WO2020250960A1 - 無機材料の製造方法及び無機材料製造装置 - Google Patents

無機材料の製造方法及び無機材料製造装置 Download PDF

Info

Publication number
WO2020250960A1
WO2020250960A1 PCT/JP2020/022962 JP2020022962W WO2020250960A1 WO 2020250960 A1 WO2020250960 A1 WO 2020250960A1 JP 2020022962 W JP2020022962 W JP 2020022962W WO 2020250960 A1 WO2020250960 A1 WO 2020250960A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
inorganic material
mixed powder
ring
ball mill
Prior art date
Application number
PCT/JP2020/022962
Other languages
English (en)
French (fr)
Inventor
矢口 裕一
義隆 坂入
砂川 晴夫
Original Assignee
古河機械金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河機械金属株式会社 filed Critical 古河機械金属株式会社
Priority to EP20822290.1A priority Critical patent/EP3984968B1/en
Priority to KR1020237040423A priority patent/KR102626393B1/ko
Priority to JP2021526125A priority patent/JP7166454B2/ja
Priority to US17/617,049 priority patent/US20220331813A1/en
Priority to CN202080041216.6A priority patent/CN113939367B/zh
Priority to CN202310315685.8A priority patent/CN116351518A/zh
Priority to KR1020217039511A priority patent/KR102610421B1/ko
Publication of WO2020250960A1 publication Critical patent/WO2020250960A1/ja
Priority to JP2022170548A priority patent/JP2023017807A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/12Mills with at least two discs or rings and interposed balls or rollers mounted like ball or roller bearings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/001Air flow directing means positioned on the periphery of the horizontally rotating milling surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/183Feeding or discharging devices
    • B02C17/186Adding fluid, other than for crushing by fluid energy
    • B02C17/1875Adding fluid, other than for crushing by fluid energy passing gas through crushing zone
    • B02C17/188Adding fluid, other than for crushing by fluid energy passing gas through crushing zone characterised by point of gas entry or exit or by gas flow path
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/22Alkali metal sulfides or polysulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/14Sulfur, selenium, or tellurium compounds of phosphorus
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G1/00Methods of preparing compounds of metals not covered by subclasses C01B, C01C, C01D, or C01F, in general
    • C01G1/12Sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B1/00Preparing the batches
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/321Chalcogenide glasses, e.g. containing S, Se, Te
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • C03C3/328Nitride glasses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/10Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an inorganic material and an apparatus for producing an inorganic material.
  • a lithium ion battery is used as a power source for small portable devices such as mobile phones and laptop computers, and as a power source for electric vehicles and power storage.
  • Currently commercially available lithium ion batteries use an electrolytic solution containing a flammable organic solvent.
  • a lithium ion battery (all-solid-state lithium-ion battery) that has been completely solidified by replacing the electrolytic solution with a solid electrolyte does not use a flammable organic solvent in the battery. Therefore, the all-solid-state lithium-ion battery can simplify the safety device and is excellent in manufacturing cost and productivity.
  • the solid electrolyte material used for such a solid electrolyte for example, as shown in Patent Document 1, there is a sulfide-based solid electrolyte material.
  • Patent Document 1 discloses a method of vitrifying a raw material composition containing a constituent component of a sulfide solid electrolyte material by a mechanical milling method using a planetary ball mill.
  • the mechanical milling method is performed using a planetary ball mill, the vitrified inorganic material sticks to the entire inner peripheral surface of the rotating cylinder of the planetary ball mill. Therefore, in the mechanical milling method using a planetary ball mill, it is necessary to perform regular maintenance of the planetary ball mill (such as removing the fixed vitrified inorganic material from the inner peripheral surface).
  • the present invention provides a method for producing an inorganic material, which obtains a vitrified inorganic material from a mixed powder of a plurality of types of inorganic compounds with high production efficiency.
  • the method for producing an inorganic material according to one aspect of the present invention is A vitrification step of vitrifying at least a part of the mixed powder by applying shear stress and compressive stress to the mixed powder in which powders of a plurality of kinds of inorganic compounds are mixed by using a ring ball mill mechanism. After the vitrification step, a dispersion step of dispersing the vitrified mixed powder, and Including A step of combining the vitrification step and the dispersion step is performed a plurality of times to obtain a vitrified inorganic material powder from the mixed powder.
  • the inorganic material manufacturing apparatus is A plurality of crushing balls, a lowering that rotates around an axis while maintaining the plurality of crushing balls, and the plurality of crushing balls arranged on the opposite side of the lowering with the plurality of crushing balls sandwiched therein.
  • a ring ball mill mechanism with an upper ring that presses against the lower ring,
  • a gas feeding mechanism attached to the lower side of the ring ball mill mechanism in the container and feeding gas upward inside the container, and a gas feeding mechanism.
  • a cylinder attached to the container, penetrating the hole, and allowing an external gas to flow into the shaft side of the plurality of crushing balls in the lowering.
  • a control unit that controls the rotational operation of the lowering and the gas feeding operation of the gas feeding mechanism, and With The control unit controls the rotation operation and the gas feeding operation to execute the method for producing an inorganic material according to the embodiment.
  • a vitrified inorganic material can be obtained from a mixed powder of a plurality of types of inorganic compounds with high production efficiency.
  • the inorganic material manufacturing apparatus of one aspect of the present invention it is possible to manufacture a vitrified inorganic material from a mixed powder of a plurality of kinds of inorganic compounds with high manufacturing efficiency.
  • the mill device 10 of the present embodiment is a lowering that rotates around an axis (around the axis O) while maintaining a plurality of crushed balls 72 and a plurality of crushed balls 72.
  • a ring ball mill mechanism 70 having 76 and an upper ring 74 arranged on the opposite side of the lower ring 76 with the plurality of crushed balls 72 sandwiched therein and pressing the plurality of crushed balls 72 against the lower ring 76, and a ring ball mill mechanism 70 inside.
  • the container 20 is arranged and has a hole 24A formed in a portion above the ring ball mill mechanism 70, and is attached to the lower side of the ring ball mill mechanism 70 in the container 20 to send gas toward the upper side of the inside.
  • a cylinder 30 (hereinafter, an injection cylinder 30) that is attached to the gas feeding mechanism 50 and the container 20 and penetrates the hole 24A to allow the external gas to flow into the shaft side of the plurality of crushing balls 72 in the lowering 76.
  • the present embodiment includes a control unit 90 that controls the rotational operation of the lowering 76 and the gas feeding operation of the gas feeding mechanism 50, and the control unit 90 controls the rotating operation and the gas feeding operation. (See FIGS. 1, 2, etc.).
  • a shear stress and a compressive stress are applied to a mixed powder MP in which powders of a plurality of types of inorganic compounds are mixed by using a ring ball mill mechanism 70 to apply a shear stress and a compressive stress to the mixed powder MP.
  • a vitrification step S12 for vitrifying at least a part thereof and a dispersion step S13 for dispersing the vitrified mixed powder MP after the vitrification step S12 were included, and the vitrification step S12 and the dispersion step S13 were combined. The process is performed a plurality of times to obtain a vitrified inorganic material powder from the mixed powder MP (see FIGS. 1, 3A, etc.).
  • the mill device 10 of the present embodiment has a function of vitrifying the mixed powder MP by applying a shearing force and a compressive stress to the mixed powder MP (see FIG. 4C) in which a plurality of types of inorganic compounds described later are mixed.
  • the mill device 10 of the present embodiment has a function of obtaining, that is, producing a powder of a vitrified inorganic material described later from the mixed powder MP in which a plurality of types of inorganic compounds are mixed. As shown in FIG.
  • the mill device 10 of the present embodiment includes a container 20, an injection cylinder 30 (an example of a cylinder), a conical cylinder 35, a discharge pipe 40, a gas feeding mechanism 50, and a wing mechanism 60.
  • a ring ball mill mechanism 70, a pressurizing mechanism 80, and a control unit 90 are provided.
  • the container 20 has a cylindrical shape as an example, and has a peripheral wall 22, a top plate 24, and a bottom plate 26. Inside the container 20 (the space surrounded by the peripheral wall 22, the top plate 24, and the bottom plate 26), a part of the injection cylinder 30, a conical cylinder 35, a part of the discharge pipe 40, a gas feeding mechanism 50, and a wing mechanism. 60, a part of the ring ball mill mechanism 70 and the pressurizing mechanism 80 are arranged. A through hole 24A (hereinafter referred to as a hole 24A) is formed in the top plate 24. From another point of view, the hole 24A is formed in a portion of the container 20 above the ring ball mill mechanism 70.
  • a through hole 24A (hereinafter referred to as a hole 24A) is formed in the top plate 24. From another point of view, the hole 24A is formed in a portion of the container 20 above the ring ball mill mechanism 70.
  • reference numeral O in FIG. 2 indicates the axis of the container 20 (the same applies to FIGS. 3A to 5B). Further, reference numeral + Z indicates an upper side in the vertical direction of the mill device 10, and reference numeral ⁇ Z indicates a lower side in the vertical direction of the mill device 10 (the same applies to FIGS. 3A to 5B).
  • the injection cylinder 30 functions as an introduction pipe for introducing the mixed powder MP from the outside to the inside of the container 20 before the start of the production operation of the inorganic material, and the gas outside the container 20 during the production operation of the inorganic material (example). It has a function as an inflow route through which an inert gas such as nitrogen or argon) flows into the inside. As shown in FIG. 2, the injection cylinder 30 is arranged so as to penetrate the hole 24A. The injection cylinder 30 is fixed to the discharge pipe 40 at the upper end side of the injection cylinder 30 in a state where the outer circumference of the upper portion in the vertical direction is surrounded by the discharge pipe 40.
  • the discharge pipe 40 is fitted and fixed in the hole 24A of the top plate 24 of the container 20. That is, the injection tube 30 is attached to the container 20 via the discharge pipe 40. Further, the lower end of the injection cylinder 30 is opened toward a region surrounded by a plurality of crushed balls 72 of the ring ball mill mechanism 70 described later. Then, the injection cylinder 30 is adapted to introduce the mixed powder MP (on the shaft O side of the plurality of crushed balls 72) on the central side of the ring ball mill mechanism 70 before the start of the production operation of the inorganic material, and is inorganic. External gas is allowed to flow in during the manufacturing operation of the material.
  • the conical cylinder 35 is arranged above the ring ball mill mechanism 70 with its apex side (the side having a short outer peripheral length) facing downward in the vertical direction and surrounding a part of the injection cylinder 30.
  • the discharge pipe 40 is a pipe for discharging the manufactured inorganic material. As shown in FIG. 2, the discharge pipe 40 has an r-shape of the alphabet when viewed from the front. That is, the discharge pipe 40 has a cylindrical portion 42 arranged along the axis O and a branch-shaped portion 44 connected to the central portion of the cylindrical portion 42 in the vertical direction from an oblique direction. The lower end of the cylindrical portion 42 is opened inside the container 20, and the injection cylinder 30 is fixed to the upper end portion of the cylindrical portion 42. The opening at the upper end of the branch-shaped portion 44 is connected to a dust collector (not shown).
  • the gas feeding mechanism 50 is attached to the lower side of the ring ball mill mechanism 70 in the container 20 and is directed upward inside the container 20 (for example, an inert gas such as nitrogen or argon). ) Has a function to send.
  • the gas feeding mechanism 50 has a plurality of gas emitting portions as an example. Each gas emitting portion emits a gas flow toward a gap formed between the inner peripheral surface of the container 20 and the ring ball mill mechanism 70 (lower ring 76) (see FIG. 3A). Each gas emitting portion is connected to a gas cylinder (not shown) arranged outside the container 20.
  • the wing mechanism 60 is arranged between the top plate 24 and the conical cylinder 35 inside the container 20.
  • the wing mechanism 60 has a plurality of swinging wings 62 arranged point-symmetrically about the axis O.
  • Each swing wing 62 is composed of a rotating shaft 62A, a short width plate 62B, and a long width plate 62C.
  • the short-width plate 62B and the long-width plate 62C are attached to the outer peripheral surface of the rotating shaft 62A in a state along the axial direction of the rotating shaft 62A while facing the direction in which they intersect each other.
  • each swing wing 62 causes its own short width plate 62B to be attached to the long width plate 62C of the adjacent swing wing 62 when the respective rotation shafts 62A are rotated in the clockwise direction. They are brought into contact with each other to form a wall extending all around the circumference.
  • each swing wing 62 is adjacent to the swing wing when each rotation shaft 62A is rotated by a predetermined angle in the counterclockwise direction from the state of FIG. 3B.
  • the short width plate 62B of its own is separated from the long width plate 62C of 62 to form a gap between the adjacent swinging wings 62.
  • FIG. 3B shows the posture of the wing mechanism 60 in the vitrification step S12 and the dispersion step S13 (see FIG. 1), which will be described later.
  • FIG. 5B shows the posture of the wing mechanism 60 in the discharge step S15 (see FIG. 1) described later.
  • the wing mechanism 60 of the present embodiment is controlled by the control unit 90, and the amount of gas discharged from the branched portion 44 in the case of the vitrification step S12 and the dispersion step S13 (FIG. 3B) is the discharge step S15 (FIG. 3B).
  • the amount of gas discharged from the branched portion 44 is set to be smaller than the amount of gas discharged.
  • the ring ball mill mechanism 70 has a function of applying a shear force and a compressive stress to a mixed powder MP (see FIG. 4C) in which a plurality of types of inorganic compounds are mixed by being pressurized by the pressurizing mechanism 80. As shown in FIG. 2, the ring ball mill mechanism 70 is arranged on the lower side in the vertical direction inside the container 20 as an example.
  • the ring ball mill mechanism 70 has a plurality of crushed balls 72, a lower ring 76, an upper ring 74, and a drive mechanism 78.
  • the plurality of crushed balls 72 are made of ceramic as an example.
  • the ceramic constituting the plurality of crushed balls 72 alumina, stabilized zirconia, silicon nitride and the like can be used.
  • the lowering 76 is driven by the drive mechanism 78 while maintaining the plurality of crushed balls 72 to rotate around the axis (around the axis O).
  • the lowering 76 is a donut-shaped member having a through hole formed in the center, and is made of ceramic.
  • a plurality of recesses 76A into which the crushed balls 72 are fitted are formed in order to maintain the plurality of crushed balls 72.
  • the ceramic constituting the lower ring 76 alumina, stabilized zirconia, silicon nitride and the like can be used.
  • the upper ring 74 is arranged on the opposite side of the lower ring 76 with the plurality of crushed balls 72 maintained in the lower ring 76 sandwiched between them.
  • the upper surface of the upper ring 74 is pressurized by a pressurizing mechanism 80 described later, and a plurality of crushed balls 72 are pressed against the lower ring 76.
  • the upper ring 74 is a donut-shaped member having a through hole formed in the center, and is made of ceramic.
  • the lower surface of the upper ring 74 is formed with a recess 74A in which each crushed ball 72 fits in a circular shape point-symmetrical with respect to the axis O.
  • the drive mechanism 78 is arranged below the lower ring 76 with the lower ring 76 fixed.
  • the drive mechanism 78 can be rotated around an axis (around the axis O) and can be rotated at 25 rpm to 300 rpm using the lowering 76 as an example, and is preferably rotated at 100 rpm to 140 rpm.
  • Pressurizing mechanism 80 as described above, the upper surface of the upper ring 74, as an example, has a function of pressurizing under a pressure ring unit surface load 10,000kgf / m 2 ⁇ 40,000kgf / m 2, Preferably, the ring unit surface area is pressurized with a pressing force of 12,000 kgf / m 2 to 28,000 kgf / m 2 .
  • the control unit 90 has a function of controlling the operation of the mill device 10. Specifically, the control unit 90 controls the rotational operation of the drive mechanism 78, the gas feeding operation of the gas feeding mechanism 50, and the like. Further, the control unit 90 has a timer 92 that counts the rotation time of the drive mechanism 78. The details of the function of the control unit 90 will be described in the description of the method S10 for manufacturing the inorganic material of the present embodiment, which will be described later.
  • the manufacturing method S10 of the present embodiment includes a mixing step S11, a vitrification step S12, a dispersion step S13, and a determination step S14 for determining whether a predetermined time T P has elapsed from the start of the vitrification step S12.
  • the discharge step S15 is included.
  • the manufacturing method S10 of the present embodiment after the mixing step S11, the vitrification step S12, and the dispersion step S13 are performed in the order described above, the time T P determined from the start of the vitrification step S12 in the determination step S14. Is elapsed, that is, as long as the negative determination continues in the determination step S14, the vitrification step S12 and the dispersion step S13 are repeated. Then, the manufacturing method S10 of the present embodiment performs the discharge step S15 and ends when the predetermined time T P has elapsed from the start of the vitrification step S12, that is, when a positive judgment is made in the judgment step S14. It becomes.
  • the vitrification step S12, the dispersion step S13, the determination step S14, and the discharge step S15 are executed by the control unit 90 controlling the mill device 10. Further, the specified time T P will be described later. The details of each step will be described below.
  • the mixing step S11 is a step of mixing powders of a plurality of types of inorganic compounds to produce a mixed powder MP.
  • the mixing step S11 is performed using a mixer (not shown).
  • examples of a plurality of types of inorganic compounds in the present embodiment are lithium sulfide, lithium nitride, and diphosphorus pentasulfide.
  • vitrification step S12 and the dispersion step S13 will be described with reference to FIGS. 3A, 3B, and 4A to 4C.
  • the control unit 90 controls a plurality of swinging wings 62 of the wing mechanism 60 to bring the wing mechanism 60 into the state shown in FIG. 3B. Further, the control unit 90 starts driving the drive mechanism 78 of the ring ball mill mechanism 70. Along with this, the lowering 76 is driven by the drive mechanism 78 and rotates about the axis. Further, the control unit 90 emits gas from a plurality of air emitting units of the gas feeding mechanism 50. In this case, a gas (an inert gas such as nitrogen or argon) continues to flow from the outside into the container 20 through the injection cylinder 30.
  • a gas an inert gas such as nitrogen or argon
  • the water concentration is preferably 1,500 ppm or less and the oxygen concentration is 10% or less, more preferably the water concentration is 400 ppm or less and the oxygen concentration is 1% or less, but the threshold value is appropriately determined according to the properties of the inorganic material.
  • the gas flow as shown in FIG. 3A circulates inside the container 20.
  • the control unit 90 controls the pressurizing mechanism 80 to pressurize the upper ring 74. Along with this, the upper ring 74 presses a plurality of crushed balls 72 against the lower ring 76.
  • the vitrification step S12 and the dispersion step S13 are performed in a state where the air flow is circulated as shown in FIG. 3A.
  • the control unit 90 starts counting the time by the timer 92 as the drive mechanism 78 starts driving. Then, the control unit 90, where the timer 92 is time T P elapsed defined, to terminate the vitrification step S12 and dispersion step S13.
  • the mixed powder MP introduced in the center of the ring ball mill mechanism 70 receives centrifugal force as the lower ring 76 rotates and moves outward in the radial direction of the lower ring 76 (see FIG. 4). As a result, the mixed powder MP enters between the recesses 76A of the lowering 76 and the crushing balls 72 maintained in the recesses 76A. On the other hand, as the lowering 76 rotates, the plurality of crushed balls 72 revolve around the axis (around the axis O) (see FIG. 4B).
  • each crushed ball 72 revolves because it fits into each recess 76A of the lower ring 76 that rotates around the axis and is maintained at the lower ring 76, is pressed by the stationary upper ring 74, and the like. It rotates while rotating (FIGS. 4A and 4B).
  • the mixed powder MP that has entered between the lowering 76 and the crushing balls 72 is pressurized to the crushing balls 72 and the lowering 76 that move relative to the lowering 76.
  • the mixed powder MP is subjected to shearing force and compressive stress by the crushing balls 72 and the lowering 76.
  • a part of the mixed powder MP moves between the crushing ball 72 and the upper ring 74 while being attached to the crushing ball 72.
  • the mixed powder MP moves outward in the radial direction of the lower ring 76 by centrifugal force, and is located between each crushed ball 72 and the upper ring 74, and between each crushed ball 72 and the lower ring 76. It receives shearing force and compressive stress by both or both and moves to the outer peripheral edge side of the lowering 76. Then, in this state, a part of the mixed powder MP is vitrified.
  • the above is the description of the vitrification step S12.
  • the partially vitrified mixed powder MP floats upward due to the gas emitted from the plurality of gas emitting portions of the gas feeding mechanism 50 (see FIG. 4C). Along with this, the mixed powder MP crushed by the ring ball mill mechanism 70 floats above the ring ball mill mechanism 70. In this case, the mixed powder MP is dispersed in the gas.
  • “dispersion” means that the mixed powder MP, which is an aggregate of powders that have been aggregated with each other, is separated.
  • the dispersed mixed powder MP is guided by the gas flow circulating inside the container 20 and moves to the center of the ring ball mill mechanism 70 again. The above is the description of the dispersion step S13.
  • the vitrification step S12 and the dispersion step S13 are described as if they are performed separately, but in reality, the vitrification step is performed. S12 and the dispersion step S13 are performed simultaneously.
  • the time T P is determined from the start of the vitrification step S12 and the dispersion step S13 is passed, powder of vitrified inorganic material is obtained from a mixed powder MP.
  • the vitrified inorganic material is, for example, an inorganic solid electrolyte material.
  • the inorganic solid electrolyte material constitutes the solid electrolyte layer of the all-solid-state lithium-ion battery.
  • the inorganic solid electrolyte material which is an example of the vitrified inorganic material is a sulfide. It is an inorganic solid electrolyte material. That is, the sulfide-based inorganic solid electrolyte material contains at least one of Li, P, and S as constituent elements.
  • the inorganic solid electrolyte material is not particularly limited, and examples thereof include a sulfide-based inorganic solid electrolyte material, an oxide-based inorganic solid electrolyte material, and a lithium-based inorganic solid electrolyte material. Among these, a sulfide-based inorganic solid electrolyte material is preferable.
  • the inorganic solid electrolyte material is not particularly limited, and examples thereof include those used for the solid electrolyte layer constituting the all-solid-state lithium ion battery.
  • Examples of the sulfide-based inorganic solid electrolyte material include Li 2 SP 2 S 5 material, Li 2 S-SiS 2 material, Li 2 S-GeS 2 material, Li 2 S-Al 2 S 3 material, and Li 2 S-SiS 2 -Li 3 PO 4 material, Li 2 S-P 2 S 5- GeS 2 material, Li 2 S-Li 2 O-P 2 S 5- SiS 2 material, Li 2 S-GeS 2- P 2 S 5- SiS 2 material, Li 2 S-SnS 2- P 2 S 5- SiS 2 material, Li 2 S-P 2 S 5 -Li 3 N material, Li 2 S 2 + X- P 4 S 3 material, Li 2 Examples thereof include SP 2 S 5- P 4 S 3 materials.
  • Li 2 SP 2 S 5 material and Li 2 SP 2 S 5 -Li 3 N material are excellent in lithium ion conductivity and have stability that does not cause decomposition in a wide voltage range. Is preferable.
  • the Li 2 SP 2 S 5 material is an inorganic obtained by chemically reacting an inorganic composition containing at least Li 2 S (lithium sulfide) and P 2 S 5 with each other by mechanical treatment. Means material.
  • the Li 2 SP 2 S 5 -Li 3 N material is an inorganic composition containing at least Li 2 S (lithium sulfide), P 2 S 5 and Li 3 N, which are chemically reacted with each other by mechanical treatment. It means an inorganic material obtained by the above.
  • lithium sulfide also includes lithium polysulfide.
  • oxide-based inorganic solid electrolyte material examples include NASICON type materials such as LiTi 2 (PO 4 ) 3 , LiZr 2 (PO 4 ) 3 , LiGe 2 (PO 4 ) 3 , and (La 0.5 + x Li 0. 5-3x ) Perovskite type such as TiO 3 , Li 2 O-P 2 O 5 material, Li 2 O-P 2 O 5 -Li 3 N material and the like can be mentioned.
  • lithium-based inorganic solid electrolyte material examples include LiPON, LiNbO 3 , LiTaO 3 , Li 3 PO 4 , LiPO 4-x N x (x is 0 ⁇ x ⁇ 1), LiN, LiI, and LISION. Further, glass ceramics obtained by precipitating crystals of these inorganic solid electrolyte materials can also be used as the inorganic solid electrolyte material.
  • the sulfide-based inorganic solid electrolyte material in the present embodiment preferably contains Li, P, and S as constituent elements.
  • the determination step S14 will be described.
  • the control unit 90 makes an affirmative determination and ends the vitrification step S12 and the dispersion step S13.
  • the control unit 90 makes a negative determination and continues the vitrification step S12 and the dispersion step S13.
  • the defined time T P is a time set by the test research of the inventors of the present application, and specifically, glass from the mixed powder MP before the start of the vitrification step S12 and the dispersion step S13.
  • the time is set until a certain amount (almost 100% amount such as 98% or more) of the powder of the converted inorganic material is obtained. That is, focusing on the behavior of the mixed powder MP, the step of combining the vitrification step S12 and the dispersion step S13 is performed a plurality of times corresponding to the predetermined time T P.
  • the step of combining the vitrification second process S12 and dispersing step S13 is performed a plurality of times.
  • the defined time T P means that in the vitrification step S12 and the dispersion step S13, the mixed powder MP is generated a plurality of times (5 as an example) as the gas flow circulates inside the container 20. (More than 15 times or less) Corresponds to the time required to circulate.
  • the values of the plurality of times referred to here are, for example, the magnitude of the pressing force when the pressurizing mechanism 80 pressurizes the upper ring 74, the rotation speed of the lower ring 76 driven by the driving mechanism 78 and rotating, and the mixed powder MP. It is caused by the size of.
  • the discharge step S15 is a step of discharging the powder of the inorganic material obtained in the vitrification step S12 and the dispersion step S13 from the branched portion 44 of the discharge pipe 40 to a dust collector (not shown).
  • the control unit 90 controls a plurality of swinging wings 62 of the wing mechanism 60 to bring the wing mechanism 60 into the state shown in FIG. 5B.
  • the gas sent from the gas feeding mechanism 50 into the container 20 flows inside the discharge pipe 40 through the gap formed between the adjacent swinging wings 62, and flows at the upper end of the branched portion 44.
  • the inorganic material vitrified inside the container 20 is discharged to the dust collector together with this gas flow. Then, the vitrified inorganic material inside the container 20 is discharged from the mill device 10, and the manufacturing method S10 of the present embodiment is completed.
  • the ring ball mill mechanism 70 is used (see FIGS. 4A to 4C).
  • the ring ball mill mechanism 70 has a lower ring 76 that rotates around an axis (around the axis O) while maintaining a plurality of crushed balls 72 and a plurality of crushed balls 72.
  • it has an upper ring 74 that is arranged on the opposite side of the lower ring 76 with the plurality of crushed balls 72 sandwiched between them and presses the plurality of crushed balls 72 against the lower ring 76.
  • a plurality of crushed balls 72 that revolve with the rotation of the lower ring 76 are rotated, and the centrifugal force generated with the rotation of the lower ring 76 causes the lower ring 76 to rotate from the shaft side (axis O side) to the outer peripheral side.
  • Shear stress and compressive stress are applied between the plurality of crushed balls 72 and the lowering 76 and between the plurality of crushed balls 72 and the upper ring 74 on the mixed powder MP moving to.
  • the upper ring 74 is pressurized by the pressurizing mechanism 80, the plurality of crushed balls 72 are pressed against the upper ring 74 and the lower ring 76.
  • the rotation direction of the rotation of each crushed ball 72 is constantly changed depending on the position of each crushed ball 72 at the time of revolution.
  • the crushed mixed powder MP adheres to the upper ring 74 and the lower ring 76, it is immediately scraped off by each crushed ball 72. That is, in the case of the present embodiment, the crushed mixed powder MP is unlikely to adhere to the recess 74A of the upper ring 74 and the recess 76A of the lower ring 76. Therefore, in the case of the present embodiment, maintenance is not required when the above-mentioned planetary ball mill is used, or the time interval of periodic maintenance is longer than when the above-mentioned planetary ball mill is used.
  • the production method S10 of the present embodiment it is possible to obtain a vitrified inorganic material from the mixed powder MP of a plurality of types of inorganic compounds with high production efficiency as compared with the case of using a planetary ball mill. ..
  • the plurality of crushed balls 72, the upper ring 74 and the lower ring 76 are each made of ceramic. Therefore, the plurality of crushed balls 72, the upper ring 74, and the lower ring 76 of the present embodiment are less likely to have the mixed powder MP adhered to them as compared with the case where the plurality of crushed balls 72, the upper ring 74, and the lower ring 76 are made of metal.
  • the plurality of crushed balls 72, the upper ring 74 and the lower ring 76 are vitrified from the mixed powder MP of the plurality of kinds of inorganic compounds with higher production efficiency as compared with the case where the plurality of crushed balls 72, the upper ring 74 and the lower ring 76 are made of metal. Inorganic material can be obtained.
  • the present effect has been described as a comparison target when the plurality of crushed balls 72, the upper ring 74, and the lower ring 76 are made of metal, but even in the case of the comparison target, the above-mentioned first effect can be obtained. It has a structure to play. That is, even in the case of the comparison target, it belongs to the technical scope of the present invention.
  • the plurality of crushed balls 72, the upper ring 74 and the lower ring 76 is made of ceramic, it can be said that this effect is more likely to be exhibited as compared with the comparison target. That is, even when at least one of the plurality of crushed balls 72, the upper ring 74 and the lower ring 76 is made of ceramic, it belongs to the technical scope of the present invention.
  • ⁇ Third effect> In the production method S10 of the present embodiment, as shown in FIG. 1, a plurality of steps of combining the vitrification step S12 and the dispersion step S13 performed after the vitrification step S12 are performed to obtain a plurality of types of inorganic compounds. A vitrified inorganic material is obtained from the mixed powder MP.
  • the mixed powder MP dispersed at least partially vitrified in the vitrification step S12.
  • the partially vitrified mixed powder MP floats upward due to the gas emitted from the plurality of gas emitting portions of the gas feeding mechanism 50 (see FIG. 4C).
  • the mixed powder MP is dispersed in the gas. That is, the aggregates of the powders of the mixed powder MP that have been aggregated with each other are separated in the gas.
  • the dispersed mixed powder MP is guided by the gas flow circulating inside the container 20 and moves to the center of the ring ball mill mechanism 70 again.
  • the vitrification step S12 and the dispersion step S13 are repeatedly performed on the mixed powder MP from the start of the vitrification step S12 until a predetermined time TP elapses (S14 in the flow chart of FIG. 1).
  • the mixed powder MP in which the vitrification step S12 is performed is dispersed in the gas in the dispersion step S13 immediately before that. That is, the mixed powder MP on which shear stress and compressive stress are applied by the ring ball mill mechanism 70 in the vitrification step S12 is in a state of being loosened by the dispersion step S13 immediately before that. Therefore, according to the production method S10 of the present embodiment, the mixed powder MP is efficiently vitrified.
  • the manufacturing method S10 of the present embodiment exerts the first effect by performing the step of combining the vitrification step S12 and the dispersion step S13 after the vitrification step S12 a plurality of times.
  • the mill device 10 of the present embodiment includes a ring ball mill mechanism 70, a container 20, a gas feeding mechanism 50, an injection cylinder 30, and a control unit 90. Then, the control unit 90 executes the manufacturing method S10 of the present embodiment by controlling the opening / closing operation of the wing mechanism 60, the rotation operation of the lowering 76, and the gas feeding operation of the gas feeding mechanism (FIGS. 1 and 3A). -See FIG. 5B). That is, when a vitrified inorganic material is produced from a mixed powder MP of a plurality of types of inorganic compounds using the mill device 10 of the present embodiment, the above-mentioned first effect and third effect are exhibited. From another point of view, if the mill device 10 of the present embodiment is used, the process of combining the vitrification step S12 and the dispersion step S13 performed after the vitrification step S12 can be performed a plurality of times by simple control. it can.
  • the mill device 10 of the present embodiment includes a wing mechanism 60.
  • the amount of gas discharged from the branch-shaped portion 44 can be adjusted by changing the posture of the plurality of swinging wings 62 of the wing mechanism 60 (FIGS. 3A, 3B, FIG. 5A and FIG. 5B).
  • the control unit 90 controls the wing mechanism 60 to bring the wing mechanism 60 into the state shown in FIG. 3B.
  • the discharge step S15 the control unit 90 controls the wing mechanism 60 to bring the wing mechanism 60 into the state shown in FIG. 5B.
  • the vitrification step S12 is performed while the wing mechanism 60 is in the state of FIG. 5B, most of the mixed powder MP suspended above the inside of the container 20 by the gas feeding mechanism 50 is vitrified again. It is discharged from the branched portion 44 by the gas flow without returning to S12. That is, the mill device 10 of the present embodiment can also be used as a normal mill device in which the powder is once crushed and then immediately discharged.
  • the mill device 10 of the present embodiment by controlling the postures of the plurality of swinging wings 62 of the wing mechanism 60, the manufacturing method S10 of the present embodiment and the crushing operation by the above-mentioned normal mill device are performed. Can be carried out.
  • the present invention has been described by taking the above-described embodiment as an example, but the present invention is not limited to the above-described embodiment.
  • the technical scope of the present invention also includes, for example, the following forms (modifications).
  • the dispersion step S13 is performed after the vitrification step S12 from the viewpoint of movement (microscopic viewpoint) of the powder constituting the mixed powder MP (see FIG. 1). ..
  • the flow chart of FIG. 1 may be grasped as the flow chart of FIG.
  • vitrification step S12 in the present embodiment, the dispersing step S13 and determination step S14, may be replaced with vitrification step performed time determined T P and the dispersion step are combined step S12A.
  • the manufacturing method S10 (see FIG. 1) of the present embodiment is performed using the mill device 10 (see FIG. 2) of the present embodiment.
  • the vitrification step S12 can be performed using the ring ball mill mechanism 70 and the step of combining the vitrification step S12 and the dispersion step S13 after the vitrification step S12 can be repeated, the present embodiment can be performed. It is not necessary to perform the manufacturing method S10 of the present embodiment using the mill device 10.
  • the vitrified inorganic material is, for example, an inorganic solid electrolyte material.
  • the vitrified inorganic material may be a positive electrode active material.
  • the positive electrode active material a positive electrode active material that can be used in the positive electrode layer of a lithium ion battery can be mentioned.
  • lithium cobalt oxide LiCoO 2
  • lithium nickel oxide LiNiO 2
  • lithium manganese oxide LiMn 2 O 4
  • Lithium-manganese-nickel oxide LiNi 1/3 Mn 1/3 Co 1/3 O 2
  • olivine type lithium phosphorus oxide LiFePO 4
  • CuS Li-Cu Sulfurized positive electrodes such as —S compounds, TiS 2 , FeS, MoS 2 , V 2 S 5 , Li—Mo—S compounds, Li—Ti—S compounds, Li—VS compounds, Li—Fe—S compounds, etc.
  • the vitrified inorganic material may be a mixed powder in which the above-mentioned positive electrode active material, the inorganic solid electrolyte material and the conductive auxiliary agent are combined in an arbitrary ratio.
  • the conductive auxiliary agent include carbon-based fine powders such as carbon black and Ketjen black.
  • the vitrified inorganic material may be a negative electrode active substance.
  • a negative electrode active material a negative electrode active material that can be used in the negative electrode layer of a lithium ion battery can be mentioned.
  • metal-based materials mainly composed of lithium alloys, tin alloys, silicon alloys, gallium alloys, indium alloys, aluminum alloys, etc., lithium-titanium composite oxides (for example, Li 4 Ti 5 O 12 ), graphite-based materials, etc.
  • the vitrified inorganic material may be a mixed powder in which the above-mentioned negative electrode active material, the inorganic solid electrolyte material and the conductive auxiliary agent are combined in an arbitrary ratio.
  • the conductive auxiliary agent include carbon-based fine powders such as carbon black and Ketjen black.

Abstract

本発明の無機材料の製造方法(S10)は、複数種の無機化合物の紛体が混合された混合粉(MP)にリングボールミル機構(70)を用いてせん断応力及び圧縮応力を作用させることにより混合粉(MP)の少なくとも一部をガラス化させるガラス化工程(S12)と、ガラス化工程(S12)の後に、ガラス化された混合粉(MP)を分散させる分散工程(S13)と、を含み、ガラス化工程(S12)と分散工程(S13)とを組み合せた工程を複数回行って、混合粉(MP)からガラス化された無機材料の紛体を得る。

Description

無機材料の製造方法及び無機材料製造装置
 本発明は、無機材料の製造方法及び無機材料製造装置に関する。
 携帯電話やノートパソコン等の小型携帯機器の電源や電気自動車や電力貯蔵等の電源として、例えば、リチウムイオン電池が使用されていることが知られている。
 現在市販されているリチウムイオン電池には、可燃性の有機溶媒を含む電解液が使用されている。一方、電解液を固体電解質に換えることで全固体化されたリチウムイオン電池(全固体化型リチウムイオン電池)は、電池内に可燃性の有機溶媒が用いられていない。そのため、全固体化型リチウムイオン電池は、安全装置の簡素化が図れ、製造コストや生産性に優れている。このような固体電解質に用いられる固体電解質材料としては、例えば、特許文献1に示されるように、硫化物系固体電解質材料がある。
特開2016-27545号公報
 特許文献1には、遊星型ボールミルを用いたメカニカルミリング法により、硫化物固体電解質材料の構成成分を含有する原料組成物をガラス化する方法が開示されている。
 しかしながら、遊星型ボールミルを用いてメカニカルミリング法を行うと、ガラス化した無機材料が遊星型ボールミルの回転筒の内周面全域に固着してしまう。そのため、遊星型ボールミルを用いたメカニカルミリング法は、定期的に遊星型ボールミルのメンテナンス(固着したガラス化された無機材料を内周面からそぎ落とすこと等)をする必要がある。
 本発明は、高い製造効率で、複数種の無機化合物の混合粉からガラス化された無機材料を得る無機材料の製造方法を提供する。
 本発明の一態様の無機材料の製造方法は、
 複数種の無機化合物の紛体が混合された混合粉にリングボールミル機構を用いてせん断応力及び圧縮応力を作用させることにより前記混合粉の少なくとも一部をガラス化させるガラス化工程と、
 前記ガラス化工程の後に、ガラス化された前記混合粉を分散させる分散工程と、
 を含み、
 前記ガラス化工程と前記分散工程とを組み合せた工程を複数回行って、前記混合粉からガラス化された無機材料の紛体を得る。
 また、本発明の一態様の無機材料製造装置は、
 複数個の粉砕ボール、前記複数個の粉砕ボールを維持しながら軸周りに回転するロアリング、及び、前記複数個の粉砕ボールを挟んで前記ロアリングの反対側に配置され前記複数個の粉砕ボールを前記ロアリングに押し付けるアッパーリングを有するリングボールミル機構と、
 内部に前記リングボールミルが配置され、前記リングボールミル機構よりも上方側の部分に孔が形成されている容器と、
 前記容器における前記リングボールミル機構よりも下方側に取り付けられ、前記内部の上方に向けてガスを送り込むガス送り込み機構と、
 前記容器に取り付けられ、前記孔を貫通し、前記ロアリングにおける前記複数個の粉砕ボールよりも軸側に外部のガスを流入されるための筒と、
 前記ロアリングの回転動作及び前記ガス送り込み機構のガス送り込み動作を制御する制御部と、
 を備え、
 前記制御部が前記回転動作及び前記ガス送り込み動作を制御することにより前記一態様の無機材料の製造方法を実行する。
 本発明の一態様の無機材料の製造方法によれば、高い製造効率で、複数種の無機化合物の混合粉からガラス化された無機材料を得ることができる。
 また、本発明の一態様の無機材料製造装置によれば、複数種の無機化合物の混合粉からガラス化された無機材料を高い製造効率で製造することができる。
本実施形態(本発明の一例としての実施形態)における無機材料の製造方法を示すフロー図である。 本実施形態の無機材料の製造方法の実施に用いられるミル装置の横断面図である。 本実施形態の無機材料の製造方法の実施時における、ガラス化工程及び分散工程を説明するための図である。 本実施形態のガラス化工程及び分散工程における、ミル装置のウィング機構の姿勢を説明するための図(平面図)である。 本実施形態のガラス化工程及び分散工程における、ミル装置のリングボールミル機構の動作を説明するための図(横断面図)である。 本実施形態のガラス化工程及び分散工程における、ミル装置のリングボールミル機構の動作を説明するための図(平面図)である。 本実施形態のガラス化工程及び分散工程における、リングボールミル機構の動作と紛体の挙動との関係を説明するための図(横断面図)である。 本実施形態の無機材料の製造方法の実施時における、排出工程を説明するための図(横断面図)である。 本実施形態の排出工程における、ミル装置のウィング機構の姿勢を説明するための図(平面図)である。 本実施形態における無機材料の製造方法を示すフロー図であって、図1のフロー図とは異なる見方で捉えたフロー図である。
≪概要≫
 以下、本実施形態について説明する。
 まず、本実施形態の無機材料の製造方法を実施するために用いられるミル装置10(無機材料製造装置の一例、図2参照)の機能及び構成について説明する。次いで、本実施形態の無機材料の製造方法S10(図1参照)について説明する。次いで、本実施形態の効果について説明する。
 以下の説明において参照するすべての図面では、同様の機能を有する構成要素に同様の符号を付し、明細書では適宜その説明を省略する。
 ここで、以下にその詳細について説明するが、本実施形態のミル装置10は、複数個の粉砕ボール72、複数個の粉砕ボール72を維持しながら軸周り(軸Oの周り)に回転するロアリング76、及び、複数個の粉砕ボール72を挟んでロアリング76の反対側に配置され複数個の粉砕ボール72をロアリング76に押し付けるアッパーリング74を有するリングボールミル機構70と、内部にリングボールミル機構70が配置され、リングボールミル機構70よりも上方側の部分に孔24Aが形成されている容器20と、容器20におけるリングボールミル機構70よりも下方側に取り付けられ、前記内部の上方に向けてガスを送り込むガス送り込み機構50と、容器20に取り付けられ、孔24Aを貫通し、ロアリング76における複数個の粉砕ボール72よりも軸側に前記外部のガスを流入されるための筒30(以下、注入筒30という。)と、ロアリング76の回転動作及びガス送り込み機構50のガス送り込み動作を制御する制御部90と、を備え、制御部90が前記回転動作及び前記ガス送り込み動作を制御することにより本実施形態の無機材料の製造方法を実行する(図1、図2等参照)。
 また、本実施形態の無機材料の製造方法S10は、複数種の無機化合物の紛体が混合された混合粉MPにリングボールミル機構70を用いてせん断応力及び圧縮応力を作用させることにより混合粉MPの少なくとも一部をガラス化させるガラス化工程S12と、ガラス化工程S12の後に、ガラス化された混合粉MPを分散させる分散工程S13と、を含み、ガラス化工程S12と分散工程S13とを組み合せた工程を複数回行って、混合粉MPからガラス化された無機材料の紛体を得る(図1、図3A等参照)。
≪ミル装置の機能及び構成≫
 以下、本実施形態のミル装置10の機能及び構成について、主に図2を参照しながら説明する。
 本実施形態のミル装置10は、後述する複数種の無機化合物が混合された混合粉MP(図4C参照)にせん断力及び圧縮応力を作用させることで混合粉MPをガラス化させる機能を有する。その結果、本実施形態のミル装置10は、複数種の無機化合物が混合された混合粉MPから後述するガラス化された無機材料の紛体を得る、すなわち製造する機能を有する。
 本実施形態のミル装置10は、図2に示されるように、容器20と、注入筒30(筒の一例)と、円錐筒35と、排出管40と、ガス送り込み機構50と、ウィング機構60と、リングボールミル機構70と、加圧機構80と、制御部90とを備えている。
<容器>
 容器20は、図2に示されるように、一例として円筒状であり、周壁22と、天板24と、底板26とを有している。容器20の内部(周壁22、天板24及び底板26とで囲まれている空間)には、注入筒30の一部、円錐筒35、排出管40の一部、ガス送り込み機構50、ウィング機構60、リングボールミル機構70及び加圧機構80の一部が配置されている。天板24には、貫通孔24A(以下、孔24Aという。)が形成されている。別の見方をすると、孔24Aは、容器20におけるリングボールミル機構70よりも上方側の部分に形成されている。なお、図2における符号Oは、容器20の軸を示している(図3A~図5Bにおいても同じ)。また、符号+Zはミル装置10の上下方向の上方側を示し、符号-Zはミル装置10の上下方向の下方側を示している(図3A~図5Bにおいても同じ)。
<注入筒、円錐筒及び排出管>
 注入筒30は、無機材料の製造動作の開始前に容器20の外部から内部に混合粉MPを導入するための導入管としての機能と、無機材料の製造動作時に容器20の外部のガス(一例として窒素、アルゴン等の不活性ガス)を内部に流入される流入経路としての機能とを有する。
 注入筒30は、図2に示されるように、孔24Aを貫通した状態で配置されている。注入筒30は、その上下方向の上方側の部分の外周を排出管40に囲まれた状態で、その上端側の部分で排出管40に固定されている。ここで、排出管40は、容器20の天板24の孔24Aに嵌り込んで固定されている。すなわち、注入筒30は、排出管40を介して容器20に取り付けられている。また、注入筒30の下端は、後述するリングボールミル機構70の複数の粉砕ボール72で囲まれた領域に向けて開口している。そして、注入筒30は、無機材料の製造動作の開始前にリングボールミル機構70の中央側に(複数の粉砕ボール72よりも軸O側に)混合粉MPを導入するようになっており、無機材料の製造動作時に外部のガスを流入させるようになっている。
 円錐筒35は、その頂点側(外周長が短い側)を上下方向の下方側に向けて注入筒30の一部を囲んだ状態で、リングボールミル機構70よりも上方側に配置されている。
 排出管40は、製造された無機材料を排出するための管である。排出管40は、図2に示されるように、その正面視にて、アルファベットのr字状を有している。すなわち、排出管40は、軸Oに沿って配置されている円筒部分42と、円筒部分42の上下方向の中央部分に斜め方向から繋がっている枝状部分44とを有している。円筒部分42の下端は容器20の内部で開口し、円筒部分42の上端部分には注入筒30が固定されている。枝状部分44の上端の開口は、集塵機(図示省略)に繋がっている。
<ガス送り込み機構>
 ガス送り込み機構50は、図2に示されるように、容器20におけるリングボールミル機構70よりも下方側に取り付けられ、容器20の内部の上方に向けてガス(一例として窒素、アルゴン等の不活性ガス)を送り込む機能を有する。
 ガス送り込み機構50は、一例として複数のガス出射部を有している。各ガス出射部は、容器20の内周面とリングボールミル機構70(ロアリング76)との間に形成されている隙間に向けてガス流を出射するようになっている(図3A参照)。なお、各ガス出射部は、容器20の外部に配置されているガスボンベ(図示省略)に接続されている。
<ウィング機構>
 ウィング機構60は、図2に示されるように、容器20の内部における、天板24と円錐筒35との間に配置されている。ウィング機構60は、図3B及び図5Bに示されるように、軸Oを中心として点対称に並べられている複数の揺動ウィング62を有している。各揺動ウィング62は、回転軸62Aと、短幅板62Bと、長幅板62Cとで構成されている。短幅板62Bと長幅板62Cとは、互いが交差する方向を向きつつ回転軸62Aの軸方向に沿った状態で、それぞれ、回転軸62Aの外周面に取り付けられている。
 そして、各揺動ウィング62は、図3Bに示されるように、それぞれの回転軸62Aを時計回り方向に回転させると、隣接する揺動ウィング62の長幅板62Cに自己の短幅板62Bを接触させて、周方向全周に亘る壁を形成するようになっている。これに対して、各揺動ウィング62は、図5Bに示されるように、図3Bの状態からそれぞれの回転軸62Aを反時計回り方向に定められた角度分回転させると、隣接する揺動ウィング62の長幅板62Cから自己の短幅板62Bが離間させて、隣接する各揺動ウィング62同士の間に隙間を形成するようになっている。
 なお、図3Bは、後述するガラス化工程S12及び分散工程S13(図1参照)におけるウィング機構60の姿勢を示している。また、図5Bは、後述する排出工程S15(図1参照)におけるウィング機構60の姿勢を示している。そして、本実施形態のウィング機構60は、制御部90に制御されて、ガラス化工程S12及び分散工程S13(図3B)の場合に枝状部分44から排出されるガス量が排出工程S15(図5B)の場合に枝状部分44から排出されるガス量よりも少なくなるように設定されるようになっている。
<リングボールミル機構及び加圧機構>
 リングボールミル機構70は、加圧機構80に加圧されて、複数種の無機化合物が混合された混合粉MP(図4C参照)にせん断力及び圧縮応力を作用させる機能を有する。
 リングボールミル機構70は、図2に示されるように、一例として、容器20の内部における上下方向の下方側に配置されている。リングボールミル機構70は、複数個の粉砕ボール72と、ロアリング76と、アッパーリング74と、駆動機構78とを有している。
 複数個の粉砕ボール72は、一例としてセラミック製である。ここで、複数個の粉砕ボール72を構成するセラミックとしては、アルミナ、安定化ジルコニア、窒化ケイ素等が使用できる。
 ロアリング76は、複数個の粉砕ボール72を維持しながら駆動機構78に駆動されて軸周り(軸Oの周り)に回転するようになっている。ロアリング76は、一例として、中央に貫通孔が形成されているドーナツ状の部材であり、かつ、セラミック製である。ロアリング76の上面には、複数個の粉砕ボール72を維持するために、各粉砕ボール72が嵌る複数個の凹み76Aが形成されている。ここで、ロアリング76を構成するセラミックとしては、アルミナ、安定化ジルコニア、窒化ケイ素等が使用できる。
 アッパーリング74は、ロアリング76に維持されている複数個の粉砕ボール72を挟んでロアリング76の反対側に配置されている。アッパーリング74は、その上面を後述する加圧機構80に加圧されて、複数個の粉砕ボール72をロアリング76に押し付けるようになっている。アッパーリング74は、一例として、中央に貫通孔が形成されているドーナツ状の部材であり、かつ、セラミック製である。アッパーリング74の下面には、複数個の粉砕ボール72を維持するために、軸Oに対して点対称の円状で、各粉砕ボール72が嵌る凹み74Aが形成されている。ここで、アッパーリング74を構成するセラミックとしては、アルミナ、安定化ジルコニア、窒化ケイ素等が使用できる。
 駆動機構78は、図2に示されるように、ロアリング76を固定した状態でロアリング76の下方側に配置されている。駆動機構78は、軸周り(軸Oの周り)に回転してロアリング76を一例として25rpm~300rpmで回転できるようになっており、好ましくは100rpm~140rpmで回転させる。
 加圧機構80は、前述のとおり、アッパーリング74の上面を、一例として、リング単位表面積荷重10,000kgf/m~40,000kgf/mの加圧力で加圧する機能を有しており、好ましくはリング単位表面積荷重12,000kgf/m~28,000kgf/mの加圧力で加圧する。
<制御部>
 制御部90は、ミル装置10の動作を制御する機能を有する。具体的には、制御部90は、駆動機構78の回転動作、ガス送り込み機構50のガス送り込み動作等を制御するようになっている。また、制御部90は、駆動機構78の回転時間をカウントするタイマー92を有している。なお、制御部90の機能の詳細については、後述する本実施形態の無機材料の製造方法S10の説明の中で説明する。
 以上が、本実施形態のミル装置10の機能及び構成についての説明である。
≪無機材料の製造方法≫
 次に、本実施形態の無機材料の製造方法S10(以下、本実施形態の製造方法S10という。)について、図1等を参照しながら説明する。
 本実施形態の製造方法S10は、混合工程S11と、ガラス化工程S12と、分散工程S13と、ガラス化工程S12の開始から定められた時間Tが経過したかを判断する判断工程S14と、排出工程S15とを含む。
 本実施形態の製造方法S10は、混合工程S11、ガラス化工程S12及び分散工程S13をこれらの記載順で行った後に、判断工程S14において、ガラス化工程S12の開始時から定められた時間Tが経過するまで、すなわち、判断工程S14で否定判断が続く限り、ガラス化工程S12及び分散工程S13を繰り返す。そして、本実施形態の製造方法S10は、ガラス化工程S12の開始時から定められた時間Tが経過した場合、すなわち、判断工程S14で肯定判断をした場合、排出工程S15を行って、終了となる。なお、ガラス化工程S12、分散工程S13、判断工程S14及び排出工程S15は、制御部90がミル装置10を制御することに実行される。また、定められた時間Tについては後述する。
 以下、各工程の詳細について説明する。
<混合工程>
 混合工程S11は、複数種の無機化合物の紛体を混合して混合粉MPを生成する工程である。混合工程S11は、一例として、混合機(図示省略)を用いて行われる。
 ここで、本実施形態における、複数種の無機化合物の一例は、硫化リチウム、窒化リチウム及び五硫化二リンである。
 そして、混合工程S11により混合粉MPが生成されると、ミル装置10の注入筒30から容器20の内部に混合粉MPが導入されて、本工程が終了する。
<ガラス化工程及び分散工程>
 次に、ガラス化工程S12及び分散工程S13について図3A、図3B、図4A~図4Cを参照しながら説明する。
 まず、制御部90は、ウィング機構60の複数の揺動ウィング62を制御してウィング機構60を図3Bの状態にさせる。また、制御部90は、リングボールミル機構70の駆動機構78の駆動を開始させる。これに伴い、ロアリング76は、駆動機構78により駆動されて軸周りに回転させる。また、制御部90は、ガス送り込み機構50の複数の空気出射部からガスを出射させる。この場合、注入筒30には外部から容器20の内部にガス(一例として窒素、アルゴン等の不活性ガス)が流され続ける。混合粉MP又はガラス化した無機材料が酸化されやすい硫化物、窒化物、ハロゲン化物等は、ガスの水分濃度及び酸素濃度を低減して使用する。一例として、水分濃度1,500ppm以下、酸素濃度10%以下が好ましく、さらには水分濃度400ppm以下、酸素濃度1%以下がより好ましいが、無機材料の性質に合わせて閾値は適宜決定する。以上より、容器20の内部では、図3Aに示されるようなガス流が循環する。また、制御部90は、加圧機構80を制御してアッパーリング74を加圧する。これに伴い、アッパーリング74は複数個の粉砕ボール72をロアリング76に押し付ける。
 そして、ガラス化工程S12及び分散工程S13は、図3Aに示されるような空気流が循環した状態で行われる。
 なお、制御部90は、駆動機構78の駆動開始に伴い、タイマー92による時間のカウントを開始する。そして、制御部90は、タイマー92が定められた時間T経過したところで、ガラス化工程S12及び分散工程S13を終了させる。
〔ガラス化工程〕
 リングボールミル機構70の中央に導入された混合粉MPは、ロアリング76の回転に伴い遠心力を受けてロアリング76の径方向外側に移動する(図4参照)。その結果、混合粉MPは、ロアリング76の各凹み76Aと当該各凹み76Aに維持されている粉砕ボール72との間に入り込む。
 一方で、ロアリング76の回転に伴い、複数個の粉砕ボール72は、軸周り(軸Oの周り)に公転する(図4B参照)。この場合、各粉砕ボール72は、軸周りに回転するロアリング76の各凹み76Aに嵌ってロアリング76に維持されていること、静止しているアッパーリング74に加圧されていること等により、公転しながら自転する(図4A及び図4B)。
 以上より、ロアリング76と粉砕ボール72との間に入り込んだ混合粉MPは、ロアリング76に対して相対的に移動する粉砕ボール72とロアリング76とに加圧される。その結果、混合粉MPは、粉砕ボール72及びロアリング76によりせん断力及び圧縮応力を受ける。そして、一部の混合粉MPは粉砕ボール72に付着したまま粉砕ボール72とアッパーリング74との間に移動する。その結果、一部の混合粉MPは、粉砕ボール72及びアッパーリング74によりせん断力及び圧縮応力を受ける。このようにして、混合粉MPは、遠心力によりロアリング76の径方向外側に移動しながら、各粉砕ボール72とアッパーリング74との間、及び、各粉砕ボール72とロアリング76との間の一方又は両方によりせん断力及び圧縮応力を受けてロアリング76の外周縁側まで移動する。そして、この状態では、混合粉MPの一部がガラス化された状態となる。
 以上が、ガラス化工程S12についての説明である。
〔分散工程〕
 次いで、一部がガラス化された混合粉MPは、ガス送り込み機構50の複数のガス出射部から出射されるガスにより、上方側に浮遊する(図4C参照)。これに伴い、リングボールミル機構70により粉砕された混合粉MPは、リングボールミル機構70よりも上方側まで浮遊する。この場合、混合粉MPは、ガス中で分散される。ここで「分散」とは、互いに凝集していた紛体の集合体である混合粉MPがばらばらになることを意味する。
 次いで、分散した混合粉MPは、容器20の内部を循環するガス流により誘導されて、再度リングボールミル機構70の中央に移動する。
 以上が、分散工程S13についての説明である。
 なお、本明細書では、混合粉MPの容器20の内部での移動に着目してガラス化工程S12と分散工程S13とが別々に行われるかの如く説明したが、実際には、ガラス化工程S12と分散工程S13とは同時進行で行われる。そして、ガラス化工程S12及び分散工程S13の開始から定められた時間Tが経過すると、混合粉MPからガラス化された無機材料の紛体が得られる。
 ここで、ガラス化された無機材料とは、一例として、無機固体電解質材料である。無機固体電解質材料は、全固体型リチウムイオン電池の固体電解質層を構成するものである。
 また、前述のとおり、本実施形態では、複数種の無機化合物は、硫化リチウム、窒化リチウム及び五硫化二リンであることから、ガラス化された無機材料の一例である無機固体電解質材料は硫化物系無機固体電解質材料である。すなわち、硫化物系無機固体電解質材料は、構成元素として、Li、P及びSの少なくとも1種以上を含む。
 なお、無機固体電解質材料としては特に限定されないが、硫化物系無機固体電解質材料、酸化物系無機固体電解質材料、リチウム系無機固体電解質材料等を挙げることができる。これらの中でも、硫化物系無機固体電解質材料が好ましい。
 また、無機固体電解質材料としては特に限定されないが、例えば、全固体型リチウムイオン電池を構成する固体電解質層に用いられるものが挙げられる。
 硫化物系無機固体電解質材料としては、例えば、LiS-P材料、LiS-SiS材料、LiS-GeS材料、LiS-Al材料、LiS-SiS-LiPO材料、LiS-P-GeS材料、LiS-LiO-P-SiS材料、LiS-GeS-P-SiS材料、LiS-SnS-P-SiS材料、LiS-P-LiN材料、Li2+X-P材料、LiS-P-P材料等が挙げられる。
 これらの中でも、リチウムイオン伝導性に優れかつ広い電圧範囲で分解等を起こさない安定性を有する点から、LiS-P材料及びLiS-P-LiN材料が好ましい。ここで、例えば、LiS-P材料とは、少なくともLiS(硫化リチウム)とPとを含む無機組成物を機械的処理により互いに化学反応させることにより得られる無機材料を意味する。また、LiS-P-LiN材料とは、少なくともLiS(硫化リチウム)とPとLiNとを含む無機組成物を機械的処理により互いに化学反応させることにより得られる無機材料を意味する。
 なお、本実施形態において、硫化リチウムには多硫化リチウムも含まれる。
 前述の酸化物系無機固体電解質材料としては、例えば、LiTi(PO、LiZr(PO、LiGe(PO等のNASICON型、(La0.5+xLi0.5-3x)TiO等のペロブスカイト型、LiO-P材料、LiO-P-LiN材料等が挙げられる。
 リチウム系無機固体電解質材料としては、例えば、LiPON、LiNbO、LiTaO、LiPO、LiPO4-x(xは0<x≦1)、LiN、LiI、LISICON等が挙げられる。
 さらに、これらの無機固体電解質材料の結晶を析出させて得られるガラスセラミックスも無機固体電解質材料として用いることができる。
 本実施形態における硫化物系無機固体電解質材料は、構成元素として、Li、P及びSを含んでいることが好ましい。
<判断工程>
 次に、判断工程S14について説明する。制御部90は、タイマー92がカウントする時間Tが定められた時間T以上である場合、肯定判断を行ってガラス化工程S12及び分散工程S13を終了させる。
 これに対して、制御部90は、タイマー92がカウントする時間Tが定められた時間T未満である場合、否定判断を行ってガラス化工程S12及び分散工程S13を継続させる。
 ここで、定められた時間Tは、本願の発明者らの試験研究により設定された時間であって、具体的には、ガラス化工程S12及び分散工程S13の開始前の混合粉MPからガラス化された無機材料の紛体が一定量(98%以上等のほぼ100%程度の量)得られるまでの時間に設定されている。すなわち、混合粉MPの挙動に着目すると、ガラス化工程S12と分散工程S13とを組み合せた工程は、定められた時間Tに相当する複数回行われる。また、別の見方をすると、ガス送り込み機構50から容器20の内部に定められた時間Tガスを送り込むことにより、ガラス化工程S12と分散工程S13とを組み合せた工程が複数回行われる。
 なお、本実施形態では、定められた時間Tとは、ガラス化工程S12及び分散工程S13において、容器20の内部をガス流が循環することに伴って混合粉MPが複数回(一例として5回以上15回以下)循環するために要する時間に相当する。ただし、ここでいう複数回の値は、例えば、加圧機構80がアッパーリング74を加圧する際の加圧力の大きさ、駆動機構78により駆動されて回転するロアリング76の回転数、混合粉MPの大きさ等に起因する。
<排出工程>
 次に、排出工程S15について図5A及び図5Bを参照しながら説明する。
 排出工程S15は、ガラス化工程S12及び分散工程S13により得られた無機材料の紛体を排出管40の枝状部分44から集塵機(図示省略)に排出する工程である。
 排出工程S15では、制御部90は、ウィング機構60の複数の揺動ウィング62を制御してウィング機構60を図5Bの状態にさせる。その結果、ガス送り込み機構50から容器20の内部に送り込まれたガスは、隣接する各揺動ウィング62同士の間に形成された隙間から排出管40の内部を流れて枝状部分44の上端の開口から集塵機に排出される。これに伴い、容器20の内部でガラス化された無機材料は、このガス流とともに集塵機に排出される。
 そして、容器20の内部のガラス化された無機材料がミル装置10から排出されて、本実施形態の製造方法S10が終了する。
 以上が、本実施形態の製造方法S10についての説明である。
≪効果≫
 次に、本実施形態の効果について図面を参照しながら説明する。
<第1の効果>
 例えば、特許文献1に開示されている遊星型ボールミルを用いて混合粉MPにせん断応力及び圧縮応力を作用させて混合粉MPをガラス化させることは可能である。しかしながら、本願の発明者らの試験研究によれば、遊星型ボールミルを用いて混合粉MPをガラス化させると、ガラス化した混合粉MPが遊星型ボールミルの回転筒の内周面に固着してしまう。そのため、遊星型ボールミルを用いた方法の場合、定期的に遊星型ボールミルのメンテナンス(内周面に固着したガラス化された無機材料を内周面から削ぎ落とすこと等)をする必要がある。
 これに対して、本実施形態の場合、リングボールミル機構70を用いて行われる(図4A~図4C参照)。
 リングボールミル機構70は、図2及び図4A~図4Cに示されるように、複数個の粉砕ボール72、複数個の粉砕ボール72を維持しながら軸周り(軸Oの周り)に回転するロアリング76、及び、複数個の粉砕ボール72を挟んでロアリング76の反対側に配置され複数個の粉砕ボール72をロアリング76に押し付けるアッパーリング74を有している。
 そして、本実施形態の場合、ロアリング76の回転に伴い公転する複数個の粉砕ボール72を自転させ、ロアリング76の回転に伴い発生する遠心力によりロアリング76の軸側(軸O側)から外周側に移動する混合粉MPに複数個の粉砕ボール72とロアリング76との間及び複数個の粉砕ボール72とアッパーリング74との間でせん断応力及び圧縮応力を作用させる。この場合、アッパーリング74は加圧機構80により加圧されているため、複数個の粉砕ボール72は、アッパーリング74及びロアリング76に押し付けられている。また、この場合、各粉砕ボール72の自転の回転方向は、各粉砕ボール72の公転時の位置により常時変更する。以上により、本実施形態の場合、遊星型ボールミルを用いた場合と異なり、粉砕された混合粉MPがアッパーリング74及びロアリング76に付着してもすぐに各粉砕ボール72により削ぎ落とされる。すなわち、本実施形態の場合、粉砕された混合粉MPがアッパーリング74の凹み74A及びロアリング76の凹み76Aに固着し難い。そのため、本実施形態の場合、前述の遊星型ボールミルを用いた場合のメンテナンスが不要である、又は、前述の遊星型ボールミルを用いた場合よりも定期的に行うメンテナンスの時間間隔が長い。
 したがって、本実施形態の製造方法S10によれば、遊星型ボールミルを用いた場合に比べて、高い製造効率で、複数種の無機化合物の混合粉MPからガラス化された無機材料を得ることができる。
<第2の効果>
 本実施形態では、複数の粉砕ボール72、アッパーリング74及びロアリング76は、それぞれ、セラミック製である。そのため、本実施形態の複数の粉砕ボール72、アッパーリング74及びロアリング76は、複数の粉砕ボール72、アッパーリング74及びロアリング76が金属製である場合に比べて、混合粉MPが付着し難い。
 したがって、本実施形態によれば、複数の粉砕ボール72、アッパーリング74及びロアリング76が金属製である場合に比べて、より高い製造効率で、複数種の無機化合物の混合粉MPからガラス化された無機材料を得ることができる。
 ここで、本効果については、複数の粉砕ボール72、アッパーリング74及びロアリング76が金属製である場合を比較対象として説明したが、当該比較対象の場合であっても前述の第1の効果を奏する構成を有する。すなわち、当該比較対象の場合であっても、本発明の技術的範囲に属する。なお、複数の粉砕ボール72、アッパーリング74及びロアリング76の少なくとも1つがセラミック製の場合は、当該比較対象に比べて、本効果を奏し易いといえる。すなわち、複数の粉砕ボール72、アッパーリング74及びロアリング76の少なくとも1つがセラミック製の場合であっても、本発明の技術的範囲に属する。
<第3の効果>
 本実施形態の製造方法S10は、図1に示されるように、ガラス化工程S12とガラス化工程S12の後に行う分散工程S13とを組み合せた工程を複数回行うことで、複数種の無機化合物の混合粉MPからガラス化された無機材料を得る。
 ここで、前述のとおり、分散工程S13は、ガラス化工程S12において少なくとも一部がガラス化された混合粉MP分散させる。具体的には、一部がガラス化された混合粉MPは、ガス送り込み機構50の複数のガス出射部から出射されるガスにより、上方側に浮遊する(図4C参照)。この場合、混合粉MPは、ガス中で分散される。すなわち、混合粉MPのうち互いに凝集していた紛体の集合体は、ガス中でばらばらにされる。次いで、本実施形態のミル装置10の構造により、分散した混合粉MPは、容器20の内部を循環するガス流により誘導されて、再度リングボールミル機構70の中央に移動する。そして、ガラス化工程S12の開始時から定められた時間TPが経過するまで、混合粉MPに対してガラス化工程S12と分散工程S13とが繰り返し行われる(図1のフロー図におけるS14)。
 以上のとおりであるから、本実施形態の製造方法S10では、ガラス化工程S12が行われる混合粉MPは、その直前の分散工程S13においてガス中で分散されている。すなわち、ガラス化工程S12でリングボールミル機構70によりせん断応力及び圧縮応力が作用される混合粉MPは、その直前の分散工程S13によりほぐされた状態となっている。そのため、本実施形態の製造方法S10によれば、混合粉MPが効率よくガラス化される。
 したがって、本実施形態の製造方法S10は、ガラス化工程S12とガラス化工程S12の後の分散工程S13とを組み合せた工程を複数回行うことにより、より第1の効果を奏する。
<第4の効果>
 本実施形態のミル装置10は、図2に示されるように、リングボールミル機構70と、容器20と、ガス送り込み機構50と、注入筒30と、制御部90と、を備える。そして、制御部90は、ウィング機構60の開閉動作、ロアリング76の回転動作及び前記ガス送り込み機構のガス送り込み動作を制御することで、本実施形態の製造方法S10を実行する(図1、図3A~図5B参照)。
 すなわち、本実施形態のミル装置10を用いて複数種の無機化合物の混合粉MPからガラス化された無機材料を製造すると、前述の第1の効果及び第3の効果を奏する。また、別の見方をすると、本実施形態のミル装置10を用いれば、簡単な制御により、ガラス化工程S12とガラス化工程S12の後に行う分散工程S13とを組み合せた工程を複数回行うことができる。
<第5の効果>
 本実施形態のミル装置10は、図2に示されるように、ウィング機構60を備える。そして、本実施形態では、ウィング機構60の複数の揺動ウィング62の姿勢へ変更することで、枝状部分44から排出されるガス量を調整可能となっている(図3A、図3B、図5A及び図5B参照)。具体的には、ガラス化工程S12と分散工程S13とを組み合せた工程を行う場合には、制御部90がウィング機構60を制御してウィング機構60を図3Bの状態にさせる。これに対して、排出工程S15を行う場合には、制御部90がウィング機構60を制御してウィング機構60を図5Bの状態にさせる。
 ところで、仮に、ウィング機構60が図5Bの状態のまま、ガラス化工程S12を行うと、ガス送り込み機構50により容器20の内部の上方側に浮遊した混合粉MPの大部分は、再度ガラス化工程S12に戻ることなくガス流によって枝状部分44から排出される。すなわち、本実施形態のミル装置10は、紛体を一度粉砕した後すぐに排出するという、通常のミル装置としても利用することができる。
 したがって、本実施形態のミル装置10によれば、ウィング機構60の複数の揺動ウィング62の姿勢を制御することにより、本実施形態の製造方法S10と、前述の通常のミル装置による粉砕動作とを実施することができる。
 以上が、本実施形態の効果についての説明である。
 以上のとおり、本発明について前述の実施形態を例として説明したが、本発明は前述の実施形態に限定されるものではない。本発明の技術的範囲には、例えば、下記のような形態(変形例)も含まれる。
 例えば、本実施形態の製造方法S10では、混合粉MPを構成する紛体の移動の観点(ミクロ的な観点)から、ガラス化工程S12の後に分散工程S13が行われるとして説明した(図1参照)。しかしながら、マクロ的な観点では、ガラス化工程S12と分散工程S13とは同時に進行するともいえる。そのため、図1のフロー図を、図6のフロー図のように捉えてもよい。この場合、本実施形態のガラス化工程S12、分散工程S13及び判断工程S14は、定められた時間T行われるガラス化工程と分散工程とが組み合わされた工程S12Aと置き換えることができる。
 また、本実施形態の製造方法S10(図1参照)は、本実施形態のミル装置10(図2参照)を用いて行われるとして説明した。しかしながら、リングボールミル機構70を用いてガラス化工程S12を行い、かつ、ガラス化工程S12とガラス化工程S12の後の分散工程S13とを組み合せた工程を繰り返して行うことができれば、本実施形態のミル装置10を用いて本実施形態の製造方法S10を行わなくてもよい。
 また、本実施形態では、ガラス化された無機材料とは一例として無機固体電解質材料であると説明した。しかしながら、ガラス化された無機材料は、正極活性物質であってもよい。
 ここで、正極活性物質の一例としては、リチウムイオン電池の正極層に使用可能な正極活物質が挙げられる。具体的には、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)、リチウムマンガン酸化物(LiMn)、固溶体酸化物(LiMnO-LiMO(M=Co、Ni等))、リチウム-マンガン-ニッケル酸化物(LiNi1/3Mn1/3Co1/3)、オリビン型リチウムリン酸化物(LiFePO)等の複合酸化物;CuS、Li-Cu-S化合物、TiS、FeS、MoS、V、Li-Mo-S化合物、Li-Ti-S化合物、Li-V-S化合物、Li-Fe-S化合物等の硫化物系正極活物質等が挙げられる。なお、これらの中でも、より高い放電容量密度を有し、かつ、サイクル特性により優れる観点から、硫化物系正極活物質が好ましく、Li-Mo-S化合物、Li-Ti-S化合物、Li-V-S化合物がより好ましい。
 さらに、ガラス化された無機材料は、前述の正極活物質、無機固体電解質材料及び導電助剤がそれぞれ任意の比率で組み合わされた混合粉末であってもよい。導電助剤の一例としては、カーボンブラック、ケッチェンブラック等の炭素系微粉末が挙げられる。
 また、ガラス化された無機材料は、負極活性物質であってもよい。
 ここで、負極活性物資の一例としては、リチウムイオン電池の負極層に使用可能な負極活物質が挙げられる。具体的には、リチウム合金、スズ合金、シリコン合金、ガリウム合金、インジウム合金、アルミニウム合金等を主体とした金属系材料、リチウムチタン複合酸化物(例えばLiTi12)、グラファイト系材料等が挙げられる。
 さらに、ガラス化された無機材料は、前述の負極活物質、無機固体電解質材料及び導電助剤がそれぞれ任意の比率で組み合わされた混合粉末であってもよい。導電助剤の一例としては、カーボンブラック、ケッチェンブラック等の炭素系微粉末が挙げられる。
 この出願は、2019年6月14日に出願された日本出願特願2019-110875号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 ミル装置(無機材料製造装置の一例)
20 容器
22 周壁
24 天板
24A 貫通孔(孔)
26 底板
30 注入筒
35 円錐筒
40 排出管
42 円筒部分
44 枝状部分
50 ガス送り込み機構
60 ウィング機構
62 揺動ウィング
62A 回転軸
62B 短幅板
62C 長幅板
70 リングボールミル機構
72 粉砕ボール
74 アッパーリング
74A 凹み
76 ロアリング
76A 凹み
78 駆動機構
80 加圧機構
90 制御部
92 タイマー
O 軸
S10 無機材料の製造方法
S11 混合工程
S12 ガラス化工程
S13 分散工程
S14 判断工程
S15 排出工程
 定められた時間

Claims (12)

  1.  複数種の無機化合物の紛体が混合された混合粉にリングボールミル機構を用いてせん断応力及び圧縮応力を作用させることにより前記混合粉の少なくとも一部をガラス化させるガラス化工程と、
     前記ガラス化工程の後に、ガラス化された前記混合粉を分散させる分散工程と、
     を含み、
     前記ガラス化工程と前記分散工程とを組み合せた工程を複数回行って、前記混合粉からガラス化された無機材料の紛体を得る、
     無機材料の製造方法。
  2.  前記リングボールミル機構は、複数個の粉砕ボール、前記複数個の粉砕ボールを維持しながら軸周りに回転するロアリング、及び、前記複数個の粉砕ボールを挟んで前記ロアリングの反対側に配置され前記複数個の粉砕ボールを前記ロアリングに押し付けるアッパーリングを有し、
     前記ガラス化工程では、前記ロアリングの回転に伴い公転する前記複数個の粉砕ボールを自転させて、前記ロアリングの回転に伴い発生する遠心力により前記ロアリングの軸側から外周側に移動する前記混合粉に前記複数個の粉砕ボールと前記ロアリングとの間及び前記複数個の粉砕ボールと前記アッパーリングとの間でせん断応力及び圧縮応力を作用させる、
     請求項1に記載の無機材料の製造方法。
  3.  前記複数個の粉砕ボールは、セラミック製である、
     請求項2に記載の無機材料の製造方法。
  4.  前記アッパーリング及び前記ロアリングは、セラミック製である、
     請求項3に記載の無機材料の製造方法。
  5.  前記リングボールミル機構は、容器の内部に配置されており、
     前記分散工程では、前記容器における前記リングボールミル機構よりも下方側に取り付けられているガス送り込み機構から前記内部の上方に向けてガスを送り込むことで、ガラス化された前記混合粉をガス中に浮遊させて分散させる、
     請求項1~4のいずれか1項に記載の無機材料の製造方法。
  6.  前記リングボールミル機構は、容器の内部に配置されており、
     前記分散工程では、前記容器における前記リングボールミル機構よりも下方側に取り付けられているガス送り込み機構から前記内部の上方に向けてガスを送り込むことで、ガラス化された前記混合粉をガス中に浮遊させて分散させ、
     前記容器における前記リングボールミル機構よりも上方側には、前記内部のガスの一部を外部に排気するための孔が形成されており、
     前記容器には、前記ロアリングにおける前記複数個の粉砕ボールよりも軸側に前記外部のガスを流入されるための筒が取り付けられており、
     前記分散工程では、前記ガス送り込み機構から前記内部にガスを送り込むことで、前記内部の一部のガスを前記孔から前記外部に排気しつつ前記筒から前記外部のガスを流入させて、ガス中で分散された前記混合粉を前記ロアリングにおける前記複数個の粉砕ボールよりも軸側に到達させる、
     請求項2~4のいずれか1項に記載の無機材料の製造方法。
  7.  前記ガス送り込み機構から前記内部に定められた期間ガスを送り込むことにより、前記組み合せた工程を複数回行う、
     請求項6に記載の無機材料の製造方法。
  8.  前記ガラス化された無機材料は、無機固体電解質材料、正極活物質又は負極活物質である、
     請求項1~7のいずれか1項に記載の無機材料の製造方法。
  9.  前記ガラス化された無機材料は、前記無機固体電解質材料であり、
     前記無機固体電解質材料は、全固体型リチウムイオン電池の固体電解質層を構成する、
     請求項8に記載の無機材料の製造方法。
  10.  前記ガラス化された無機材料は、前記無機固体電解質材料であり、
     前記無機固体電解質材料は、少なくとも硫化物系無機固体電解質材料を含む、
     請求項8又は9に記載の無機材料の製造方法。
  11.  前記硫化物系無機固体電解質材料は、構成元素としてLi、P及びSの少なくとも1種以上を含む、
     請求項10に記載の無機材料の製造方法。
  12.  複数個の粉砕ボール、前記複数個の粉砕ボールを維持しながら軸周りに回転するロアリング、及び、前記複数個の粉砕ボールを挟んで前記ロアリングの反対側に配置され前記複数個の粉砕ボールを前記ロアリングに押し付けるアッパーリングを有するリングボールミル機構と、
     内部に前記リングボールミル機構が配置され、前記リングボールミル機構よりも上方側の部分に孔が形成されている容器と、
     前記容器における前記リングボールミル機構よりも下方側に取り付けられ、前記内部の上方に向けてガスを送り込むガス送り込み機構と、
     前記容器に取り付けられ、前記孔を貫通し、前記ロアリングにおける前記複数個の粉砕ボールよりも軸側に外部のガスを流入されるための筒と、
     前記ロアリングの回転動作及び前記ガス送り込み機構のガス送り込み動作を制御する制御部と、
     を備え、
     前記制御部が前記回転動作及び前記ガス送り込み動作を制御することにより請求項1~11のいずれか1項に記載の無機材料の製造方法を実行する、
     無機材料製造装置。
PCT/JP2020/022962 2019-06-14 2020-06-11 無機材料の製造方法及び無機材料製造装置 WO2020250960A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP20822290.1A EP3984968B1 (en) 2019-06-14 2020-06-11 Method of producing inorganic material and apparatus of producing inorganic material
KR1020237040423A KR102626393B1 (ko) 2019-06-14 2020-06-11 무기재료의 분쇄방법 및 무기재료 분쇄장치
JP2021526125A JP7166454B2 (ja) 2019-06-14 2020-06-11 無機材料の製造方法及び無機材料製造装置
US17/617,049 US20220331813A1 (en) 2019-06-14 2020-06-11 Method of producing inorganic material and apparatus of producing inorganic material
CN202080041216.6A CN113939367B (zh) 2019-06-14 2020-06-11 无机材料的制造方法及无机材料制造装置
CN202310315685.8A CN116351518A (zh) 2019-06-14 2020-06-11 粉碎装置、无机材料的制造方法及粉碎方法
KR1020217039511A KR102610421B1 (ko) 2019-06-14 2020-06-11 무기재료의 제조방법 및 무기재료 제조장치
JP2022170548A JP2023017807A (ja) 2019-06-14 2022-10-25 粉砕装置、無機材料の製造方法、及び粉砕方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-110875 2019-06-14
JP2019110875 2019-06-14

Publications (1)

Publication Number Publication Date
WO2020250960A1 true WO2020250960A1 (ja) 2020-12-17

Family

ID=73781483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022962 WO2020250960A1 (ja) 2019-06-14 2020-06-11 無機材料の製造方法及び無機材料製造装置

Country Status (6)

Country Link
US (1) US20220331813A1 (ja)
EP (1) EP3984968B1 (ja)
JP (2) JP7166454B2 (ja)
KR (2) KR102626393B1 (ja)
CN (2) CN116351518A (ja)
WO (1) WO2020250960A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112934379A (zh) * 2021-01-28 2021-06-11 成都理工大学 一种锂碘电池正极材料制备装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230163595A (ko) * 2019-10-02 2023-11-30 후루카와 기카이 긴조쿠 가부시키가이샤 무기재료를 제조하는 장치 및 무기재료를 제조하는 방법
KR20230108580A (ko) 2022-01-11 2023-07-18 주식회사 엘지에너지솔루션 전기화학소자

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157149A (ja) * 1989-11-15 1991-07-05 Babcock Hitachi Kk 微粉炭機
JP2008004334A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法
JP2010040511A (ja) * 2008-07-07 2010-02-18 Toyota Motor Corp 硫化物系固体電解質の製造方法
JP2016027545A (ja) 2014-06-25 2016-02-18 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2019110875A (ja) 2017-12-26 2019-07-11 株式会社東洋新薬 組成物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB401115A (en) * 1931-11-16 1933-11-09 Babcock & Wilcox Ltd Improvements in pulverizing mills
GB468215A (en) * 1934-12-29 1937-06-30 Babcock & Wilcox Ltd Improvements in pulverisers
CH473610A (de) * 1966-12-23 1969-06-15 Automatica S A Rührwerk-Kugelmühle
AU663829B2 (en) * 1993-09-03 1995-10-19 Plant Management Consultants (Pty) Limited Method of and means for controlling a ball mill crusher
JP3706507B2 (ja) * 1999-07-19 2005-10-12 三菱重工業株式会社 石炭ミルのイナート化方法及び装置
JP2001239514A (ja) * 1999-12-20 2001-09-04 Matsushita Electric Works Ltd 無機質板の製造方法
JP4550486B2 (ja) * 2004-05-13 2010-09-22 バブコック日立株式会社 分級機およびそれを備えた竪型粉砕機、ならびにその竪型粉砕機を備えた石炭焚ボイラ装置
JP2010040190A (ja) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd 極材スラリーの製造方法
CN102324481A (zh) * 2011-09-23 2012-01-18 江苏华富储能新技术发展有限公司 锂离子电池用复合隔膜及其制备方法
JP6901295B2 (ja) * 2017-03-17 2021-07-14 古河機械金属株式会社 無機材料の製造方法
JP7039805B2 (ja) * 2017-10-03 2022-03-23 三菱重工業株式会社 固体燃料粉砕装置
CN109493993B (zh) * 2018-12-07 2020-11-27 浙江中希电子科技有限公司 一种用于晶硅太阳能电池正面电极的银浆料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03157149A (ja) * 1989-11-15 1991-07-05 Babcock Hitachi Kk 微粉炭機
JP2008004334A (ja) * 2006-06-21 2008-01-10 Idemitsu Kosan Co Ltd 硫化物系固体電解質の製造方法
JP2010040511A (ja) * 2008-07-07 2010-02-18 Toyota Motor Corp 硫化物系固体電解質の製造方法
JP2016027545A (ja) 2014-06-25 2016-02-18 国立大学法人東京工業大学 硫化物固体電解質材料、電池および硫化物固体電解質材料の製造方法
JP2019110875A (ja) 2017-12-26 2019-07-11 株式会社東洋新薬 組成物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112934379A (zh) * 2021-01-28 2021-06-11 成都理工大学 一种锂碘电池正极材料制备装置

Also Published As

Publication number Publication date
EP3984968A1 (en) 2022-04-20
US20220331813A1 (en) 2022-10-20
JPWO2020250960A1 (ja) 2020-12-17
JP2023017807A (ja) 2023-02-07
KR20230166144A (ko) 2023-12-06
EP3984968A4 (en) 2022-08-24
CN113939367A (zh) 2022-01-14
KR102610421B1 (ko) 2023-12-05
KR20220004176A (ko) 2022-01-11
KR102626393B1 (ko) 2024-01-17
CN113939367B (zh) 2023-04-04
JP7166454B2 (ja) 2022-11-07
EP3984968B1 (en) 2024-04-17
CN116351518A (zh) 2023-06-30

Similar Documents

Publication Publication Date Title
WO2020250960A1 (ja) 無機材料の製造方法及び無機材料製造装置
JP6269597B2 (ja) 正極活物質層、全固体リチウム電池および正極活物質層の製造方法
JP7194776B2 (ja) 無機材料の製造方法
JP6773456B2 (ja) 無機材料の製造方法
CN106207107A (zh) 复合活性物质粉体的制造装置及复合活性物质粉体的制造方法
JP2021184393A (ja) 固体電解質シートおよび全固体型リチウムイオン電池
JP2021108296A (ja) Li−P−O−N系無機固体電解質材料、Li−P−O−N系無機固体電解質材料の使用方法、固体電解質、固体電解質膜、リチウムイオン電池およびLi−P−O−N系無機固体電解質材料の製造方法
WO2020203046A1 (ja) 硫化物系無機固体電解質材料用の窒化リチウム組成物
JP7098392B2 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
KR102630765B1 (ko) 무기재료의 제조방법
JP6978887B2 (ja) 無機材料の製造方法
JP7221114B2 (ja) 無機材料の製造方法
JP7427754B2 (ja) 無機材料の製造方法
WO2022080255A1 (ja) 粉砕ボールからの無機材料の分離方法
WO2022080254A1 (ja) 無機材料の製造方法
WO2021210315A1 (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池
JP7086686B2 (ja) 硫化物系無機固体電解質材料の製造方法
JP2019186086A (ja) 硫化物系無機固体電解質材料、固体電解質、固体電解質膜およびリチウムイオン電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20822290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526125

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217039511

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020822290

Country of ref document: EP