WO2020250903A1 - 眼科装置 - Google Patents
眼科装置 Download PDFInfo
- Publication number
- WO2020250903A1 WO2020250903A1 PCT/JP2020/022740 JP2020022740W WO2020250903A1 WO 2020250903 A1 WO2020250903 A1 WO 2020250903A1 JP 2020022740 W JP2020022740 W JP 2020022740W WO 2020250903 A1 WO2020250903 A1 WO 2020250903A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- eye
- inspection
- housing
- subject
- face
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/16—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
Definitions
- This disclosure relates to an ophthalmic device for performing an examination of the eye to be inspected.
- ophthalmic devices are used to inspect the eye to be inspected.
- ophthalmic devices include an intraocular pressure measuring device, an optical power measuring device, a corneal curvature measuring device, a fundus camera, an OCT device, a scanning laser ophthalmoscope (SLO), and the like.
- an ophthalmic apparatus there is known an apparatus in which a face photographing unit captures a subject's face and aligns the examination unit with respect to the subject's eye (examined eye) based on the captured image. ..
- the imaging optical axis of the face imaging unit is arranged at a position shifted to the left or right of the inspection axis of the inspection unit.
- the ophthalmic apparatus aligns the examination axis of the examination unit with the eye to be inspected by moving the relative position between the examination unit and the eye to be inspected based on the image taken by the facial imaging unit.
- the moving distance from the position where the face imaging unit is imaged to the position where the examination axis coincides with the first eye to be inspected first (hereinafter, The longer (simply referred to as the "movement distance"), the more likely it is that the position of the eye to be examined will change during movement and alignment will not be performed properly. In addition, the longer the moving distance, the more difficult it is to shorten the inspection time.
- the moving distance by setting the amount of lateral deviation of the facial imaging part with respect to the inspection axis based on the average value D of the interpupillary distances of the subject group to be inspected.
- the first eye to be examined is photographed with the face photographing portion positioned at a position extending straight forward from the center of the left eye and the right eye of the subject.
- the amount of deviation of the facial imaging portion in the left-right direction with respect to the examination axis is half of the average value D of the interpupillary distance, the moving distance for aligning the examination axis with the first eye to be inspected becomes short. There are many.
- the position of the facial imaging section in the ophthalmic apparatus may be limited by various circumstances.
- some ophthalmic devices need to be provided with an examination protrusion (for example, a nozzle for injecting compressed air into the eye to be inspected) protruding from the housing toward the subject.
- an examination protrusion for example, a nozzle for injecting compressed air into the eye to be inspected
- the closer the position of the face photographing portion is to the inspection axis passing through the protruding portion the larger the proportion of the protruding portion reflected in the photographing range of the face photographing portion.
- the proportion of the protruding portion reflected in the imaging range is too large, it becomes difficult to detect the position of the eye to be inspected based on the captured image.
- the face photographing portion is arranged at a position where the protruding portion is not reflected in the photographing range, it becomes difficult to shorten the moving distance described above.
- a typical object of the present disclosure is an ophthalmic apparatus capable of appropriately aligning an examination axis with an eye to be examined based on an image taken by the subject even when the protrusion for examination is projected toward the subject. Is to provide.
- the ophthalmic apparatus provided by the typical embodiment in the present disclosure is an ophthalmic apparatus that examines the eye in a state where the examination axis is aligned with the eye of the subject, and the housing and the face of the subject.
- a moving portion that moves the relative position of the housing with respect to the housing, an inspection projecting portion that projects from the subject facing surface of the housing toward the subject along the inspection axis, and the housing.
- a face photographing unit and a control unit arranged at a position shifted to the left or right from the inspection axis of the inspection protruding portion on the surface facing the subject are provided, and the imaging range of the face photographing unit is provided.
- At least a part of the inspection protrusion is included, and the direction in which the face photographing portion is deviated from the inspection axis in the left-right direction of the housing is defined as the first direction and the first direction.
- the opposite direction is set as the second direction
- the eye located on the second direction side of the subject's left eye and right eye when viewed from the housing is placed before the other eye.
- the control unit is located at an initial position where the position of the face photographing unit in the left-right direction is between the left eye and the right eye of the subject, and the relative position of the housing.
- the driving of the moving unit is controlled based on the face photographing step in which the photographing range including at least the first inspection eye is photographed by the face photographing unit and the image captured in the face photographing step in the state of moving.
- the first movement step of moving the relative position of the housing at the initial position to the first position where the inspection axis coincides with the first inspection eye, and the end of the inspection of the first inspection eye.
- the examination axis is appropriately aligned with the subject's eye based on the photographed image of the subject.
- the ophthalmic apparatus illustrated in the present disclosure examines the eye in a state where the examination axis is aligned with the eye of the subject.
- the ophthalmic apparatus includes a housing, a moving portion, an examination protrusion, a facial imaging portion, and a control portion.
- the moving unit moves the relative position of the housing with respect to the subject's face.
- the inspection protrusion protrudes from the subject facing surface of the housing toward the subject side along the inspection axis.
- the face photographing portion is arranged at a position shifted to the left or right from the inspection axis of the inspection protrusion on the subject-side facing surface of the housing.
- the imaging range of the face imaging section includes at least a part of the protruding portion for inspection.
- the direction in which the face photographing portion is displaced with respect to the inspection axis is defined as the first direction
- the direction opposite to the first direction is defined as the second direction.
- the eye located on the second direction side when viewed from the housing is referred to as the first examination eye for which the examination is performed before the other eye.
- the eye opposite to the first examination eye is defined as the second examination eye.
- the control unit executes the face shooting step, the first movement step, and the second automatic step.
- the control unit photographs the imaging range including at least the first examination eye by the face photographing unit in a state where the relative position of the housing with respect to the face of the subject is moved to the initial position. In the initial position, the position of the facial imaging portion in the left-right direction is between the left eye and the right eye of the subject.
- the control unit controls the driving of the moving unit based on the image taken in the face photographing step, so that the relative position of the housing at the initial position is set to the first inspection eye by the inspection axis. Move to the matching first position.
- the control unit moves the relative position of the housing at the first position to the second position where the inspection axis approaches the second inspection eye after the first inspection eye is completed.
- the facial imaging unit is used to detect the position of the subject's eyes. Therefore, it is considered that the position of the face photographing portion with respect to the inspection protruding portion (inspection axis) is usually set so that the examination protruding portion is not included in the photographing range of the face photographing portion.
- the position of the facial imaging unit is set so that at least a part of the examination protrusion is intentionally included in the imaging range of the facial imaging unit. Therefore, the face photographing portion is installed at a position closer to the inspection axis than when the position of the face photographing portion is set so that the protruding portion for inspection is excluded from the photographing range of the face photographing portion (this effect).
- the inspection axis is such that at least the first inspection eye is included in the imaging range of the facial imaging section (that is, the first inspection eye is not shielded by the inspection protrusion).
- the positional relationship of the face photographing unit is set. Therefore, by moving the housing to the initial position, the ophthalmic apparatus can appropriately take an image including the first examination eye of the subject by the face photographing unit installed at a position as close as possible to the examination axis. it can.
- the control unit moves the relative position of the housing at the initial position to the first position to align the inspection axis with the first inspection eye.
- the first inspection eye and the inspection axis are both located in the second direction (left or right) when viewed from the facial imaging unit.
- the position of the facial imaging portion is separated from the inspection axis to the extent that the first inspection eye is not shielded by the inspection protrusion, a part of the inspection protrusion is included in the imaging range. Is close to the inspection axis. Therefore, the moving distance from the initial position to the first position tends to be short.
- the relative position of the housing is moved from the first position to the second position, and the examination axis is brought closer to the second eye to be inspected. Therefore, even when the protruding portion for examination protrudes toward the subject, the examination axis is appropriately aligned with the eye to be examined based on the photographed image of the subject.
- the moving portion may move the relative position of the housing with respect to the face of the subject by moving the housing provided with the protruding portion for inspection and the face photographing portion. Further, the moving portion may move the relative position by moving the face of the subject (for example, the face supporting portion that supports the face of the subject). Further, the moving portion may move the relative position by moving both the housing and the face of the subject.
- the face photographing unit may be one camera or may include a plurality of cameras.
- the imaging areas of each camera are overlapped, and by including the eye to be inspected (at least the first eye to be inspected) in the overlapped area, the two-dimensional direction (XY direction) intersecting the optical axis of photography. ), The position of the eye to be inspected in the direction along the imaging optical axis (Z direction) may be detected.
- the control unit may capture the imaging range including both the first eye and the second eye (that is, the left eye and the right eye) of the subject by the face imaging unit.
- the control unit may move the relative position of the housing to the second position based on the position of the second eye to be inspected detected from the image taken in the face photographing step.
- the ophthalmic apparatus can more accurately align the examination axis with each of the left eye and the right eye as compared with the case where only the position of the first eye to be inspected is detected from the image.
- the shooting range of the face shooting step does not have to include the second eye to be examined.
- the relative position may be moved in the second movement step without using the detection result of the position of the second eye to be inspected.
- the relative position of the housing may be moved in the left-right direction based on the average value D of the interpupillary distances of the subject group to be inspected. Even in this case, by applying the above-mentioned technique, the moving distance of the relative position from the initial position to the first position can be appropriately reduced.
- the direction in which the inspection axis extends can be selected as appropriate.
- an ophthalmologic device may be placed in front of the subject's eyes while the subject is seated in a chair.
- the inspection axis may extend horizontally.
- the ophthalmologic device may be placed above the subject's face with the subject lying on his back. In this case, the inspection axis may extend in the vertical direction.
- the distance in the left-right direction between the inspection axis and the center of the objective lens of the facial imaging part is larger than D / 2. May be good.
- D the distance between the examination axis and the face imaging section in the left-right direction
- the position of the face imaging section in the left-right direction is set as the center between the left eye and the right eye of the subject.
- the moving distance in the left-right direction from the initial position to the first position is 0.
- the average value D of the interpupillary distance is set to 67 mm.
- the average value D of the interpupillary distance can be appropriately set according to the subject group to be examined. For example, there is data that the average value of the interpupillary distance of a Japanese adult male is about 64 mm. Based on this data, the average value D of the interpupillary distance may be set to 64 mm. In addition, the average value D of the interpupillary distance may be appropriately set according to the race, nationality, age, gender, etc. of the subject group to be examined.
- the initial position of the housing may be a position where the position of the face photographing portion in the left-right direction is shifted to the first direction side from the center of the left eye and the right eye of the subject.
- the positions of the face photographing portion in the left-right direction are arranged at the center of the left eye and the right eye of the subject. It is considered normal to take a picture.
- the moving distance from the initial position to the first position can be further shortened.
- the initial position of the housing may be a position where the position of the face photographing portion in the left-right direction coincides with the centers of the left eye and the right eye of the subject.
- the initial position of the housing is the face of the subject rather than the position of the housing (hereinafter referred to as the "examination position") when performing an eye examination using the examination protrusion in the direction along the examination axis. It may be separated from.
- the range of photographing the face of the subject by the face photographing unit is wider than in the case where the initial position of the housing and the inspection position in the direction along the inspection axis are the same. Further, it is less likely that the protrusion for inspection or the like comes into contact with the subject when the face is photographed. Therefore, the position of the subject's eyes can be detected more appropriately.
- the control unit may further execute the first approach step, the first separation step, and the second approach step.
- the control unit brings the housing closer to the first eye to be inspected after the execution of the first movement step and before the examination of the first eye to be inspected.
- the control unit moves the housing away from the first inspection eye after the inspection of the first inspection eye by the inspection protrusion is completed and before the execution of the second movement step.
- the control unit brings the housing closer to the second inspection eye after executing the second movement step.
- the imaging of the left eye and the right eye by the facial imaging unit, the examination of the first examination eye and the second examination eye, and the movement of the examination axis from the first examination eye to the second examination eye are performed in a series of operations. It runs smoothly.
- the face photographing portion may be arranged at a position shifted above the head of the subject from the inspection axis of the inspection protrusion on the surface facing the subject in the housing.
- the subject's left eye is even when the height of the examination axis is close to the height of the subject's eyes.
- the right eye is properly imaged from diagonally above the examination protrusion. That is, when performing imaging with the facial imaging section, the facial left eye and right eye are inspected as compared to the case where the examination protrusion, the facial imaging section, the left eye, and the right eye are all at the same height. It is difficult to be shielded by the protruding part. Therefore, the ophthalmic apparatus can more appropriately detect the positions of the left eye and the right eye while suppressing the amount of movement of the housing in the left-right direction.
- the tangent line T is a straight line that passes through the center of the objective lens of the facial imaging section, is in contact with the inspection protrusion, and intersects the inspection axis.
- a straight line that passes through the center of the objective lens and extends parallel to the inspection axis is defined as a straight line SO.
- the angle formed by the tangent line T and the straight line SO may be 40 degrees or more. In this case, it is possible to prevent the proportion of the inspection protrusions reflected in the photographing range of the face photographing portion from becoming too large. Therefore, both the left eye and the right eye are appropriately photographed by the face photographing unit.
- FIG. 1 It is a left side view which shows the schematic structure of the ophthalmic apparatus 1. It is a block diagram which shows the electrical structure of an ophthalmic apparatus 1. It is a top view which shows the positional relationship of the housing 3 with respect to the face of a subject when the housing 3 is in an initial position. It is a top view which shows the positional relationship of the housing 3 with respect to the face of a subject when the housing 3 is in the 1st position. It is a figure which shows an example of the image photographed by the face photographing unit 20 in the state shown in FIG. It is a flowchart which shows an example of the full-auto examination process executed by the ophthalmic apparatus 1.
- FIG. 5 is a plan view showing the positional relationship of the housing 3 with respect to the face of the subject when the housing 3 is in the examination position of the first eye to be inspected.
- FIG. 5 is a plan view showing the positional relationship of the housing 3 with respect to the face of the subject when the housing 3 is in the second position.
- the ophthalmic apparatus 1 inspects the eye E to be inspected in a state where the examination axis IO is aligned with the eye (eye to be inspected) E of the subject.
- the ophthalmic apparatus 1 illustrated in the present embodiment includes an inspection protrusion (nozzle in this embodiment) 10 that protrudes toward the subject along the inspection axis IO, and the cornea of the eye E to be inspected from the inspection protrusion 10.
- the intraocular pressure of the eye E to be inspected is measured from the deformed shape of the cornea by spraying a fluid on the cornea.
- the ophthalmologic device 1 illustrated in this embodiment is a non-contact type intraocular pressure measuring device.
- the ophthalmic device to which the technique exemplified in the present disclosure can be applied is not limited to the intraocular pressure measuring device. That is, it is provided with various ophthalmologic devices having an examination protrusion (for example, an ophthalmologic imaging device having an attachment for widening the angle of view as an examination protrusion, and an examination protrusion that emits light for examination). At least a part of the techniques exemplified in the present disclosure can be applied to ophthalmic devices, etc.).
- Examples of ophthalmic devices to which the techniques exemplified in the present disclosure can be applied include an optical power measuring device, a corneal curvature measuring device, a fundus camera, an OCT device, a scanning laser ophthalmoscope (SLO), and the like.
- the "examination" in the present disclosure includes both measurement and imaging of the eye E to be inspected.
- the horizontal direction of the paper surface in FIG. 1 is the Z direction (front-back direction), the vertical direction of the paper surface is the Y direction (vertical direction), and the depth direction of the paper surface is the X direction (horizontal direction).
- the left side of the paper (subject side) in FIG. 1 is the front side of the ophthalmic apparatus 1
- the right side of the paper is the rear side of the ophthalmic apparatus 1.
- the upper side of the paper surface in FIG. 1 is the upper side of the ophthalmic apparatus 1
- the lower side of the paper surface is the lower side of the ophthalmic apparatus 1.
- the front side of the paper in FIG. 1 is the left side of the ophthalmic apparatus 1, and the back side of the paper is the right side of the ophthalmic apparatus 1.
- the ophthalmic apparatus 1 of the present embodiment includes a base 2, a housing 3, a moving portion 4, and a face support portion 5.
- the base 2 is placed at the installation site and supports the entire ophthalmic apparatus 1.
- the housing 3 includes various configurations for performing the examination of the eye E to be inspected (details will be described later).
- the housing 3 is supported by the base 2 via the moving portion 4.
- the face support portion 5 supports and positions the face of the subject.
- a chin rest and a forehead pad are used as the face support portion 5.
- the face is positioned by the subject placing his chin on the chin rest and placing his forehead on the forehead.
- the moving portion 4 moves the relative position of the housing 3 with respect to the face of the subject positioned by the face supporting portion 5.
- the moving unit 4 of the present embodiment is inspected by moving the housing 3 in the front-rear direction, the up-down direction, and the left-right direction (three-dimensional direction) with respect to the base 2 by an actuator such as a motor.
- the relative position of the housing 3 with respect to the person's face is moved.
- the moving portion may move the relative position of the housing 3 with respect to the face of the subject by moving the face supporting portion 5.
- the housing 3 and the face supporting portion 5 may be moved together.
- the moving portion may move the housing 3 in the front-rear direction and the left-right direction, and move the face support portion 5 in the vertical direction to move the relative position of the housing 3 with respect to the face of the subject. Good.
- the housing 3 includes an inspection protrusion 10, a face photographing unit 20, a display unit 7, and an operation unit 8.
- the inspection protrusion 10 is inspected along the inspection axis IO from the subject facing surface 3A, which is the surface of the housing 3 on which the subject's face is positioned (front side in this embodiment). It protrudes to the person side.
- the examination axis IO is aligned with the eye E to be inspected when performing the examination.
- the inspection protrusion 10 of the present embodiment is a nozzle that blows a fluid (for example, compressed air) onto the cornea of the eye E to be inspected.
- a fluid for example, compressed air
- the specific configuration of the examination protrusion can be appropriately selected according to the type of examination performed by the ophthalmologic apparatus and the like.
- an attachment detachably attached to the housing 3 for switching the shooting angle of view, a protruding portion that emits light or ultrasonic waves for inspection from the tip to the eye E to be inspected, and the like are used as the protruding portion for inspection. You may.
- the face photographing unit 20 is arranged at a position shifted to the left or right from the inspection axis IO of the inspection protrusion 10 on the subject facing surface 3A of the housing 3 (details will be described later). Further, as shown in FIG. 1, the face photographing unit 20 of the present embodiment is located above the subject's head above the inspection axis IO of the inspection protrusion 10 in the subject facing surface 3A in the housing 3. In this embodiment, it is arranged at a position shifted upward). This effect will be described later.
- the display unit 7 displays various images.
- the display unit 7 is arranged on the rear side of the housing 3 facing the examiner.
- Various operation instructions by the user are input to the operation unit 8.
- a touch panel installed on the display surface of the display unit 7 is used as the operation unit 8.
- at least one of a joystick, a mouse, a keyboard, a drag ball, a button, a remote controller, and the like may be used as the operation unit 8.
- An inspection unit 40 (see FIG. 2) for inspecting the eye E to be inspected is also built in the housing 3.
- the ophthalmic apparatus 1 includes a control unit 30.
- the control unit 30 includes a CPU (controller) 31, a RAM 32, a ROM 33, and a non-volatile memory (NVM) 34.
- the CPU 31 controls various controls of the ophthalmic apparatus 1.
- the RAM 32 temporarily stores various types of information. Various programs, initial values, and the like are stored in the ROM 33.
- the non-volatile memory 34 is a non-transient storage medium capable of retaining the stored contents even when the power supply is cut off.
- a hard disk drive a flash ROM, a detachable USB memory, or the like may be used as the non-volatile memory 34.
- an inspection processing program or the like for executing a fully automatic inspection processing (see FIG. 6) described later is stored in the non-volatile memory 34.
- the control unit 30 is connected to the above-mentioned moving unit 4, display unit 7, operation unit 8, and face photographing unit 10. Further, the control unit 30 is connected to an inspection unit 40 for inspecting the eye E to be inspected.
- the ophthalmic apparatus 1 illustrated in the present embodiment measures the intraocular pressure of the eye E to be inspected from the deformed shape of the cornea by spraying a fluid on the cornea of the eye E to be inspected. Therefore, the inspection unit 40 includes a configuration for injecting a fluid into the cornea and a configuration for detecting the deformed shape of the cornea.
- the inspection unit 40 of the present embodiment includes a fluid injection unit 41, a pressure sensor 42, an alignment light source 43, an alignment imaging unit 44, a deformation detection light source 45, and a deformation detection light receiving element 46.
- the fluid injection unit 41 compresses the air in the cylinder by an actuator such as a solenoid to inject air from the tip of the inspection protrusion 10 along the inspection shaft IO.
- the pressure sensor 42 detects the pressure of the gas in the cylinder.
- the alignment light source 43 emits light (infrared light in this embodiment) for aligning the inspection axis IO with respect to the eye E to be inspected.
- the alignment light source 43 may be used as an illumination light source when the face photographing unit 20 takes a picture.
- the photographing optical axis of the alignment photographing unit 44 coincides with the inspection axis IO.
- the CPU 31 executes the alignment of the inspection axis IO with respect to the eye E to be inspected based on the image taken by the alignment photographing unit 44.
- the deformation detection light source 45 projects a substantially parallel light beam onto the cornea of the eye E to be inspected along an optical axis inclined with respect to the inspection axis IO.
- the deformation detection light receiving element 46 is arranged so that the amount of light received is maximized when the cornea is flattened.
- the configuration of the conventional ophthalmic apparatus can be used for the configuration of the examination unit 40, the description of the arrangement of the configuration of the examination unit 40 and the like will be omitted (see, for example, Japanese Patent Application Laid-Open No. 2002-17683). Needless to say, the configuration of the examination unit 40 may be changed according to the content of the examination performed by the ophthalmic apparatus.
- FIG. 3 shows the subject's position when the relative position of the housing 3 with respect to the face positioned by the face support portion 5 (hereinafter, may be simply referred to as “the position of the housing 3”) is in the initial position. It is a top view which shows the positional relationship between a face and a housing 3.
- the initial position is the housing 3 when the face of the subject (including both the left eye EL and the right eye ER in this embodiment) positioned by the face support portion 5 is photographed by the face photographing unit 20.
- the interpupillary distance (distance between the center of the pupil of the left eye EL and the center of the pupil of the right eye ER) shown in FIGS. 3, 4, 7, and 8 is inspected by the ophthalmic apparatus 1. It matches the average value D of the interpupillary distances of the target subject group.
- the average value D of the interpupillary distance may be appropriately set according to the subject group. As an example, in the present embodiment, the average value D of the interpupillary distance is set to 67 mm.
- the ophthalmic apparatus 1 captures both the left eye EL and the right eye ER of the subject in one imaging operation, and appropriately detects the positions of the left eye EL and the right eye ER based on the captured images. , The inspection time can be shortened. Therefore, as shown in FIG. 3, the ophthalmic apparatus 1 performs imaging in a state where the position of the face imaging unit 20 in the left-right direction is aligned between the left eye EL and the right eye ER of the subject. After that, the ophthalmic apparatus 1 detects the respective positions of the left eye EL and the right eye ER (specifically, the positions of the respective pupils) based on the captured image.
- the ophthalmic apparatus 1 controls the drive of the moving unit 4 based on the detection result, so that the eye to be examined first among the left eye EL and the right eye ER of the subject (hereinafter, “first examination eye”). ”),
- the inspection axis IO of the inspection protrusion 10 is matched.
- the relative position of the housing 3 with respect to the face of the subject when the inspection axis IO coincides with the first inspection eye is referred to as the first position.
- FIG. 4 is a plan view showing the positional relationship between the face of the subject and the housing 3 when the position of the housing 3 is in the first position.
- the inspection projecting portion 10 projects from the subject facing surface 3A of the housing 3 toward the subject side (front) along the inspection axis IO. It is mechanically difficult to arrange the face imaging unit 20 for simultaneously photographing the left eye EL and the right eye ER at the same position as the inspection protrusion 10. Further, when the positions of the face imaging unit 20 and the examination protrusion 10 in the left-right direction are matched (for example, when the face imaging unit 20 is arranged vertically above the examination protrusion 10), the ophthalmologic apparatus 1 is subjected to the face imaging unit 1. After performing the imaging with 20, it is necessary to move the housing 3 significantly to the left or right in order to align the inspection axis IO with one eye.
- the face photographing unit 20 of the present embodiment is arranged at a position of the subject facing surface 3A that is offset to the left or right from the inspection axis IO of the inspection protruding portion 10.
- the face photographing unit 20 is arranged at a position shifted to the right from the inspection axis IO.
- the face photographing unit 20 may be arranged at a position shifted to the left from the inspection axis IO.
- the direction in which the face photographing unit 20 is displaced with respect to the inspection axis IO (right direction in the present embodiment) is defined as the first direction.
- the direction opposite to the first direction (left direction in this embodiment) is defined as the second direction.
- the ophthalmic apparatus 1 is an eye located on the second direction side of the subject's left eye EL and right eye ER when viewed from the housing 3 (in the present embodiment, the right eye located on the left side when viewed from the housing 3).
- the eye ER is defined as the first eye to be examined before the other eye.
- the eye opposite to the first inspection eye (left eye EL in this embodiment) is referred to as the second inspection eye to be inspected after the examination of the first inspection eye.
- both the first inspection eye and the inspection axis IO are located in the second direction (left in the present embodiment). Therefore, by setting the eye located on the second direction side as the first inspection eye, the first position (see FIG. 4) to the first position (see FIG. 4) is compared with the case where the other eye is the first inspection eye. The amount of movement of the housing 3 in the left-right direction up to) is reduced.
- the initial position is changed. It is also conceivable to further reduce the amount of movement to one position. That is, if the distance L is D / 2, the ophthalmologic apparatus 1 is located at a position extending straight forward from the center C of the left eye EL and the right eye ER when examining a subject having an interpupillary distance D. After taking a picture by the face photographing unit 20, the examination of the first inspection eye can be performed without moving the housing 3 in the left-right direction. However, in the ophthalmic apparatus 1 provided with the examination protrusion 10, the distance L cannot often be set to D / 2. An example of the reason will be described below.
- the inspection intraocular pressure measurement
- the face photographing unit 20 hits the subject's face (for example, nose). Therefore, the end portion of the face photographing unit 20 on the subject side needs to be arranged on the side (rear) farther from the subject's face than the tip end portion of the inspection protrusion 10.
- the inspection protrusion 10 may be reflected in the imaging range of the face imaging unit 20.
- the distance L shown in FIG. 3 is D / 2 or less, at least one of the subject's left eye EL and right eye ER (right eye ER in the present embodiment) is within the imaging range of the face imaging unit 20.
- the position of the face photographing unit 20 with respect to the examination axis IO is set so that the distance L is larger than D / 2. As a result, it is suppressed that the eye is shielded by the examination protrusion 10.
- the installation position of the face imaging unit 20 with respect to the examination axis IO is set so that the examination protrusion 10 is not reflected in the imaging range of the face imaging unit 20 at all. It is believed that it is normal to try. If the distance L in the left-right direction between the center P of the objective lens 22 of the face imaging unit 20 and the inspection axis IO of the inspection protrusion 10 is made very large, the inspection protrusion 10 falls within the imaging range of the face imaging unit 20. Is not reflected.
- the ophthalmic apparatus 1 needs to perform imaging in a state where the position of the face photographing unit 20 in the left-right direction is aligned between the left eye EL and the right eye ER of the subject. Therefore, as the distance L shown in FIG. 3 is increased, the moving distance of the housing 3 from the initial position (see FIG. 3) to the first position (see FIG. 4) becomes longer.
- the ophthalmic apparatus 1 of the present embodiment as shown in FIG. 5, at least a part (for example, the tip portion) of the examination protrusion 10 is intentionally included in the imaging range 21 of the face imaging unit 20.
- the position of the face photographing unit 20 with respect to the inspection axis IO is set. Therefore, the face imaging unit 20 is closer to the inspection axis IO than when the position of the face imaging unit 20 is set so that the inspection protrusion 10 is excluded from the imaging range 21 of the face imaging unit 20. Is installed. Therefore, the moving distance of the housing 3 from the initial position (see FIG. 3) to the first position (see FIG. 4) is likely to be reduced.
- the ophthalmic apparatus 1 of the present embodiment can appropriately detect the position of the eye to be inspected (both eyes in the present embodiment) while reducing the moving distance of the housing 3 from the initial position to the first position. ..
- the face photographing unit 20 is arranged at a position shifted above the head of the subject from the inspection axis IO of the inspection protrusion 10 on the subject facing surface 3A in the housing 3. (See Fig. 1). Therefore, in order to reduce the amount of movement of the housing 3 in the vertical direction with respect to the subject, when the height of the inspection axis IO at the initial position (see FIG. 3) is brought close to the height of the eye E, The eye to be inspected (both the left eye EL and the right eye ER in this embodiment) is appropriately photographed from diagonally above the examination protrusion 10 (see FIG. 5).
- the eye when performing imaging by the face photographing unit 20, the eye is inspected as compared with the case where the examination protrusion 10, the face photographing unit 20, the left eye EL, and the right eye ER are all at the same height. It is difficult to be shielded by the protrusion 10.
- T be.
- a straight line passing through the center P of the objective lens 22 and extending parallel to the inspection axis IO is defined as a straight line SO.
- the angle ⁇ formed by the tangent line T and the straight line SO is set to 40 degrees or more (for example, 46 degrees in the present embodiment). As a result, it is suppressed that the ratio of the inspection protruding portion 10 reflected in the photographing range 21 of the face photographing portion 20 becomes too large.
- the shooting angle of view of the face shooting unit 20 is set to 100 degrees or more in both the vertical direction and the horizontal direction. Therefore, both the left eye EL and the right eye ER of the subject are appropriately photographed in one imaging operation.
- the initial position of the housing 3 in the present embodiment will be further described with reference to FIG.
- the position of the face photographing unit 20 (specifically, the center P of the objective lens 22) in the left-right direction is the face supporting portion 5 (FIG. 1).
- the subject's left eye EL and right eye ER positioned by (see) are shifted to the first direction side (right side in this embodiment) with respect to the center C.
- both the left eye EL and the right eye ER are detected by using the face photographing unit 20 as in the present embodiment, it is usual to arrange the position of the face photographing unit 20 in the left-right direction at the center C for shooting. Is considered to be.
- the position of the face photographing unit 20 at the initial position is intentionally shifted to the second direction side from the center C, so that the position from the initial position (see FIG. 3) to the first position (see FIG. 4) is reached.
- the travel distance has been further shortened.
- the face photographing unit 20 is arranged so that the photographing optical axis of the face photographing unit 20 is parallel to the inspection axis IO. That is, the photographing optical axis of the face photographing unit 20 in the present embodiment coincides with the straight line SO described above.
- the position of the face photographing unit 20 in the left-right direction when the housing 3 is in the initial position is closer to the first direction side than the center C of the left eye EL and the right eye ER. It shifts.
- the face photographing unit 20 may be arranged so that the photographing optical axis extending toward the subject side is tilted toward the second direction side. Further, in the present embodiment, when the height of the inspection axis IO at the initial position (see FIG. 3) is brought close to the height of the eye E, the position of the face photographing unit 20 is higher than that of the eye E. Therefore, the face photographing unit 20 may be arranged so that the photographing optical axis extending toward the subject side is tilted downward. In these cases, the left eye EL and the right eye ER are likely to fit within the imaging range in a well-balanced manner.
- the ophthalmic apparatus 1 has a fully automatic mode in which an examination of both eyes is automatically executed based on an image captured by the face photographing unit 20, and an examiner manually executes a rough alignment of the examination axis IO with respect to the eye E to be inspected. Switch the manual mode according to the instructions entered by the examiner.
- the CPU 31 of the ophthalmic apparatus 1 executes the full-auto inspection process illustrated in FIG. 6 according to the program stored in the non-volatile memory 34.
- the CPU 31 moves the relative position of the housing 3 to the initial position (see FIG. 3) by controlling the drive of the moving unit 4 (S1). It will be in a standby state until the inspection start instruction is input by the examiner (S2: NO).
- the examiner operates the operation unit 8 and inputs an inspection start instruction (S2: YES)
- the CPU 31 executes the face photographing process (S3).
- the face imaging process the CPU 31 covers the imaging range including at least the first eye to be inspected (both the left eye EL and the right eye ER in this embodiment) with the housing 3 in the initial position (see FIG. 3).
- the image is taken by the photographing unit 20. As a result, the image illustrated in FIG. 5 is taken.
- the CPU 31 executes the eye position detection process (S4).
- the eye position detection process the CPU 31 determines at least the first eye to be inspected (in the present embodiment, the left eye EL and the right eye) of the subject positioned by the face support portion 5 based on the image taken in the face photographing process. Detect the position of each) of the ER.
- the CPU 31 acquires the positions of the left eye EL and the right eye ER by inputting the image taken in S3 into the mathematical model trained by the machine learning algorithm.
- the mathematical model a large number of trainings use image data including the left eye EL and right eye ER in the imaging range as input training data, and data indicating the positions of the left eye EL and right eye ER as output training data.
- the program for realizing the mathematical model is stored in the non-volatile memory 34 in advance.
- the mathematical model outputs information indicating the positions of the left eye EL and the right eye ER.
- the accuracy of eye position detection based on captured images is improved.
- the CPU 31 may perform known image processing on the captured image and detect the position of the eye based on the processing result.
- the CPU 31 executes the first movement process (S5).
- the CPU 31 controls the drive of the moving unit 4 based on the detection result of the position of the first eye to be inspected (right eye ER in this embodiment) by the eye position detection process, thereby controlling the initial position (FIG.
- the relative position of the housing 3 in (see 3) is moved to the first position (see FIG. 4).
- the examination axis IO coincides with the first eye to be inspected (right eye ER in this embodiment).
- the ophthalmic apparatus 1 of the present embodiment reduces the moving distance of the housing 3 from the initial position (see FIG. 3) to the first position (see FIG. 4) in the left-right direction. There is.
- the CPU 31 executes the first approach process (S6).
- the CPU 31 brings the housing 3 closer to the first eye to be inspected after the execution of the first movement process (S5) and before the examination of the first eye to be inspected.
- the distance B1 between the housing 3 and the eye EL and ER to be inspected which were separated in FIGS. 3 and 4, approaches the distance B2 as shown in FIG.
- the CPU 31 controls the drive of the inspection unit 40 (see FIG. 2) to execute the inspection of the first eye to be inspected (S7).
- the initial position of the housing 3 is the inspection of the eye E to be inspected using the inspection protrusion 10 in the direction along the inspection axis IO (the front-back direction in the present embodiment). It is farther from the subject's face than the position of the housing 3 (see FIG. 7) when the above is executed. Therefore, the range of photographing the face of the subject by the face photographing unit 20 is wider than that in the case where the initial position of the housing 3 and the inspection position in the direction along the inspection axis IO are the same. Further, when the face photographing unit 20 takes a picture, the possibility that the inspection protrusion 10 or the like comes into contact with the subject is reduced.
- the CPU 31 executes the first approach process (S6), the CPU 31 uses the alignment light source 43 and the alignment imaging unit 44 (see FIG. 2) to strictly align the inspection axis IO with respect to the first eye to be inspected. To execute. As a result, the accuracy of the inspection is further improved.
- the CPU 31 executes the first separation process (S8).
- the CPU 31 moves the housing 3 from the inspection position (see FIG. 7) to the first position (see FIG. 4) by controlling the drive of the moving unit 4.
- the housing 3 moves away from the first eye to be inspected.
- the CPU 31 executes the second movement process (S9).
- the CPU 31 controls the drive of the moving unit 4 based on the detection result of the position of the second eye to be inspected (left eye EL in the present embodiment) by the eye position detection process (S4).
- the housing 3 at the 1st position (see FIG. 4) is moved to the 2nd position (see FIG. 8).
- the examination axis IO coincides with the second eye to be inspected (right eye EL in this embodiment).
- the CPU 31 executes the second approach process (S10), the second eye examination process (S11), and the second separation process (S12) in this order.
- the CPU 31 brings the housing 3 closer to the first eye to be inspected, thereby bringing the examination protrusion 10 closer to the second eye to be inspected.
- the CPU 31 executes the same alignment as in S6 when executing the second approach process (S10).
- the CPU 31 executes the test of the second eye test.
- the CPU 31 controls the drive of the moving unit 4 to move the housing 3 away from the second eye to be inspected. After that, the process returns to S1, and the housing 3 is returned to the initial position (see FIG. 3).
- the second separation process (S12) is executed, the housing 3 is returned to the initial position, so that the inspection protrusion 10 is less likely to come into contact with the subject.
- the disclosed technology of the above embodiment is only an example. Therefore, it is possible to modify the techniques exemplified in the above embodiments. For example, only some of the plurality of techniques exemplified in the above embodiments may be adopted.
- the ophthalmic apparatus 1 may perform imaging of the subject's face with the face imaging unit 20 aligned in the left-right direction with the center C of the left eye EL and the right eye ER. Even in this case, by adopting at least one of the techniques exemplified in the above embodiment, the amount of movement of the housing 3 from the initial position to the first position is reduced.
- the face shooting process shown in S3 of FIG. 6 is an example of the “face shooting step”.
- the eye position detection process shown in S4 of FIG. 6 is an example of the “eye position detection step”.
- the first movement process shown in S5 of FIG. 6 is an example of the “first movement step”.
- the second movement process shown in S9 of FIG. 6 is an example of the “second movement step”.
- the first approach process shown in S6 of FIG. 6 is an example of the “first approach step”.
- the first separation process shown in S8 of FIG. 6 is an example of the “first separation step”.
- the second approach process shown in S10 of FIG. 6 is an example of the “second approach step”.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Eye Examination Apparatus (AREA)
Abstract
眼科装置は、筐体、移動部、検査用突出部、顔撮影部、および制御部を備える。移動部は、被検者の顔に対する筐体の相対位置を移動させる。検査用突出部は、筐体の被検者対向面から、検査軸に沿って被検者側に突出する。顔撮影部は、被検者対向面のうち、検査軸から左右のいずれかにずれた位置に配置される。顔撮影部の撮影範囲に、検査用突出部の少なくとも一部が含まれる。眼科装置は、左眼および右眼のうち、検査軸に対して顔撮影部がずれている方向の反対方向に位置する眼を、他方の眼よりも先に検査する。
Description
本開示は、被検眼の検査を行うための眼科装置に関する。
被検眼の検査を行うために、種々の眼科装置が使用される。眼科装置には、例えば、眼圧測定装置、眼屈折力測定装置、角膜曲率測定装置、眼底カメラ、OCT装置、走査型レーザ検眼鏡(SLO)等が存在する。
眼科装置の一例として、顔撮影部によって被検者の顔を撮影し、撮影した画像に基づいて、被検者の眼(被検眼)に対する検査部の位置合わせを実行する装置が知られている。例えば、特許文献1に記載の眼科装置では、検査部の検査軸よりも左右のいずれかにずれた位置に、顔撮影部の撮影光軸が配置されている。眼科装置は、顔撮影部によって撮影された画像に基づいて、検査部と被検眼の間の相対位置を移動させることで、検査部の検査軸を被検眼に一致させる。
撮影した画像に基づいて検査軸を被検眼に一致させる場合、顔撮影部による撮影が行われる位置から、先に検査を行う第1被検眼に検査軸が一致する位置までの移動距離(以下、単に「移動距離」という)が長い程、移動中に被検眼の位置が変化して位置合わせが適切に実行されない可能性が高くなる。また、移動距離が長い程、検査時間を短縮することも困難となる。
検査軸に対する顔撮影部の左右方向のずれ量を、検査対象とする被検者グループの瞳孔間距離の平均値Dに基づいて設定することで、移動距離を短縮することも考えられる。一例として、被検者の左眼と右眼の中心から前方に真っ直ぐ延びる位置に、顔撮影部を位置させた状態で、第1被検眼を撮影する場合を想定する。この場合、検査軸に対する顔撮影部の左右方向のずれ量を、瞳孔間距離の平均値Dの2分の1とすれば、検査軸を第1被検眼に合わせるための移動距離は短くなる場合が多い。
しかし、眼科装置における顔撮影部の位置は、種々の事情によって制限される場合がある。例えば、一部の眼科装置は、筐体から被検者側に突出する検査用の突出部(一例として、被検眼に圧縮空気を噴射させるためのノズル等)を備える必要がある。この場合、突出部を通過する検査軸に対して、顔撮影部の位置を近づける程、顔撮影部の撮影範囲に写り込む突出部の割合が大きくなる。撮影範囲に写り込む突出部の割合が大きすぎると、撮影された画像に基づいて被検眼の位置を検出することが困難となる。一方で、撮影範囲に突出部が写り込まない位置に顔撮影部を配置すると、前述した移動距離を短縮させることが困難となる。
本開示の典型的な目的は、検査用の突出部が被検者側に突出している場合でも、被検者の撮影画像に基づいて適切に検査軸を被検眼に合わせることが可能な眼科装置を提供することである。
本開示における典型的な実施形態が提供する眼科装置は、被検者の眼に検査軸を一致させた状態で前記眼を検査する眼科装置であって、筐体と、前記被検者の顔に対する前記筐体の相対位置を移動させる移動部と、前記筐体の被検者対向面から、前記検査軸に沿って前記被検者側に突出する検査用突出部と、前記筐体の前記被検者対向面のうち、前記検査用突出部の前記検査軸から左右のいずれかにずれた位置に配置される顔撮影部と、制御部と、を備え、前記顔撮影部の撮影範囲に、前記検査用突出部の少なくとも一部が含まれており、前記筐体の左右方向のうち、前記検査軸に対して前記顔撮影部がずれている方向を第1方向、前記第1方向とは反対の方向を第2方向とした場合に、前記被検者の左眼および右眼のうち、前記筐体から見て前記第2方向側に位置する眼を、他方の眼よりも先に検査を行う第1検査眼とし、前記制御部は、前記顔撮影部の左右方向における位置が、前記被検者の左眼と右眼の間となる初期位置に、前記筐体の前記相対位置を移動させた状態で、少なくとも前記第1検査眼を含む撮影範囲を前記顔撮影部によって撮影する顔撮影ステップと、前記顔撮影ステップにおいて撮影された画像に基づいて前記移動部の駆動を制御することで、前記初期位置にある前記筐体の前記相対位置を、前記検査軸が前記第1検査眼に一致する第1位置に移動させる第1移動ステップと、前記第1検査眼の検査の終了後に、前記第1位置にある前記筐体の前記相対位置を、前記第1検査眼とは反対側の第2検査眼に前記検査軸が近付く第2位置に移動させる第2移動ステップと、を実行する。
本開示に係る眼科装置によると、検査用の突出部が被検者側に突出している場合でも、被検者の撮影画像に基づいて適切に検査軸が被検眼に合わせられる。
本開示で例示する眼科装置は、被検者の眼に検査軸を一致させた状態で眼を検査する。眼科装置は、筐体、移動部、検査用突出部、顔撮影部、および制御部を備える。移動部は、被検者の顔に対する筐体の相対位置を移動させる。検査用突出部は、筐体の被検者対向面から、検査軸に沿って被検者側に突出する。顔撮影部は、筐体の被検者側対向面のうち、検査用突出部の検査軸から左右のいずれかにずれた位置に配置される。
顔撮影部の撮影範囲には、検査用突出部の少なくとも一部が含まれている。筐体の左右方向のうち、検査軸に対して顔撮影部がずれている方向を第1方向、第1方向とは反対側の方向を第2方向とする。被検者の左眼および右眼のうち、筐体から見て第2方向側に位置する眼を、他方の眼よりも先に検査を行う第1検査眼とする。被検者の左眼および右眼のうち、第1検査眼とは反対側の眼を第2検査眼とする。
制御部は、顔撮影ステップ、第1移動ステップ、および第2自動ステップを実行する。顔撮影ステップでは、制御部は、被検者の顔に対する筐体の相対位置を初期位置に移動させた状態で、少なくとも第1検査眼を含む撮影範囲を顔撮影部によって撮影する。初期位置では、顔撮影部の左右方向における位置が、被検者の左眼と右眼の間となる。第1移動ステップでは、制御部は、顔撮影ステップにおいて撮影された画像に基づいて移動部の駆動を制御することで、初期位置にある筐体の相対位置を、検査軸が第1検査眼に一致する第1位置に移動させる。第2移動ステップでは、制御部は、第1検査眼に終了後に、第1位置にある筐体の相対位置を、検査軸が第2検査眼に近づく第2位置に移動させる。
顔撮影部は、被検者の眼の位置を検出するために使用される。従って、顔撮影部の撮影範囲に検査用突出部が含まれないように、検査用突出部(検査軸)に対する顔撮影部の位置を設定するのが通常であると考えられる。これに対し、本開示で例示する眼科装置では、顔撮影部の撮影範囲に、検査用突出部の少なくとも一部が敢えて含まれるように、顔撮影部の位置が設定されている。従って、顔撮影部の撮影範囲から検査用突出部が除外されるように、顔撮影部の位置を設定する場合に比べて、より検査軸に近い位置に顔撮影部が設置される(この効果については後述する)。また、筐体が初期位置にある場合に、少なくとも第1検査眼が顔撮影部の撮影範囲に含まれるように(つまり、第1検査眼が検査用突出部によって遮蔽されないように)、検査軸と顔撮影部の位置関係が設定されている。よって、眼科装置は、筐体を初期位置に移動させることで、検査軸に極力近い位置に設置された顔撮影部によって、被検者の第1検査眼を含む画像を適切に撮影することができる。
制御部は、顔撮影部による撮影を実行した後、初期位置にある筐体の相対位置を第1位置へ移動させて、検査軸を第1検査眼に一致させる。筐体の相対位置が初期位置にある場合、顔撮影部から見て、第1検査眼と検査軸は、共に第2方向(左方または右方)に位置する。また、前述したように、顔撮影部の位置は、第1検査眼が検査用突出部に遮蔽されない程度に検査軸から離間しているものの、検査用突出部の一部が撮影範囲に含まれるまで検査軸に近づけられている。従って、初期位置から第1位置までの移動距離が短くなり易い。その後、第1検査眼の検査が終了すると、筐体の相対位置が第1位置から第2位置へ移動され、検査軸が第2被検眼に近づけられる。よって、検査用突出部が被検者側に突出している場合でも、被検者の撮影画像に基づいて適切に検査軸が被検眼に合わせられる。
なお、移動部は、検査用突出部と顔撮影部を備えた筐体を移動させることで、被検者の顔に対する筐体の相対位置を移動させてもよい。また、移動部は、被検者の顔(例えば、被検者の顔を支持する顔支持部等)を移動させることで、相対位置を移動させてもよい。また、移動部は、筐体と被検者の顔の両方を移動させることで、相対位置を移動させてもよい。
また、顔撮影部は1つのカメラであってもよいし、複数のカメラを含んでいてもよい。複数のカメラが用いられる場合、各々のカメラの撮影領域を重複させて、重複させた領域に被検眼(少なくとも第1被検眼)を含めることで、撮影光軸に交差する二次元方向(XY方向)における被検眼の位置と共に、撮影光軸に沿う方向(Z方向)における被検眼の位置も検出されてもよい。
制御部は、顔撮影ステップにおいて、被検者の第1被検眼および第2被検眼(つまり、左眼と右眼)を共に含む撮影範囲を顔撮影部によって撮影してもよい。制御部は、第2移動ステップにおいて、顔撮影ステップで撮影された画像から検出される第2被検眼の位置に基づいて、筐体の相対位置を第2位置に移動させてもよい。この場合には、眼科装置は、第1被検眼の位置のみを画像から検出する場合に比べて、より正確に検査軸を左眼と右眼の各々に一致させることができる。
ただし、顔撮影ステップの撮影範囲に第2被検眼が含まれていなくてもよい。また、撮影範囲に第2被検眼が含まれているか否かに関わらず、第2移動ステップでは、第2被検眼の位置の検出結果を用いずに相対位置が移動されてもよい。例えば、第2移動ステップでは、検査対象とする被検者グループの瞳孔間距離の平均値Dに基づいて、筐体の相対位置が左右方向に移動されてもよい。この場合でも、前述した技術を適用することで、初期位置から第1位置への相対位置の移動距離は適切に削減される。
また、検査軸が延びる方向は適宜選択できる。例えば、被検者を椅子に座らせた状態で、被検者の眼前に眼科装置が配置されてもよい。この場合、検査軸は水平方向に延びていてもよい。また、被検者を仰向けに寝かせた状態で、被検者の顔の上方に眼科装置が配置されてもよい。この場合、検査軸は上下方向に延びていてもよい。
検査対象とする被検者グループの瞳孔間距離の平均値をDとした場合に、検査軸と、顔撮影部の対物レンズの中心との間の左右方向の距離が、D/2より大きくてもよい。一例として、瞳孔間距離が平均値Dである被検者の検査を行う場合を想定する。この場合、検査軸と顔撮影部の左右方向の距離をD/2とし、且つ、顔撮影部の左右方向における位置を、被検者の左眼と右眼の間の中心として撮影を実行すれば、初期位置から第1位置までの左右方向の移動距離は0となる。しかし、検査軸と顔撮影部の左右方向の距離をD/2とすると、顔撮影部の撮影範囲に写り込む検査用突出部の割合が大きくなり、左眼または右眼が遮蔽され易い。従って、検査軸と顔撮影部の左右方向の距離をD/2よりも大きくすることで、左眼または右眼が検査用突出部によって遮蔽されることを抑制することができる。この状態で、前述した構成を眼科装置に含めることで、被検眼の位置検出と、初期位置から第1位置までの移動距離の短縮が共に適切に実現される。
なお、本開示における眼科装置では、瞳孔間距離の平均値Dが67mmに設定されたうえで、各種構成が配置されている。しかし、瞳孔間距離の平均値Dは、検査対象とする被検者グループに応じて適宜設定できる。例えば、日本人の成人男性の瞳孔間距離の平均値を約64mmとするデータも存在する。このデータに基づいて、瞳孔間距離の平均値Dが64mmに設定されてもよい。また、検査対象とする被検者グループの人種、国籍、年齢、性別等に応じて、瞳孔間距離の平均値Dが適宜設定されてもよい。
筐体の初期位置は、顔撮影部の左右方向における位置が、被検者の左眼と右眼の中心よりも第1方向側にずれる位置であってもよい。例えば、顔撮影部を用いて被検者の左眼および右眼を共に検出する場合には、顔撮影部の左右方向の位置を、被検者の左眼と右眼の中心に配置して撮影を行うことが通常であると考えられる。しかし、初期位置における顔撮影部の位置を、左眼と右眼の中心よりも敢えて第1方向側にずらすことで、初期位置から第1位置までの移動距離がさらに短縮され易くなる。
ただし、筐体の初期位置を変更することも可能である。例えば、筐体の初期位置は、顔撮影部の左右方向における位置が、被検者の左眼と右眼の中心に一致する位置であってもよい。
筐体の初期位置は、検査軸に沿う方向において、検査用突出部を使用して眼の検査を実行する際の筐体の位置(以下、「検査位置」という)よりも被検者の顔から離間していてもよい。この場合には、検査軸に沿う方向における筐体の初期位置と検査位置が同一である場合に比べて、顔撮影部による被検者の顔の撮影範囲が広くなる。さらに、顔撮影部による撮影時に、検査用突出部等が被検者に接触する可能性も低くなる。よって、より適切に被検者の眼の位置が検出される。
制御部は、第1接近ステップ、第1離間ステップ、および第2接近ステップをさらに実行してもよい。第1接近ステップでは、制御部は、第1移動ステップの実行後且つ第1被検眼の検査前に、筐体を第1検査眼に近づける。第1離間ステップでは、制御部は、検査用突出部による第1検査眼の検査の終了後、且つ第2移動ステップの実行前に、筐体を第1検査眼から遠ざける。第2接近ステップでは、制御部は、第2移動ステップの実行後に、筐体を第2検査眼に近づける。この場合、顔撮影部による左眼および右眼の撮影、第1検査眼および第2検査眼の検査、および、第1検査眼から第2検査眼への検査軸の移動が、一連の動作で円滑に実行される。
顔撮影部は、筐体における被検者対向面のうち、検査用突出部の検査軸よりも被検者の頭上側にずれた位置に配置されていてもよい。この場合、被検者に対する筐体の上下方向の相対的な移動量を減少させるために、検査軸の高さを被検者の眼の高さに近づけた状態でも、被検者の左眼および右眼が検査用突出部の斜め上方から適切に撮影される。つまり、顔撮影部による撮影を実行する際に、検査用突出部、顔撮影部、左眼、および右眼の全てが同一の高さにある場合に比べて、顔左眼および右眼が検査用突出部によって遮蔽され難い。よって、眼科装置は、筐体の左右方向の移動量を抑制しつつ、より適切に左眼および右眼の位置を検出することができる。
顔撮影部の対物レンズの中心を通り、且つ、検査用突出部に接して検査軸に交差する直線を、接線Tとする。対物レンズの中心を通り、検査軸に対して平行に延びる直線を、直線SOとする。接線Tと直線SOが成す角度は40度以上であってもよい。この場合、顔撮影部の撮影範囲に写り込む検査用突出部の割合が大きくなりすぎることが抑制される。よって、左眼および右眼が共に適切に顔撮影部によって撮影される。
(概略構成)
以下、本開示に係る典型的な実施形態の1つについて、図面を参照して説明する。眼科装置1は、被検者の眼(被検眼)Eに検査軸IOを一致させた状態で、被検眼Eを検査する。本実施形態で例示する眼科装置1は、検査軸IOに沿って被検者側に突出する検査用突出部(本実施形態ではノズル)10を備え、検査用突出部10から被検眼Eの角膜に流体を吹き付けることで、角膜の変形形状から被検眼Eの眼圧を測定する。つまり、本実施形態で例示する眼科装置1は、非接触式の眼圧測定装置である。しかし、本開示で例示する技術を適用できる眼科装置は、眼圧測定装置に限定されない。つまり、検査用突出部を備えた各種の眼科装置(例えば、画角を広げるアタッチメントを検査用突出部として備えた眼科撮影装置、および、検査のための光を出射する検査用突出部を備えた眼科装置等)に、本開示で例示する技術の少なくとも一部を適用できる。本開示で例示する技術を適用できる眼科装置の一例として、眼屈折力測定装置、角膜曲率測定装置、眼底カメラ、OCT装置、走査型レーザ検眼鏡(SLO)等が挙げられる。本開示における「検査」には、被検眼Eの測定および撮影が共に含まれる。
以下、本開示に係る典型的な実施形態の1つについて、図面を参照して説明する。眼科装置1は、被検者の眼(被検眼)Eに検査軸IOを一致させた状態で、被検眼Eを検査する。本実施形態で例示する眼科装置1は、検査軸IOに沿って被検者側に突出する検査用突出部(本実施形態ではノズル)10を備え、検査用突出部10から被検眼Eの角膜に流体を吹き付けることで、角膜の変形形状から被検眼Eの眼圧を測定する。つまり、本実施形態で例示する眼科装置1は、非接触式の眼圧測定装置である。しかし、本開示で例示する技術を適用できる眼科装置は、眼圧測定装置に限定されない。つまり、検査用突出部を備えた各種の眼科装置(例えば、画角を広げるアタッチメントを検査用突出部として備えた眼科撮影装置、および、検査のための光を出射する検査用突出部を備えた眼科装置等)に、本開示で例示する技術の少なくとも一部を適用できる。本開示で例示する技術を適用できる眼科装置の一例として、眼屈折力測定装置、角膜曲率測定装置、眼底カメラ、OCT装置、走査型レーザ検眼鏡(SLO)等が挙げられる。本開示における「検査」には、被検眼Eの測定および撮影が共に含まれる。
図1を参照して、眼科装置1の概略構成について説明する。以下の説明では、図1における紙面左右方向をZ方向(前後方向)とし、紙面上下方向をY方向(上下方向)とし、紙面奥行方向をX方向(左右方向)とする。詳細には、図1における紙面左側(被検者側)を眼科装置1の前側とし、紙面右側を眼科装置1の後側とする。図1における紙面上側を眼科装置1の上側とし、紙面下側を眼科装置1の下側とする。図1における紙面手前側を眼科装置1の左側とし、紙面奥側を眼科装置1の右側とする。
図1に示すように、本実施形態の眼科装置1は、基台2、筐体3、移動部4、および顔支持部5を備える。基台2は、設置場所に載置され、眼科装置1の全体を支持する。筐体3は、被検眼Eの検査を実行するための各種構成を備える(詳細は後述する)。筐体3は、移動部4を介して基台2に支持されている。顔支持部5は、被検者の顔を支持して位置決めする。本実施形態では、顔支持部5として顎台および額当てが使用されている。被検者が、顎を顎台に乗せ、且つ額を額当てに当てることで、顔が位置決めされる。移動部4は、顔支持部5によって位置決めされた被検者の顔に対する、筐体3の相対位置を移動させる。
一例として、本実施形態の移動部4は、モータ等のアクチュエータによって、基台2に対して筐体3を前後方向、上下方向、および左右方向(三次元方向)に移動させることで、被検者の顔に対する筐体3の相対位置を移動させる。しかし、移動部の構成を変更することも可能である。例えば、移動部は、顔支持部5を移動させることで、被検者の顔に対する筐体3の相対位置を移動させてもよい。また、移動部は、筐体3と顔支持部5を共に移動させてもよい。例えば、移動部は、筐体3を前後方向および左右方向に移動させると共に、顔支持部5を上下方向に移動させることで、被検者の顔に対する筐体3の相対位置を移動させてもよい。
筐体3は、検査用突出部10、顔撮影部20、表示部7、および操作部8を備える。検査用突出部10は、筐体3のうち、被検者の顔が位置決めされる側(本実施形態では前側)の面である被検者対向面3Aから、検査軸IOに沿って被検者側に突出する。検査軸IOは、検査を実行する際に被検眼Eに合わせられる。一例として、本実施形態の検査用突出部10は、被検眼Eの角膜に流体(例えば圧縮空気)を吹き付けるノズルである。しかし、検査用突出部の具体的な構成は、眼科装置が実行する検査の種類等に応じて適宜選択できる。例えば、撮影画角を切り替えるために筐体3に着脱可能に装着されるアタッチメント、検査のための光または超音波等を先端から被検眼Eに出射する突出部等を、検査用突出部として使用してもよい。
顔撮影部20は、筐体3の被検者対向面3Aのうち、検査用突出部10の検査軸IOから左右のいずれかにずれた位置に配置されている(詳細は後述する)。また、本実施形態の顔撮影部20は、図1に示すように、筐体3における被検者対向面3Aのうち、検査用突出部10の検査軸IOよりも被検者の頭上側(本実施形態では上方)にずれた位置に配置されている。この効果については後述する。
表示部7は各種画像を表示する。本実施形態では、表示部7は、筐体3のうち検者に対向する後側に配置されている。操作部8には、ユーザによる各種操作指示が入力される。一例として、本実施形態では、表示部7の表示面に設置されるタッチパネルが操作部8として使用されている。しかし、ジョイスティック、マウス、キーボード、ドラックボール、ボタン、リモートコントローラ等の少なくともいずれかが、操作部8として使用されてもよい。なお、筐体3の内部には、被検眼Eの検査を行うための検査部40(図2参照)も内蔵されている。
(電気的構成)
図2を参照して、本実施形態の眼科装置1の電気的構成について説明する。眼科装置1は、制御ユニット30を備える。制御ユニット30には、CPU(コントローラ)31、RAM32、ROM33、および不揮発性メモリ(Non-volatile memory:NVM)34を備える。CPU31は、眼科装置1の各種制御を司る。RAM32は、各種情報を一時的に記憶する。ROM33には、各種プログラム、初期値等が記憶されている。不揮発性メモリ34は、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、フラッシュROM、および着脱可能なUSBメモリ等を不揮発性メモリ34として使用してもよい。本実施形態では、後述するフルオート検査処理(図6参照)を実行するための検査処理プログラム等が、不揮発性メモリ34に記憶される。
図2を参照して、本実施形態の眼科装置1の電気的構成について説明する。眼科装置1は、制御ユニット30を備える。制御ユニット30には、CPU(コントローラ)31、RAM32、ROM33、および不揮発性メモリ(Non-volatile memory:NVM)34を備える。CPU31は、眼科装置1の各種制御を司る。RAM32は、各種情報を一時的に記憶する。ROM33には、各種プログラム、初期値等が記憶されている。不揮発性メモリ34は、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、フラッシュROM、および着脱可能なUSBメモリ等を不揮発性メモリ34として使用してもよい。本実施形態では、後述するフルオート検査処理(図6参照)を実行するための検査処理プログラム等が、不揮発性メモリ34に記憶される。
制御ユニット30は、前述した移動部4、表示部7、操作部8、および顔撮影部10に接続されている。また、制御ユニット30は、被検眼Eの検査を行うための検査部40に接続されている。前述したように、本実施形態で例示する眼科装置1は、被検眼Eの角膜に流体を吹き付けることで、角膜の変形形状から被検眼Eの眼圧を測定する。従って、検査部40には、角膜に流体を噴射するための構成、および、角膜の変形形状を検出するための構成が含まれる。
本実施形態の検査部40は、流体噴射部41、圧力センサ42、アライメント用光源43、アライメント用撮影部44、変形検出用光源45、および変形検出用受光素子46を備える。流体噴射部41は、シリンダ内の空気をソレノイド等のアクチュエータによって圧縮することで、検査用突出部10の先端から検査軸IOに沿って空気を噴射させる。圧力センサ42は、シリンダ内の気体の圧力を検出する。アライメント用光源43は、被検眼Eに対する検査軸IOのアライメントを行うための光(本実施形態では赤外光)を出射する。なお、アライメント用光源43は、顔撮影部20による撮影を行う際の照明光源として用いられてもよい。アライメント用撮影部44の撮影光軸は、検査軸IOに一致している。CPU31は、アライメント用撮影部44によって撮影された画像に基づいて、被検眼Eに対する検査軸IOのアライメントを実行する。変形検出用光源45は、検査軸IOに対して傾斜した光軸に沿って、略平行光束を被検眼Eの角膜に投光する。変形検出用受光素子46は、角膜が偏平されたときに受光量が最大となるように配置されている。
なお、検査部40の構成には従来の眼科装置の構成を使用できるので、検査部40の構成の配置等の説明は省略する(例えば、特開2002-17683等参照)。また、眼科装置が実行する検査の内容に応じて、検査部40の構成を変更してもよいことは言うまでもない。
(顔撮影部と検査軸の位置関係、および、検査の動作の概要)
図3~図5を参照して、筐体3における顔撮影部20と検査軸IOの位置関係、および、検査の動作の概要について説明する。図3は、顔支持部5によって位置決めされた顔に対する筐体3の相対的な位置(以下、単に「筐体3の位置」という場合もある)が初期位置にある際の、被検者の顔と筐体3の位置関係を示す平面図である。初期位置とは、顔支持部5によって位置決めされた被検者の顔(本実施形態では、左眼ELおよび右眼ERを共に含む)を、顔撮影部20によって撮影する際の、筐体3の位置である。また、図3、図4、図7、および図8に示す被検者の瞳孔間距離(左眼ELの瞳孔中心と、右眼ERの瞳孔中心の間の距離)は、眼科装置1が検査対象とする被検者グループの瞳孔間距離の平均値Dに一致している。瞳孔間距離の平均値Dは、被検者グループに応じて適宜設定されればよい。一例として、本実施形態では、瞳孔間距離の平均値Dが67mmに設定されている。
図3~図5を参照して、筐体3における顔撮影部20と検査軸IOの位置関係、および、検査の動作の概要について説明する。図3は、顔支持部5によって位置決めされた顔に対する筐体3の相対的な位置(以下、単に「筐体3の位置」という場合もある)が初期位置にある際の、被検者の顔と筐体3の位置関係を示す平面図である。初期位置とは、顔支持部5によって位置決めされた被検者の顔(本実施形態では、左眼ELおよび右眼ERを共に含む)を、顔撮影部20によって撮影する際の、筐体3の位置である。また、図3、図4、図7、および図8に示す被検者の瞳孔間距離(左眼ELの瞳孔中心と、右眼ERの瞳孔中心の間の距離)は、眼科装置1が検査対象とする被検者グループの瞳孔間距離の平均値Dに一致している。瞳孔間距離の平均値Dは、被検者グループに応じて適宜設定されればよい。一例として、本実施形態では、瞳孔間距離の平均値Dが67mmに設定されている。
眼科装置1は、被検者の左眼ELと右眼ERを共に1回の撮影動作で撮影し、撮影された画像に基づいて左眼ELと右眼ERの位置を適切に検出することで、検査時間を短縮することができる。従って、図3に示すように、眼科装置1は、顔撮影部20の左右方向の位置を、被検者の左眼ELと右眼ERの間に合わせた状態で撮影を行う。その後、眼科装置1は、撮影された画像に基づいて、左眼ELと右眼ERの各々の位置(詳細には、各々の瞳孔の位置)を検出する。
次いで、眼科装置1は、検出結果に基づいて移動部4の駆動を制御することで、被検者の左眼ELおよび右眼ERのうち先に検査を行う眼(以下、「第1検査眼」という)に、検査用突出部10の検査軸IOを一致させる。検査軸IOが第1検査眼に一致する際の、被検者の顔に対する筐体3の相対位置を、第1位置という。図4は、筐体3の位置が第1位置にある際の、被検者の顔と筐体3の位置関係を示す平面図である。
図3および図4に示すように、検査用突出部10は、筐体3の被検者対向面3Aから検査軸IOに沿って被検者側(前方)に突出している。左眼ELと右眼ERを同時に撮影するための顔撮影部20を、検査用突出部10と同一の位置に配置することは、機構上困難である。また、顔撮影部20と検査用突出部10の左右方向の位置を一致させると(例えば、検査用突出部10の鉛直上方に顔撮影部20を配置すると)、眼科装置1は、顔撮影部20による撮影を実行した後、検査軸IOを一方の眼に一致させるために、筐体3を左右のいずれかに大幅に移動させる必要がある。従って、本実施形態の顔撮影部20は、被検者対向面3Aのうち、検査用突出部10の検査軸IOから左右のいずれかにずれた位置に配置される。本実施形態では、顔撮影部20は、検査軸IOから右方にずれた位置に配置されている。しかし、顔撮影部20が検査軸IOから左方にずれた位置に配置されてもよいことは言うまでもない。
ここで、筐体3の左右方向のうち、検査軸IOに対して顔撮影部20がずれている方向(本実施形態では右方向)を、第1方向とする。筐体3の左右方向のうち、第1方向とは反対の方向(本実施形態では左方向)を、第2方向とする。
眼科装置1は、被検者の左眼ELおよび右眼ERのうち、筐体3から見て第2方向側に位置する眼(本実施形態では、筐体3から見て左側に位置する右眼ER)を、他方の眼よりも先に検査を行う第1検査眼とする。左眼ELおよび右眼ERのうち、第1検査眼とは反対の眼(本実施形態では左眼EL)を、第1検査眼の検査の後に検査を行う第2検査眼とする。顔撮影部20から見て、第1検査眼と検査軸IOは、共に第2方向(本実施形態では左方)に位置する。従って、第2方向側に位置する眼を第1検査眼とすることで、他方の眼を第1検査眼とする場合に比べて、初期位置(図3参照)から第1位置(図4参照)までの筐体3の左右方向の移動量が削減される。
また、検査軸IOと顔撮影部20の対物レンズ22の中心の間の左右方向の距離Lを、瞳孔間距離の平均値Dの半分(D/2)に設定することで、初期位置から第1位置までの移動量をさらに削減することも考えられる。つまり、距離LをD/2とすれば、眼科装置1は、瞳孔間距離がDである被検者の検査を行う際に、左眼ELと右眼ERの中心Cから前方に真っ直ぐ延びる位置で顔撮影部20による撮影を行った後、筐体3を左右方向に移動させずに第1検査眼の検査を実行できる。しかし、検査用突出部10を備えた眼科装置1では、距離LをD/2に設定できない場合が多い。以下、その理由の一例について説明する。
本実施形態では、被検眼Eの検査(眼圧測定)を実行する場合、検査用突出部10を被検眼Eに接近させた状態で検査を行う必要がある。従って、顔撮影部20の被検者側(前方)の端部を、検査用突出部10の被検者側の端部(先端部)と同様に被検者側に近い位置とすると、被検眼Eの検査を実行する際に、顔撮影部20が被検者の顔(例えば鼻等)に当たってしまう。よって、顔撮影部20の被検者側の端部は、検査用突出部10の先端部よりも、被検者の顔から遠い側(後方)に配置される必要がある。
顔撮影部20の被検者側の端部を、検査用突出部10の先端部よりも後方に配置する場合、検査用突出部10の検査軸IOと顔撮影部20の位置関係によっては、顔撮影部20の撮影範囲に検査用突出部10が写り込む場合がある。検査軸IOに対する顔撮影部20の距離が短い程、撮影範囲に写り込む検査用突出部10の割合が大きくなる。特に、図3に示す距離LをD/2以下とすると、顔撮影部20の撮影範囲内で、被検者の左眼ELおよび右眼ERの少なくとも一方(本実施形態では右眼ER)が検査用突出部10によって遮蔽される可能性が高くなり、眼の位置を検出することが不可能になり易い。よって、本実施形態の眼科装置1では、距離LがD/2よりも大きくなるように、検査軸IOに対する顔撮影部20の位置が設定されている。その結果、眼が検査用突出部10によって遮蔽されることが抑制されている。
また、眼の位置の検出精度を向上させることを考えると、顔撮影部20の撮影範囲に検査用突出部10が全く写り込まないように、検査軸IOに対する顔撮影部20の設置位置を設定しようとするのが通常であると考えられる。顔撮影部20の対物レンズ22の中心Pと、検査用突出部10の検査軸IOの間の左右方向の距離Lを非常に大きくすれば、顔撮影部20の撮影範囲に検査用突出部10が写り込まなくなる。しかし、前述したように、眼科装置1は、顔撮影部20の左右方向の位置を、被検者の左眼ELと右眼ERの間に合わせた状態で撮影を行う必要がある。従って、図3に示す距離Lを大きくする程、初期位置(図3参照)から第1位置(図4参照)までの筐体3の移動距離が長くなってしまう。
これに対し、本実施形態の眼科装置1では、図5に示すように、顔撮影部20の撮影範囲21に、検査用突出部10の少なくとも一部(例えば先端部)が敢えて含まれるように、検査軸IOに対する顔撮影部20の位置が設定されている。従って、顔撮影部20の撮影範囲21から検査用突出部10が除外されるように、顔撮影部20の位置が設定される場合に比べて、より検査軸IOに近い位置に顔撮影部20が設置される。よって、初期位置(図3参照)から第1位置(図4参照)までの筐体3の移動距離が削減され易い。さらに、筐体3が初期位置にある場合に、被検者の左眼ELおよび右眼ERが共に撮影範囲21に含まれるように(つまり、左眼ELおよび右眼ERの少なくとも一方が検査用突出部10によって遮蔽されないように)、検査軸IOと顔撮影部20の位置関係が設定されている。よって、本実施形態の眼科装置1は、初期位置から第1位置までの筐体3の移動距離を削減しつつ、適切に被検眼(本実施形態では両眼)の位置を検出することができる。
また、前述したように、顔撮影部20は、筐体3における被検者対向面3Aのうち、検査用突出部10の検査軸IOよりも被検者の頭上側にずれた位置に配置されている(図1参照)。従って、被検者に対する筐体3の上下方向の相対的な移動量を削減するために、初期位置(図3参照)における検査軸IOの高さを眼Eの高さに近づけた際に、被検眼(本実施形態では左眼ELおよび右眼ERの両方)が検査用突出部10の斜め上方から適切に撮影される(図5参照)。つまり、顔撮影部20による撮影を実行する際に、検査用突出部10、顔撮影部20、左眼EL、および右眼ERの全てが同一の高さにある場合に比べて、眼が検査用突出部10によって遮蔽され難い。
図3に示すように、顔撮影部20の対物レンズ(最も被検者側に位置するレンズ)22の中心Pを通り、検査用突出部10に接して検査軸IOに交差する直線を、接線Tとする。また、対物レンズ22の中心Pを通り、且つ検査軸IOに対して平行に延びる直線を、直線SOとする。本実施形態の眼科装置1では、接線Tと直線SOが成す角度θは40度以上(一例として、本実施形態では46度)に設定されている。その結果、顔撮影部20の撮影範囲21に写り込む検査用突出部10の割合が大きくなりすぎることが抑制されている。
また、顔撮影部20の撮影画角は、縦方向、横方向のいずれも100度以上に設定されている。従って、被検者の左眼ELおよび右眼ERが、共に適切に1度の撮影動作で撮影される。
図3を参照して、本実施形態における筐体3の初期位置についてさらに説明を行う。図3に示すように、筐体3の相対位置が初期位置である場合、顔撮影部20(詳細には、対物レンズ22の中心P)の左右方向における位置は、顔支持部5(図1参照)によって位置決めされた被検者の左眼ELと右眼ERの中心Cよりも、第1方向側(本実施形態では右側)にずれる。本実施形態のように、顔撮影部20を用いて左眼ELと右眼ERを共に検出する場合、顔撮影部20の左右方向の位置を、中心Cに配置して撮影を行うことが通常であると考えられる。しかし、本実施形態では、初期位置における顔撮影部20の位置を、中心Cよりも敢えて第2方向側にずらすことで、初期位置(図3参照)から第1位置(図4参照)までの移動距離がさらに短縮されている。
なお、本実施形態では、顔撮影部20の撮影光軸が検査軸IOと平行となるように、顔撮影部20が配置されている。つまり、本実施形態における顔撮影部20の撮影光軸は、前述した直線SOに一致する。しかし、顔撮影部20の撮影光軸の向きを変更することも可能である。例えば、本実施形態では、筐体3が初期位置(図3参照)にある場合の顔撮影部20の左右方向の位置が、左眼ELと右眼ERの中心Cよりも第1方向側にずれる。従って、被検者側に延びる撮影光軸が第2方向側に傾くように、顔撮影部20が配置されていてもよい。また、本実施形態では、初期位置(図3参照)における検査軸IOの高さを眼Eの高さに近づけた際に、顔撮影部20の位置は眼Eよりも高くなる。従って、被検者側に延びる撮影光軸が下方に傾くように、顔撮影部20が配置されていてもよい。これらの場合、撮影範囲内に左眼ELおよび右眼ERがバランスよく収まり易い。
(フルオート検査処理)
図6等を参照して、本実施形態の眼科装置1が実行するフルオート検査処理の一例について説明する。眼科装置1は、顔撮影部20による撮影画像に基づいて両眼の検査を自動的に実行するフルオートモードと、被検眼Eに対する検査軸IOの大まかな位置合わせを検者が手動で実行する手動モードを、検者から入力される指示に応じて切り替える。眼科装置1のCPU31は、フルオートモードの実行指示が入力されると、不揮発性メモリ34に記憶されたプログラムに従って、図6に例示するフルオート検査処理を実行する。
図6等を参照して、本実施形態の眼科装置1が実行するフルオート検査処理の一例について説明する。眼科装置1は、顔撮影部20による撮影画像に基づいて両眼の検査を自動的に実行するフルオートモードと、被検眼Eに対する検査軸IOの大まかな位置合わせを検者が手動で実行する手動モードを、検者から入力される指示に応じて切り替える。眼科装置1のCPU31は、フルオートモードの実行指示が入力されると、不揮発性メモリ34に記憶されたプログラムに従って、図6に例示するフルオート検査処理を実行する。
まず、CPU31は、移動部4の駆動を制御することで、筐体3の相対位置を初期位置(図3参照)に移動させる(S1)。検査の開始指示が検者によって入力されるまで(S2:NO)、待機状態となる。検者が操作部8を操作し、検査の開始指示を入力すると(S2:YES)、CPU31は、顔撮影処理を実行する(S3)。顔撮影処理では、CPU31は、筐体3が初期位置(図3参照)にある状態で、少なくとも第1被検眼(本実施形態では左眼ELおよび右眼ERの両方)を含む撮影範囲を顔撮影部20によって撮影する。その結果、図5に例示する画像が撮影される。
次いで、CPU31は、眼位置検出処理を実行する(S4)。眼位置検出処理では、CPU31は、顔撮影処理で撮影された画像に基づいて、顔支持部5によって位置決めされている被検者の少なくとも第1被検眼(本実施形態では左眼ELおよび右眼ERの各々)の位置を検出する。本実施形態では、CPU31は、機械学習アルゴリズムによって訓練された数学モデルに、S3で撮影された画像を入力することで、左眼ELおよび右眼ERの各々の位置が取得される。数学モデルは、左眼ELおよび右眼ERを撮影範囲に含む画像のデータを入力用訓練データとし、左眼ELおよび右眼ERの各々の位置を示すデータを出力用訓練データとする多数の訓練データセットに基づいて、予め訓練されている。数学モデルを実現するためのプログラムは、予め不揮発性メモリ34に記憶されている。数学モデルは、S3で撮影された画像が入力されると、左眼ELおよび右眼ERの各々の位置を示す情報を出力する。機械学習アルゴリズムが利用されることで、撮影画像に基づく眼の位置検出の精度が向上する。ただし、撮影画像から眼の位置を検出する方法を変更することも可能である。例えば、CPU31は、撮影画像に対して公知の画像処理を行い、処理結果に基づいて眼の位置を検出してもよい。
次いで、CPU31は、第1移動処理を実行する(S5)。第1移動処理では、CPU31は、眼位置検出処理による第1被検眼(本実施形態では右眼ER)の位置の検出結果に基づいて移動部4の駆動を制御することで、初期位置(図3参照)にある筐体3の相対位置を、第1位置(図4参照)に移動させる。前述したように、第1位置では、検査軸IOが第1被検眼(本実施形態では右眼ER)に一致する。本実施形態の眼科装置1は、前述した種々の構成を備えることで、初期位置(図3参照)から第1位置(図4参照)への筐体3の左右方向の移動距離を削減している。
次いで、CPU31は、第1接近処理を実行する(S6)。第1接近処理では、CPU31は、第1移動処理(S5)の実行後且つ第1被検眼の検査前に、筐体3を第1被検眼に近づける。その結果、図3および図4で離間していた筐体3と被検眼EL,ERの間の距離B1が、図7に示すように、距離B2まで接近する。図7に示す状態では、検査用突出部10と第1被検眼ERの距離が、検査に適切な距離となる。この状態で、CPU31は、検査部40(図2参照)の駆動を制御して、第1被検眼の検査を実行する(S7)。
つまり、本実施形態では、筐体3の初期位置(図3参照)は、検査軸IOに沿う方向(本実施形態では前後方向)において、検査用突出部10を使用して被検眼Eの検査を実行する際の筐体3の位置(図7参照)よりも、被検者の顔から離間している。従って、検査軸IOに沿う方向における筐体3の初期位置と検査位置が同一である場合に比べて、顔撮影部20による被検者の顔の撮影範囲が広くなる。さらに、顔撮影部20による撮影時に、検査用突出部10等が被検者に接触する可能性も低くなる。
なお、CPU31は、第1接近処理(S6)を実行する際に、アライメント用光源43およびアライメント用撮影部44(図2参照)を使用して、第1被検眼に対する検査軸IOの厳密なアライメントを実行する。その結果、検査の精度がさらに向上する。
次いで、CPU31は、第1離間処理を実行する(S8)。第1離間処理では、CPU31は、移動部4の駆動を制御することで、検査位置(図7参照)から第1位置(図4参照)まで筐体3を移動させる。その結果、筐体3が第1被検眼から遠ざかる。次いで、CPU31は、第2移動処理を実行する(S9)。第2移動処理では、CPU31は、眼位置検出処理(S4)による第2被検眼(本実施形態では左眼EL)の位置の検出結果に基づいて移動部4の駆動を制御することで、第1位置(図4参照)にある筐体3を、第2位置(図8参照)に移動させる。第2位置では、検査軸IOが第2被検眼(本実施形態では右眼EL)に一致する。第1離間処理(S8)が実行された後に第2移動処理(S9)が実行されることで、第2移動処理中に検査用突出部10が被検者に接触し難くなる。
次いで、CPU31は、第2接近処理(S10)、第2被検眼検査処理(S11)、および第2離間処理(S12)を順に実行する。第2接近処理(S10)では、CPU31は、筐体3を第1被検眼に近づけることで、検査用突出部10を第2被検眼に接近させる。また、CPU31は、第2接近処理(S10)を実行する際に、S6と同様のアライメントを実行する。第2被検眼検査処理(S11)では、CPU31は、第2被検眼の検査を実行する。第2離間処理(S12)では、CPU31は、移動部4の駆動を制御することで、筐体3を第2被検眼から遠ざける。その後、処理はS1へ戻り、筐体3が初期位置(図3参照)に戻される。第2離間処理(S12)が実行された後に、筐体3が初期位置に戻されることで、検査用突出部10が被検者に接触し難くなる。
上記実施形態の開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。例えば、上記実施形態で例示した複数の技術の一部のみを採用してもよい。一例として、上記実施形態では、筐体3が初期位置にある場合に、顔撮影部20の左右方向の位置は、左眼ELと右眼ERの中心Cよりも第1方向側にずれている。しかし、眼科装置1は、顔撮影部20を左右方向の位置を、左眼ELと右眼ERの中心Cに一致させた状態で、被検者の顔の撮影を実行してもよい。この場合でも、上記実施形態で例示した技術の少なくともいずれかを採用することで、初期位置から第1位置への筐体3の移動量は減少する。
なお、図6のS3に示す顔撮影処理は、「顔撮影ステップ」の一例である。図6のS4に示す眼位置検出処理は、「眼位置検出ステップ」の一例である。図6のS5に示す第1移動処理は、「第1移動ステップ」の一例である。図6のS9に示す第2移動処理は、「第2移動ステップ」の一例である。図6のS6に示す第1接近処理は、「第1接近ステップ」の一例である。図6のS8に示す第1離間処理は、「第1離間ステップ」の一例である。図6のS10に示す第2接近処理は、「第2接近ステップ」の一例である。
1 眼科装置
3 筐体
3A 被検者対向面
4 移動部
5 顔支持部
10 検査用突出部
20 顔撮影部
21 撮影範囲
31 CPU
IO 検査軸
T 接線
3 筐体
3A 被検者対向面
4 移動部
5 顔支持部
10 検査用突出部
20 顔撮影部
21 撮影範囲
31 CPU
IO 検査軸
T 接線
Claims (8)
- 被検者の眼に検査軸を一致させた状態で前記眼を検査する眼科装置であって、
筐体と、
前記被検者の顔に対する前記筐体の相対位置を移動させる移動部と、
前記筐体の被検者対向面から、前記検査軸に沿って前記被検者側に突出する検査用突出部と、
前記筐体の前記被検者対向面のうち、前記検査用突出部の前記検査軸から左右のいずれかにずれた位置に配置される顔撮影部と、
制御部と、
を備え、
前記顔撮影部の撮影範囲に、前記検査用突出部の少なくとも一部が含まれており、
前記筐体の左右方向のうち、前記検査軸に対して前記顔撮影部がずれている方向を第1方向、前記第1方向とは反対の方向を第2方向とした場合に、前記被検者の左眼および右眼のうち、前記筐体から見て前記第2方向側に位置する眼を、他方の眼よりも先に検査を行う第1検査眼とし、
前記制御部は、
前記顔撮影部の左右方向における位置が、前記被検者の左眼と右眼の間となる初期位置に、前記筐体の前記相対位置を移動させた状態で、少なくとも前記第1検査眼を含む撮影範囲を前記顔撮影部によって撮影する顔撮影ステップと、
前記顔撮影ステップにおいて撮影された画像に基づいて前記移動部の駆動を制御することで、前記初期位置にある前記筐体の前記相対位置を、前記検査軸が前記第1検査眼に一致する第1位置に移動させる第1移動ステップと、
前記第1検査眼の検査の終了後に、前記第1位置にある前記筐体の前記相対位置を、前記第1検査眼とは反対側の第2検査眼に前記検査軸が近付く第2位置に移動させる第2移動ステップと、
を実行することを特徴とする眼科装置。 - 請求項1に記載の眼科装置であって、
前記制御部は、
前記顔撮影ステップにおいて、前記筐体の前記相対位置を前記初期位置に移動させた状態で、前記被検者の前記第1被検眼および前記第2被検眼を共に含む撮影範囲を前記顔撮影部によって撮影し、
前記第2移動ステップにおいて、前記顔撮影ステップで撮影された画像から検出される前記第2被検眼の位置に基づいて、前記筐体の前記相対位置を前記第2位置に移動させることを特徴とする眼科装置。 - 請求項1または2に記載の眼科装置であって、
検査対象とする被検者グループの瞳孔間距離の平均値をDとした場合に、前記検査軸と、前記顔撮影部の対物レンズの中心との間の左右方向の距離が、D/2より大きいことを特徴とする眼科装置。 - 請求項1から3のいずれかに記載の眼科装置であって、
前記筐体の前記相対位置が前記初期位置である場合に、前記顔撮影部の左右方向における位置は、前記被検者の左眼と右眼の中心よりも前記第1方向側にずれることを特徴とする眼科装置。 - 請求項1から4のいずれかに記載の眼科装置であって、
前記筐体の前記初期位置は、前記検査軸に沿う方向において、前記検査用突出部を使用して眼の検査を実行する際の前記筐体の位置よりも前記被検者の顔から離間していることを特徴とする眼科装置。 - 請求項5に記載の眼科装置であって、
前記制御部は、
前記第1移動ステップの実行後且つ前記第1被検眼の検査前に、前記筐体を前記第1検査眼に近づける第1接近ステップと、
前記第1検査眼の検査の終了後、且つ前記第2移動ステップの実行前に、前記筐体を前記第1被検眼から遠ざける第1離間ステップと、
前記第2移動ステップの実行後に、前記筐体を前記第2検査眼に近づける第2接近ステップと、
を実行することを特徴とする眼科装置。 - 請求項1から6のいずれかに記載の眼科装置であって、
前記顔撮影部は、前記筐体における前記被検者対向面のうち、前記検査用突出部の前記検査軸よりも前記被検者の頭上側にずれた位置に配置されることを特徴とする眼科装置。 - 請求項1から7のいずれかに記載の眼科装置であって、
前記顔撮影部の対物レンズの中心を通り、前記検査用突出部に接して前記検査軸に交差する直線と、前記対物レンズの中心を通り、前記検査軸に対して平行に延びる直線とが成す角度が40度以上であることを特徴とする眼科装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080042568.3A CN114007490A (zh) | 2019-06-13 | 2020-06-09 | 眼科装置 |
JP2021526102A JP7264246B2 (ja) | 2019-06-13 | 2020-06-09 | 眼科装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-110531 | 2019-06-13 | ||
JP2019110531 | 2019-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020250903A1 true WO2020250903A1 (ja) | 2020-12-17 |
Family
ID=73781197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/022740 WO2020250903A1 (ja) | 2019-06-13 | 2020-06-09 | 眼科装置 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7264246B2 (ja) |
CN (1) | CN114007490A (ja) |
WO (1) | WO2020250903A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115633935A (zh) * | 2022-08-18 | 2023-01-24 | 上海佰翊医疗科技有限公司 | 用于突眼检查仪的眼球突出度的评估装置、方法和系统 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090195750A1 (en) * | 2008-02-01 | 2009-08-06 | Nidek Co., Ltd. | Ophthalmic apparatus |
JP2014113175A (ja) * | 2012-12-06 | 2014-06-26 | Topcon Corp | 眼科観察装置 |
JP2016221075A (ja) * | 2015-06-01 | 2016-12-28 | 株式会社ニデック | 眼科装置、および眼科装置用プログラム |
JP2017196303A (ja) * | 2016-04-28 | 2017-11-02 | 株式会社ニデック | 眼科装置、および眼科装置制御プログラム |
-
2020
- 2020-06-09 JP JP2021526102A patent/JP7264246B2/ja active Active
- 2020-06-09 CN CN202080042568.3A patent/CN114007490A/zh active Pending
- 2020-06-09 WO PCT/JP2020/022740 patent/WO2020250903A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090195750A1 (en) * | 2008-02-01 | 2009-08-06 | Nidek Co., Ltd. | Ophthalmic apparatus |
JP2014113175A (ja) * | 2012-12-06 | 2014-06-26 | Topcon Corp | 眼科観察装置 |
JP2016221075A (ja) * | 2015-06-01 | 2016-12-28 | 株式会社ニデック | 眼科装置、および眼科装置用プログラム |
JP2017196303A (ja) * | 2016-04-28 | 2017-11-02 | 株式会社ニデック | 眼科装置、および眼科装置制御プログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115633935A (zh) * | 2022-08-18 | 2023-01-24 | 上海佰翊医疗科技有限公司 | 用于突眼检查仪的眼球突出度的评估装置、方法和系统 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020250903A1 (ja) | 2020-12-17 |
JP7264246B2 (ja) | 2023-04-25 |
CN114007490A (zh) | 2022-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49024E1 (en) | Fundus observation apparatus | |
JP4824400B2 (ja) | 眼科装置 | |
JP6071304B2 (ja) | 眼科装置及びアライメント方法 | |
JP6006519B2 (ja) | 眼科装置 | |
JP6238551B2 (ja) | 眼科装置、眼科装置の制御方法、プログラム | |
JP5955193B2 (ja) | 眼科装置および眼科装置の制御方法並びにプログラム | |
JP6016445B2 (ja) | 眼科装置 | |
JP6716752B2 (ja) | 眼科装置 | |
US10307058B2 (en) | Ophthalmologic apparatus | |
JP7073678B2 (ja) | 眼科装置 | |
JP6641730B2 (ja) | 眼科装置、および眼科装置用プログラム | |
JP2018038518A (ja) | 眼科装置 | |
WO2022138102A1 (ja) | 眼科装置および眼科装置の制御プログラム | |
JP7271976B2 (ja) | 眼科装置 | |
WO2020250903A1 (ja) | 眼科装置 | |
JP6723843B2 (ja) | 眼科装置 | |
JP6892540B2 (ja) | 眼科装置 | |
JP2021166903A (ja) | 眼科装置、及びその制御方法 | |
JP6772412B2 (ja) | 眼科装置 | |
EP3150111A1 (en) | Ophthalmic apparatus and control program for the ophthalmic apparatus | |
JP4136691B2 (ja) | 眼科装置 | |
JP7024240B2 (ja) | 眼科システムおよび眼科システム制御プログラム | |
JP6769092B2 (ja) | 眼科装置 | |
JP2005095354A (ja) | 眼屈折力測定装置 | |
JP7187769B2 (ja) | 眼科装置、および眼科装置制御プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20822837 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021526102 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20822837 Country of ref document: EP Kind code of ref document: A1 |