WO2020253297A1 - 一种低气味聚醚多元醇的生产工艺及系统 - Google Patents

一种低气味聚醚多元醇的生产工艺及系统 Download PDF

Info

Publication number
WO2020253297A1
WO2020253297A1 PCT/CN2020/080707 CN2020080707W WO2020253297A1 WO 2020253297 A1 WO2020253297 A1 WO 2020253297A1 CN 2020080707 W CN2020080707 W CN 2020080707W WO 2020253297 A1 WO2020253297 A1 WO 2020253297A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyether polyol
reaction vessel
mixed solution
circulation
odor
Prior art date
Application number
PCT/CN2020/080707
Other languages
English (en)
French (fr)
Inventor
李志君
王峰
李玉博
Original Assignee
佳化化学科技发展(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 佳化化学科技发展(上海)有限公司 filed Critical 佳化化学科技发展(上海)有限公司
Priority to EP20825531.5A priority Critical patent/EP3964538A4/en
Priority to US17/616,952 priority patent/US20220162379A1/en
Publication of WO2020253297A1 publication Critical patent/WO2020253297A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2648Alkali metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying

Definitions

  • the invention relates to the technical field of polyether polyol production, in particular to a low-odor polyether polyol production process and system.
  • Polyether polyol is an important part of polyurethane materials. At present, many manufacturers have continuously improved their own production technology and equipment, and the quality of their products has also been continuously improved. However, the problem of products that easily emit toxic and harmful odors or gases has not been greatly improved. Good solution. With increasing attention to environmental issues, consumers are becoming more and more critical, especially for soft foam polyether polyols that are directly related to people’s daily life such as furniture, automobiles, and clothing. Therefore, the demand for low-odor polyether polyols Growing day by day.
  • the smell of polyether polyol comes from the following substances:
  • Aldehydes During the refining process, part of the polyether undergoes rearrangement reaction and partially decomposes under acidic conditions to generate aldehydes. In addition, there are some aldehydes in epoxy olefins.
  • Cyclic ether In the refining process of polyether, propenyl ether will form cyclic ether in the presence of acidic medium, which brings strong odor to polyether polyol, and even a small amount of it will bring unpleasant odor to polyether polyol .
  • Patent CN108059717A discloses a method for refining low-odor polyether polyol and its application, which is to reduce the influence of antioxidants on product odor by adding compound antioxidants during the refining process, and achieve the purpose of reducing odor. Neither consider reducing the odor from the source.
  • Sinopec discloses a method for preparing low-odor polyether polyol in patent CN109438691A, which uses low-aldehyde propylene oxide to produce low-odor polyether polyol.
  • the specific method is as follows: After passing through the molecular sieve tank at -25h, the molecular sieve tank undergoes aldehyde reduction treatment to obtain low aldehyde propylene oxide. This low aldehyde propylene oxide is used to produce low-odor polyether polyol.
  • this method can reduce the odor from the source, the process The process is complicated, the processing time is long, and the yield is severely damaged.
  • the technical problem to be solved by the present invention is to overcome the shortcomings of long processing time and severe yield loss caused by the preparation of low-odor polyether polyols by the prior art method, while further reducing the odor of polyether polyols, thereby A production process and system for low-odor polyether polyol are provided.
  • the present invention provides a production process of low-odor polyether polyol, including the following steps:
  • Preliminary polymerization reaction step adding the initiator and the basic catalyst into the reaction vessel, and then input the epoxy olefin into the reaction vessel, and the polymerization reaction occurs to obtain the mixture;
  • Cyclic distributed polymerization reaction step take the above-mentioned mixture, output, split, and spray into the above-mentioned reaction vessel at high speed, circulate the above-mentioned operations, and input epoxy olefin at the same time, and maintain the rotation speed of 90-105r/min to the mixture after being sprayed into the reaction vessel Stir the materials, continue to polymerize and mature to obtain crude polyether polyol;
  • Refining step take the above-mentioned crude polyether polyol and neutralize or dilute it to obtain a mixed solution of crude polyether polyol, and then make the mixed solution flow through a hydrophilic medium to aggregate, settle, and separate to obtain low-odor polyether polyol alcohol;
  • the ratio of the flow rate of the mixture material injected into the reaction vessel to the volume of the reaction vessel is 2-5 tons/hour: 1 cubic meter.
  • the ratio of the flow rate of the mixed material injected into the reaction vessel to the volume of the reaction vessel is 2-5 tons/hour: 1 cubic meter.
  • the ratio of the flow rate of the epoxy olefin into the reaction vessel to the volume of the reaction vessel is 0.02-0.075 tons/hour: 1 cubic meter;
  • the epoxy olefin is one or a mixture of at least two of ethylene oxide, propylene oxide and butylene oxide.
  • the temperature of the polymerization reaction is controlled to be 110-120°C.
  • the present invention also provides a low-odor polyether polyol production system, including:
  • the reaction vessel is provided with a catalyst feed port, an initiator feed port, an epoxy olefin feed port, and a discharge port for removing the mixed material in the reaction vessel, and a stirrer is provided in the reaction vessel;
  • a circulation distributor is located in the reaction vessel, the circulation distributor is provided with a plurality of outlets, the outlet of the circulation distributor is connected to the inner cavity of the reaction vessel, and the inlet of the circulation distributor is through a circulation pump Communicate with the discharge port of the reaction vessel;
  • a refining system the inlet of which is connected to the outlet of the reaction vessel through a circulating pump, the refining system includes a mixing unit with a mixing cavity and a separation unit with a separating cavity, the mixing unit includes a mixing cavity At least two sample inlets and at least one sample outlet communicated with the outside; the separation unit includes at least one desalinizer communicating with the sample outlet, and the desalinizer includes connecting the separation cavity with the outside The first density phase outlet and the second density phase outlet, and the mixed solution inlet set to avoid the first density phase outlet and the second density phase outlet; the mixed solution inlet is connected to the sample output of the mixing unit The second density phase outlet is located above the first density phase outlet; the separation cavity is provided with a sample injection component connected to the mixed solution inlet, and a separation component connected to the sample injection component Components; the separation component includes at least two separation parts arranged in parallel and extending along the direction of flow of the mixed solution, the sample injection component is used to make the mixed solution flow into the separation part; the separation part has A
  • the circulation distributor has a spiral structure or a parallel ring structure.
  • the circulation distributor further includes:
  • a plurality of split ports, and the circulation distributor is located at the split port and communicated with an atomizer or a nozzle.
  • spiral circulating distributor includes 2-3 spiral rings or annular rings in the vertical direction.
  • the circulation distributor is located at an end close to the bottom or the top of the kettle.
  • the production process of the low-odor polyether polyol provided by the present invention successively passes through the preliminary polymerization step, the cyclic distribution polymerization step and the refining step.
  • the three processes exert a synergistic effect, greatly improve the diffusion rate of the mixture, and improve the mixing Uniformity, speed up the reaction rate, reduce the generation of impurities, and reduce the generation of odor; and in the cyclic distribution of the polymerization reaction step, the ratio of the flow rate of the mixture injected into the reaction vessel to the volume of the reaction vessel is 2-5 tons/hour: 1 cubic meter, and maintain the rotation speed of 90-105r/min to stir the mixture sprayed into the reaction vessel, which greatly improves the forward progress of the reaction, reduces the occurrence of side reactions, and makes A crude polyether polyol with low VOC content; combined with the refining step of the present invention, that is, the above crude polyether polyol is neutralized or diluted to obtain a crude polyether polyol mixed solution, and then the mixed solution
  • Fig. 1 is a schematic structural diagram of a production system for low-odor polyether polyol according to the first embodiment of the present invention
  • Figure 2 is a schematic structural diagram of a refining system for low-odor polyether polyol provided by the present invention
  • Fig. 3 is a schematic structural diagram of a production system for low-odor polyether polyol provided by a second embodiment of the present invention.
  • This embodiment provides a low-odor polyether polyol production system, as shown in Figures 1 and 2, including a reaction vessel 5, a circulating distributor 55 and a refining system.
  • the reaction vessel 5 is provided with a catalyst feed port and a starter Agent inlet, epoxy olefin inlet 51, and outlet 52 for removing the mixed material in the reaction vessel.
  • the reaction vessel 5 is provided with a stirrer 53; the circulation distributor 55 is located in the reaction vessel 5
  • the circulation distributor 55 is provided with a plurality of outlets, the outlet of the circulation distributor 55 is communicated with the inner cavity of the reaction vessel, and the inlet of the circulation distributor 55 is connected to the reaction vessel 5 through a circulation pump 54 As shown in Figure 2, the circulating pump 54 in this embodiment has an inlet and two outlets.
  • Its inlet is connected to the outlet of the reaction vessel 5 through a conveying pipe, and one of the outlets is conveyed
  • the pipe extends into the reaction vessel 5 and is connected to the inlet of the circulating distributor 55, and the other outlet is connected to the refining system through a conveying pipe, and a valve control switch is provided on the conveying pipe.
  • the circulating distributor 55 is in a spiral structure, a side-by-side annular structure or other structures (as shown in FIGS. 1 and 3).
  • the circulating distributor 55 also includes a plurality of branch ports, and the circulating distributor 55 is located at the branch port to communicate There is an atomizer or a nozzle, and the circulating distributor 55 includes 2-3 spiral rings or annular rings in the vertical direction.
  • the circulation distributor 55 is located at an end of the reactor near the bottom or the top of the reactor.
  • the refining system includes a mixing unit 1, a pressurizing unit 3, and a separation unit 2.
  • the pressurizing unit 3 is located on the pipeline 4 connecting the mixing unit 1 and the separation unit 2.
  • the mixing unit 1 has a mixing inner cavity 13, and two injection ports and one sampling port 14 connecting the mixing cavity 13 with the outside.
  • the mixing unit 1 is a neutralization tank, and the two injection ports are the first fluid injection port 11 provided on the vertical side wall of the neutralization tank, and the first fluid injection port 11 provided on the top wall of the neutralization tank.
  • the second fluid injection port 12 is provided with a sample outlet 14 on the bottom wall of the neutralization kettle.
  • the sample outlet 14 of the mixing unit 1 communicates with a pressurizing unit 3, for example, a pressurizing pump, through a pipeline 4.
  • the pressurizing pump has an input end and an output end, and the pipeline 4 passes through the pressurizing pump from the input end and exits from the output end.
  • the pipeline 4 adjacent to the input end is connected to the mixing unit 1, and the pipeline 4 adjacent to the output end is connected to the separation unit 2.
  • the pressurizing pump is installed on the pipeline 4 and can increase the pressure of the liquid in the pipeline 4 so that the mixed solution is transported from the mixing unit 1 to the separation unit 2.
  • the separation unit 2 includes a demineralizer connected to the sample outlet 14 of the mixing unit 1.
  • the demineralizer has a separation cavity 24, a first density phase outlet 23 and a second density phase outlet 22 that communicate the separation cavity 24 with the outside world, And avoid the mixed solution inlet 21 of the first density phase outlet 23 and the second density phase outlet 22.
  • the mixed solution inlet 21 is opened on the vertical side wall of the demineralizer
  • the first density phase outlet 23 is opened on the bottom wall of the demineralizer
  • the second density phase opening is opened on the top of the demineralizer. Wall surface.
  • the pipeline 4 connecting the neutralization kettle and the demineralizer passes through the output end of the pressurizing pump and is connected to the mixed solution inlet 21 of the demineralizer.
  • a sample injection component 25 and a separation component 26 are arranged in the separation cavity 24.
  • the sample injection component 25 connects the mixed solution inlet 21 and the separation component 26.
  • the separation component 26 includes four separation components arranged in parallel. It is tubular and extends along the flow direction of the mixed solution; one end of the sample injection assembly 25 is connected with four separators, and the other end is connected with the mixed solution inlet 21.
  • the sample injection assembly 25 is provided with four inlets corresponding to the separators one by one.
  • the sample tube, one end of the sample injection tube is connected with a tubular separating piece, and the end away from the separating piece is connected with the mixed solution inlet 21.
  • the mixed solution flowing in from the mixed solution inlet 21 first flows into the sampling assembly 25, and is evenly divided into the split pipes, and then correspondingly flows into the separate parts.
  • the sampling assembly 25 it is possible to achieve equal amounts of the mixed solution flow into the separation parts of the separation assembly 26.
  • Each separation part of the separation assembly 26 has a circulation cavity for circulating the mixed solution.
  • the circulation cavity is filled with a hydrophilic medium.
  • the hydrophilic medium is glass fiber containing at least one of hydroxyl, amide, amino, and carboxyl groups. , Polymer fiber or a mixture of both.
  • the hydrophilic medium is glass fiber to which hydroxyl groups are attached.
  • the hydrophilic medium is rich in polar groups and has a high affinity for water.
  • the refining system in this embodiment is used for the refining of polyether polyols: first, pass an acid solution, such as phosphoric acid solution, into the neutralization kettle through the first fluid injection port 11 opened on the neutralization kettle.
  • the second fluid injection port 12 opened on the neutralization kettle passes the crude polyether polyol into the neutralization kettle.
  • the acid solution and the crude polyether polyol are stirred and mixed, and the crude polyether polyol is neutralized.
  • the catalyst remaining in the crude polyether polyol is treated with alkali metal or alkaline earth.
  • the metal ions are dissolved in water and divided into the polyether polyol in the form of droplets to obtain a mixed solution containing the crude polyether polyol.
  • the mixed solution flows out through the sample outlet 14 at the bottom of the neutralization kettle, and flows to the desalinizer through the connecting pipe 4.
  • the mixed solution passes through the input end of the pressurizing pump in the pipeline 4 and then exits from the output end.
  • the pressurizing pump pressurizes the liquid in the pipeline 4 so that the mixed solution is pressurized After the pump continues to deliver to the desalinizer.
  • the mixed solution is transported to the demineralizer through the pipeline 4, and flows into the separation cavity 24 of the demineralizer through the mixed solution inlet 21 opened on the vertical side wall of the demineralizer.
  • the mixed solution first flows into the sample injection tube of the sample injection assembly 25 for split flow, and then flows into the separation part corresponding to the injection tube in a one-to-one correspondence through the sample injection tube.
  • the mixed solution circulates in the circulation cavity of the separator, it will flow through the hydrophilic medium. Due to the hydrophilicity of the hydrophilic medium, the polyether polyol in the mixed solution flows out first after flowing through the hydrophilic medium.
  • the alkali metal ions and/or alkaline earth metal ions are dissolved in the first density phase liquid, its density is greater than that of the second density phase liquid. After settling for a period of time, the first density phase liquid converges under the second density phase liquid.
  • the first density phase outlet 23 opened on the bottom wall of the demineralizer flows out of the separation cavity 24; the second density phase liquid has a lower density, and flows out of the separation cavity through the second density phase outlet 22 opened on the top wall of the demineralizer 24. Simultaneously realize the removal of alkali metal, alkaline earth metal ions and moisture in the polyether polyol to obtain a refined polyether polyol.
  • the above-mentioned refining system can simultaneously realize the removal of residual catalyst metal ions and water in the polyether polyol, simplify the refining steps of the polyether polyol, and improve the refining efficiency of the polyether polyol.
  • the obtained polyether polyol has low total aldehyde content ( ⁇ 3ppm), low odor and high environmental friendliness.
  • the alkaline metal ions in the polyether polyol are effectively removed and can be directly used to synthesize polyurethane products, and can reduce side reactions in the synthesis process of polyurethane products and improve the quality of the synthesized polyurethane products.
  • This embodiment provides a production process of low-odor polyether polyol, including the following steps:
  • Preliminary polymerization steps add 902kg of glycerin and 107kg of potassium hydroxide into a 60m 3 reactor with a stirrer, replace the reactor with N 2 for 3 times, and then raise the temperature to 110°C for dehydration. After dehydration, use 1.8t/ At a flow rate of h (ton/hour), propylene oxide is fed into the reaction vessel until the feed volume reaches 3t (ton). At a temperature of 110°C, propylene oxide undergoes polymerization to obtain a mixture;
  • Refining step pass the crude polyether polyol and an appropriate amount of 75wt% phosphoric acid solution into the neutralization kettle; stir in the neutralization kettle for 1 hour, and control the temperature in the neutralization kettle to 60°C.
  • the neutralization treatment is performed to dissolve the mixed potassium ions in the polyether polyol in water and disperse in the polyether polyol in the form of water phase droplets.
  • a mixed solution containing polyether polyol is obtained, the pH of the mixed solution is 5.5, the temperature is 60° C., and the mass fraction of water is 5%.
  • the mixed solution flows through the pressurizing pump to increase the pressure, so that the pressure of the mixed solution is increased to 0.5Mpa.
  • the mixed solution is passed into the desalinizer, and the mixed solution flows through the hydrophilic medium in the separator. Due to the hydrophilicity of the medium, the polyether polyol in the mixed solution flows out first after flowing through the hydrophilic medium. , It aggregates into the second density phase liquid; while the water phase droplets in the mixed solution contact with the hydrophilic medium, they are adsorbed on the surface of the hydrophilic medium, and as the mixed solution circulates, the water phase droplets are constantly in the affinity The surface of the aqueous medium aggregates, and after reaching a certain volume, the aqueous phase droplets separate from the hydrophilic medium under the action of gravity, and aggregate to form the first density phase liquid.
  • the first density phase liquid contains potassium ions, and its density is higher than that of polyether polyol. After 1 hour of sedimentation, the first density phase liquid gathers at the bottom of the desalinizer and separates from the polyether polyol to separate the first density phase liquid. It is separated from the polyether polyol and discharged from the first density outlet and the second density outlet of the desalinizer to obtain refined polyether polyol.
  • the total aldehyde content of the refined polyether polyol is 0.34ppm, among which, formaldehyde 0.34ppm, acetaldehyde ND, acrolein ND, The product odor grade was identified as level 1.
  • This embodiment provides a production process of low-odor polyether polyol, including the following steps:
  • Preliminary polymerization step add 902kg of glycerol and 107kg of potassium hydroxide into a 60m 3 reactor with a stirrer, replace the reactor with N 2 for 3 times, and then increase the temperature to 120°C for dehydration. After dehydration, the rate is 1.8t/ At a flow rate of h (ton/hour), propylene oxide is fed into the reaction vessel until the feed volume reaches 3t (ton). At a temperature of 120°C, propylene oxide polymerizes to obtain a mixture;
  • Refining step pass the crude polyether polyol and an appropriate amount of 75wt% phosphoric acid solution into the neutralization kettle; stir in the neutralization kettle for 1 hour, and control the temperature in the neutralization kettle to 55°C.
  • the neutralization treatment is performed to dissolve the mixed potassium ions in the polyether polyol in water and disperse in the polyether polyol in the form of water phase droplets.
  • a mixed solution containing polyether polyol is obtained, the pH of the mixed solution is 6, the temperature is 55° C., and the mass fraction of water is 5%.
  • the mixed solution flows through the pressurizing pump to increase the pressure, so that the pressure of the mixed solution is increased to 0.5Mpa.
  • the mixed solution is passed into the desalinizer, and the mixed solution flows through the hydrophilic medium in the separator. Due to the hydrophilicity of the medium, the polyether polyol in the mixed solution flows out first after flowing through the hydrophilic medium. , It aggregates into the second density phase liquid; while the water phase droplets in the mixed solution contact with the hydrophilic medium, they are adsorbed on the surface of the hydrophilic medium, and as the mixed solution circulates, the water phase droplets are constantly in the affinity The surface of the aqueous medium aggregates, and after reaching a certain volume, the aqueous phase droplets separate from the hydrophilic medium under the action of gravity, and aggregate to form the first density phase liquid.
  • the first density phase liquid contains potassium ions, and its density is higher than that of polyether polyol. After 1 hour of sedimentation, the first density phase liquid gathers at the bottom of the desalinizer and separates from the polyether polyol to separate the first density phase liquid. It is separated from the polyether polyol and discharged from the first density outlet and the second density outlet of the desalinizer to obtain refined polyether polyol.
  • the total aldehyde content of the refined polyether polyol is 0.31ppm, among which, formaldehyde 0.31ppm, acetaldehyde ND, acrolein ND, The product odor grade was identified as level 1.
  • This comparative example provides a low-odor polyether polyol production process, including the following steps:
  • Preliminary polymerization steps add 902kg of glycerin and 107kg of potassium hydroxide into a 60m 3 reactor with a stirrer, replace the reactor with N 2 for 3 times, and then raise the temperature to 110°C for dehydration. After dehydration, use 1.8t/ At a flow rate of h (ton/hour), propylene oxide is fed into the reaction vessel until the feed volume reaches 3t (ton). At a temperature of 110°C, propylene oxide undergoes polymerization to obtain a mixture;
  • Refining step pass the crude polyether polyol and an appropriate amount of 75wt% phosphoric acid solution into the neutralization kettle; stir in the neutralization kettle for 1 hour, control the temperature of the neutralization kettle at 85°C, take a sample and check that the pH is 4.8, then add 40kg of magnesium silicate and 20kg of aluminum silicate are stirred for 1h and then heated to 110°C for vacuum dehydration.
  • the water content is ⁇ 0.05%
  • the crude polyether is filtered through a filter to obtain a refined polyether polyol.
  • the aldehyde content of the refined polyether polyol was determined to be 1.6ppm, and the result was 0.95ppm for formaldehyde, 0.65ppm for acetaldehyde, and ND for acrolein; product odor grade Identified as Level 3.
  • This comparative example provides a low-odor polyether polyol production process, including the following steps:
  • Preliminary polymerization steps add 902kg of glycerin and 107kg of potassium hydroxide into a 60m 3 reactor with a stirrer, replace the reactor with N 2 for 3 times, and then raise the temperature to 110°C for dehydration. After dehydration, use 1.8t/ At a flow rate of h (ton/hour), propylene oxide is fed into the reaction vessel until the feed volume reaches 3t (ton). At a temperature of 110°C, propylene oxide undergoes polymerization to obtain a mixture;
  • Refining step pass the crude polyether polyol and an appropriate amount of 75wt% phosphoric acid solution into the neutralization kettle; stir in the neutralization kettle for 1 hour, and control the temperature in the neutralization kettle to 60°C.
  • the neutralization treatment is performed to dissolve the mixed potassium ions in the polyether polyol in water and disperse in the polyether polyol in the form of water phase droplets.
  • a mixed solution containing polyether polyol is obtained, the pH of the mixed solution is 5.5, the temperature is 60° C., and the mass fraction of water is 5%.
  • the mixed solution flows through the pressurizing pump to increase the pressure, so that the pressure of the mixed solution is increased to 0.5Mpa.
  • the mixed solution is passed into the desalinizer, and the mixed solution flows through the hydrophilic medium in the separator. Due to the hydrophilicity of the medium, the polyether polyol in the mixed solution flows out first after flowing through the hydrophilic medium. , It aggregates into the second density phase liquid; while the water phase droplets in the mixed solution contact with the hydrophilic medium, they are adsorbed on the surface of the hydrophilic medium, and as the mixed solution circulates, the water phase droplets are constantly in the affinity The surface of the aqueous medium aggregates, and after reaching a certain volume, the aqueous phase droplets separate from the hydrophilic medium under the action of gravity, and aggregate to form the first density phase liquid.
  • the first density phase liquid contains potassium ions, and its density is higher than that of polyether polyol. After 1 hour of sedimentation, the first density phase liquid gathers at the bottom of the desalinizer and separates from the polyether polyol to separate the first density phase liquid. It is separated from the polyether polyol and discharged from the first density outlet and the second density outlet of the desalinizer to obtain refined polyether polyol.
  • This comparative example provides a low-odor polyether polyol production process, including the following steps:
  • Preliminary polymerization steps add 902kg of glycerin and 107kg of potassium hydroxide into a 60m 3 reactor with a stirrer, replace the reactor with N 2 for 3 times, and then raise the temperature to 110°C for dehydration. After dehydration, use 1.8t/ At a flow rate of h (tons/hour), propylene oxide is fed into the reaction vessel until the feed volume reaches 3t (tons). At a temperature of 110°C, propylene oxide undergoes polymerization to obtain a mixture;
  • Refining step pass the crude polyether polyol and an appropriate amount of 75wt% phosphoric acid solution into the neutralization kettle; stir in the neutralization kettle for 1 hour, control the temperature of the neutralization kettle at 85°C, take a sample and check that the pH is 4.8, then add 40kg of magnesium silicate and 20kg of aluminum silicate are stirred for 1h and then heated to 110°C for vacuum dehydration.
  • the water content is ⁇ 0.05%
  • the crude polyether is filtered through a filter to obtain a refined polyether polyol.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

本发明涉及聚醚多元醇生产技术领域,提供了一种低气味聚醚多元醇的生产工艺,包括如下步骤:初步聚合反应步骤:将起始剂和碱性催化剂加入反应容器中,然后向反应容器中输入环氧烯烃,发生聚合反应,得混合物料;循环分布聚合反应步骤:取上述混合物料经输出、分流再高速喷入上述反应容器中,循环上述操作,同时输入环氧烯烃,并维持90-105r/min的转速对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,熟化,得粗制聚醚多元醇;精制步骤:取上述粗制聚醚多元醇经中和或稀释处理,得粗制聚醚多元醇的混合溶液,然后使混合溶液流经亲水性介质聚集,沉降,分离得低气味聚醚多元醇,本发明的生产工艺具有处理时间短、产量高、VOC含量低的优点。

Description

一种低气味聚醚多元醇的生产工艺及系统 技术领域
本发明涉及聚醚多元醇生产技术领域,具体涉及一种低气味聚醚多元醇的生产工艺及系统。
背景技术
聚醚多元醇是聚氨酯材料的重要组成部分,目前很多厂家基于对自身生产技术及装置的不断改善,生产产品的质量也不断的提升,但是产品易散发有毒有害气味或气体的问题并没有得到很好的解决。随着对环保问题的日益重视,消费者也越来越挑剔,尤其是应用于家具、汽车、服装等与人们日常直接相关的软泡聚醚多元醇,因此低气味聚醚多元醇的需求量日益增长。
聚醚多元醇的气味来源于以下几种物质:
1、烯丙氧基聚醚。此为环氧丙烷在高温下发生异构化,之后通过重排反应产生的副产物,此类物质具有强烈的气味。
2、过氧化物。此为环氧烯烃在生产过程中含有的微量氧气与氧化聚醚发生反应,生成过氧化物。
3、醛类物质。在精制过程中部分聚醚发生重排反应,在酸性条件下,部分分解,生成醛类物质,另外环氧烯烃中也存在部分醛。
4、环醚。聚醚在精制过程中,丙烯基醚在酸性介质存在的情况下会形成环醚,它给聚醚多元醇带来强烈的气味,即使微量存在也会给聚醚多元醇带来难闻的气味。
由此可见,不管是聚醚多元醇生产过程中,还是精制过程中均会产生有毒 有害气体,挥发大量气味,然而,众多厂家仅关注于在精制过程中除去气味,虽然有一定的效果,但是,并没有从源头上发挥作用,而且存在处理时间长,产率受损的问题。例如,中国专利CN108148192A中公开了在精制过程中加入向粗聚醚多元醇中加入肼类化合物作为醛类捕捉剂,在惰性气体和一定温度下与醛类物质反应达到除去醛类物质的目的,进而降低产品的气味。专利CN108059717A公开了一种低气味聚醚多元醇的精制方法及其应用,则是通过精制过程中加入复配抗氧剂,降低抗氧剂对产品气味的影响,达到降低气味的目的,以上,均未考虑从源头上降低气味性。
为此,中石化在专利CN109438691A公开了一种低气味聚醚多元醇的制备方法,利用低醛的环氧丙烷生产低气味的聚醚多元醇,其具体方法为:将环氧丙烷在空速20-25h下通过分子筛罐,经过分子筛罐降醛处理,得到低醛环氧丙烷,利用此低醛环氧丙烷生产低气味的聚醚多元醇,该方法虽然能够从源头减少气味的产生,然而工艺流程复杂,处理时间长,且产率受损严重。
发明内容
因此,本发明要解决的技术问题在于克服采用现有技术的方法制备低气味聚醚多元醇时带来的处理时间长,产量受损严重的缺陷,同时进一步降低聚醚多元醇的气味,从而提供一种低气味聚醚多元醇的生产工艺及系统。
本发明提供了一种低气味聚醚多元醇的生产工艺,包括如下步骤:
初步聚合反应步骤:将起始剂和碱性催化剂加入反应容器中,然后向反应容器中输入环氧烯烃,发生聚合反应,得混合物料;
循环分布聚合反应步骤:取上述混合物料经输出、分流再高速喷入上述反应容器中,循环上述操作,同时输入环氧烯烃,并维持90-105r/min的转速对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,熟化,得粗制聚醚多元醇;
精制步骤:取上述粗制聚醚多元醇经中和或稀释处理,得粗制聚醚多元醇的混合溶液,然后使混合溶液流经亲水性介质聚集,沉降,分离得低气味聚醚多元醇;
其中,所述循环分布聚合反应步骤中,混合物料喷入反应容器的流速与反应容器的容积比为2-5吨/小时:1立方米。
进一步地,在所述循环分布聚合反应步骤中,混合物料喷入反应容器的流速与反应容器的容积比为2-5吨/小时:1立方米。
优选地,在初步聚合反应步骤中和循环分布聚合反应步骤中,环氧烯烃输入反应容器的流速与反应釜的容积比为0.02-0.075吨/小时:1立方米;
所述环氧烯烃为环氧乙烷、环氧丙烷和环氧丁烷中的一种或者至少两种的混合物。
进一步地,在所述初步聚合反应步骤和/或循环分布聚合反应步骤中,控制聚合反应的温度为110-120℃。
本发明还提供了一种低气味聚醚多元醇的生产系统,包括,
反应容器,其上设有催化剂进料口、起始剂进料口、环氧烯烃进料口和用于移出反应容器内混合物料的出料口,所述反应容器内设置有搅拌器;
循环分布器,位于所述反应容器内,所述循环分布器设置有多个出口,所述循环分布器的出口与所述反应容器的内腔相连通,所述循环分布器的入口通过循环泵与所述反应容器的出料口相连通;
精制系统,其入料口通过循环泵与反应容器的出料口相连通,所述精制系统包括具有混合内腔的混合单元和具有分离内腔的分离单元,所述混合单元包括将混合内腔与外界连通的至少两个进样口和至少一个出样口;所述分离单元 包括至少一个连通所述出样口的除盐器,所述除盐器包括将所述分离内腔与外界连通的第一密度相出口和第二密度相出口,以及避开所述第一密度相出口和所述第二密度相出口设置的混合溶液入口;所述混合溶液入口连通所述混合单元的出样口,所述第二密度相出口位于所述第一密度相出口的上方;所述分离内腔内设置有与所述混合溶液入口相连接的进样组件,和连接所述进样组件的分离组件;所述分离组件包括至少两个平行设置且沿所述混合溶液流通方向延伸的分离件,所述进样组件用于使所述混合溶液等量流入所述分离件;所述分离件具有流通所述混合溶液的流通腔体,和填充在所述流通腔体内的亲水性介质。
进一步地,所述循环分布器呈螺旋状结构或者并列环形结构。
优选地,所述循环分布器还包括:
多个分流口,所述循环分布器位于分流口处连通有雾化器或者喷嘴。
进一步地,所述螺旋状的循环分布器沿竖直方向包括2-3个螺旋圈或者环形圈。
优选地,其特征在于,所述循环分布器位于靠近釜底或者釜顶的一端。
进一步地,所述的生产工艺应用权利要求5-9中任一所述的生产系统。
本发明技术方案,具有如下优点:
本发明提供的低气味聚醚多元醇的生产工艺,依次通过初步聚合反应步骤、循环分布聚合反应步骤和精制步骤,三个过程发挥协同效果,极大提高了混合物料的扩散速率,提高了混合均匀性,加快反应速率,降低杂质生成,减少气味产生;而且通过循环分布聚合反应步骤中,经输出、分流、喷入,循环操作,混合物料喷入反应容器的流速与反应釜的容积比为2-5吨/小时:1立方米,并维持90-105r/min的转速对喷入反应容器后的混合物料进行搅拌,极大提高反 应的正向进行,减少副反应的发生,制得较低VOC含量的粗制聚醚多元醇;结合本发明的精制步骤,即,取上述粗制聚醚多元醇经中和或稀释处理,得粗制聚醚多元醇的混合溶液,然后使混合溶液流经亲水性介质聚集,沉降,分离得低气味聚醚多元醇,具有处理时间短、产量高、VOC含量低的优点。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明第一种实施方式提供的低气味聚醚多元醇的生产系统的结构示意图;
图2是本发明提供的低气味聚醚多元醇的精制系统的结构示意图;
图3是本发明第二种实施方式提供的低气味聚醚多元醇的生产系统的结构示意图。
附图标记:
1、混合单元;11、第一流体进样口;12、第二流体进样口;13、混合内腔;14、出样口;2、分离单元;21、混合溶液入口;22、第二密度相出口;23、第一密度相出口;24、分离内腔;25、进样组件;26、分离组件;3、加压单元;4、管路;5、反应容器;51、环氧烯烃进料口;52、出料口、53、搅拌器;54、循环泵;55、循环分布器。
具体实施方式
实施例1
本实施例提供一种低气味聚醚多元醇的生产系统,如图1和2所示,包括 反应容器5、循环分布器55和精制系统,反应容器5上设有催化剂进料口、起始剂进料口、环氧烯烃进料口51和用于移出反应容器内混合物料的出料口52,所述反应容器5内设置有搅拌器53;循环分布器55位于所述反应容器5内,所述循环分布器55设置有多个出口,所述循环分布器55的出口与所述反应容器的内腔相连通,所述循环分布器55的入口通过循环泵54与所述反应容器5的出料口相连通;如图2所示,此实施例中的循环泵54具有一个入口和两个出口,其入口通过输送管道与反应容器5的出料口相连通,其中一个出口通过输送管道伸入反应容器5中与循环分布器55的入口相连通,另一个出口通过输送管道与精制系统相连通,输送管道上设置有阀门控制开关。
循环分布器55呈螺旋状结构、并列环形结构或者其他结构(如图1和3所示),所述循环分布器55还包括:多个分流口,所述循环分布器55位于分流口处连通有雾化器或者喷嘴,所述循环分布器55沿竖直方向包括2-3个螺旋圈或者环形圈。所述循环分布器55位于反应釜靠近釜底或者釜顶的一端。
使用时,打开循环泵54与循环分布器55之间输送管道上的阀门,关闭循环泵54与精制系统之间输送管道上的阀门,开启循环泵54,反应容器5内的物料通过出料口52经循环泵54输送至循环分布器55,通过循环分布器55的分流口处的喷嘴喷出,喷入反应容器5内,又通过循环泵54经反应容器5底部的出料口52输出,形成循环。
精制系统包括混合单元1、加压单元3和分离单元2。其中,加压单元3位于连通混合单元1与分离单元2的管路4上。
混合单元1具有混合内腔13,以及将混合内腔13与外界连通的两个进样口和一个出样口14。如图1所示,混合单元1为中和釜,两个进样口分别为设置在中和釜竖向侧壁面上的第一流体进样口11,和设置在中和釜顶部壁面上的第二流体进样口12,中和釜的底部壁面上开设有出样口14。
混合单元1的出样口14通过管路4连通加压单元3,例如,加压泵。加压泵具有输入端和输出端,管路4由输入端穿入加压泵后,由输出端穿出。其中,邻近输入端的管路4连通混合单元1,邻近输出端的管路4连通分离单元2。加压泵安装于管路4上,能够增加管路4内液体的压力,使混合溶液由混合单元1输送至分离单元2。
分离单元2包括一个连通混合单元1出样口14的除盐器,除盐器具有分离内腔24,将分离内腔24与外界连通的第一密度相出口23和第二密度相出口22,以及避免第一密度相出口23和第二密度相出口22的混合溶液入口21。如图1所示,混合溶液入口21开设于除盐器的竖向侧壁面上,第一密度相出口23开设于除盐器的底部壁面上,第二密度相开口开设于除盐器的顶部壁面上。连通中和釜与除盐器的管路4由加压泵的输出端穿出后,连接于除盐器的混合溶液入口21。
分离内腔24内设置有进样组件25和分离组件26,进样组件25连接混合溶液入口21与分离组件26,如图1所示,分离组件26包括4个平行设置的分离件,分离件呈管状,并且沿混合溶液的流通方向延伸;进样组件25一端连接四个分离件,另一端连接混合溶液入口21,在进样组件25内部设置有4个与分离件一一对应设置的进样管,进样管的一端连接管状的分离件,远离分离件的一端连接于混合溶液入口21。由混合溶液入口21流入的混合溶液,首先流入进样组件25内,并被均匀地分流至各分流管内,然后对应流入各分离件内。利用进样组件25,能够实现将混合溶液等量流入分离组件26的各分离件内。
分离组件26的各分离件具有流通混合溶液的流通腔体,流通腔体内填充有亲水性介质,亲水性介质是含有羟基、酰胺基、氨基和羧基中的至少一种基团的玻璃纤维、聚合物纤维或是两者混合形成。例如,亲水性介质为连接有羟基的玻璃纤维。亲水性介质中富有极性基团,对水具有较高的亲附力。
此实施例中的精制系统在用于聚醚多元醇的精制时:首先,通过开设在中和釜上第一流体进样口11向中和釜内通入酸溶液,例如,磷酸溶液,通过开设在中和釜上的第二流体进样口12向中和釜内通入粗聚醚多元醇。在中和釜的混合内腔13中,酸溶液与粗聚醚多元醇搅拌混匀,进行对粗聚醚多元醇的中和处理,残留在粗聚醚多元醇中的催化剂以碱金属或碱土金属离子的溶解于水中,并以液滴的形式分在聚醚多元醇中,得到含有粗聚醚多元醇的混合溶液。
然后,混合溶液经中和釜底部的出样口14流出,并通过连接管路4流向除盐器。在流经加压泵时,混合溶液在管路4内由加压泵的输入端穿入后由输出端穿出,加压泵对管路4内的液体增压,使混合溶液经由加压泵后继续向除盐器输送。
混合溶液经管路4输送至除盐器,经开设于除盐器竖向侧壁面上的混合溶液入口21流入除盐器的分离内腔24。在分离内腔24中,混合溶液首先流入进样组件25的进样管内进行分流,然后经进样管等量流入与进样管一一对应连通的分离件内。混合溶液在分离件的流通腔体内流通的过程中,会流经亲水性介质,由于亲水性介质的亲水性,混合溶液中的聚醚多元醇在流经亲水性介质后首先流出,聚集为第二密度相液体;而混合溶液中的水相液滴与亲水性介质接触后,被吸附在亲水性介质表面,并且随着混合溶液的流通,水相液滴不断在亲水性介质表面聚集,在达到一定体积后,水相液滴在重力作用下与亲水性介质脱离,聚集形成第一密度相液体。
第一密度相液体中由于溶解有碱金属离子和/或碱土金属离子,其密度大于第二密度相液体,在沉降一段时间后,第一密度相液体汇聚于第二密度相液体的下方,经开设于除盐器底部壁面上的第一密度相出口23流出分离内腔24;第二密度相液体的密度较小,经由开设于除盐器顶部壁面的第二密度相出口22流出分离内腔24,同时实现聚醚多元醇中碱金属、碱土金属离子以及水分的去除,得到精制的聚醚多元醇。
利用上述的精制系统能够同时实现对聚醚多元醇中残留的催化剂金属离子以及水分的去除,简化了聚醚多元醇的精制步骤,提高了聚醚多元醇的精制效率。得到的聚醚多元醇中总醛含量低(≤3ppm)、气味小,环境友好性高。聚醚多元醇中碱性金属离子被有效去除,能够直接用于合成聚氨酯产品,并能减少聚氨酯产品合成过程中的副反应,提高合成的聚氨酯产品的质量。
实施例2
本实施例提供一种低气味聚醚多元醇的生产工艺,包括如下步骤:
(1)初步聚合反应步骤:将甘油902kg和氢氧化钾107kg加入带搅拌器的60m 3反应釜中,用N 2对反应釜置换3遍后升温至110℃脱水,脱水完毕后以1.8t/h(吨/小时)的流速向反应容器中输入环氧丙烷至进料量达到3t(吨),在温度110℃下,环氧丙烷发生聚合反应,得混合物料;
(2)循环分布聚合反应步骤:当反应釜中环氧丙烷的进料量达到3t时,开启循环泵,连通循环分布器与反应釜出料口,使上述混合物料通过出料口输出,经循环分布器分流再以200t/h的流速喷入上述反应釜中,循环上述操作,同时以3t/h的流速向反应釜内继续输入环氧丙烷39.204t,接着1.2t/h输入环氧乙烷7.317t,并维持105r/min的转速对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,当环氧乙烷输入完毕后,停止循环泵,熟化至反应压力不再降低,得粗制得聚醚多元醇;
(3)精制步骤:向中和釜内通入粗聚醚多元醇和适量的75wt%的磷酸溶液;在中和釜内搅拌1h,中和釜内温度控制为60℃,对粗聚醚多元醇进行中和处理,使聚醚多元醇中混杂的钾离子溶于水中,并以水相液滴的形式分散于聚醚多元醇中。经中和处理后,得到含有聚醚多元醇的混合溶液,混合溶液的pH为5.5,温度为60℃,水的质量分数为5%。混合溶液流经加压泵进行增压,使混合溶液的压力提高至0.5Mpa。然后,将混合溶液通入除盐器内,混合溶液 流经分离件内的亲水性介质,由于介质的亲水性,混合溶液中的聚醚多元醇在流经亲水性介质后首先流出,聚集为第二密度相液体;而混合溶液中的水相液滴与亲水性介质接触后,被吸附在亲水性介质表面,并且随着混合溶液的流通,水相液滴不断在亲水性介质表面聚集,在达到一定体积后,水相液滴在重力作用下与亲水性介质脱离,聚集形成第一密度相液体。第一密度相液体内含有钾离子,其密度较大于聚醚多元醇,在沉降1h后,第一密度相液体汇聚于除盐器的底部,与聚醚多元醇分离,将第一密度相液体与聚醚多元醇分离分别由除盐器的第一密度出口和第二密度出口排出,得到精制的聚醚多元醇。
参考国家标准GB/T37196-2018的有关规定,测定精制后的聚醚多元醇的总醛含量,测得结果为总醛含量为0.34ppm,其中,甲醛0.34ppm,乙醛ND,丙烯醛ND,产品气味等级鉴定为1级。
实施例3
本实施例提供一种低气味聚醚多元醇的生产工艺,包括如下步骤:
(1)初步聚合反应步骤:将甘油902kg和氢氧化钾107kg加入带搅拌器的60m 3反应釜中,用N 2对反应釜置换3遍后升温至120℃脱水,脱水完毕后以1.8t/h(吨/小时)的流速向反应容器中输入环氧丙烷至进料量达到3t(吨),在温度120℃下,环氧丙烷发生聚合反应,得混合物料;
(2)循环分布聚合反应步骤:当反应釜中环氧丙烷的进料量达到3t时,开启循环泵,连通循环分布器与反应釜出料口,使上述混合物料通过出料口输出,经循环分布器分流再以300t/h的流速喷入上述反应釜中,循环上述操作,同时以4.5t/h的流速向反应釜内继续输入环氧丙烷39.204t,接着以2t/h输入环氧乙烷7.317t,并维持90r/min的转速对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,当环氧乙烷输入完毕后,停止循环泵,熟化至反应压力不再降低,得粗制的聚醚多元醇;
(3)精制步骤:向中和釜内通入粗聚醚多元醇和适量的75wt%的磷酸溶液;在中和釜内搅拌1h,中和釜内温度控制为55℃,对粗聚醚多元醇进行中和处理,使聚醚多元醇中混杂的钾离子溶于水中,并以水相液滴的形式分散于聚醚多元醇中。经中和处理后,得到含有聚醚多元醇的混合溶液,混合溶液的pH为6,温度为55℃,水的质量分数为5%。混合溶液流经加压泵进行增压,使混合溶液的压力提高至0.5Mpa。然后,将混合溶液通入除盐器内,混合溶液流经分离件内的亲水性介质,由于介质的亲水性,混合溶液中的聚醚多元醇在流经亲水性介质后首先流出,聚集为第二密度相液体;而混合溶液中的水相液滴与亲水性介质接触后,被吸附在亲水性介质表面,并且随着混合溶液的流通,水相液滴不断在亲水性介质表面聚集,在达到一定体积后,水相液滴在重力作用下与亲水性介质脱离,聚集形成第一密度相液体。第一密度相液体内含有钾离子,其密度较大于聚醚多元醇,在沉降1h后,第一密度相液体汇聚于除盐器的底部,与聚醚多元醇分离,将第一密度相液体与聚醚多元醇分离分别由除盐器的第一密度出口和第二密度出口排出,得到精制的聚醚多元醇。
参考国家标准GB/T37196-2018的有关规定,测定精制后的聚醚多元醇的总醛含量,测得结果为总醛含量为0.31ppm,其中,甲醛0.31ppm,乙醛ND,丙烯醛ND,产品气味等级鉴定为1级。
对比例1
本对比例提供一种低气味聚醚多元醇的生产工艺,包括如下步骤:
(1)初步聚合反应步骤:将甘油902kg和氢氧化钾107kg加入带搅拌器的60m 3反应釜中,用N 2对反应釜置换3遍后升温至110℃脱水,脱水完毕后以1.8t/h(吨/小时)的流速向反应容器中输入环氧丙烷至进料量达到3t(吨),在温度110℃下,环氧丙烷发生聚合反应,得混合物料;
(2)循环分布聚合反应步骤:当反应釜中环氧丙烷的进料量达到3t时, 开启循环泵,连通循环分布器与反应釜出料口,使上述混合物料通过出料口输出,经循环分布器分流再以200t/h的流速喷入上述反应釜中,循环上述操作,同时以3t/h的流速向反应釜内继续输入环氧丙烷39.204t,接着1.2t/h输入环氧乙烷7.317t,并维持105r/min的转速对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,当环氧乙烷输入完毕后,停止循环泵,熟化至反应压力不再降低,得粗制聚醚多元醇;
(3)精制步骤:向中和釜内通入粗聚醚多元醇和适量的75wt%的磷酸溶液;在中和釜内搅拌1h,控制中和釜温度85℃,取样检测PH为4.8,然后加入40kg硅酸镁和20kg硅酸铝,搅拌1h后升温至110℃进行真空脱水,待含水≤0.05%时,将粗聚醚通过过滤机进行过滤,得到精制的聚醚多元醇。
参考国家标准GB/T37196-2018的有关规定,测定精制后的聚醚多元醇的醛含量为1.6ppm,测得结果为甲醛为0.95ppm,乙醛为0.65ppm,丙烯醛为ND;产品气味等级鉴定为3级。
对比例2
本对比例提供一种低气味聚醚多元醇的生产工艺,包括如下步骤:
(1)初步聚合反应步骤:将甘油902kg和氢氧化钾107kg加入带搅拌器的60m 3反应釜中,用N 2对反应釜置换3遍后升温至110℃脱水,脱水完毕后以1.8t/h(吨/小时)的流速向反应容器中输入环氧丙烷至进料量达到3t(吨),在温度110℃下,环氧丙烷发生聚合反应,得混合物料;
(2)聚合反应步骤:当反应釜中环氧丙烷的进料量达到3t时,开启循环泵,直接使用普通的非连通循环分布器的反应釜,反应设有顶部入料口和底部出料口,分别与循环泵连通,利用循环泵将混合物料进行循环,控制循环泵的流速为200t/h,循环上述操作,同时以3t/h的流速向反应釜内继续输入环氧丙烷39.204t,接着以1.2t/h输入环氧乙烷7.317t,并维持105r/min的转速 对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,当环氧乙烷输入完毕后,停止循环泵,熟化至反应压力不再降低,得粗制聚醚多元醇;
(3)精制步骤:向中和釜内通入粗聚醚多元醇和适量的75wt%的磷酸溶液;在中和釜内搅拌1h,中和釜内温度控制为60℃,对粗聚醚多元醇进行中和处理,使聚醚多元醇中混杂的钾离子溶于水中,并以水相液滴的形式分散于聚醚多元醇中。经中和处理后,得到含有聚醚多元醇的混合溶液,混合溶液的pH为5.5,温度为60℃,水的质量分数为5%。混合溶液流经加压泵进行增压,使混合溶液的压力提高至0.5Mpa。然后,将混合溶液通入除盐器内,混合溶液流经分离件内的亲水性介质,由于介质的亲水性,混合溶液中的聚醚多元醇在流经亲水性介质后首先流出,聚集为第二密度相液体;而混合溶液中的水相液滴与亲水性介质接触后,被吸附在亲水性介质表面,并且随着混合溶液的流通,水相液滴不断在亲水性介质表面聚集,在达到一定体积后,水相液滴在重力作用下与亲水性介质脱离,聚集形成第一密度相液体。第一密度相液体内含有钾离子,其密度较大于聚醚多元醇,在沉降1h后,第一密度相液体汇聚于除盐器的底部,与聚醚多元醇分离,将第一密度相液体与聚醚多元醇分离分别由除盐器的第一密度出口和第二密度出口排出,得到精制的聚醚多元醇。
参考国家标准GB/T37196-2018的有关规定,测定精制后的聚醚多元醇的总醛含量,测得结果为总醛含量为1.44ppm,其中,甲醛0.91ppm,乙醛0.53,丙烯醛ND,产品气味等级鉴定为2级。
对比例3
本对比例提供一种低气味聚醚多元醇的生产工艺,包括如下步骤:
(1)初步聚合反应步骤:将甘油902kg和氢氧化钾107kg加入带搅拌器的60m 3反应釜中,用N 2对反应釜置换3遍后升温至110℃脱水,脱水完毕后以1.8t/h(吨/小时)的流速向反应容器中输入环氧丙烷至进料量达到3t(吨), 在温度110℃下,环氧丙烷发生聚合反应,得混合物料;
(2)聚合反应步骤:当反应釜中环氧丙烷的进料量达到3t时,开启循环泵,直接使用普通的非连通循环分布器的反应釜,反应设有顶部入料口和底部出料口,分别与循环泵连通,利用循环泵将混合物料进行循环,控制循环泵的流速为200t/h,循环上述操作,同时以3t/h的流速向反应釜内继续输入环氧丙烷39.204t,接着以1.2t/h输入环氧乙烷7.317t,并维持105r/min的转速对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,当环氧乙烷输入完毕后,停止循环泵,熟化至反应压力不再降低,得粗制聚醚多元醇;
(3)精制步骤:向中和釜内通入粗聚醚多元醇和适量的75wt%的磷酸溶液;在中和釜内搅拌1h,控制中和釜温度85℃,取样检测PH为4.8,然后加入40kg硅酸镁和20kg硅酸铝,搅拌1h后升温至110℃进行真空脱水,待含水≤0.05%时,将粗聚醚通过过滤机进行过滤,得到精制的聚醚多元醇。
参考国家标准GB/T37196-2018的有关规定,测定精制后的聚醚多元醇的醛含量,测得结果为甲醛为1.23ppm,乙醛为0.89ppm,丙烯醛为ND;产品气味等级鉴定为5级。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种低气味聚醚多元醇的生产工艺,其特征在于,包括如下步骤:
    初步聚合反应步骤:将起始剂和碱性催化剂加入反应容器中,然后向反应容器中输入环氧烯烃,发生聚合反应,得混合物料;
    循环分布聚合反应步骤:取上述混合物料经输出、分流再高速喷入上述反应容器中,循环上述操作,同时输入环氧烯烃,并维持90-105r/min的转速对喷入反应容器后的混合物料进行搅拌,继续发生聚合反应,熟化,得粗制聚醚多元醇;
    精制步骤:取上述粗制聚醚多元醇经中和或稀释处理,得粗制聚醚多元醇的混合溶液,然后使混合溶液流经亲水性介质聚集,沉降,分离得低气味聚醚多元醇;
    其中,所述循环分布聚合反应步骤中,混合物料喷入反应容器的流速与反应容器的容积比为1-5吨/小时:1立方米。
  2. 根据权利要求1所述的低气味聚醚多元醇的生产工艺,其特征在于,在所述循环分布聚合反应步骤中,混合物料喷入反应容器的流速与反应容器的容积比为2-5吨/小时:1立方米。
  3. 根据权利要求1或2所述的低气味聚醚多元醇的生产工艺,其特征在于,在初步聚合反应步骤中和循环分布聚合反应步骤中,环氧烯烃输入反应容器的流速与反应釜的容积比为0.02-0.075吨/小时:1立方米;
    所述环氧烯烃为环氧乙烷、环氧丙烷和环氧丁烷中的一种或者至少两种的混合物。
  4. 根据权利要求1-3中任一所述的低气味聚醚多元醇的生产工艺,其特征 在于,在所述初步聚合反应步骤和/或循环分布聚合反应步骤中,控制聚合反应的温度为110-120℃。
  5. 一种低气味聚醚多元醇的生产系统,其特征在于,包括,
    反应容器,其上设有催化剂进料口、起始剂进料口、环氧烯烃进料口和用于移出反应容器内混合物料的出料口,所述反应容器内设置有搅拌器;
    循环分布器,位于所述反应容器内,所述循环分布器设置有多个出口,所述循环分布器的出口与所述反应容器的内腔相连通,所述循环分布器的入口通过循环泵与所述反应容器的出料口相连通;
    精制系统,其入料口通过循环泵与反应容器的出料口相连通,所述精制系统包括具有混合内腔的混合单元和具有分离内腔的分离单元,所述混合单元包括将混合内腔与外界连通的至少两个进样口和至少一个出样口;所述分离单元包括至少一个连通所述出样口的除盐器,所述除盐器包括将所述分离内腔与外界连通的第一密度相出口和第二密度相出口,以及避开所述第一密度相出口和所述第二密度相出口设置的混合溶液入口;所述混合溶液入口连通所述混合单元的出样口,所述第二密度相出口位于所述第一密度相出口的上方;所述分离内腔内设置有与所述混合溶液入口相连接的进样组件,和连接所述进样组件的分离组件;所述分离组件包括至少两个平行设置且沿所述混合溶液流通方向延伸的分离件,所述进样组件用于使所述混合溶液等量流入所述分离件;所述分离件具有流通所述混合溶液的流通腔体,和填充在所述流通腔体内的亲水性介质。
  6. 根据权利要求5所述的生产系统,其特征在于,所述循环分布器呈螺旋状结构或者并列环形结构。
  7. 根据权利要求5或6所述的生产系统,其特征在于,所述循环分布器还包括:
    多个分流口,所述循环分布器位于分流口处连通有雾化器或者喷嘴。
  8. 根据权利要求5-7中任一所述的生产系统,其特征在于,所述螺旋状的循环分布器沿竖直方向包括2-3个螺旋圈或者环形圈。
  9. 根据权利要求5-7中任一所述的生产系统,其特征在于,所述循环分布器位于靠近釜底或者釜顶的一端。
  10. 根据权利要求1-4中任一所述的低气味聚醚多元醇的生产工艺,其特征在于,所述的生产工艺应用权利要求5-9中任一所述的生产系统。
PCT/CN2020/080707 2019-06-12 2020-03-23 一种低气味聚醚多元醇的生产工艺及系统 WO2020253297A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20825531.5A EP3964538A4 (en) 2019-06-12 2020-03-23 PROCESS AND SYSTEM FOR PRODUCTION OF LOW ODOR POLYETHER POLYOL
US17/616,952 US20220162379A1 (en) 2019-06-12 2020-03-23 Process and system for producing low-odor polyether polyol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201910508400 2019-06-12
CN201910524985.0A CN110358070B (zh) 2019-06-12 2019-06-17 一种低气味聚醚多元醇的生产工艺及系统
CN201910524985.0 2019-06-17

Publications (1)

Publication Number Publication Date
WO2020253297A1 true WO2020253297A1 (zh) 2020-12-24

Family

ID=68217382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/080707 WO2020253297A1 (zh) 2019-06-12 2020-03-23 一种低气味聚醚多元醇的生产工艺及系统

Country Status (4)

Country Link
US (1) US20220162379A1 (zh)
EP (1) EP3964538A4 (zh)
CN (1) CN110358070B (zh)
WO (1) WO2020253297A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110358070B (zh) * 2019-06-12 2021-11-09 佳化化学科技发展(上海)有限公司 一种低气味聚醚多元醇的生产工艺及系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159092A (en) * 1989-09-22 1992-10-27 Buss Ag Process for the safe and environmentally sound production of highly pure alkylene oxide adducts
CN1242018A (zh) * 1996-12-27 2000-01-19 林德股份公司 利用气相分散反应器生产氧化烯加聚物的方法
CN1244137A (zh) * 1997-01-20 2000-02-09 林德股份公司 利用复合的气包液和液包气分散反应器生产氧化烯加聚物的装置
US20090326283A1 (en) * 2007-01-24 2009-12-31 Cognis Ip Management Gmbh Method and device for the production of alkylene oxide addition products
CN102585199A (zh) * 2011-01-18 2012-07-18 上海抚佳精细化工有限公司 一种制备聚醚多元醇的方法
TW201306936A (zh) * 2011-03-03 2013-02-16 Evonik Roehm Gmbh 用以轉化環氧烷類之設備
CN103384692A (zh) * 2011-02-24 2013-11-06 国际壳牌研究有限公司 制备聚醚多元醇的方法和反应器系统
CN204865845U (zh) * 2015-06-25 2015-12-16 淮安巴德聚氨酯科技有限公司 用于聚醚多元醇合成的具有新型喷料装置的反应釜
CN108059717A (zh) 2016-11-09 2018-05-22 中国石油化工股份有限公司 一种低气味聚醚多元醇的精制方法及其应用
CN108148192A (zh) 2016-12-06 2018-06-12 科思创聚合物(中国)有限公司 低气味聚醚多元醇及其制备方法
CN109400867A (zh) * 2018-10-17 2019-03-01 万华化学集团股份有限公司 一种制备聚醚多元醇的反应系统和方法
CN109438691A (zh) 2018-09-07 2019-03-08 中国石油化工股份有限公司 一种低气味聚醚多元醇的制备方法
CN109575268A (zh) * 2018-11-02 2019-04-05 佳化化学(滨州)有限公司 一种聚醚多元醇的精制方法及精制装置
CN110358070A (zh) * 2019-06-12 2019-10-22 佳化化学科技发展(上海)有限公司 一种低气味聚醚多元醇的生产工艺及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364973A (en) * 1993-05-06 1994-11-15 Arco Chemical Technology Productive process for making conventional and low-unsaturation polyether polyols
DE19530388A1 (de) * 1995-08-18 1997-02-20 Bayer Ag Geruchsarme, höhermolekulare Polyetherpolyole, ein Verfahren zu deren Herstellung sowie deren Verwendung für die Herstellung von auf Polyetherpolyolen aufbauenden Polymeren, Kosmetika und pharmazeutischen Produkten
ES2199666B1 (es) * 2002-02-25 2005-06-01 Repsol Quimica, S.A. Procedimiento de produccion de polioleteres.

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5159092A (en) * 1989-09-22 1992-10-27 Buss Ag Process for the safe and environmentally sound production of highly pure alkylene oxide adducts
CN1242018A (zh) * 1996-12-27 2000-01-19 林德股份公司 利用气相分散反应器生产氧化烯加聚物的方法
CN1244137A (zh) * 1997-01-20 2000-02-09 林德股份公司 利用复合的气包液和液包气分散反应器生产氧化烯加聚物的装置
US20090326283A1 (en) * 2007-01-24 2009-12-31 Cognis Ip Management Gmbh Method and device for the production of alkylene oxide addition products
CN102585199A (zh) * 2011-01-18 2012-07-18 上海抚佳精细化工有限公司 一种制备聚醚多元醇的方法
CN103384692A (zh) * 2011-02-24 2013-11-06 国际壳牌研究有限公司 制备聚醚多元醇的方法和反应器系统
TW201306936A (zh) * 2011-03-03 2013-02-16 Evonik Roehm Gmbh 用以轉化環氧烷類之設備
CN204865845U (zh) * 2015-06-25 2015-12-16 淮安巴德聚氨酯科技有限公司 用于聚醚多元醇合成的具有新型喷料装置的反应釜
CN108059717A (zh) 2016-11-09 2018-05-22 中国石油化工股份有限公司 一种低气味聚醚多元醇的精制方法及其应用
CN108148192A (zh) 2016-12-06 2018-06-12 科思创聚合物(中国)有限公司 低气味聚醚多元醇及其制备方法
CN109438691A (zh) 2018-09-07 2019-03-08 中国石油化工股份有限公司 一种低气味聚醚多元醇的制备方法
CN109400867A (zh) * 2018-10-17 2019-03-01 万华化学集团股份有限公司 一种制备聚醚多元醇的反应系统和方法
CN109575268A (zh) * 2018-11-02 2019-04-05 佳化化学(滨州)有限公司 一种聚醚多元醇的精制方法及精制装置
CN110358070A (zh) * 2019-06-12 2019-10-22 佳化化学科技发展(上海)有限公司 一种低气味聚醚多元醇的生产工艺及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3964538A4

Also Published As

Publication number Publication date
EP3964538A4 (en) 2022-07-20
CN110358070A (zh) 2019-10-22
EP3964538A1 (en) 2022-03-09
US20220162379A1 (en) 2022-05-26
CN110358070B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
CN107118083A (zh) 一种用于含甲醛聚甲氧基二甲醚精制分离的装置与方法
RU2012143737A (ru) Способ производства раствора сахара и устройство для его производства
CN103992206B (zh) 一种酯交换制备异戊烯醇的方法及系统
CN111848557A (zh) 一种糠醛的制备工艺
CN108863791B (zh) 顺酐回收用溶剂再生装置及其工艺方法
WO2020253297A1 (zh) 一种低气味聚醚多元醇的生产工艺及系统
CN112495430A (zh) 一种改性分子筛催化剂及其在处理3-甲基-3-丁烯-1-醇高浓度废水中的应用
CN108341941B (zh) 高纯度碱金属催化聚醚多元醇的连续化生产方法及其装置
CN109575268A (zh) 一种聚醚多元醇的精制方法及精制装置
CN104557809A (zh) 一种由戊糖生产糠醛的方法
CN103242143A (zh) 一种炔醇烷氧基化的生产工艺
CN110143876A (zh) 一种可连续制备丙二醇二醋酸酯的方法
CN107987037B (zh) 一种单元化制备环氧丙烷的方法
CN112827461A (zh) 一种用于制备苯甲醛的反应设备及苯甲醛的制备方法
CN111978273A (zh) 一种双氧水法环氧氯丙烷连续化合成工艺
CN114478620B (zh) 一种无气味磷酸酯阻燃剂的制备工艺
CN104557807A (zh) 一种5-羟甲基糠醛的生产工艺
CN110549456B (zh) 一种芦苇制备糠醛联产无胶纤维板的方法
CN107540523B (zh) 一种降低含碱液粗醇酮物料中钠盐含量的方法
CN104862355B (zh) 一种利用酵母细胞壁联产葡聚糖、甘露糖蛋白的方法
CN104557812A (zh) 一种由生物质生产糠醛的方法
CN114832758B (zh) 一种去活性炭低色泽邻苯二甲酸二异丁酯的生产方法
CN111992247B (zh) 用于连续催化合成异丁酸异丁酯的接枝型催化剂的制备方法
CN109503336B (zh) 一种处理不合格物料DMMn物料的设备及方法
CN209797814U (zh) 一种提高DMMn产品分离效果的工艺设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20825531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020825531

Country of ref document: EP

Effective date: 20211203

NENP Non-entry into the national phase

Ref country code: DE