌処理をアピールする効果もある。
 また、体積平均分散粒子径を100nm未満とすると、無色透明塗膜を形成することができ、着色を嫌う基材に適用することが可能である。また、着色剤を用いることで、任意の色調の塗膜を容易に構成することができる。
[積算体積90%粒子径と体積平均分散粒子径との比、D90/D50
 抗菌塗装物を構成する抗菌塗料中におけるセラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比、D90/D50は、1.5以下、好ましくは1.3以下、より好ましくは1.2以下とすることができる。
 D90/D50が1.0に近づくと、粒子径分布がシャープとなり、粒子径が均一に近くなる。これにより、塗膜中に微細なセラミックス複合粉体が均一に分散することが可能となり、塗膜の透明性が向上し、塗膜の抗菌活性を均一にすることが容易にできる。D90/D50が1.5を超えると、塗料中に含まれるセラミックス複合粉体の粒子径のばらつきが大きくなる。このため、塗膜中に粒径の大きい粗大粒子が存在するため、セラミックス複合粉体の塗膜中での分散が不均一となり、塗膜が白濁して透明性が低下し、塗膜の抗菌活性が不均一になるおそれがある。
 本発明において、D90/D50を1.5以下とすることにより、抗菌剤であるセラミックス複合粉体を塗膜中に均一に分散させることが可能となり、塗膜全体に均一に抗菌特性を発現させることができ、抗菌活性値を大きくすることができる。
[ヘーズ]
 本発明において、抗菌塗装物における抗菌塗料の塗膜のヘーズは、特に限定されないが、25以下、好ましくは20以下、さらに好ましくは10以下とすることができる。
 本発明において、抗菌塗料の塗膜のヘーズは、JIS K 7136:2000「プラスチック-透明材料のヘーズの求め方」における試験方法に準拠した指標値である。ヘーズは、塗膜の透明度/曇度を示す指標であり、ヘーズが低いと透明度が高いといえる。一般的にはヘーズメーターにより測定することができる。
 抗菌塗料の塗膜のヘーズを25以下とするためには、透明性の高いバインダー等を用いるとともに、セラミックス複合粉体の平均粒子径(体積平均分散粒子径)を、可視光の波長より極端に小さいRayleigh散乱領域(光の波長の約1/10)の大きさとすることが好ましい。
 塗膜のヘーズを25以下とすることで、タッチパネル等の透明性が求められる物品等にも抗菌塗膜を設けることができる。また、キーボード等の物品等において、物品表面にある記号等を隠すことなく、抗菌塗膜を形成することができる。
 また、本発明の抗菌塗料の塗膜は、透明性に優れることから、抗菌塗料に着色剤を配合することにより、任意のレベルに着色した抗菌塗膜を容易に構成することもできる。
[(1)及び/又は(2)の要件]
 本発明の抗菌塗装物は、下記(1)及び/又は(2)の要件を満たす:
(1)抗菌塗料中のセラミックス複合粉体について、体積平均分散粒子径(D50)が250nm以下、積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下、
(2)塗膜の膜厚が80μm以下、抗菌塗装物又は塗膜のヘーズ(JIS K 7136:2000準拠)が25以下。
 本発明においては、(1)及び(2)の要件を満たすことが特に好ましい。これにより、抗菌剤であるセラミックス複合粉体を塗膜中に均一に分散させることが可能となり、塗膜全体に均一に抗菌特性を発現させることができ、抗菌活性値が大きい塗膜を形成することが可能となるとともに、透明性に優れた塗膜を形成することができる。
[反射ヘーズ値]
 本発明においては、抗菌塗装物における抗菌塗料の塗膜の反射ヘーズ値が、50~600となるように調整してもよい。好ましくは100~600、より好ましくは150~500である。
 本発明において、抗菌塗料の塗膜の反射ヘーズ値は、ASTM E430に記載されている測定方法に準拠したものである。具体的には、試料面に対して20度の入射角で、規定された開き角の光束を入射し、鏡面反射方向から正方向と逆方向にそれぞれ0.9度ずれた方向に反射する一定の開き角の光束を受光器で測定し、測定値から特定の計算式を使用して算出することができる。一般的には、ヘーズグロス(商品名;ガードナー社製の光沢計)等を用いて測定することができる。
 反射ヘーズ値を50~600、特に150~500とすることにより、意匠性に優れた塗膜を形成することができ、特に、漆器に似た美感を有する塗膜を形成できる。
2 抗菌塗料
 本発明の抗菌塗料は、光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含み、
 抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)が250nm以下、セラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下であり、
 塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗料である。
 ここで、「セラミックス複合粉体」、「バインダー」、「体積平均分散粒子径」及び「D90/D50」は、前記「1 抗菌塗料」に記載したのと同じである。
3 抗菌塗料の製造法
 本発明の抗菌塗料の製造法は、光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含む抗菌塗料構成成分を、分散機を用いて混合する工程を含み、
 抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)を250nm以下、セラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50を1.5以下とする、
 塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗料の製造法である。
 ここで、「セラミックス複合粉体」、「バインダー」、「体積平均分散粒子径」及び「D90/D50」は、前記「1 抗菌塗料」に記載したのと同じである。
 混合する工程で用いられる分散機としては、塗料の製造に一般的に用いられている分散機を用いることができる。分散機としては、例えば、ボールミル、アトライター、ビーズミル、サンドミル等のメディア型分散機;プラネタリーミキサー、ホモミキサー、ディスパー、ハイスピード・ディスパーサー、ホモジナイザー、ロールミル、コーンミル、コロイドミル、ニーダー等のせん断型分散機;ペイントシェーカー、湿式ジェットミル、超音波分散機等からなる群より選ばれる1種以上を用いることができる。なお、メディア型分散機を用いる場合には、アルミナ、ジルコニア、ガラス、シリカ、セラミック等からなる群より選ばれる1種以上の分散メディアを用いることができる。
 好ましくは、ボールミル、アトライター、ペイントシェーカー、ビーズミル、サンドミル等のメディア型分散機等からなる群より選ばれる1種以上が用いられる。
 本発明においては、分散機の種類、分散メディアの種類・形状、分散機の運転条件等を調整することにより、抗菌塗料中における、前記セラミックス複合粉体の体積平均分散粒子径(D50)を250nm以下とすることができる。また、前記抗菌塗料中における、前記セラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比、D90/D50を1.5以下とすることができる。
 このように製造された抗菌塗料は、セラミックス複合粉体が塗料中で凝集することなく分散しており、実質的にそのままの分散状態で塗膜中に分散すると考えられることから、透明性及び抗菌活性値の点で有利である。
4 抗菌塗装物の製造法
 本発明の抗菌塗料の製造法は、抗菌塗料を含有する塗料を基材に塗装する、塗膜の抗菌活性値が2.0以上である抗菌塗装物の製造法である。
 ここで用いられる抗菌塗料は、前記「2 抗菌塗料」に記載したのと同じものである。
 また、基材及び塗膜形成方法については、前記「1 抗菌塗装物」に記載したのと同じものである。
 以下、実施例をあげて本発明をより詳細に説明するが、本発明は実施例に限定されるものではない。なお、実施例及び比較例において、抗菌塗料の特性等及び塗膜の特性等の測定・評価は、以下に示す方法で測定した。
(粒子径)
 動的光散乱式粒径分布測定装置(堀場製作所社製LB-550)を用いて、抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)及び積算体積90%粒子径(D90)を測定した。
(保存安定性)
 抗菌塗料を、25℃で1週間放置した後に目視により観察し以下の基準で評価した。
 〇:沈殿が生じていない
 ×:沈殿が生じる
(塗膜外観)
 塗膜外観を、目視により観察し以下の基準で評価した。
 〇 :無色透明で濁りがなく良好
 〇青:わずかに青色に着色しているが濁りがなく良好
 × :白濁している
<抗菌塗料の調製>
(実施例1)
 光触媒二酸化チタン、ハイドロキシアパタイト及び銀を複合化したセラミックス複合粉体を2.85質量%、水酸基含有アクリル樹脂(アクリルポリオール)とポリイソシアネート硬化剤とを含むバインダーを14.29質量%、酢酸エチル(溶剤)を全体で100質量%となる量(残量)配合し、ビーズミルで分散して抗菌塗料を調製した。
(実施例2、3)
 ビーズミルを用いて各成分を分散させる際の運転条件を変えたほかは実施例1と同様にして抗菌塗料を調製した。
(比較例1)
 光触媒二酸化チタン、ハイドロキシアパタイト及び銀を複合化したセラミックス複合粉体を5.70質量%、水酸基含有アクリル樹脂(アクリルポリオール)とポリイソシアネート硬化剤とを含む塗料であるバインダーを14.29質量%、酢酸エチル(溶剤)を全体で100質量%となる量(残量)配合し、ビーズミルで分散して抗菌塗料を調製した。
(比較例2)
 抗菌塗料として、ナノ銀担持アパタイト被覆二酸化チタンを含む、市販の光触媒室内塗料「ルミチタンNAG」(ササミック社製商品名;特許文献1(特許第5207744号)の塗料)を用いた。なお、ルミチタンNAGは、容器内にかなりの沈殿がみられたことから、容器をシェイクして撹拌混合したものを希釈することなく塗料とした。
<抗菌塗料の評価>
 実施例1~3、比較例1、2の抗菌塗料について、保存安定性を評価した。また、目視による評価で塗料が無色透明又は微着色透明であった実施例1~3の抗菌塗料について、抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)、積算体積90%粒子径(D90)、及び、積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比(D90/D50)を測定した。なお、比較例1、2の抗菌塗料については、目視による評価で塗料が白濁しており、セラミックス複合粉体の体積平均粒子径が250nmを超えていることが明らかであることから、動的光散乱式粒径分布測定装置による測定は行わなかった。これらの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
<抗菌塗装物の光学評価>
(抗菌塗装物の調製)
 実施例1、2、比較例1、2の抗菌塗料を、透明ABS樹脂板にエアスプレー塗装し、表2に記載された乾燥膜厚の塗膜を有する抗菌塗装物を調製した。
(抗菌塗装物の光学評価)
 塗膜外観を目視で評価した。また、塗膜のヘーズを、ヘーズメーター(スガ試験機社製HZ-V3)で測定した。これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<抗菌塗装物の抗菌活性評価>
(抗菌塗装物の調製)
 実施例1~3の抗菌塗料を、透明ABS板にエアスプレー塗装し、抗菌塗装物を調製した。
(抗菌塗装物の黄色ブドウ球菌の抗菌活性評価)
 JIS Z 2801:2010「抗菌加工製品―抗菌性試験方法・抗菌効果」に基づき、フィルム密着法に従い、実施例1~3の抗菌塗料から得られた抗菌塗装物である検体試料(50×50mm)、培地(1/500NB培地)、黄色ブドウ球菌(Staphylococcus aureus NBRC 12732)を用いた。検体試料数は3とした。
 試験は、検体試料上に試験菌液0.4mLを接種し、その上に被覆フィルムを被せた後、35±1℃、相対湿度90%以上で静置し、接種直後、0.5時間後、1時間後、2時間後、4時間後、6時間後及び24時間後の生菌対数値及び生菌換算値を求めた。抗菌剤を含有せず抗菌性のない無加工試験片(Control)についても同様に生菌対数値及び生菌換算値を求めた。
 これらを用い抗菌活性値(抗菌剤を含有せず抗菌性のない無加工試験片の24時間後の生菌数の対数値(Ut)から検体試料の24時間後の生菌数の対数値(At)を除した値である抗菌活性値R=Ut-Atを求めた。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
(抗菌塗装物の大腸菌の抗菌活性評価)
 JIS Z 2801:2010「抗菌加工製品―抗菌性試験方法・抗菌効果」に基づき、フィルム密着法に従い、実施例1、2の抗菌塗料から得られた抗菌塗装物である検体試料(50×50mm)、培地(1/500NB培地)、大腸菌(Escherichia coli NBRC 3972)を用いた。検体試料数は3とした。
 試験は、検体試料上に試験菌液0.4mLを接種し、その上に被覆フィルムを被せた後、35±1℃、相対湿度90%以上で24時間静置後、生菌数を測定した。抗菌剤を含有せず抗菌性のない無加工試験片(Control)の24時間後の生菌数の対数値(Ut)と、検体試料の24時間後の生菌数の対数値(At)とを測定し、抗菌活性値R=Ut-Atを求めた。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表1~表4に示すとおり、本発明により、多くの医療機関が求める抗菌活性値2.0以上の抗菌性能を有し、塗膜の透明性が高く塗膜外観が優れている抗菌塗装物を容易に得ることができ、利用価値が極めて高い。

Claims (4)

  1.  光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含む抗菌塗料の塗膜を基材上に有し、塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上であり、さらに、下記(1)及び/又は(2)の要件を満たす抗菌塗装物:
    (1)抗菌塗料中のセラミックス複合粉体について、体積平均分散粒子径(D50)が250nm以下、積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下、
    (2)塗膜の膜厚が80μm以下、抗菌塗装物又は塗膜のヘーズ(JIS K 7136:2000準拠)が25以下。
  2.  光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含み、
     抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)が250nm以下、セラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50が1.5以下であり、
     塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗料。
  3.  光触媒成分、吸着剤成分及び金属成分を含むセラミックス複合粉体と、バインダーと、を少なくとも含む抗菌塗料構成成分を、分散機を用いて混合する工程を含み、
     抗菌塗料中のセラミックス複合粉体の体積平均分散粒子径(D50)を250nm以下、セラミックス複合粉体の積算体積90%粒子径(D90)と体積平均分散粒子径(D50)との比D90/D50を1.5以下とする、
     塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である、抗菌塗料の製造法。
  4.  請求項2の抗菌塗料を含有する塗料を基材に塗装する、塗膜の抗菌活性値(JIS Z 2801:2010準拠)が2.0以上である抗菌塗装物の製造法。
PCT/JP2020/022984 2019-06-21 2020-06-11 抗菌塗装物、抗菌塗料、抗菌塗料の製造法及び抗菌塗装物の製造法 WO2020255848A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/733,823 US20210261792A1 (en) 2019-06-21 2020-06-11 Antibacterial-coated product, antibacterial coating material, method for manufacturing antibacterial coating material, and method for manufacturing antibacterial-coated product
CN202080002894.1A CN112437794A (zh) 2019-06-21 2020-06-11 抗菌涂装物、抗菌涂料、抗菌涂料的制造法及抗菌涂装物的制造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019115667A JP6755598B1 (ja) 2019-06-21 2019-06-21 抗菌塗装物、抗菌塗料、抗菌塗料の製造法及び抗菌塗装物の製造法
JP2019-115667 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020255848A1 true WO2020255848A1 (ja) 2020-12-24

Family

ID=72432300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022984 WO2020255848A1 (ja) 2019-06-21 2020-06-11 抗菌塗装物、抗菌塗料、抗菌塗料の製造法及び抗菌塗装物の製造法

Country Status (4)

Country Link
US (1) US20210261792A1 (ja)
JP (1) JP6755598B1 (ja)
CN (1) CN112437794A (ja)
WO (1) WO2020255848A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270148A1 (ja) * 2021-06-21 2022-12-29 富士フイルム株式会社 抗ウイルスフィルム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022060137A (ja) * 2020-10-02 2022-04-14 日本ペイントホールディングス株式会社 クリヤー塗料組成物
CN112624737B (zh) * 2021-01-07 2022-06-17 广东顺辉新型材料科技有限公司 一种具有优良抗菌性的陶瓷材料的制备方法及陶瓷材料
CN113105141B (zh) * 2021-03-26 2022-03-04 唐山冀东水泥外加剂有限责任公司 一种早强型聚羧酸减水剂及其制备方法
US20230041184A1 (en) * 2021-08-05 2023-02-09 B/E Aerospace, Inc. Multifunctional hydrophobic surface coatings for interior applications
CN113814003A (zh) * 2021-09-29 2021-12-21 广东森格安环保新材料科技有限公司 一种纳米材料空气净化剂
CN113773713A (zh) * 2021-09-29 2021-12-10 广东森格安环保新材料科技有限公司 一种纳米抗菌复合材料及其制备方法
JP7146223B1 (ja) * 2022-05-30 2022-10-04 株式会社スケッチ 帯電防止用コーティング剤、帯電防止ガラス基板、及び太陽光パネル

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527744B2 (ja) * 1971-03-05 1977-03-04
JP2004339102A (ja) * 2003-05-14 2004-12-02 Catalysts & Chem Ind Co Ltd 抗菌・防黴・防藻性組成物
JP2006008902A (ja) * 2004-06-28 2006-01-12 Sakuranomiya Kagaku Kk 光触媒塗料組成物
JP2009067849A (ja) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd 抗菌コート膜とそれを有する調理容器および抗菌コート剤
JP2014065182A (ja) * 2012-09-25 2014-04-17 Dainippon Printing Co Ltd 殺菌フィルム
JP2018144004A (ja) * 2017-03-08 2018-09-20 旭化成株式会社 光触媒用無機化合物、光触媒組成物、光触媒塗膜及び光触媒塗装製品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0301034D0 (en) * 2003-01-16 2003-02-19 Dupont Teijin Films Us Ltd Polymeric film and coating
JP5207744B2 (ja) * 2008-01-10 2013-06-12 笹野電線株式会社 塗料組成物
WO2009110234A1 (ja) * 2008-03-04 2009-09-11 株式会社 東芝 水系分散液とそれを用いた塗料、膜および製品
CN101322497B (zh) * 2008-07-08 2012-07-25 西南科技大学 活性多孔矿物掺杂TiO2复合催化抗菌材料制备及使用方法
JP6953965B2 (ja) * 2017-09-29 2021-10-27 信越化学工業株式会社 抗菌・抗カビ性を有する光触媒・合金微粒子分散液、その製造方法、及び光触媒・合金薄膜を表面に有する部材

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS527744B2 (ja) * 1971-03-05 1977-03-04
JP2004339102A (ja) * 2003-05-14 2004-12-02 Catalysts & Chem Ind Co Ltd 抗菌・防黴・防藻性組成物
JP2006008902A (ja) * 2004-06-28 2006-01-12 Sakuranomiya Kagaku Kk 光触媒塗料組成物
JP2009067849A (ja) * 2007-09-11 2009-04-02 Sumitomo Electric Ind Ltd 抗菌コート膜とそれを有する調理容器および抗菌コート剤
JP2014065182A (ja) * 2012-09-25 2014-04-17 Dainippon Printing Co Ltd 殺菌フィルム
JP2018144004A (ja) * 2017-03-08 2018-09-20 旭化成株式会社 光触媒用無機化合物、光触媒組成物、光触媒塗膜及び光触媒塗装製品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022270148A1 (ja) * 2021-06-21 2022-12-29 富士フイルム株式会社 抗ウイルスフィルム

Also Published As

Publication number Publication date
US20210261792A1 (en) 2021-08-26
JP6755598B1 (ja) 2020-09-16
JP2021001278A (ja) 2021-01-07
CN112437794A (zh) 2021-03-02

Similar Documents

Publication Publication Date Title
JP6755598B1 (ja) 抗菌塗装物、抗菌塗料、抗菌塗料の製造法及び抗菌塗装物の製造法
TWI557192B (zh) Coating composition and antibacterial and antiviral components
KR101764516B1 (ko) 구리 복합 산화티탄 분산액, 코팅제 조성물 및 항균·항바이러스성 부재
KR101748058B1 (ko) 아산화구리 입자 분산액, 코팅제 조성물 및 항균·항바이러스성 부재
JP6145758B2 (ja) 抗ウイルス性樹脂組成物及び抗ウイルス性部材
EP3006523B1 (en) Cold-curing photocatalytic coating material, cold-curing coating composition and interior material
JP2004346202A (ja) 水性塗料組成物、抗菌性部材及び塗膜形成方法
JP2004346201A (ja) 水性塗料組成物、抗菌性部材及び塗膜形成方法
JP2007051204A (ja) ガラスの酸化防止紫外線遮蔽膜形成用ハードコート塗布液及びこれを用いた膜及びガラス
JP2006291136A (ja) 光触媒消臭及び除菌機能付き熱線・紫外線遮蔽膜形成用塗布液及びこれを用いた膜、基材
JP2001081409A (ja) 抗菌コート剤、抗菌剤、及び院内感染防止方法
JP3183766B2 (ja) 抗菌性塗料組成物および塗膜
JP2013216596A (ja) 抗菌剤、抗菌剤分散液、およびこれを用いた抗菌加工製品
JP6935603B1 (ja) 抗ウイルスコーティング用組成物、抗ウイルスコーティング方法及び抗ウイルス物
JP2012095699A (ja) 抗菌・消臭処理剤および抗菌・消臭処理物品
JP2023035717A (ja) 塗装体、塗料組成物および塗装体の製造方法
JPH10259320A (ja) 光触媒塗料およびその製造方法並びにそれを塗布した塗膜
JPH1057817A (ja) 光触媒活性を有する親水性構造体
JP3291558B2 (ja) 光触媒塗料及びその製造方法並びにこれを塗布した塗膜
JP2023006883A (ja) 銅担持酸化チタンスラリー、銅担持酸化チタンスラリーの製造方法および塗料組成物の製造方法
JP2011126941A (ja) 抗菌・消臭性塗膜形成用塗布液および抗菌・消臭性塗膜付基材
JP2024092856A (ja) 銅を担持した酸化チタン粒子のスラリーの製造方法、銅を担持した酸化チタン粒子のスラリー、銅および亜鉛を担持した酸化チタン粒子のスラリーならびに塗料組成物の製造方法
JP2832407B2 (ja) 消臭塗料
WO2023210588A1 (ja) 希土類フェライト粒子及び希土類フェライト分散液
KR20080006686A (ko) 나노실버를 함유한 항균성 잉크의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826705

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826705

Country of ref document: EP

Kind code of ref document: A1