WO2020252804A1 - 电池模组、动力电池包和车辆 - Google Patents

电池模组、动力电池包和车辆 Download PDF

Info

Publication number
WO2020252804A1
WO2020252804A1 PCT/CN2019/092800 CN2019092800W WO2020252804A1 WO 2020252804 A1 WO2020252804 A1 WO 2020252804A1 CN 2019092800 W CN2019092800 W CN 2019092800W WO 2020252804 A1 WO2020252804 A1 WO 2020252804A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
negative
positive
battery
battery module
Prior art date
Application number
PCT/CN2019/092800
Other languages
English (en)
French (fr)
Inventor
何科峰
江文锋
王信月
张辉
朱燕
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to KR1020217032975A priority Critical patent/KR20210138686A/ko
Priority to EP24167376.3A priority patent/EP4372901A2/en
Priority to US17/617,803 priority patent/US20220238962A1/en
Priority to JP2021569561A priority patent/JP7312276B2/ja
Priority to EP19934188.4A priority patent/EP3958346A4/en
Publication of WO2020252804A1 publication Critical patent/WO2020252804A1/zh
Priority to JP2023108946A priority patent/JP2023134547A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/474Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/509Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the type of connection, e.g. mixed connections
    • H01M50/51Connection only in series
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of vehicle manufacturing, in particular to a battery module, a power battery pack having the battery module, and a vehicle having the power battery pack.
  • an objective of the present application is to provide a battery module that can reduce the internal resistance of the battery and improve the high-current charge and discharge performance and safety performance of the battery.
  • the battery module according to the embodiment of the present application includes: n single cells, the single cells have multiple faces, and one of the at least two faces is provided with a first positive terminal and a first A negative terminal, at least two of the faces are provided with a second positive terminal and a second negative terminal on the other face; wherein, n of the single cells are arranged side by side in series, and the k-1th single.
  • the first negative terminal of the bulk battery is connected to the first positive terminal of the k-th single battery, and the first negative terminal of the k-th single battery is connected to the first negative terminal of the k+1-th single battery.
  • the positive terminal is connected; the second negative terminal of the k-1th single battery is connected to the second positive terminal of the kth single battery, and the second negative terminal of the kth single battery is connected to the first k+1 the second positive terminals of the single cells are connected, 2 ⁇ k ⁇ n-1, n ⁇ 3;
  • the single cell includes a pole core, and has a length direction and a width direction perpendicular to the length direction.
  • the pole core includes a positive electrode sheet, an insulating separator, and a negative electrode sheet stacked in sequence, and the positive electrode sheet is along the length direction. Both ends of the negative plate are electrically connected with positive ears, and the two ends of the negative plate along the length direction are respectively electrically connected with negative ears; at either end of the length direction, the positive ear and the negative ear are along the The width direction is staggered.
  • each single cell contains at least two pairs of positive and negative electrode terminals, and the two pairs of positive and negative electrode terminals can be connected to the outside (other single cells) at the same time, thereby reducing the single cell
  • the internal resistance of the battery can be led out in both directions to increase the overcurrent capacity of the single battery, and realize the parallel arrangement in series, reducing the number of batteries.
  • the battery module contains multiple single cells, and each battery is designed with multiple current-derived tabs, which shortens the internal current collection path of the battery, reduces the internal resistance of the battery, and improves the high-current charge and discharge performance and safety performance of the battery. Etc. have been greatly improved.
  • This application also proposes a power battery pack.
  • the power battery pack according to the embodiment of the present application includes: a battery pack housing; a plurality of single batteries according to any one of the above embodiments, the single batteries are installed in the battery pack housing.
  • the battery pack shell is filled with a thermally conductive insulating layer that wraps the battery module.
  • This application proposes another vehicle.
  • the vehicle according to the embodiment of the present application has the power battery pack described in any of the foregoing embodiments.
  • FIG. 1 is a schematic diagram of the structure of a single cell of a battery module according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the structure of a battery module according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of the structure of the pole core in a preferred embodiment
  • Fig. 4 is a schematic diagram of an exploded structure of the pole core in Fig. 3.
  • the first sub-cell 10 The first sub-cell 10, the first positive electrode sheet 110, the insulating separator 120, the first negative electrode sheet 130, the first positive electrode tab 1101, the first negative electrode tab 1301,
  • the second sub-cell 20 The second sub-cell 20, the second positive electrode sheet 210, the insulating separator 220, the second negative electrode sheet 230, the second positive electrode tab 2101, and the second negative electrode tab 2301.
  • the single battery 100 of the battery module 1000 has at least two pairs of positive and negative electrode terminals, and the two pairs of positive and negative electrode terminals can be simultaneously connected to the external (other The single cells 100) are connected, thereby increasing the overcurrent capability of the single cells 100, realizing bidirectional extraction, reducing the internal resistance of the single cells 100, and realizing the parallel arrangement in series, reducing the number of batteries.
  • the battery module 1000 includes: n single cells 100.
  • the single cell 100 has a plurality of faces, one of at least two faces is provided with a first positive terminal 11 and a first negative terminal 12, and the other of the at least two faces is provided with a second positive terminal 13 And the second negative terminal 14.
  • the single cell 100 may be electrically connected to the outside (other single cells 100) through the first positive terminal 11, the first negative terminal 12, the second positive terminal 13, and the second negative terminal 14.
  • the single battery has a first end surface and a second end surface, the first end surface and the second end surface are arranged oppositely, the first positive terminal and the first negative terminal are arranged on the first end surface, and the second positive terminal and the second negative terminal are arranged on the In this way, the first positive terminal 11 and the second positive terminal 13 of the single battery 100 are spaced apart, and the first negative terminal 12 and the second negative terminal 14 are spaced apart, thereby preventing the first positive terminal 11 and The second positive terminal 13 is in contact, and the first negative terminal 12 is in contact with the second negative terminal 14, so as to prevent the single battery 100 from short-circuiting, improve the safety of the single battery 100, and facilitate the connection of two adjacent single batteries. 100 is connected by connecting piece 101.
  • the first positive terminal 11 of the first one of the two adjacent single cells 100 is connected to the first negative terminal 12 of the second one, and the first of the two adjacent single cells 100
  • the second positive terminal 13 is connected to the second negative terminal 14 of the second, wherein the inside of the single battery 100 is connected through the first positive terminal 11, the first negative terminal 12, and at the same time through the second positive terminal 13 and the second The negative terminal 14 is connected.
  • the single cell 100 is designed with four electrode terminals, which can reduce the size of a single electrode terminal, reduce the difficulty of sealing and manufacturing a single electrode terminal, facilitate production, and reduce production costs.
  • the first negative terminal 12 of the k-1th single cell 100 is connected to the first positive terminal 11 of the kth single cell 100.
  • the first negative terminal 12 of the k single cells 100 is connected to the first positive terminal 11 of the k+1th single cell 100;
  • the second negative terminal 14 of the k-1th single cell 100 is connected to the kth single cell.
  • the second positive terminal 13 of the bulk battery 100 is connected, and the second negative terminal 14 of the k-th single cell 100 is connected to the second positive terminal 13 of the k+1-th single cell 100, 2 ⁇ k ⁇ n-1, n ⁇ 3, that is, there are at least three single cells 100.
  • the n single cells 1000 are connected as a whole through the negative terminal and the positive terminal in turn, and the positive and negative terminals of the two adjacent single cells 100 are electrically connected through the connecting piece 101 to make the battery module 1000 overcurrent More capable.
  • there are six single cells 100 six single cells 100 are arranged side by side in series, and the first negative terminal 12 of the first single cell 100 and the second single cell 100
  • the first positive terminal 11 of 100 is connected, and the first negative terminal 12 of the second single cell 100 is connected to the first positive terminal 11 of the third single cell 100.
  • the second negative terminal 14 of the first single battery 100 is connected to the second positive terminal 13 of the second single battery 100, and the second negative terminal 14 of the second single battery 100 is connected to the third single battery 100.
  • the second positive terminal 13 is connected.
  • the single battery 100 is designed with four electrode terminals, which can reduce the size of a single electrode terminal, reduce the difficulty of sealing and manufacturing a single electrode terminal, and at the same time improve the overcurrent capability, which can improve the safety and stability of the single battery 100. , And the single battery 100 can be led out in both directions, shortening the current transmission path, greatly reducing the internal resistance of the battery, and enhancing the overcurrent efficiency.
  • the single battery 100 includes a pole core, and the single battery 100 has a length direction and a width direction perpendicular to the length direction.
  • the pole core includes a positive electrode sheet, an insulating diaphragm and a negative electrode sheet stacked in sequence.
  • the two ends of the positive electrode sheet along the length direction are electrically connected with positive electrode lugs, and the two ends of the negative electrode sheet along the length direction are electrically connected with negative electrode lugs.
  • the positive lug and the negative lug are staggered in the width direction.
  • the battery module 1000 has at least two pairs of positive and negative electrode terminals, and the two pairs of positive and negative electrode terminals can be connected to the outside (other single cells 100) at the same time, thereby increasing the size of the single cell 100
  • the over-current capability realizes bidirectional extraction, reduces the internal resistance of the single battery 100, and realizes the parallel arrangement in series, reducing the number of batteries.
  • the battery module 1000 includes: n single cells 100.
  • the single battery 100 includes a casing and a pole core.
  • the pole core is located in the shell.
  • the shell has a first end surface and a second end surface.
  • the first positive terminal 11 and the first negative terminal 12 are provided on the first end surface, and the second positive terminal 13 and the second negative terminal 14 are provided on the second end surface.
  • the pole core has a first end and a second end.
  • a plurality of first positive electrode ears and first negative electrode ears extend from the first end.
  • the first positive electrode ear is connected to the first positive terminal 11, and the first negative electrode ear is connected to the first negative electrode.
  • the terminals 12 are connected, and a plurality of second positive lugs and second negative lugs extend from the second end.
  • the second positive lugs are connected to the second positive terminal 13 and the second negative lugs are connected to the second negative terminal 14.
  • both ends of the housing are provided with a first end plate and a second end plate, the first end plate and the second end plate are disposed oppositely, and the first positive terminal 11 and the first negative terminal 12 are disposed on the first The end plate, the second positive terminal 13 and the second negative terminal 14 are provided on the second end plate, that is, the first end plate of each single cell 100 is provided with a first positive terminal 11 and a first negative terminal 12, each single The second end plate of the bulk battery 100 is provided with a second positive terminal 13 and a second negative terminal 14.
  • the single cell 100 may be electrically connected to the outside (other single cells 100) through the first positive terminal 11, the first negative terminal 12, the second positive terminal 13, and the second negative terminal 14.
  • the electrode terminals penetrate the corresponding end plate, the first positive terminal 11 and the first negative terminal 12 penetrate the first end plate, and the second positive terminal 13 and the second negative terminal 14 penetrate the second end plate, namely the electrode
  • the two ends of the terminal are respectively located on both sides of the end plate, wherein the first end of the electrode terminal is located in the housing, so that the first end of the electrode terminal is electrically connected to the electric storage element in the mounting cavity, and the second end of the electrode terminal is located at Outside the shell.
  • the second end of the electrode terminal is used to electrically connect with an external device, so that the electric energy in the single battery 100 can be output to an external device.
  • the second end of the electrode terminal is connected to the adjacent single battery 100 to connect the multiple single batteries 100 in series, so that the multiple single batteries 100 can be charged and discharged at the same time, thereby improving the use efficiency of the battery pack.
  • the first positive terminal 11 and the first negative terminal 12 penetrate the first end plate, and the second positive terminal 13 and the second negative terminal 14 penetrate the second end.
  • the first negative terminal 12 of the k-1th single cell 100 is connected to the first positive terminal 11 of the kth single cell 100, and the first negative terminal 12 of the kth single cell 100 is connected to the k+th
  • the first positive terminal 11 of a single cell 100 is connected;
  • the second negative terminal 14 of the k-1 single cell 100 is connected to the second positive terminal 13 of the k-th single cell 100, and the k-th cell
  • the second negative terminal 14 of the battery 100 is connected to the second positive terminal 13 of the k+1th single cell 100, 2 ⁇ k ⁇ n-1, n ⁇ 3, that is, there are at least three single cells 100.
  • the n unit batteries 1000 are sequentially connected as a whole through the negative terminal and the positive terminal, and the positive terminals and the negative terminals of the two adjacent unit batteries 100
  • the length of the single battery 100 is L
  • the width of the single battery 100 is H
  • the ratio design of the length, width, and thickness of the single battery 100 is beneficial to increase the energy density of the entire power battery pack, and the volume ratio is better.
  • the size of the single cell 100 is too large, which can easily lead to a decrease in the overcurrent capability and even an increase in the impedance of the current collector.
  • the size of the single battery 100 of the present application is designed within a reasonable range, which can ensure that the single battery 100 has a large output current, the single battery 100 has a strong overcurrent capability, and the design difficulty and the sealing difficulty of the single battery 100 are reduced. .
  • the single battery 100 includes a casing and a pole core.
  • the end plate of the housing is provided with electrode terminals for electrical connection with the outside.
  • the end plate includes a first end plate and a second end plate respectively provided at both ends of the housing.
  • the first end plate and the second end plate are arranged opposite to each other. Both the first end plate and the second end plate are provided with a positive terminal and a negative terminal.
  • the first end plate of each single cell 100 is provided with a first positive terminal 11 and a first negative terminal 12, and each cell
  • the second end plate of the battery 100 is provided with a second positive terminal 13 and a second negative terminal 14.
  • the single cell 100 may be electrically connected to the outside (other single cells 100) through the first positive terminal 11, the first negative terminal 12, the second positive terminal 13, and the second negative terminal 14.
  • the positive terminal and the negative terminal pass through the first end plate and the second end plate, the first positive terminal 11 and the first negative terminal 12 pass through the first end plate, the second positive terminal 13 and the second negative terminal 14 pass through the second end plate, That is, the two ends of the electrode terminal are respectively located on both sides of the end plate, wherein the first end of the electrode terminal is located in the housing, so that the first end of the electrode terminal is electrically connected to the storage element in the mounting cavity, and the second end of the electrode terminal The end is located outside the shell.
  • the second end of the electrode terminal is used to electrically connect with an external device, so that the electric energy in the single battery 100 can be output to an external device.
  • the pole core is contained in the shell, and the pole core is used as an electric storage element in the shell for charging and discharging to the outside. It should be noted that both ends of the pole core are provided with a positive electrode ear and a negative electrode ear, that is, the electrode ear includes a positive electrode ear and a negative electrode ear.
  • the positive electrode ear is connected to the corresponding positive terminal
  • the negative electrode ear is connected to the corresponding negative terminal.
  • One end of the terminal extending into the end plate is electrically connected to the corresponding tab. In this way, one end of the pole core is electrically connected to the positive terminal through the positive lug, and the other end of the pole core is electrically connected to the negative terminal through the negative lug, thereby enabling the pole core to conduct current with the external circuit.
  • the pole core includes a plurality of sub-cells.
  • the sub-cell contains a positive electrode sheet and a negative electrode sheet.
  • An insulating diaphragm is arranged between the positive electrode sheet and the negative electrode sheet.
  • the insulating diaphragm can effectively separate the positive electrode sheet and the negative electrode sheet so that both the positive electrode sheet and the negative electrode sheet maintain normal current flow.
  • the area of the insulating diaphragm is larger than that of the positive electrode sheet and the negative electrode sheet, so that the insulating diaphragm can effectively isolate the positive electrode sheet and the negative electrode sheet.
  • the positive electrode sheet is electrically connected with a positive electrode lug
  • the negative electrode sheet is electrically connected with a negative electrode lug.
  • the electrode core includes at least two sub-cells, and the positive electrode sheet of one of the two sub-cells and the other sub-cell The negative pole pieces are arranged adjacently. In this way, the battery cell is alternately stacked with a plurality of positive electrodes and a plurality of negative electrodes, so that the battery capacity of the single battery 100 is effectively increased, and it is convenient to realize the current extraction of the battery.
  • the lead-out directions of the adjacent tabs of the two adjacent sub-cells of the positive and negative tabs are opposite.
  • the multiple tabs of the single battery 100 are respectively drawn from different sides, which is convenient for the single cell.
  • the dispersed arrangement of the overall structure of the battery 100 makes the overall structure distribution of the single battery 100 more even
  • a plurality of sub-cells are stacked in the thickness direction of the single cell 100.
  • the single battery 100 includes two sub-cells, and the two sub-cells are stacked along the thickness direction of the single battery 100, that is, the arrangement direction of the sub-cells corresponds to the positive electrode.
  • the stacking direction of the sheet and the negative electrode sheet is the same, so that the sub-cells are in stable contact with each other, and they are stably held in the casing to achieve relative fixation, and the positive and negative lugs in each sub-cell are along the single cell 100 In this way, the arrangement position of the positive electrode ear and the negative electrode ear can be prevented from being too concentrated, and the positive electrode ear and the negative electrode ear can be prevented from contacting and short-circuiting, and the safety of the single battery 100 can be improved.
  • the pole core 100 a of the single battery 100 includes a first sub-cell 10 and a second sub-cell 20.
  • the first sub-cell 10 includes a first negative electrode sheet 130, an insulating separator 120, and a first positive electrode sheet 110 stacked in sequence.
  • the second sub-cell 20 includes a second negative electrode sheet 230, an insulating separator 220, and a second positive electrode sheet 210 stacked in sequence.
  • the second negative electrode sheet 230 is arranged adjacent to the first positive electrode sheet 110 and is insulated and isolated by an insulating diaphragm 120 (or 220).
  • Both ends of the first positive electrode sheet 110 along the length direction are respectively provided with first positive electrode ears 1101, and the two first positive electrode ears 1101 are close to the edge of one side of the first positive electrode sheet 110 in the width direction, in other words, the two first positive electrode ears 1101 deviates from the center of the first positive electrode plate 110 in the width direction, so that the tabs are staggered along the width direction.
  • Both ends of the first negative electrode sheet 130 along the length direction are respectively provided with first negative electrode lugs 1301, and the two first negative electrode lugs 1301 are close to the edge of one side of the first negative electrode sheet 120 in the width direction, in other words, the two first negative electrode lugs 1301 is offset from the center of the first negative electrode sheet 130 in the width direction.
  • the first positive electrode lug 1101 and the first negative electrode lug 1301 are respectively located on both sides of the width direction, that is, staggered. .
  • the second positive electrode tab 210 is provided with second positive electrode lugs 2101 at both ends along its length direction, and the two second positive electrode lugs 2101 are close to the edge of one side of the second positive electrode strip 210 in the width direction.
  • the two positive electrode tabs 2101 deviate from the center of the second positive electrode sheet 210 in the width direction, so that the tab tabs are staggered along the width direction.
  • the second negative electrode plate 230 is provided with second negative electrode tabs 2301 at both ends along its length direction, and the two second negative electrode tabs 2301 are close to the edge of one side of the second negative electrode plate 220 in the width direction, in other words, two second negative electrode tabs 2301 is offset from the center of the second negative electrode tab 230 in the width direction.
  • the second positive electrode lug 2101 and the second negative electrode lug 2301 are respectively located on both sides of the width direction, that is, staggered. .
  • the adjacent tabs in the first sub-cell 10 and the second sub-cell 20 are the first positive tab 1101 and the second negative tab 2301, and the lead-out directions of the first positive tab 1101 and the second negative tab 2301 are the width direction, respectively.
  • the width of the positive or negative tab is H1
  • the overcurrent width of the positive electrode sheet or the negative electrode sheet is greater than the overcurrent width of the tab
  • the overcurrent width of the tab is greater than the overcurrent width of the electrode terminal
  • the thickness of the electrode terminal is larger.
  • the pole core, tabs, and electrode terminals all have excellent overcurrent capabilities.
  • the single battery 100 has excellent charging and discharging capabilities, thereby increasing the power output efficiency to external electrical equipment and enhancing its own charging efficiency. , Save the charge and discharge time required by the user, reduce the time cost, and facilitate the user to use.
  • the tabs and cores have larger contact surfaces.
  • the tabs and the electrode terminals When the electrode terminals, tabs and cores are installed and matched, the tabs and the electrode terminals have a larger contact area, and the tabs and the cores have a larger contact area. In this way, the overcurrent efficiency between the electrode terminals, the pole ears and the pole core is improved.
  • the pole ears, the pole core and the electrode terminal are easy to install and fix, and can maintain a stable contact state for a long time, and improve the assembly efficiency.
  • the service life is extended, the design accuracy and process difficulty of the single cell 100 are reduced, and the overcurrent capability is increased.
  • the single battery 100 further includes an insulating spacer.
  • the insulating spacer is arranged between the end plate and the pole core, that is, the insulating spacer is arranged at the end of the pole core, and the insulating spacer has good insulation performance, and the insulating spacer is used to separate the positive and negative lugs, In this way, the positive electrode ear and the negative electrode ear can be prevented from directly contacting, so that both the positive electrode ear and the negative electrode ear can maintain the normal current flow state, prevent the positive electrode ear and the negative electrode ear from interfering with each other, avoid the positive electrode ear and the negative electrode ear contact short circuit, and improve the single battery 100 Security.
  • the insulating spacer has an isolating plate, which extends toward the pole core, and the isolating plate gradually extends from the side of the insulating spacer toward the pole core toward the pole core, and the isolating plate is located between the positive ear and the negative ear, and the positive ear and The negative ears are located on both sides of the separator, and the area of the separator is larger than the area of the positive and negative ears to effectively isolate the positive and negative ears, prevent the positive and negative ears from interfering with each other, and avoid the positive and negative ears
  • the contact short circuit improves the safety of the single battery 100.
  • the free end of the separator plate is suitable for pressing the electrode core so that there is no gap between the positive electrode ear and the negative electrode ear to pass through, thereby ensuring that the positive electrode ear and the negative electrode ear are completely current-free, and improving the safety of the single battery 100 .
  • the distance between the two separator plates can accommodate partial deformation of the separator plate, and the positive electrode ear and the negative electrode ear will not cross the distance, thereby more effectively preventing the positive electrode
  • the ears are in contact with the negative ears, which improves the safety of the single battery 100.
  • the insulating spacer is provided with a plurality of avoiding holes, and the positive or negative ear is suitable for passing through the avoiding hole to be connected with the corresponding positive terminal or negative terminal. Therefore, the insulating spacer is used for insulating and protecting the positive and negative ears. At the same time, the normal connection between the tabs and the electrode terminals is not affected, and the pole core can be connected to the electrode terminals through the tabs, which facilitates the charging and discharging of the single battery 100.
  • At least one of the two end plates is provided with a lead-out piece, the lead-out piece is arranged on the side facing the pole core, and the lead-out piece is directly electrically connected to the tab and the electrode terminal, that is, the inner end of the lead-out piece and the pole The ear is electrically connected, and the outer end of the lead piece is electrically connected to the electrode terminal.
  • the pole core and the electrode terminal can be electrically connected through the tab and the lead piece.
  • the setting of the lead piece can reduce the length of the electrode terminal or the electrode terminal.
  • the resulting poor contact ensures that the tabs and the electrode terminals are in effective contact with the lead-out piece, and the stability of the current conduction of the single battery 100 is improved, which is convenient for long-term use.
  • the width of the tab is the contact width between the lead plate and the tab, and the width of the lead tab is not less than the contact width of the tab. Therefore, the flow width between the lead plate and the tab is the width of the tab itself, and The width of the ears is larger. In this way, it can be ensured that there is an excellent overcurrent efficiency between the lead-out piece and the tabs, and the overcurrent capability of the single battery 100 can be improved.
  • the tab 12 is integrated with the current collector, and the tab 12 and the current collector are formed by die-cutting copper foil or aluminum foil.
  • the tab 12 is quickly formed, reducing the process cost, and on the other hand, the tab and the current collector
  • the integrated current transmission performance is better, and the shape of the tab 12 can be die-cut according to actual needs, which is easy to structure and can be used flexibly
  • the pole piece in the pole core 15 further includes a current collector.
  • the current collector includes: a covering area and an insulating area.
  • the insulating area is set between the tab and the covering area.
  • the insulating area is covered with an insulating layer.
  • the insulating layer is made of insulating rubber or inorganic ceramic particles.
  • the insulating layer can be opposite to the electrode.
  • the ears play the role of insulation and protection, prevent the structure of the tabs from being damaged, and improve the safety of the use of the tabs.
  • the single battery 100 further includes an explosion-proof valve.
  • the explosion-proof valve is arranged on the end plate, and the explosion-proof valve is located outside the two electrode terminals.
  • the explosion-proof valve can be used as a pressure relief device for the single battery 100 to relieve the pressure when the pressure in the single battery 100 is abnormal or too high. , In order to keep the pressure in the mounting cavity within a safer range, in this way, the internal pressure of the single battery 100 can be prevented from being substantially expanded and deformed, and the safety and stability of the single battery 100 in use can be improved.
  • a single pole core is contained in the housing, one end of the pole core is electrically connected to the positive terminal, and the other end is electrically connected to the negative terminal.
  • the pole core can be a laminated pole core, that is, the pole core is formed by stacking a plurality of pole pieces. In this way, the end of each pole piece is electrically connected to the electrode terminals at both ends to ensure that the pole core and the electrode terminal have Good conductivity.
  • the pole core can also be a wound pole core, which can also realize the function of current conduction.
  • This application also proposes another battery module 1000.
  • the battery module 1000 includes: two single cells 100.
  • each single battery 100 is provided with a first positive terminal 11 and a first negative terminal 12
  • the second end plate of each single battery 100 is provided with a second positive terminal 13 and a second negative terminal.
  • Two single batteries 100 are arranged side by side in series, the first negative terminal 12 of the first single battery 100 is connected to the first positive terminal 11 of the second single battery 100, and the first single battery 100
  • the second negative terminal 14 is connected to the second positive terminal 13 of the second single battery 100, so that the single battery 100 can be led out in both directions, shortening the current conduction path, greatly reducing the internal resistance of the battery, and enhancing the overcurrent efficiency.
  • the design of four electrode terminals for each single cell 100 can reduce the size of a single electrode terminal and reduce the difficulty of sealing and manufacturing the single electrode terminal.
  • This application also proposes a power battery pack.
  • the power battery pack according to the embodiment of the present application includes: a battery pack housing and a plurality of single cells 100 in the foregoing embodiments.
  • the single battery 100 is installed in the battery pack housing, and the multiple single batteries 100 are arranged in sequence, and the upper and lower ends of the multiple single batteries 100 are kept flush. In this way, the electrode terminals of a plurality of single cells 100 can be connected in series through the connecting piece 101, and the plurality of single cells 100 can be charged and discharged simultaneously, which improves the charging and discharging efficiency of the power battery pack and the battery capacity of the power battery pack.
  • the battery pack casing is filled with a thermally conductive insulating layer that wraps the battery module 1000.
  • the thermally conductive insulating layer can effectively isolate the battery module 1000 from the battery pack casing and prevent the single cells 100 in the battery module 1000 from short-circuiting.
  • the battery module 1000 is protected to prevent the general structural deformation of the battery module 1000 from being pressed, and the safety of the power battery pack is improved.
  • the thermally conductive insulating layer can be made of rubber material.
  • This application also proposes a vehicle.
  • the vehicle according to the embodiment of the present application is provided with the power battery pack of the above-mentioned embodiment.
  • the single battery 100 of the power battery pack fails, the other single batteries 100 can still be used normally, ensuring that the vehicle always has a stable power output and improving overall The utility and safety of the car, and the power battery pack is convenient to maintain.
  • the single cell includes a shell and a pole core located in the shell.
  • the two sides of the shell are respectively provided with electrode terminals that are electrically connected to the pole core and extend out of the shell for drawing current.
  • the electrode terminals on each side are 2; there are tabs on the pole core, and the electrode terminals are electrically connected to the pole core through the tabs;
  • L is the length of the single battery
  • single The battery is labeled S1.
  • the battery module includes n single cells (the single cells are one of S1-S6), the single cells have multiple faces, and one of at least two faces is provided with a first positive terminal and a first negative electrode. A terminal, the other of the at least two surfaces is provided with a second positive terminal and a second negative terminal;
  • n single cells are arranged side by side in series, the first negative terminal of the k-1th single cell is connected to the first positive terminal of the kth single cell, and the first negative terminal of the kth single cell is connected to The first positive terminal of the k+1th single battery is connected;
  • the second negative terminal of the k-1th single battery is connected to the second positive terminal of the kth single battery, and the second negative terminal of the kth single battery is connected to the k+1th single battery (100)
  • Example 2 Compared with Example 2, the difference is that there are a set of tabs on both ends of the pole core, and there is an electrode terminal on each of the two opposite sides of the housing, and the single battery is marked as D1.
  • Embodiment 3 Compared with Embodiment 3, the difference is that there is a set of tabs on both ends of the pole core, and there is an electrode terminal on each of the two opposite faces of the housing, and the single battery is marked as D2.
  • Comparative Example 4-Comparative Example 6 Connect n single cells (one of D1, D2, D3) in series to obtain a battery module, and the battery modules are respectively labeled D4-D6.
  • Test equipment charge and discharge cabinet
  • Test method The discharge DCIR parameters of the regulating device are measured under the conditions of normal temperature, 50% SOC, 1.5C@30s, Example 1 to Example 7, Comparative Example 1 to Comparative Example 3. The test results are shown in Table 1. (The test method is a common method in the field);
  • Test equipment charging and discharging cabinet, thermocouple, Agilent data collector
  • Test method The temperature rise parameters of the positive electrode terminal and the lead-out sheet were measured by the adjustment device under the continuous charge and discharge test conditions of 2C in an adiabatic environment.
  • Example 1 to Example 6 Comparative Example 1 to Comparative Example 3.
  • the test results are shown in Table 1. (The test method is a common method in the field);
  • Test equipment charge and discharge cabinet
  • Test method electrically connected to the charge and discharge cabinet, and measured the last charge and discharge energy efficiency parameters under the condition of continuous charge and discharge 3 times at 1C, Example 1 to Example 6, Comparative Example 1 to Comparative Example 3. The test results are shown in Table 1. (The test method is a common method in the field);
  • Test equipment charge and discharge cabinet
  • Test method Adjust the equipment to measure the discharge DCIR parameters under the conditions of normal temperature, 50% SOC, 1.5C@30s, test the battery modules in Example 7-Example 112, Comparative Example 4-Comparative Example 6, and see the test results Table 1. (The test method is a common method in the field);
  • Example 1 0.65-0.8 10-15°C 92%-94%
  • Example 7 >N*DCIR monomer
  • Example 2 0.7-0.85 12-18°C 91-93%
  • Example 8 >N*DCIR monomer
  • Example 3 0.8-1.0 15-20°C 90%-92%
  • Example 9 >N*DCIR monomer
  • Example 4 0.9-1.1 18-22°C 89%-91%
  • Example 10 >N*DCIR monomer
  • Example 5 1.5-2.0 20-24°C 89%-91%
  • Example 11 >N*DCIR monomer
  • Example 6 2.5-3.0 22-26°C 89%-91%
  • Example 12 >N*DCIR monomer Comparative example 1 1.2-1.6 20-25°C 83%-87%
  • Comparative example 4 >N*DCIR monomer Comparative example 2 1.4-1.8 22-27°C 86%-88%
  • Comparative example 5 >N*DCIR monomer Comparative example 3 1.6-2.0 25-30°C 87%-89%
  • Comparative example 6 >N*DCIR monomer
  • the battery module (1000) includes: n single cells (100), the single cells (100) have a plurality of faces, at least one of the two faces A first positive terminal (11) and a first negative terminal (12) are provided, and the other of the at least two surfaces is provided with a second positive terminal (13) and a second negative terminal (14); Wherein, n said single cells (100) are arranged side by side in series, and the first negative terminal (12) of the k-1th single cell (100) and the kth single cell (100) The first positive terminal (11) is connected, and the first negative terminal (12) of the k-th single battery (100) is connected to the first positive terminal (11) of the k+1-th single battery (100) Connected; the second negative terminal (14) of the k-1th single battery (100) is connected to the second positive terminal (13) of the kth single battery (100), the kth The second negative terminal (14) of the single battery (100) is connected to the second positive terminal (13) of the kth single battery (100), the
  • the single battery has a first end surface and a second end surface, the first end surface and the second end surface are disposed opposite to each other, and the first positive terminal (11) And a first negative terminal (12) are provided on the first end surface, and the second positive terminal (13) and the second negative terminal (14) are provided on the second end surface.
  • the single battery (100) includes: a casing and a pole core located in the casing; the casing has a first end surface and a second end surface, the The first positive terminal (11) and the first negative terminal (12) are provided on the first end surface, and the second positive terminal (13) and the second negative terminal (14) are provided on the second The end face; the pole core has a first end and a second end, the first end extends a plurality of first positive ears and first negative ears, the first positive ears and the first positive terminal (11 ), the first negative electrode ear is connected to the first negative electrode terminal (12), a plurality of second positive electrode ears and second negative electrode ears extend from the second end, and the second positive electrode ear is connected to the The second positive terminal (13) is connected, and the second negative lug is connected with the second negative terminal (14).
  • both ends of the casing are provided with a first end plate and a second end plate opposite to each other, the first positive terminal (11) and the first negative electrode
  • the terminal (12) is provided on the first end plate and penetrates the first end plate, and the second positive terminal (13) and the second negative terminal (14) are provided on the second end plate.
  • the pole core includes a plurality of sub-cells, each of the sub-cells contains a positive electrode sheet, an insulating diaphragm, and a negative electrode sheet, and the positive electrode sheet is electrically connected with a positive electrode lug.
  • the negative electrode sheet is electrically connected with a negative electrode tab; adjacent tabs of the two adjacent sub-cells are located on opposite sides of the width direction.
  • a plurality of the sub-cells are stacked and arranged along the thickness direction of the single battery (100), and the positive ear and the socket in each of the sub-cells
  • the negative lugs are staggered along the width direction of the single battery (100).
  • the battery module (1000) further includes an insulating spacer, the insulating spacer is arranged between the end plate and the pole core, and the insulating spacer is used to connect the positive ear Spaced apart from the negative ear.
  • the insulating spacer has a separating plate, the separating plate extends toward the pole core, and the separating plate is located between the positive ear and the negative ear .
  • the battery module (1000) of the embodiment of the present application there are a plurality of the isolation plates, and the plurality of the isolation plates are arranged at intervals along the connection direction of the positive ear and the negative ear.
  • the insulating spacer is provided with a plurality of avoiding holes, and the positive lug or the negative lug is adapted to pass through the avoiding hole to connect with the corresponding positive terminal Or the negative terminal is connected.
  • H1 is the width of the positive electrode ear or the negative electrode ear
  • H2 is the positive electrode sheet or the negative electrode sheet The width.
  • the pole piece in the pole core further includes: a current collector, and the positive electrode lug or the negative electrode lug is integrated with the corresponding current collector.
  • the application also proposes a battery module (1000), including: two single cells (100), each of the single cells (100) has a first positive terminal (11) and The first negative terminal (12), the second end plate of each single battery (100) is provided with a second positive terminal (13) and a second negative terminal (14); wherein two of the single batteries ( 100) are arranged side by side in series, the first negative terminal (12) of the first single battery (100) is connected to the first positive terminal (11) of the second single battery (100), and the first The second negative terminal (14) of the single battery (100) is connected to the second positive terminal (13) of the second single battery (100); the single battery (100) has a length L and Width H, the L satisfies 600mm ⁇ L ⁇ 1300mm, and the L and H satisfies 10 ⁇ L/H ⁇ 20.
  • the present application also proposes a power battery pack, including: a battery pack housing; the battery module (1000) according to any one of the above, the battery module (1000) is installed in the battery pack housing.
  • the battery pack shell is filled with a thermally conductive insulating layer that wraps the battery module (1000).
  • This application also proposes a vehicle with the power battery pack described in the above embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池模组、动力电池包和车辆,所述电池模组包括:n个单体电池,所述单体电池的至少两个面上分别设有第一正极端子和第一负极端子及第二正极端子和第二负极端子;其中,n个所述单体电池并排串联设置;所述单体电池(100)具有长度L及宽度H,所述L满足600mm<L≤1300mm,所述L和H满足10<L/H≤20。

Description

电池模组、动力电池包和车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2019年6月21日提交的、发明名称为“电池模组、动力电池包和车辆”的中国专利申请号“201920942577.2”的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及车辆制造技术领域,尤其是涉及一种电池模组、具有该电池模组的动力电池包和具有该动力电池包的车辆。
背景技术
近年来,随着新能源汽车的大力发展,车载电池的性能要求也随之提高。其中工业和信息化部、国家发展改革委、科技部联合印发了《汽车产业中长期发展规划》明确我国动力电池目标,到2020年,锂离子动力电池单体比能量大于300Wh/kg;系统比能量争取达到260Wh/kg;成本小于1元/Wh;使用环境从零下30℃到55℃;具备3C充电能力,2025年力争实现单体电池350Wh/kg。
为了实现上述目标,采用增大电池的尺寸或体积,来提高电池容量和整个电池包的成组效率,是当前的一个主要设计方向。但是电池尺寸过大,电流通过集流体传达到极耳侧再经由极耳引出,电池极片内部集流路径过长,内阻增大,从而影响动力电池的大电流充放电性能、安全性能等。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请的一个目的在于提出一种电池模组,可降低电池内阻,提高电池的大电流充放电性能、安全性能。
根据本申请实施例的电池模组,包括:n个单体电池,所述单体电池具有多个面,至少两个所述面中的一个所述面上设有第一正极端子和第一负极端子,至少两个所述面中的另一个所述面上设有第二正极端子和第二负极端子;其中,n个所述单体电池并排串联设置,第k-1个所述单体电池的第一负极端子与第k个所述单体电池的第一正极端子相连,第k个所述单体电池的第一负极端子与第k+1个所述单体电池的第一正极端子相连;第k-1个所述单体电池的第二负极端子与第k个所述单体电池的第二正极端子相连,第k个所述单体电池的第二负极端子与第k+1个所述单体电池的第二正极端子相连,2≤k≤n-1,n≥3;
所述单体电池包括极芯,并具有长度方向及与所述长度方向垂直的宽度方向,所述极芯包括依次层叠的正极片、绝缘隔膜和负极片,所述正极片沿所述长度方向的两端分别电连接有正极耳,所述负极片沿所述长度方向的两端分别电连接有负极耳;在所述长度方向的任一端,所述正极耳与所述负极耳沿所述宽度方向错开设置。
根据本申请实施例的电池模组,每个单体电池含有至少具有两对正负电极端子,两对正负电极端子可同时与外部(其他单体电池)相连,由此,可降低单体电池的内阻,实现双向引出,增大单体电池的过流能力,且实现并排串联设置,减少电池的数量。电池模组内含有多个单体电池,每个电池内部设计有多个电流引出的极耳,缩短了电池内部的集流路径,降低电池内阻,对电池的大电流充放电性能、安全性能等都有极大的提高。
本申请还提出了一种动力电池包。
根据本申请实施例的动力电池包,包括:电池包壳体;多个如上述任一种实施例所述的单体电池,所述单体电池安装于所述电池包壳体内。
根据本申请实施例的动力电池包,所述电池包壳体内填充有包裹所述电池模组的导热绝缘层。
本申请又提出了一种车辆。
根据本申请实施例的车辆,具有上述任一种实施例所述的动力电池包。
所述车辆、所述动力电池包和上述的电池模组相对于现有技术所具有的优势相同,在此不再赘述。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的电池模组的单体电池的结构示意图;
图2是根据本申请实施例的电池模组的结构示意图;
图3为极芯在一较优实施例中的结构示意图;
图4为图3中的极芯的分解结构示意图。
附图标记:
电池模组1000,
单体电池100,第一正极端子11,第一负极端子12,第二正极端子13,第二负极端子14,
连接片101,
极芯100a,
第一子电芯10,第一正极片110,绝缘隔膜120,第一负极片130,第一正极耳1101,第一负极耳1301,
第二子电芯20,第二正极片210,绝缘隔膜220,第二负极片230,第二正极耳2101,第二负极耳2301。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
下面参考图1至图4描述根据本申请实施例的电池模组1000,该电池模组1000的单体电池100至少具有两对正负电极端子,两对正负电极端子可同时与外部(其他单体电池100)相连,由此,可增大单体电池100的过流能力,实现双向引出,降低单体电池100的内阻,且实现并排串联设置,减少电池的数量。
如图1-图2所示,根据本申请实施例的电池模组1000,包括:n个单体电池100。
其中,单体电池100具有多个面,至少两个面中的一个面上设有第一正极端子11和第一负极端子12,至少两个面中的另一个上设有第二正极端子13和第二负极端子14。
单体电池100可通过第一正极端子11、第一负极端子12、第二正极端子13和第二负极端子14与外部(其他单体电池100)电连接。
其中,单体电池具有第一端面和第二端面,第一端面和第二端面相对设置,第一正极端子和第一负极端子设于第一端面,第二正极端子和第二负极端子设于第二端面,这样,单体电池100的第一正极端子11与第二正极端子13间隔开,第一负极端子12与第二负极端子14间隔开,由此,可防止第一正极端子11与第二正极端子13接触、第一负极端子12与第二负极端子14接触,避免单体电池100出现短路的情况,提高单体电池100使用的安全性,且便于将相邻两个单体电池100通过连接片101连接。
如图2所示,相邻两个单体电池100中的第一个的第一正极端子11与第二个的第一负极端子12相连,相邻两个单体电池100中的第一个的第二正极端子13与第二个的第二负极端子14相连,其中,单体电池100的内部通过第一正极端子11、第一负极端子12连通,同时通过第二正极端子13和第二负极端子14连通。
这样,相邻的两个单体电池100之间通过两对电极端子相连,提高过流能力,可提高单体电池100使用的安全性和稳定性,且单体电池100可实现双向引出,缩短了电流的传 输路径,极大地降低电池的内阻,增强过流效率。
单体电池100设计四个电极端子,可降低单个电极端子的尺寸,降低单个电极端子的密封和制造难度,易于实现生产,降低生产成本。
如图2所示,其中,n个单体电池100并排串联设置,第k-1个单体电池100的第一负极端子12与第k个单体电池100的第一正极端子11相连,第k个单体电池100的第一负极端子12与第k+1个单体电池100的第一正极端子11相连;第k-1个单体电池100的第二负极端子14与第k个单体电池100的第二正极端子13相连,第k个单体电池100的第二负极端子14与第k+1个单体电池100的第二正极端子13相连,2≤k≤n-1,n≥3,即单体电池100至少为3个。这样,n个单体电池1000通过负极端子、正极端子依次连接为一个整体,相邻两个单体电池100的正极端子和负极端子通过连接片101电连接,以使电池模组1000的过流能力更强。在一些实施例中,如图2所示,单体电池100为6个,6个单体电池100并排串联设置,第1个单体电池100的第一负极端子12与第2个单体电池100的第一正极端子11相连,第2个单体电池100的第一负极端子12与第3个单体电池100的第一正极端子11相连。第1个单体电池100的第二负极端子14与第2个单体电池100的第二正极端子13相连,第2个单体电池100的第二负极端子14与第3个单体电池100的第二正极端子13相连。
这样,6个单体电池100可通过第一负极端子12、第一正极端子11依次连接为一个整体,即通过第一负极端子12、第一正极端子11过流,同时通过第二负极端子14与第二正极端子13依次连接为一个整体,即通过第二负极端子14与第二正极端子13过流,这。由此,单体电池100设计四个电极端子,可降低单个电极端子的尺寸,降低单个电极端子的密封和制造难度,同时提高过流能力,可提高单体电池100使用的安全性和稳定性,且单体电池100可实现双向引出,缩短了电流的传输路径,极大地降低电池的内阻,增强过流效率。
单体电池100包括极芯,且单体电池100具有长度方向及与长度方向垂直的宽度方向。极芯包括依次层叠的正极片、绝缘隔膜和负极片,正极片沿长度方向的两端分别电连接有正极耳,负极片沿长度方向的两端分别电连接有负极耳。在长度方向的任一端,正极耳与负极耳沿宽度方向错开设置。
根据本申请实施例的电池模组1000,至少具有两对正负电极端子,两对正负电极端子可同时与外部(其他单体电池100)相连,由此,可增大单体电池100的过流能力,实现双向引出,降低单体电池100的内阻,且实现并排串联设置,减少电池的数量。
在一些实施例中电池模组1000包括:n个单体电池100。
其中,单体电池100包括壳体、极芯。
极芯位于壳体内,壳体具有第一端面和第二端面,第一正极端子11和第一负极端子12设于第一端面,第二正极端子13和第二负极端子14设于第二端面,极芯具有第一端和第二端,第一端上延伸出多个第一正极耳和第一负极耳,第一正极耳与第一正极端子11相连,第一负极耳与第一负极端子12相连,第二端上延伸出多个第二正极耳和第二负极耳,第二正极耳与第二正极端子13相连,第二负极耳与第二负极端子14相连。
在一些实施例中,壳体的两端设有第一端板和第二端板,第一端板和第二端板相对设置,第一正极端子11和第一负极端子12设于第一端板,第二正极端子13和第二负极端子14设于第二端板,即每个单体电池100的第一端板设有第一正极端子11和第一负极端子12,每个单体电池100的第二端板设有第二正极端子13和第二负极端子14。单体电池100可通过第一正极端子11、第一负极端子12、第二正极端子13和第二负极端子14与外部(其他单体电池100)电连接。
如图2所示,电极端子贯穿对应的端板,第一正极端子11和第一负极端子12贯穿第一端板,第二正极端子13和第二负极端子14贯穿第二端板,即电极端子的两端分别位于端板的两侧,其中,电极端子的第一端位于壳体内,以使电极端子的第一端与安装腔内的储电元件电连接,电极端子的第二端位于壳体外。电极端子的第二端用于与外部的用于设备电连接,这样,可将单体电池100内的电能输出给外部的用电设备。或者电极端子的第二端与相邻的单体电池100连接,以将多个单体电池100串联,进而使多个单体电池100同时充放电,提高电池包的使用效率。
这样,相邻的两个单体电池100之间通过两对电极端子相连,提高过流能力,可提高单体电池100使用的安全性和稳定性,且单体电池100可实现双向引出,缩短了电流的传输路径,极大地降低电池的内阻,增强过流效率。
如图2所示,其中,n个单体电池100并排串联设置,第一正极端子11和第一负极端子12贯穿第一端板,第二正极端子13和第二负极端子14贯穿第二端板,第k-1个单体电池100的第一负极端子12与第k个单体电池100的第一正极端子11相连,第k个单体电池100的第一负极端子12与第k+1个单体电池100的第一正极端子11相连;第k-1个单体电池100的第二负极端子14与第k个单体电池100的第二正极端子13相连,第k个单体电池100的第二负极端子14与第k+1个单体电池100的第二正极端子13相连,2≤k≤n-1,n≥3,即单体电池100至少为3个。这样,n个单体电池1000通过负极端子、正极端子依次连接为一个整体,相邻两个单体电池100的正极端子和负极端子通过连接片101电连接。
在一些实施例中,单体电池100的长度为L,单体电池100的宽度为H,单体电池100 的厚度为T,满足:10<L/H,且在一些具体的执行中,10<L/H≤20,23≤L/T≤200,如L/H=12,L/T=60,或者L/H=14,L/T=120,再或者L/H=18,L/T=180。由此,单体电池100的各个设计尺寸在该范围内时,单体电池100的整体结构更符合标准化的设计,可通用于不同的动力电池包1000,以扩大适用范围。
单体电池100的长、宽、厚尺寸的比例设计利于提升整个动力电池包的能量密度,体积比更佳。
其中,单体电池100的长度满足:600mm≤L≤1300mm,且在实际的执行中,满足:701mm≤L≤1300mm,如L=800mm,或者L=900mm,再或者L=1200mm,需要说明的是,单体电池100的尺寸过大易导致过流能力下降甚至集流体阻抗增大。而本申请的单体电池100的尺寸设计在合理的范围内,可保证单体电池100输出电流大,单体电池100的过流能力强,且降低单体电池100的设计难度和密封的难度。
在一些实施例中,单体电池100包括:壳体和极芯。
壳体的端板上设有用于与外部电连接的电极端子,端板包括分别设于壳体两端的第一端板和第二端板,第一端板和第二端板相对设置,每个第一端板和第二端板上均设有正极端子和负极端子,如每个单体电池100的第一端板设有第一正极端子11和第一负极端子12,每个单体电池100的第二端板设有第二正极端子13和第二负极端子14。单体电池100可通过第一正极端子11、第一负极端子12、第二正极端子13和第二负极端子14与外部(其他单体电池100)电连接。
正极端子和负极端子贯穿第一端板和第二端板,第一正极端子11和第一负极端子12贯穿第一端板,第二正极端子13和第二负极端子14贯穿第二端板,即电极端子的两端分别位于端板的两侧,其中,电极端子的第一端位于壳体内,以使电极端子的第一端与安装腔内的储电元件电连接,电极端子的第二端位于壳体外。电极端子的第二端用于与外部的用于设备电连接,这样,可将单体电池100内的电能输出给外部的用电设备。
极芯容纳于壳体内,极芯作为壳体内的储电元件,用于向外部充放电。需要说明的是,极芯的两端均设有正极耳和负极耳,即极耳包括正极耳和负极耳,正极耳与对应的正极端子相连,负极耳与对应的负极端子相连,其中,电极端子伸入端板的一端与对应的极耳电连接。这样,极芯的一端通过正极耳与正极端子电连接,极芯的另一端通过负极耳与负极端子电连接,由此,可使得极芯与外部的电路电流导通。
在一些实施例中,极芯包括:多个子电芯。
子电芯含有正极片和负极片,正极片和负极片之间设有绝缘隔膜,绝缘隔膜可将正极片和负极片有效地间隔开,以使正极片和负极片均保持正常的电流流通状态,防止正极片和负极片相互干涉,避免正极片和负极片接触短路,提高单体电池100的安全性。其中, 绝缘隔膜的面积大于正极片、负极片,这样,绝缘隔膜可将正极片和负极片有效地隔绝。
正极片电连接有正极耳,负极片电连接有负极耳,在一些实施例中,极芯包括至少2个子电芯,2个子电芯中的1个子电芯的正极片与另一个子电芯的负极片相邻设置。这样,电芯由多个正极片和多个负极片交替叠置,使得单体电池100的电池容量有效地增加,且便于实现电芯的电流引出。
其中,正极耳负极耳相邻两个子电芯中相邻极耳的引出方向相反正极耳负极耳正极耳负极耳由此,单体电池100的多个极耳分别从不同侧引出,便于单体电池100的整体结构的分散布置,使得单体电池100的整体结构分布更加均匀
多个子电芯沿单体电池100的厚度方向层叠设置。
同时参阅图3和图4,在一些实施例中,单体电池100包括2个子电芯,2个子电芯沿单体电池100的厚度方向层叠设置,即,子电芯的排列方向与对应正极片和负极片的层叠排列方向相同,以使各个子电芯相互稳定地接触,均稳定地保持在壳体内,实现相对固定,且每个子电芯中的正极耳和负极耳沿单体电池100的宽度方向错开设置,这样,可避免正极耳和负极耳的布置位置过于集中,防止正极耳和负极耳接触短路,提供单体电池100的安全性。
例如,在具体实施中,单体电池100的极芯100a包括第一子电芯10和第二子电芯20。
第一子电芯10包括依次层叠设置的第一负极片130、绝缘隔膜120及第一正极片110。
第二子电芯20包括依次层叠设置的第二负极片230、绝缘隔膜220及第二正极片210。同时,在极芯100a中,第二负极片230与第一正极片110相邻设置并通过绝缘隔膜120(或220)绝缘隔离。
第一正极片110沿其长度方向的两端分别设有第一正极耳1101,且两第一正极耳1101靠近第一正极片110的宽度方向的一侧的边缘,换言之,两第一正极耳1101偏离第一正极片110沿宽度方向的中心,从而便于极耳沿该宽度方向错开设置。
第一负极片130沿其长度方向的两端分别设有第一负极耳1301,且两第一负极耳1301靠近第一负极片120的宽度方向的一侧的边缘,换言之,两第一负极耳1301偏离第一负极片130沿宽度方向的中心。同时,在第一子电芯10中,第一负极片130、绝缘隔膜120及第一正极片110后,第一正极耳1101和第一负极耳1301分别位于宽度方向的两侧,即错开设置。
同理,第二正极片210沿其长度方向的两端分别设有第二正极耳2101,且两第二正极耳2101靠近第二正极片210的宽度方向的一侧的边缘,换言之,两第二正极耳2101偏离第二正极片210沿宽度方向的中心,从而便于极耳沿该宽度方向错开设置。
第二负极片230沿其长度方向的两端分别设有第二负极耳2301,且两第二负极耳2301 靠近第二负极片220的宽度方向的一侧的边缘,换言之,两第二负极耳2301偏离第二负极片230沿宽度方向的中心。同时,在第二子电芯20中,第二负极片230、绝缘隔膜220及第二正极片210后,第二正极耳2101和第二负极耳2301分别位于宽度方向的两侧,即错开设置。
第一子电芯10和第二子电芯20中相邻的极耳为第一正极耳1101和第二负极耳2301,第一正极耳1101和第二负极耳2301的引出方向分别为宽度方向的两侧,即引出方向相反,也实现错开设置。
其中,正极耳或负极耳的宽度为H1,极芯内的正极片或负极片的宽度为H2。满足:35%≤H1/H2≤45%,如H1/H2=37%,或者H1/H2=40%,再或者H1/H2=42%,即极耳的宽度小于正极片或负极片,且极耳的宽度小于正极片或负极片的宽度的一半,这样,极耳与正极片或负极片连接时的接触宽度为极耳的宽度,可使得极耳能够与正极片或负极片稳定地电流导通。
正极片或负极片的过流宽度大于极耳的过流宽度,极耳的过流宽度大于电极端子的过流宽度,且电极端子的厚度较大。由此,极芯、极耳和电极端子均具有优良的过流能力,这样,单体电池100具有极佳的充放电能力,进而提高对外部用电设备的电能输出效率,同时增强自身充电效率,节省用户所需的充放电时间,降低时间成本,便于用户使用。
且极耳、极芯均具有较大的接触面,在电极端子、极耳和极芯安装配合时,极耳与电极端子具有较大的接触面积,极耳与极芯具有较大的接触面积,这样,即提升了电极端子、极耳和极芯三者之间的过流效率,同时极耳、极芯和电极端子易于实现安装固定,且能够长期保持稳定的接触状态,提高装配效率的同时延长使用寿命,降低单体电池100的设计精度和工艺难度,增大过流能力。
在一些实施例中,单体电池100还包括:绝缘隔圈。
绝缘隔圈设于端板与极芯之间,即绝缘隔圈设于极芯的端部,且绝缘隔圈具有良好的绝缘性能,且绝缘隔圈用于将正极耳和负极耳间隔开,这样,可防止正极耳与负极耳直接接触,以使正极耳与负极耳均保持正常的电流流通状态,防止正极耳和负极耳相互干涉,避免正极耳和负极耳接触短路,提高单体电池100的安全性。
绝缘隔圈具有隔离板,隔离板朝向极芯延伸,隔离板从绝缘隔圈朝向极芯的侧面逐渐地向靠近极芯的方向延伸,且隔离板位于正极耳与负极耳之间,正极耳与负极耳分别位于隔离板的两侧,且隔离板的面积大于正极耳、负极耳的面积,以使正极耳、负极耳有效地隔绝,防止正极耳和负极耳相互干涉,避免正极耳和负极耳接触短路,提高单体电池100的安全性。
其中,隔离板的自由端适于抵压极芯,以使正极耳与负极耳之间无间隙可穿过,进而 保证正极耳与负极耳完全无电流导通,提高单体电池100的安全性。
在一些实施例中,隔离板为多个,多个隔离板沿正极耳与负极耳的连线方向间隔开布置,且相邻两个隔离板之间的间距大于隔离板本身的厚度,这样,当单体电池100受力振动致隔离板变形时,两个隔离板之间的间距可容纳隔离板的部分变形,且正极耳和负极耳不会越过该间距,由此,更加有效地防止正极耳和负极耳接触,提高单体电池100的安全性。
其中,绝缘隔圈设有多个避让孔,正极耳或负极耳适于穿过避让孔以与对应的正极端子或负极端子相连,由此,绝缘隔圈对正极耳和负极耳进行绝缘防护的同时,不影响极耳与电极端子的正常连通,进而保证极芯能够通过极耳与电极端子相连,便于实现单体电池100的充放电。
在一些实施例中,两个端板中的至少一个设有引出片,引出片设于朝向极芯的一侧,引出片与极耳及电极端子直接电连接,即引出片的内端与极耳电连接,引出片的外端与电极端子电连接,这样,极芯可与电极端子通过极耳、引出片实现电连接,这样,通过设置引出片可减少因电极端子或极耳长度过短导致的接触不良,保证极耳、电极端子均与引出片有效地接触,提高单体电池100的电流导通的稳定性,便于长期使用。
其中,极耳的宽度为引出片与极耳的接触宽度,且引出片的宽度不小于极耳的接触宽度,由此,引出片与极耳的过流宽度为极耳本身的宽度,且极耳的宽度较大。这样,可保证引出片与极耳之间具有极佳的过流效率,提高单体电池100的过流能力。
其中,极耳12与集流体一体化,极耳12和集流体为铜箔或铝箔经模切形成,由此,一方面极耳12快速成型,降低工艺成本,另一方面极耳与集流体一体化电流的传输性能更好,且极耳12的形状可按实际需求模切,易于结构成型,可灵活使用
在一些实施例中,极芯15中的极片还包括:集流体。
其中,集流体包括:覆盖区和绝缘区,绝缘区设在极耳与覆盖区之间,绝缘区上覆盖有绝缘层,绝缘层为绝缘橡胶或无机陶瓷颗粒材料制成,绝缘层可对极耳起到绝缘、保护的作用,防止极耳的结构被破坏,提高极耳使用的安全性。
在一些实施例中,单体电池100还包括:防爆阀。
其中,防爆阀设于端板,且防爆阀位于两个电极端子的外侧,防爆阀可作为单体电池100的卸压装置,用于在单体电池100内的压力异常、过高时卸压,以使安装腔内的压力保持在较为安全的范围内,这样,可防止单体电池100的内部压力过大致整体膨胀变形,提高单体电池100使用的安全性和稳定性。
在一些实施例中,壳体内容纳有单个极芯,该极芯的一端与正极端子电连接,另一端与负极端子电连接。其中,极芯可为叠片式极芯,即极芯为多个极片叠置形成,这样,每 个极片的端部均与位于两端的电极端子电连接,保证极芯与电极端子具有良好的导电能力。当然,极芯也可为卷绕型极芯,同样可实现电流导通的作用。
本申请还提出了另一种电池模组1000。
根据本申请实施例的电池模组1000包括:两个单体电池100。
其中,每个单体电池100的第一端板设有第一正极端子11和第一负极端子12,每个单体电池100的第二端板设有第二正极端子13和第二负极端子14,两个单体电池100并排串联设置,第一个单体电池100的第一负极端子12与第二个单体电池100的第一正极端子11相连,第一个单体电池100的第二负极端子14与第二个单体电池100的第二正极端子13相连,这样单体电池100可实现双向引出,缩短了电流传导的路径,极大地降低电池的内阻,增强过流效率每个单体电池100设计四个电极端子,可降低单个电极端子的尺寸,降低单个电极端子的密封和制造难度。
本申请还提出了一种动力电池包。
根据本申请实施例的动力电池包,包括:电池包壳体和多个上述实施例中的单体电池100。
单体电池100安装于电池包壳体内,多个单体电池100依次排布设置,多个单体电池100的上端和下端均保持平齐。这样,多个单体电池100的电极端子可通过连接片101串联起来,多个单体电池100可同时充放电,提高动力电池包的充放电效率,提高动力电池包的电池容量。
其中,电池包壳体内填充有包裹电池模组1000的导热绝缘层,导热绝缘层可将电池模组1000将电池包壳体有效地隔绝,防止电池模组1000内的单体电池100短路,同时对电池模组1000起到保护作用,以防止电池模组1000受压过大致结构变形,提高动力电池包的安全性。导热绝缘层可为橡胶材料制成。
本申请还提出了一种车辆。
根据本申请实施例的车辆,设置有上述实施例的动力电池包,动力电池包的单体电池100故障时,其他单体电池100仍可正常使用,保证车辆始终具有稳定的动力输出,提升整车的实用性和安全性,且动力电池包维修方便。
具体实施方式
实施例1
单体电池包括壳体、位于壳体内的极芯,壳体的两个面上分别设有与极芯电连接并延伸出壳体用于引出电流的电极端子,每个面上的电极端子为2个;极芯上设有极耳,电极端子通过极耳与极芯电连接;L为单体电池的长度,H为单体电池的宽度,L/H=11,L=400mm,单体电池标记为S1。
实施例2
与实施例1相比,区别点在于L/H=13,L=600mm,单体电池标记为S2。
实施例3
与实施例1相比,区别点在于L/H=15,L=800mm,单体电池标记为S3。
实施例4
与实施例1相比,区别点在于L/H=17,L=1000mm,单体电池标记为S4。
实施例5
与实施例1相比,区别点在于L/H=23,L=1300mm,L/T=50,单体电池标记为S5。
实施例6
与实施例1相比,区别点在于L/H=11,L=1300mm,L/T=100,单体电池标记为S6。
实施例6-实施例12
电池模组包括n个单体电池(单体电池分别为S1-S6中的一个),单体电池具有多个面,至少两个面中的一个面上设有第一正极端子和第一负极端子,至少两个面中的另一个面上设有第二正极端子和第二负极端子;
其中,n个单体电池并排串联设置,第k-1个单体电池的第一负极端子与第k个单体电池的第一正极端子相连,第k个单体电池的第一负极端子与第k+1个单体电池的第一正极端子相连;
第k-1个单体电池的第二负极端子与第k个单体电池的第二正极端子相连,第k个单体电池的第二负极端子与第k+1个单体电池(100)的第二正极端子(13)相连,2≤k≤n-1,n=6;电池模组分别标记为Z6-Z12。
对比例1
与实施例2相比,区别点在于极芯的两端各有一组极耳,壳体的两个相对面上各有一个电极端子,单体电池标记为D1
对比例2
与实施例3相比,区别点在于极芯的两端各有一组极耳,壳体的两个相对面上各有一个电极端子,单体电池标记为D2。
对比例3
与实施例1相比,区别点在于L/H=2.5,L=400mm,单体电池标记为D3。
对比例4-对比例6将n个单体电池(D1、D2、D3中的一个)串联得到电池模组,电池模组分别标记为D4-D6。
测试方法1)单体电池直流阻抗(DCIR)
测试设备:充放电柜
测试方法:调节设备在常温,50%SOC,1.5C@30s条件下测得放电DCIR参数,实施例1-实施例7,对比例1-对比例3,测试结果见表1。(测试方法为本领域常见方法);
2)过流温升
测试设备:充放电柜、热电偶、安捷伦数据采集器
测试方法:调节设备在绝热环境2C持续充放电测试条件下测得正极电极端子与引出片温升参数,实施例1-实施例6,对比例1-对比例3,测试结果见表1。(测试方法为本领域常见方法);
3)能量效率测试
测试设备:充放电柜
测试方法:电连接充放电柜,在1C持续充放电3次条件下测得最后一次充放电能量效率参数,实施例1-实施例6,对比例1-对比例3,测试结果见表1。(测试方法为本领域常见方法);
4)电池模组DCIR
测试设备:充放电柜
测试方法调节设备在常温,50%SOC,1.5C@30s条件下测得放电DCIR参数,对实施例7-实施例112,对比例4-对比例6中的电池模组进行测试,测试结果见表1。(测试方法为本领域常见方法);
表1
序号 单体电池DCIR 温升 能量效率 序号 电池模组DCIR
实施例1 0.65-0.8 10-15℃ 92%-94% 实施例7 >N*DCIR单体
实施例2 0.7-0.85 12-18℃ 91-93% 实施例8 >N*DCIR单体
实施例3 0.8-1.0 15-20℃ 90%-92% 实施例9 >N*DCIR单体
实施例4 0.9-1.1 18-22℃ 89%-91% 实施例10 >N*DCIR单体
实施例5 1.5-2.0 20-24℃ 89%-91% 实施例11 >N*DCIR单体
实施例6 2.5-3.0 22-26℃ 89%-91% 实施例12 >N*DCIR单体
对比例1 1.2-1.6 20-25℃ 83%-87% 对比例4 >N*DCIR单体
对比例2 1.4-1.8 22-27℃ 86%-88% 对比例5 >N*DCIR单体
对比例3 1.6-2.0 25-30℃ 87%-89% 对比例6 >N*DCIR单体
根据本申请实施例的电池模组(1000),包括:n个单体电池(100),所述单体电池(100)具有多个面,至少两个所述面中的一个所述面上设有第一正极端子(11)和第一负极端子(12),至少两个所述面中的另一个所述面上设有第二正极端子(13)和第二负极端子(14); 其中,n个所述单体电池(100)并排串联设置,第k-1个所述单体电池(100)的第一负极端子(12)与第k个所述单体电池(100)的第一正极端子(11)相连,第k个所述单体电池(100)的第一负极端子(12)与第k+1个所述单体电池(100)的第一正极端子(11)相连;第k-1个所述单体电池(100)的第二负极端子(14)与第k个所述单体电池(100)的第二正极端子(13)相连,第k个所述单体电池(100)的第二负极端子(14)与第k+1个所述单体电池(100)的第二正极端子(13)相连,2≤k≤n-1,n≥3;所述单体电池(100)具有长度L及宽度H,所述L满足600mm<L≤1300mm,所述L和H满足10<L/H≤20。
根据本申请实施例的电池模组(1000),所述单体电池具有第一端面和第二端面,所述第一端面和所述第二端面相对设置,所述第一正极端子(11)和第一负极端子(12)设于所述第一端面,所述第二正极端子(13)和所述第二负极端子(14)设于所述第二端面。
根据本申请实施例的电池模组(1000),所述单体电池(100)包括:壳体及位于所述壳体内的极芯;所述壳体具有第一端面和第二端面,所述第一正极端子(11)和所述第一负极端子(12)设于所述第一端面,所述第二正极端子(13)和所述第二负极端子(14)设于所述第二端面;所述极芯具有第一端和第二端,所述第一端上延伸出多个第一正极耳和第一负极耳,所述第一正极耳与所述第一正极端子(11)相连,所述第一负极耳与所述第一负极端子(12)相连,所述第二端上延伸出多个第二正极耳和第二负极耳,所述第二正极耳与所述第二正极端子(13)相连,所述第二负极耳与所述第二负极端子(14)相连。
根据本申请实施例的电池模组(1000),所述壳体的两端设有相对设置的第一端板和第二端板,所述第一正极端子(11)和所述第一负极端子(12)设于所述第一端板且贯穿所述第一端板,所述第二正极端子(13)和所述第二负极端子(14)设于所述第二端板。
根据本申请实施例的电池模组(1000),所述极芯包括:多个子电芯,每一所述子电芯含有正极片、绝缘隔膜和负极片,所述正极片电连接有正极耳,所述负极片电连接有负极耳;相邻两个所述子电芯中相邻极耳位于所述宽度方向的相对两侧。
根据本申请实施例的电池模组(1000),多个所述子电芯沿所述单体电池(100)的厚度方向层叠设置,每个所述子电芯中的所述正极耳和所述负极耳沿所述单体电池(100)的宽度方向错开设置。
根据本申请实施例的电池模组(1000),还包括:绝缘隔圈,所述绝缘隔圈设于端板与所述极芯之间,且所述绝缘隔圈用于将所述正极耳和所述负极耳间隔开。
根据本申请实施例的电池模组(1000),所述绝缘隔圈具有隔离板,所述隔离板朝向所述极芯延伸,且所述隔离板位于所述正极耳和所述负极耳之间。
根据本申请实施例的电池模组(1000),所述隔离板为多个,多个所述隔离板沿所述正极耳和负极耳的连线方向间隔开布置。
根据本申请实施例的电池模组(1000),所述绝缘隔圈设有多个避让孔,所述正极耳或所述负极耳适于穿过所述避让孔以与对应的所述正极端子或所述负极端子相连。
根据本申请实施例的电池模组(1000),35%≤H1/H2≤45%,其中,H1为所述正极耳或所述负极耳的宽度,H2为所述正极片或所述负极片的宽度。
根据本申请实施例的电池模组(1000),所述极芯中的极片还包括:集流体,所述正极耳或负极耳与对应的所述集流体一体化。
本申请还提出了一种电池模组(1000),包括:两个单体电池(100),每个所述单体电池(100)的第一端板设有第一正极端子(11)和第一负极端子(12),每个所述单体电池(100)的第二端板设有第二正极端子(13)和第二负极端子(14);其中两个所述单体电池(100)并排串联设置,第一个所述单体电池(100)的第一负极端子(12)与第二个所述单体电池(100)的第一正极端子(11)相连,第一个所述单体电池(100)的第二负极端子(14)与第二个所述单体电池(100)的第二正极端子(13)相连;所述单体电池(100)具有长度L及宽度H,所述L满足600mm<L≤1300mm,所述L和H满足10<L/H≤20。
本申请又提出了一种动力电池包,包括:电池包壳体;如上述任一项所述的电池模组(1000),所述电池模组(1000)安装于所述电池包壳体内。
根据本申请实施例的动力电池包,所述电池包壳体内填充有包裹所述电池模组(1000)的导热绝缘层。
本申请又提出了一种车辆,具有上述实施例所述的动力电池包。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (16)

  1. 一种电池模组(1000),其特征在于,包括:
    n个单体电池(100),所述单体电池(100)具有多个面,至少两个所述面中的一个所述面上设有第一正极端子(11)和第一负极端子(12),至少两个所述面中的另一个所述面上设有第二正极端子(13)和第二负极端子(14);
    其中,n个所述单体电池(100)并排串联设置,第k-1个所述单体电池(100)的第一负极端子(12)与第k个所述单体电池(100)的第一正极端子(11)相连,第k个所述单体电池(100)的第一负极端子(12)与第k+1个所述单体电池(100)的第一正极端子(11)相连;
    第k-1个所述单体电池(100)的第二负极端子(14)与第k个所述单体电池(100)的第二正极端子(13)相连,第k个所述单体电池(100)的第二负极端子(14)与第k+1个所述单体电池(100)的第二正极端子(13)相连,2≤k≤n-1,n≥3;
    所述单体电池(100)具有长度L及宽度H,所述L满足600mm<L≤1300mm,所述L和H满足10<L/H≤20。
  2. 根据权利要求1所述的电池模组(1000),其特征在于,所述单体电池具有第一端面和第二端面,所述第一端面和所述第二端面相对设置,所述第一正极端子(11)和第一负极端子(12)设于所述第一端面,所述第二正极端子(13)和所述第二负极端子(14)设于所述第二端面。
  3. 根据权利要求1或2所述的电池模组(1000),其特征在于,所述单体电池(100)包括:
    壳体及位于所述壳体内的极芯;
    所述壳体具有第一端面和第二端面,所述第一正极端子(11)和所述第一负极端子(12)设于所述第一端面,所述第二正极端子(13)和所述第二负极端子(14)设于所述第二端面;
    所述极芯具有第一端和第二端,所述第一端上延伸出多个第一正极耳和第一负极耳,所述第一正极耳与所述第一正极端子(11)相连,所述第一负极耳与所述第一负极端子(12)相连,所述第二端上延伸出多个第二正极耳和第二负极耳,所述第二正极耳与所述第二正极端子(13)相连,所述第二负极耳与所述第二负极端子(14)相连。
  4. 根据权利要求3所述的电池模组(1000),其特征在于,所述壳体的两端设有相对设置的第一端板和第二端板,所述第一正极端子(11)和所述第一负极端子(12)设于所述第一端板且贯穿所述第一端板,所述第二正极端子(13)和所述第二负极端子(14)设于所述第二端板。
  5. 根据权利要求4所述的电池模组(1000),其特征在于,所述极芯包括:多个子电芯, 每一所述子电芯含有正极片、绝缘隔膜和负极片,所述正极片电连接有正极耳,所述负极片电连接有负极耳;
    相邻两个所述子电芯中相邻极耳位于所述宽度方向的相对两侧。
  6. 根据权利要求5所述的电池模组(1000),其特征在于,多个所述子电芯沿所述单体电池(100)的厚度方向层叠设置,每个所述子电芯中的所述正极耳和所述负极耳沿所述单体电池(100)的宽度方向错开设置。
  7. 根据权利要求5或6所述的电池模组(1000),其特征在于,还包括:绝缘隔圈,所述绝缘隔圈设于端板与所述极芯之间,且所述绝缘隔圈用于将所述正极耳和所述负极耳间隔开。
  8. 根据权利要求7所述的电池模组(1000),其特征在于,所述绝缘隔圈具有隔离板,所述隔离板朝向所述极芯延伸,且所述隔离板位于所述正极耳和所述负极耳之间。
  9. 根据权利要求8所述的电池模组(1000),其特征在于,所述隔离板为多个,多个所述隔离板沿所述正极耳和负极耳的连线方向间隔开布置。
  10. 根据权利要求7-9中任一项所述的电池模组(1000),其特征在于,所述绝缘隔圈设有多个避让孔,所述正极耳或所述负极耳适于穿过所述避让孔以与对应的所述正极端子或所述负极端子相连。
  11. 根据权利要求1-10中任一项所述的电池模组(1000),其特征在于,35%≤H1/H2≤45%,其中,H1为所述正极耳或所述负极耳的宽度,H2为所述正极片或所述负极片的宽度。
  12. 根据权利要求3-11中任一项所述的电池模组(1000),其特征在于,所述极芯中的极片还包括:集流体,所述正极耳或负极耳与对应的所述集流体一体化。
  13. 一种电池模组(1000),其特征在于,包括:
    两个单体电池(100),每个所述单体电池(100)的第一端板设有第一正极端子(11)和第一负极端子(12),每个所述单体电池(100)的第二端板设有第二正极端子(13)和第二负极端子(14);其中
    两个所述单体电池(100)并排串联设置,第一个所述单体电池(100)的第一负极端子(12)与第二个所述单体电池(100)的第一正极端子(11)相连,
    第一个所述单体电池(100)的第二负极端子(14)与第二个所述单体电池(100)的第二正极端子(13)相连;
    所述单体电池(100)具有长度L及宽度H,所述L满足600mm<L≤1300mm,所述L和H满足10<L/H≤20。
  14. 一种动力电池包,其特征在于,包括:
    电池包壳体;
    如权利要求1-13中任一项所述的电池模组(1000),所述电池模组(1000)安装于所述电池包壳体内。
  15. 根据权利要求14所述的动力电池包,其特征在于,所述电池包壳体内填充有包裹所述电池模组(1000)的导热绝缘层。
  16. 一种车辆,其特征在于,具有如权利要求14或15所述的动力电池包。
PCT/CN2019/092800 2019-06-21 2019-06-25 电池模组、动力电池包和车辆 WO2020252804A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020217032975A KR20210138686A (ko) 2019-06-21 2019-06-25 배터리 모듈, 파워 배터리 팩 및 차량
EP24167376.3A EP4372901A2 (en) 2019-06-21 2019-06-25 Battery module, power battery pack and vehicle
US17/617,803 US20220238962A1 (en) 2019-06-21 2019-06-25 Battery module, power battery pack and vehicle
JP2021569561A JP7312276B2 (ja) 2019-06-21 2019-06-25 電池モジュール、動力電池パック及び車両
EP19934188.4A EP3958346A4 (en) 2019-06-21 2019-06-25 BATTERY MODULE, BATTERY PACK AND VEHICLE
JP2023108946A JP2023134547A (ja) 2019-06-21 2023-06-30 電池モジュール、及び動力電池パック

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920942577.2U CN209150238U (zh) 2019-06-21 2019-06-21 电池模组、动力电池包和车辆
CN201920942577.2 2019-06-21

Publications (1)

Publication Number Publication Date
WO2020252804A1 true WO2020252804A1 (zh) 2020-12-24

Family

ID=67291779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092800 WO2020252804A1 (zh) 2019-06-21 2019-06-25 电池模组、动力电池包和车辆

Country Status (6)

Country Link
US (1) US20220238962A1 (zh)
EP (2) EP3958346A4 (zh)
JP (2) JP7312276B2 (zh)
KR (1) KR20210138686A (zh)
CN (1) CN209150238U (zh)
WO (1) WO2020252804A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022483A1 (en) * 2021-08-17 2023-02-23 Standard Energy Inc. Redox battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210052984A (ko) * 2019-11-01 2021-05-11 에스케이이노베이션 주식회사 배터리시스템
CN112952273B (zh) * 2019-11-22 2022-08-09 比亚迪股份有限公司 一种电池、电池模组、电池包及电动车
CN113782806A (zh) * 2021-09-08 2021-12-10 维沃移动通信有限公司 电池和电子设备
CN114373976A (zh) * 2021-12-27 2022-04-19 合肥国轩高科动力能源有限公司 一种多极耳软包锂电池
CN116742288A (zh) * 2022-03-04 2023-09-12 宁德时代新能源科技股份有限公司 端盖组件、电池单体、电池及用电装置
CN114824682A (zh) * 2022-05-07 2022-07-29 蔚来汽车科技(安徽)有限公司 电池结构、电池模组以及电动汽车

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071173A (ja) * 2002-08-01 2004-03-04 Toyota Motor Corp 積層型電池
CN201766132U (zh) * 2010-02-11 2011-03-16 北京神州巨电新能源技术开发有限公司 大容量聚合物锂离子电池结构
CN201853757U (zh) * 2010-06-24 2011-06-01 朝阳立塬新能源有限公司 双端引出式低内阻储能器件
JP2012054197A (ja) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd ラミネート電池およびその製造方法
CN202259540U (zh) * 2011-10-14 2012-05-30 深圳市格瑞普电池有限公司 叠片锂离子电池用极片以及叠片锂离子电池
WO2013019914A2 (en) * 2011-08-02 2013-02-07 Onepoint Solutions, Llc Multi-cell battery
CN208352420U (zh) * 2018-06-13 2019-01-08 东莞塔菲尔新能源科技有限公司 一种多极耳电芯、多端子电池及电池模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254691B1 (ko) 2010-08-17 2013-04-15 주식회사 엘지화학 개선된 리드 구조의 이차전지
KR20130119457A (ko) 2010-12-20 2013-10-31 주식회사 엘지화학 다방향성 리드-탭 구조를 가진 리튬 이차전지
KR101589996B1 (ko) 2013-06-07 2016-01-29 주식회사 엘지화학 액상 냉매 유출에 대한 안전성이 향상된 전지팩
FR3017998B1 (fr) 2014-02-26 2017-09-29 Commissariat Energie Atomique Cellule de stockage d'energie electrique comportant au moins un element male et un element femelle, munis d'interfaces de connexion electrique
CN105990609B (zh) * 2015-02-03 2019-01-29 微宏动力系统(湖州)有限公司 电池组
JP6705689B2 (ja) 2016-04-21 2020-06-03 セイコーインスツル株式会社 電気化学セル
JP6645999B2 (ja) * 2017-03-21 2020-02-14 株式会社東芝 二次電池、電池パック、及び車両

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004071173A (ja) * 2002-08-01 2004-03-04 Toyota Motor Corp 積層型電池
CN201766132U (zh) * 2010-02-11 2011-03-16 北京神州巨电新能源技术开发有限公司 大容量聚合物锂离子电池结构
CN201853757U (zh) * 2010-06-24 2011-06-01 朝阳立塬新能源有限公司 双端引出式低内阻储能器件
JP2012054197A (ja) * 2010-09-03 2012-03-15 Nec Energy Devices Ltd ラミネート電池およびその製造方法
WO2013019914A2 (en) * 2011-08-02 2013-02-07 Onepoint Solutions, Llc Multi-cell battery
CN202259540U (zh) * 2011-10-14 2012-05-30 深圳市格瑞普电池有限公司 叠片锂离子电池用极片以及叠片锂离子电池
CN208352420U (zh) * 2018-06-13 2019-01-08 东莞塔菲尔新能源科技有限公司 一种多极耳电芯、多端子电池及电池模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023022483A1 (en) * 2021-08-17 2023-02-23 Standard Energy Inc. Redox battery

Also Published As

Publication number Publication date
CN209150238U (zh) 2019-07-23
EP3958346A4 (en) 2022-08-03
EP4372901A2 (en) 2024-05-22
EP3958346A1 (en) 2022-02-23
KR20210138686A (ko) 2021-11-19
JP7312276B2 (ja) 2023-07-20
JP2023134547A (ja) 2023-09-27
US20220238962A1 (en) 2022-07-28
JP2022533789A (ja) 2022-07-25

Similar Documents

Publication Publication Date Title
WO2020252804A1 (zh) 电池模组、动力电池包和车辆
WO2020252803A1 (zh) 单体电池、动力电池包和车辆
CN110265616B (zh) 单体电池、动力电池包和车辆
WO2020252802A1 (zh) 单体电池、动力电池包和车辆
CN102414909B (zh) 具有电绝缘的单元模块和互连器外围的高电压模块化电池
CN101999184A (zh) 模块化电池、这种电池用的互连器和与模块化电池有关的方法
KR102660518B1 (ko) 전지 모듈
WO2023035990A1 (zh) 单体电池、电池模组及电池包
WO2021139654A1 (zh) 电池、电池模组、电池包及电动车
WO2024067583A1 (zh) 电池及用电装置
CN112117426B (zh) 单体电池、动力电池包和车辆
CN113097619A (zh) 大直径中空结构电芯及电池组
EP3758086A1 (en) Large-capacity unit cell
CN112117425A (zh) 单体电池、动力电池包和车辆
WO2023134480A1 (zh) 电极组件、电池单体、电池及用电设备
CN115642353A (zh) 电池模组、电池包及用电设备
CN112117424B (zh) 单体电池、动力电池包和车辆
CN212209701U (zh) 一种防热扩散的液冷板和液冷系统
CN112117423B (zh) 电池模组、动力电池包和车辆
CN112117399B (zh) 单体电池、动力电池包和车辆
KR20140145502A (ko) 이차 전지 및 이를 포함하는 배터리 팩
CN109950642B (zh) 一种电芯及电池
CN114094285B (zh) 一种单侧极柱长电池及电能存储装置
CN218242041U (zh) 电池模组、电池包及用电设备
WO2023155212A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19934188

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217032975

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021569561

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019934188

Country of ref document: EP

Effective date: 20211117

NENP Non-entry into the national phase

Ref country code: DE