JP2005095354A - 眼屈折力測定装置 - Google Patents

眼屈折力測定装置 Download PDF

Info

Publication number
JP2005095354A
JP2005095354A JP2003332679A JP2003332679A JP2005095354A JP 2005095354 A JP2005095354 A JP 2005095354A JP 2003332679 A JP2003332679 A JP 2003332679A JP 2003332679 A JP2003332679 A JP 2003332679A JP 2005095354 A JP2005095354 A JP 2005095354A
Authority
JP
Japan
Prior art keywords
eye
examined
measurement
refractive power
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003332679A
Other languages
English (en)
Inventor
Yasuo Maeda
康雄 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2003332679A priority Critical patent/JP2005095354A/ja
Publication of JP2005095354A publication Critical patent/JP2005095354A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

【課題】 虹彩で測定光束がけられることによる測定誤差や測定エラーの発生をなくし、信頼性の高いアライメント・測定を実現する。
【解決手段】 被検眼の瞳孔を介して眼底に光束を投影し、その眼底反射光束を受光して被検眼の眼屈折力を計測する眼屈折力測定装置において被検眼の前眼部を撮像する撮像手段と、該撮像手段で撮像された前眼部像を記憶する記憶手段と、被検眼と装置の作動距離を検出する作動距離検出手段と前記記憶された前眼部像の中で測定光束が通過する画像領域の最外周上に設けられたの複数箇所の記憶画素の明るさ情報を取得する手段前記作動距離検出手段からの位置合わせ情報と該明るさ情報の取得手段によって得られた情報から前記測定光束が被検眼瞳孔を通過可能かどうかを判定する判定手段を有することを特徴とする。
【選択図】 図1

Description

本発明は被検眼の屈折力を測定する眼屈折力測定装置に関する。
従来、被検眼の屈折力を測定する眼屈折力計でその検眼光学系と被検眼の位置合わせを行うのに、被検眼角膜に光束を投影して、その角膜反射による輝点像を作成してその輝点像を検眼光学系の中心に一致させるようにしているものが多い。
しかし、もともと人眼の角膜中心と瞳孔中心は多少のずれをある場合が多く、角膜中心で位置合わせを行った場合に虹彩により眼屈折力測定の測定光束の一部がけられて正常な眼底からの信号が得られなくなる場合がある。
そのような場合、測定がエラーになったり、異常な測定値を出してしまう可能性が高い。
このような従来の眼屈折力計の問題点に対して、特開平11−19040では、角膜中心にアライメントを行ってから、虹彩エッヂの位置と測定領域を囲む矩形の座標から、測定光束が瞳孔を通過可能かどうかを判定し、通過し得ないと判断された場合に瞳孔中心に向けて検眼光学系を移動することが開示されている。
ところが、上記従来例では、測定光束が被検眼瞳孔を通過可能かどうかを判断するのに、被検眼前眼部像のメモリ画像で、縦横それぞれ1ラインをスキャンして虹彩エッヂの検出と円形の測定光束をカバーする矩形領域の座標の比較を行わなければならないので、処理に時間がかかるという問題点がある。
また、一般的に円形の測定光束通過領域をメモリ画像上で取り扱う際の簡便の為に矩形領域とした為に、外接する矩形領域を設定した時には、本当の測定領域(円形)と設定した矩形領域の四隅に余分な隙間ができるので、測定領域よりわずかに大きい瞳孔の被検眼の場合、瞳孔中心と測定光軸が一致したアライメント状態でも測定光束が虹彩にけられていると判断してしまう。
逆に内接する矩形領域を設定した時には、角膜中心と瞳孔中心がずれていて瞳孔が測定領域よりわずかに大きい瞳孔の場合など、測定領域は虹彩で遮られているのに矩形のライン上で見た虹彩エッヂの座標では虹彩で遮られていないと判断してしまう。
という問題点がある。
本発明は上記問題点に鑑み、アライメント状態での測定光束が通過可能かどうかの判断を正確に迅速に行える検眼装置を提供することを課題とする。
上記課題を解決する為に本発明は、被検眼の瞳孔を介して、眼底に光束を投影し、眼光束の眼底反射光束を受光して被検眼の眼屈折力を計測する眼屈折力測定装置において
(1)被検眼の前眼部を撮像する撮像手段
該撮像手段で撮像された前眼部像を記憶する記憶手段
被検眼と装置の作動距離を検出する作動距離検出手段
前記記憶された前眼部像で、眼屈折力測定の投影光束又は眼底反射光束が通過する記憶画像の領域のうち、最外周上に設けられたの複数箇所の記憶画素の明るさ情報を取得する手段
前記作動距離検出手段からの位置合わせ情報と該明るさ情報の取得手段によって得られた情報から前記投影光束及び反射光束が被検眼瞳孔を通過可能かどうかを判定する判定手段を有することを特徴とする。
(2)(1)眼屈折測定装置で明るさ情報から装置の検眼部を移動する方向と移動量を算出し、少なくとも移動すべき方向を指示する指示手段を有することを特徴とする。
(3)更に、(2)の眼屈折力測定装置で検眼部を被検眼に対して、上下左右及び前後に移動させる駆動手段
前記移動方向の指示手段からの指示により該駆動手段の駆動を制御する駆動制御手段を有する特徴とする。
(4)更に(3)の眼屈折力測定装置は、被検眼の瞳孔中心を求める手段を有し
前記駆動制御手段は該瞳孔中心に前記検眼部の光軸が一致するように前記駆動手段を制御するようにしたことを特徴とする。
(5)被検眼の前眼部を撮像する撮像手段
該撮像手段で撮像された前眼部像を記憶する記憶手段
被検眼と装置の作動距離を検出する作動距離検出手段
前記記憶された前眼部像で、眼屈折力測定の投影光束又は眼底反射光束が通過する記憶画像の領域で最外周上に位置する複数箇所の明るさ情報を検出する第一の明るさ検出手段
前記測定光束の通過領域の外側に設けられ前記第一の明るさ情報の検出箇所と同心に位置する複数箇所の第二の明るさ検出手段
前記作動距離検出手段からの位置合わせ情報と前記第一の明るさ検出手段からの情報により前記投影光束及び反射光束が被検眼瞳孔を通過可能かどうかを判定する判定手段
前記第一と第二の明るさ検出手段からの情報により装置の検眼部を移動する方向と移動量を算出し、少なくとも移動すべき方向を指示する指示手段を有することを特徴とする。
被検眼の瞳孔を介して、眼底に光束を投影し、眼光束の眼底反射光束を受光して被検眼の眼屈折力を計測する眼屈折力測定装置において
(1)被検眼の前眼部を撮像する撮像手段
該撮像手段で撮像された前眼部像を記憶する記憶手段
被検眼と装置の作動距離を検出する作動距離検出手段
前記記憶された前眼部像で、眼屈折力測定の投影光束又は眼底反射光束が通過する記憶画像の領域のうち、最外周上に設けられたの複数箇所の記憶画素の明るさ情報を取得する手段
前記作動距離検出手段からの位置合わせ情報と該明るさ情報の取得手段によって得られた情報から前記投影光束及び反射光束が被検眼瞳孔を通過可能かどうかを判定する判定手段
を有するようにしたことにより測定領域が瞳孔を通過可能かどうかチェックする領域を過不足なく確認することができるので小瞳孔や角膜頂点と瞳孔中心が偏芯した被検眼も測定できる可能性を高められるという効果がある。
(2)(1)眼屈折測定装置で明るさ情報から装置の検眼部を移動する方向と移動量を算出し、少なくとも移動すべき方向を指示する指示手段を有することにより虹彩にかかったアライメント状態を警告し、虹彩にかからないアライメント状態への移動指示が簡便に短時間に行えるので、測定動作の時間短縮が図れるという効果がある。
(3)更に、(2)の眼屈折力測定装置で検眼部を被検眼に対して、上下左右及び前後に移動させる駆動手段
前記移動方向の指示手段からの指示により該駆動手段の駆動を制御する駆動制御手段を有することによりオートアライメントの装置であっても虹彩による測定光の遮断で異常な測定値を出したり、測定エラーを未然に防ぐことができるので、オートアライメントシステムの信頼性が向上するという効果がある。
(4)更に(3)の眼屈折力測定装置は、被検眼の瞳孔中心を求める手段を有し
前記駆動制御手段は該瞳孔中心に前記検眼部の光軸が一致するように前記駆動手段を制御するようにしたことにより最も虹彩による蹴られの発生が抑えられ、かつ蹴られた場合のチェックを行うことができるのでよりスムーズなアライメント・測定操作ができるという効果がある。
(5)被検眼の前眼部を撮像する撮像手段
該撮像手段で撮像された前眼部像を記憶する記憶手段
被検眼と装置の作動距離を検出する作動距離検出手段
前記記憶された前眼部像で、眼屈折力測定の投影光束又は眼底反射光束が通過する記憶画像の領域で最外周上に位置する複数箇所の明るさ情報を検出する第一の明るさ検出手段
前記測定光束の通過領域の外側に設けられ前記第一の明るさ情報の検出箇所と同心に位置する複数箇所の第二の明るさ検出手段
前記作動距離検出手段からの位置合わせ情報と前記第一の明るさ検出手段からの情報により前記投影光束及び反射光束が被検眼瞳孔を通過可能かどうかを判定する判定手段
前記第一と第二の明るさ検出手段からの情報により装置の検眼部を移動する方向と移動量を算出し、少なくとも移動すべき方向を指示する指示手段を有するようにしたことにより虹彩に蹴られた場合の移動指示がすばやく、的確(移動した後に虹彩に蹴られないことが外側の画素n1〜n8の注目画素の明るさを判定することによりできるので)にできるようになるという効果がある。
(実施例)
図1は、本発明の実施例を示す検眼装置の外観図である。
本装置は被検眼の眼屈折力を測定する眼屈折力計である。
オペレータが操作する面には測定値や被検眼像等の表示や各標装置の設定を選択する液晶モニタやCRTモニタ等の表示装置1と、その表示画面を操作したり、上部の測定部2を被検眼に対して位置合わせするためのトラックボール3、ローラ4、プリンタ印字スイッチや測定開始スイッチや測定モード選択スイッチ等が配置されたスイッチパネル5が配置されている。
また、装置の側面には測定結果などを印字出力する為のプリンタ6が配置されている。
被検者はオペレータが操作する側と反対側にある顔受け部86で顔を固定して、測定部2の対物部の前に被検眼を置くことで測定が可能となる。
図2は本装置の測定部2を被検眼Eにアライメントするための駆動部を示している。
測定部2は上下方向に移動させるための上下駆動部7と接合されており、測定部2を約30mm上下方向に移動できるようになっている。測定部2は上下支柱8に支えられており、直動型のボールベアリングと昇降用の送りねじが内蔵された上下駆動支柱9に接合され、その上下駆動支柱9は上下駆動基台10に固定されている。測定部2の上下支柱8の中心軸回りの回転規制のため、回り止め支柱11が測定部2から下方に突起されており、上下駆動基台10に固定され直動軸受け12に嵌合されている。
上下駆動支柱9と直動軸受け12の間には、上下方向駆動用のモータ13が配置されており、上下駆動基台10の裏面にベルトを介して、上下駆動支柱9の送りねじを回転できるようになっており、モータ13の正逆回転によって測定部2を昇降させることができる。図示は省略しているが、上下方向30mmのストロークの両端は、リミットスイッチの検知で移動限界位置が検知できるようになっている。また、モータ13の軸上には、パルスカウントができるエンコーダが同軸状に配置され、上下駆動基台10の裏面にはそれを検知するフォトカプラが設けられている。
上下駆動基台10は前後駆動部14によって駆動される上下駆動基台10の裏面には雌ねじナット15が固定され、その雌ねじ部には前後駆動基台16に支持されている送りねじ17と螺合されている。送りねじは前後モータ18とカップリングを介して結合されている。また、上下駆動基台10の左右両側面には、直動ガイドレール19a、19bが配置され、可動側が上下駆動基台10に固定側が前後駆動基台16に接合されている。
従って、前後モータ18の正逆駆動によって、上下駆動部7を合む測定部2を前後方向に移動させることができる。前後方向40mmのストロークの両端は、図示を省略しているが、上下駆動部と同様にリミットスイッチの検知により移動限界位置を検知できるようになっている。また、前後モータ18の軸上には、パルスカウントができるエンコーダが同軸状に配置され、前後駆動基台16の上面には、それを検知するフォトカプラが配置されている。
前後駆動基台16を左右方向に駆動させる左右駆動部20は、前後駆動部14と同様に前後駆動基台14の裏面には図示していないが雌ねじナットが固定され、その雌ねじ部には左右駆動基台21に支持されている送りねじ22と螺合されている。送りねじは左右モータ23とベルト24を介して結合されている。また、前後駆動基台14の前後両側面には、直動ガイドレール25a、25bが配置され、可動側が前後駆動基台14に固定側が左右駆動基台21に接合されている。
従って、左右モータ23の正逆回転駆動によって、上下駆動部7及び前後駆動部14を含む測定部2を左右方向に移動させることができる。図示していないが、前後駆動部14と同様に左右方向90mmのストロークの両端は、リミットスイッチの検知で移動限界位置が検知できるようになっている。また、左右モータ23の軸上には、パルスカウントができるエンコーダが同軸状に配置され、左右駆動基台21の上面には、それを検知するフォトカプラが配置されている。
このようにして、測定部2は上下駆動部7、前後駆動部14、左右駆動部20によって、被検眼Eに対して三次元方向に移動でき、子供から大人までの被検者を顔受け部に顔を載せただけで、電動駆動により位置合わせすることができる。
図3は測定部2内部の光学系の配置図である。
被検眼Eの視軸に位置合わせする測定部2の中心軸O上には、被検眼E側から可視光を全反射し波長880nmの光束を一部反射するダイクロイックミラー31、対物レンズ32、孔あきミラー33、絞り34、投影レンズ35、投影絞り36、880nmの光を出射する測定光源37が順次に配列されている。孔あきミラー33の反射方向には、6分割絞り38、6分割プリズム39、受光レンズ40、二次元撮像素子41が順次に配置されている。6分割絞り38と6分割プリズム39は図4に示す形状になっており、実際にはこれらは密着されている。
上述した光学系は眼屈折測定用であり、測定光源37から発せられた光束は、投影絞り36で光束が絞られ、投影レンズ35により対物レンズ32の手前で1次結像するようにされ、対物レンズ32、ダイクロイックミラー31を透過して被検眼Eの瞳中心に投光される。その光束は眼底で結像され、その反射光は瞳周辺を通って再び対物レンズ32に入射される。入射された光束は対物レンズ32を透過後、孔あきミラー33の周辺部で反射される。
反射された光束は被検眼瞳孔と略共役な6分割絞り38で瞳分離され、6分割プリズム39で二次元撮像素子41の受光面に6点のスポット像として投影される。被検眼Eが正視眼であれば、この6点のスポット像の重心を結ぶ近似曲線は所定の円になり、近視眼や遠視眼では近似曲線の円の曲率が大きくなったり小さくなったりする。乱視がある場合は近似曲線は楕円になり、水平軸と楕円の長軸でなす角度が乱視軸角度となる。この楕円の近似曲線の係数より屈折値を求める。
一方、ダイクロイックミラー31の反射方向には、固視標投影光学系と、被検眼の前眼部観察とアライメント検出が共用されるアライメント受光光学系が配置されている。
アライメント受光光学系は、ダイクロイックミラー31側から、レンズ42、ダイクロイックミラー43、アライメントプリズム絞り44、結像レンズ45、二次元撮像素子47が配置されている。
アライメントプリズム絞り44は図5に示す形状になっており、円盤状の絞り板に3つの開口部44a、44b、44cが設けられていて、両側の開口部44a、44bのダイクロイックミラー43側には波長880nm付近のみの光束を透過するアライメントプリズム48a、48bが貼付されている。
また、被検眼Eの前眼部の斜め前方には、780nm程度の波長を有する前眼部照明光源50a、50bが配置されている。
この前眼部照明光源50a,50bで照明された被検眼Eの前眼部像の光束は、対物レンズ32、ダイクロイックミラー31、レンズ42、ダイクロイックミラー43、アライメントプリズム絞り44の中央開口部44c、結像レンズ45を介して二次元撮像素子47の受光センサ面に結像する。
アライメント検出のための光源は、眼屈折測定用の測定光源37と兼用されている。
アライメント時には駆動モータ30で半透明の拡散板46が、光路に挿入される。
拡散板46が挿入される位置は、前述の測定光源37の結像レンズ35による一次結像位置であり、かつ対物レンズ32の焦点位置に挿入される。
これにより、測定光源37の像が拡散板46上に一旦結像して、それが二次光源となり対物レンズ32から被検眼に向かって太い光束の平行光束として投影される。
この平行光束が被検眼角膜Cで反射されて輝点像を形成し、その光束は再び測定部2の対物レンズ32を透過、ダイクロイックミラー31でその一部が反射され、レンズ42を介してダイクロイックミラー43で反射、アライメントプリズム絞り44の開口部44c及びアライメントプリズム48a、48bを透過して結像レンズ45により収斂されて二次元撮像素子47の撮像面上に像を結ぶ。
アライメントプリズム絞り44の中心の開口部44cは、前眼部照明50a、50bの波長780nm以上の光束が通るようになっているので、前眼部照明光源50a、50bにより照明された前眼部像の反射光束は、上記角膜Cの反射光束の経路と同じく観察光学系を辿り、アライメントプリズム絞り44の開口部44cを介して、結像レンズ45で二次元撮像素子47に結像される。
また、アライメントプリズム48aを透過した光束は下方向に屈折され、アライメントプリズム48bを透過した光束は上方向に屈折される。
ダイクロイックミラー43の透過側には固視投影光学系が配置されており、反射ミラー51、固視誘導レンズ52、固視チャート53、固視投影光源54が順次に配列されている。固視誘導時に、点灯された固視投影光源54の投影光束は固視チャート53を裏側より照明され、固視誘導レンズ52、レンズ42を介して被検眼Eの眼底に投影される。なお、固視誘導レンズ52は被検眼Eの視度誘導を行い雲霧状態を実現する為に、固視誘導モータ55により光軸方向に移動できるようになっている。
図7はブロック回路構成図である。測定スイッチ、プリント開始スイッチ等が配置されたスイッチパネル5、測定部2を被検眼Eに対して上下左右に移動させるためのトラックボール3、測定部2を被検眼Eに対して前後に移動させるためのロータリーエンコーダに接続されたローラ4及び測定結果を印字するためのプリンタ6がCPU60のポートに接続されている。
二次元撮像素子41で撮影された眼底像の映像信号は、A/D変換器61によりデジタルデータに変換され、画像メモリ62に格納される。CPU60は画像メモリ62に格納された画像を基に、眼屈折力の演算を行う。また、二次元撮像素子47で撮影された前眼部像の映像信号は、A/D変換器63によりデジタルデータに変換され画像メモリ64に格納される。CPU60は画像メモリ64に格納された画像を基に、アライメント輝点を検出してアライメント状態の検出判断を行ったり、被検眼角膜の曲率半径の演算を行う。
また、二次元撮像素子47で撮影された前眼部像の映像信号は、キャラクタ発生装置65からの信号と合成され、表示装置1上に前眼部像や測定値等が表示される。
上下モータ13、前後モータ18、左右モータ23、固視誘導レンズ用モータ55は、それぞれのモータドライバ67、68、69、70に接続され、CPU60からの指令により駆動される。
拡散板46を光路Oに挿脱する駆動モータ30はモータドライバ85を介してCPU60に接続されており、CPU60からの指令により駆動される。
固視標光源54、ケラトリング光源30、前眼部照明光源50a、50b、測定光源37は図示しないドライバを介してD/A変換器71に接続されており、CPU60からの指令により光量を変化させることができる。
また、顎受け台上下モータ72がモータドライバ73を介してCPU60に接続されていて、スイッチパネル5の顎受け台上下スイッチの入力によるCPU60からの指令により駆動される。
図8はスイッチパネル5の配置図である。
スイッチパネル5には、前述のトラックボール3、ローラ4の他に、被検眼のオートアライメントや測定を開始する為に用いられる測定開始スイッチ80、通常は被検眼の眼屈折力測定を自動(オートアライメント・モード)で行うか手動でトラックボール3、ローラ4で位置合わせを行うマニュアルモードで行うかの選択を行う測定モード選択スイッチ81、眼屈折力測定における角膜頂間距離、乱視度数の符号や表示単位など装置の種々の設定を行う為の設定スイッチ82、測定結果のプリンタ6への印字を行う為の印字スイッチ83が図のように配置されている。
また、顎受け台を顎受け台上下モータ72により上昇させる為のスイッチ84a,下降させる為のスイッチ84bも図のように配置されている。
図9は設定スイッチ82を押した後、装置の設定を行う為に表示装置1の画面に表示される内容の一部を示した図である。
角膜頂間距離VDは0,12.0,13.5から選択できるようになっている。
乱視度数の符号CYLは−、+、+/−から選択できるようになっている。
表示単位Incは0.12、0.25から選択できるようになっている。
オートアライメントで測定を行う際に一回の測定で測定される回数Auto Measureは1,3,5から選択できるようになっている。
オートアライメントで測定を行う際に被検者の左右両眼を連続して測定するR&L Measureは、連続で測定するか(ON)、片眼の測定で停止するか(OFF)を選択できるようになっている。
測定終了後、プリンタ6から自動で測定結果を印字するかの設定Auto PrintはON,OFFから選択できるようになっている。
図8で各項目の下線が引かれている項目が現在の設定を示している。
この設定は、図最下部のグラフィックで示されているように顎受け台上下スイッチ84a,84b、トラックボール3、ローラ4及び各スイッチ80〜83の操作で指示して変更を行える。
このように構成された本実施例の眼屈折力計において、被検者の顔を顔受け台86に固定し、被検眼Eに対して測定部2を光軸Oを合わせるため、操作者はトラックボール3とローラ4を操作する。
トラックボール3の操作は測定部2を被検眼Eに対し左右及び上下方向に移動させ、ローラ4は測定部2を前後方向に移動させて位置合わせができる。
この操作において、装置側ではトラックボール3及びローラ4に接続されているそれぞれのパルスカウンタやロータリーエンコーダからの出力信号をCPU60で受けて、操作量及び速度が検知できるようになっている。更に、その操作量及び速度から各モータドライバ67、68、69を介して、上下モータ13、前後モータ18、左右モータ23を駆動させる。
操作者は上述した操作により被検眼Eの前眼部を表示装置1で確認しながら測定部2を移動し、被検眼Eの瞳孔が確認できると、スイッチパネル5に配置された測定開始スイッチ80を押す。
測定開始スイッチ80を押すと、装置は先ず被検眼Eに対して測定部2を自動的に位置合わせするオートアライメントを開始する。
オートアライメントにより被検眼Eと測定部2の光軸Oの位置合わせが完了後、眼屈折力の測定を行う。
a)オートアライメント動作
図10は測定を開始した状態での、2次元撮像素子47の受光センサ面に投影された被検眼Eの前眼部像を表すものである。
CPU60は、この画像を一旦画像メモリ64に取り込み、画像の中の暗い部分、例えばメモリの1画素の分解能を8ビットとした場合にスレッショルドレベルを80として、それより暗い部分を被検眼の瞳孔部分として検出し、その暗い部分の面積中心Dcを算出する。
図10のように被検眼Eの瞳孔の一部しか撮像されていない時は、前記面積中心Dcは瞳孔中心と一致しないが、後述のように測定部2を移動させ、被検眼Eのアライメントがより正確に行われることによって、被検眼Eの瞳孔がすべて撮像されるようになるので、測定開始当初に瞳孔中心と面積中心Dcが一致していなくても問題はない。
算出された瞳孔像の面積中心Dcが受光センサ面の中心47cに一致或いはアライメント許容範囲内(Ma内)に入るように、CPU60は前述の駆動モータ13,23を作動させ、測定部2を上下左右に移動させる。
図10の場合、被検眼の瞳孔像の面積中心Dcは受光センサ面中心47Cより左斜め上に位置しているので、CPU60は被検眼から見て上方向及び右方向に測定部2を移動させるように駆動モータ13,23を駆動する。
尚、図中raの距離は最終アライメント許容範囲Maの半径、rbは粗アライメントでの目標アライメント許容範囲の半径である。
CPU60は、上述の瞳孔の面積中心Dcの計算、センサ中心47cとの変位方向・変位量の算出を行い、変位量が所定の粗アライメント許容量rb以下になるまで、測定部2の駆動を行って測定部2の光軸と被検眼の粗アライメント動作を継続する。
瞳孔の面積中心Dcが粗アライメントの許容範囲Mb内に入り、Dcと47cとの距離がrb以下になったら、CPU60は拡散板46を光路内に挿入して、測定光源37を点灯する。
その時の前眼部像を図11に示す。
前述したように測定光源37の光束は拡散板46上に測定光源37の像を一旦結像して、その像からの拡散光束が被検眼角膜に平行光束を投影する。その平行光束が被検眼角膜で反射され、よく知られているように被検眼角膜の曲率半径の1/2の位置、光軸上に輝点として像を結ぶ。
この角膜輝点像が測定部2内に設けられたアライメントプリズム絞り44の開口部44a,44b,44c及びプリズム48a,48bにより二次元撮像素子47の受光センサ面上に3つの輝点Ta,Tb,Tcとして投影される。
CPU60は画像メモリ64に図11の前眼部像を取り込み、3つの輝点の検出を行う。
3つの輝点Ta,Tb,Tcが検出できたら、中心の輝点Taを受光センサ中心47cの方向に一致させるように測定部2を駆動制御して移動させる。
CPU60は輝点Taが最終アライメント許容範囲Ma内に入り、Taとセンサ中心47cとの距離がra以下になるまで測定部2を上下・左右に移動させる(図12)と、その後、検眼ユニット5を前後方向に移動させてピント方向の位置合わせを行う。
図12の角膜輝点Tb,Tcが鉛直に並ぶように、CPU60は測定部2を前後方向に駆動させ、図13のように3つの角膜輝点が並んだ状態でアライメントを完了する。
この3つの輝点の位置関係から作動距離を求める方法、つまり測定部2の前後の移動方向と角膜輝点Tb,Tcの挙動については、特開平9−84760に記述されているので、詳細については参照されたい。
瞳孔・角膜輝点によるアライメントが完了すると、次に測定光束が被検眼Eの瞳孔を通過可能かどうかのチェックを行う。
チェックの方法は以下の通りである。
図14は二次元撮像素子47に写し込まれた画像を画像メモリ64に取り込んだ時のメモリ画像である。
6分割絞り38は眼屈折力測定光学系の光束の取り入れ口として機能し、被検眼瞳孔と略共役なのでその被検眼瞳孔を観察する二次元撮像素子47の画像上では共役像38aの部分が測定光束の取り入れ口、つまり測定領域となる。
この測定領域38aの最外周上で45°毎の経線上にあるメモリ・セルm1〜m8は画像メモリ64上で
番地が決まった8個のメモリである。
角膜輝点によるアライメントが完了した時点で、その前眼部のメモリ画像からm1〜m8のメモリの明るさを読み込んで8個全てのメモリ値が所定値以下であれば、測定領域38aが完全に瞳孔領域にあり測定光束が通過可能であると判断する。
所定値としては、前述の瞳孔検出時に用いたスレッショルド値80とすれば良い。
図15は角膜輝点によるアライメントが完了した時点の前眼部像を取り込んだ画像メモリ64の状態を表す図である。
CPU60はm1〜m8のメモリの値をチェックして、全てのメモリの値がスレッショルド値より暗くなっているので、この状態のアライメントで測定光束が被検眼瞳孔を通過可能であると判断して、以下に説明する眼屈折力測定に移る。
しかし、図16のように角膜輝点によるアライメントが完了した時点で、角膜頂点と瞳孔中心が偏芯している被検眼などでは測定領域が虹彩に掛かっている場合がある。
このような場合、測定光束が虹彩に蹴られて正しい測定値が得られない可能性が高い。
本実施例ではCPU60はm1〜m8のメモリの値をチェックして、虹彩に蹴られているm2,m3,m4の画素は瞳孔部分より明るいことを検出、測定領域が蹴られていると判断してアライメント位置の変更を行う。
アライメント位置の変更は以下のように行う。
図17(a)のようにm1〜m8で1個のメモリの値が明るい場合、明るいメモリの位置とは反対のAの方向に、隣接するメモリまでの距離aだけ移動する。
図17(b)のようにm1〜m8で2個のメモリの値が明るい場合、2個のメモリの垂直二等分線の方向Bに隣接するメモリまでの距離bだけ移動する。
図17(c)のようにm1〜m8で3個のメモリの値が明るい場合、最も瞳孔から離れているメモリの位置とは反対の方向Cの方向に、隣接するメモリまでの距離cだけ移動する。図16の場合はこのように移動させる。
Ipは被検眼の虹彩縁であり、斜線部は虹彩を表している。
本実施例では4個以上のメモリの値が明るい場合は、エラー表示して停止する。
4個以上のメモリに虹彩や瞼が掛かっている場合は、検者による開瞼や注意喚起なしに測定領域を確保することが難しいからである。
図16のような場合、Cの方向にcだけ移動させた後、再度、m1〜m8のメモリの明るさをチェックして全部のメモリが暗ければ、以下の測定動作に移る。
b)眼屈折力測定
CPU60は以下の手順で、被検眼Eの眼屈折力を算出する。
測定光源37を点灯し、被検眼の眼底からの反帰光を二次元撮像素子41で受光する。
撮像された眼底像は被検眼の屈折力により、6点に分離されて投影される。
撮像された6点の画像をA/D変換器61によりデジタル化して、画像メモリ62に格納する。
画像メモリ62に格納された6点各々の重心座標を算出、その6点を通る楕円の方程式を求める。(6点から楕円の方程式を求める方法は周知である。)
求められた楕円の長径、短径及び長径軸の傾きを算出して、被検眼Eの眼屈折力を算出する。
なお、求められた楕円の長径、短径に相当する眼屈折力値及び撮像素子の受光面上での楕円軸の角度と乱視軸との関係は予め装置の製造過程において較正されているものである。
以上のようにして、まず求められた眼屈折力値からその屈折力値に相当する位置まで、固視誘導レンズ用モータ55を駆動して、固視誘導レンズ52を移動させて被検眼の屈折度に相当する屈折度で固視チャート53を被検眼に呈示する。
その後、固視誘導レンズ52を所定量、遠方に移動させ、固視チャート53を雲霧させる。
再び測定光源37を点灯し、屈折力を測定する。
上記のような、屈折力の測定→固視目標の雲霧動作→屈折力の測定を繰り返し、屈折力が安定する最終の測定値を得る。
本実施例では測定部2を電動駆動して被検眼のアライメントを自動で行う構成について説明を行ったが、従来の眼屈折力計のように被検眼前眼部像をモニタで観察しながら、ジョイスティック操作でアライメント・測定を行うマニュアルアライメント方式の眼屈折力計でも、本発明を適用可能である。
即ち、一般の眼屈折力計のアライメント輝点方式と同様、被検眼角膜に平行光束を投影してできた角膜輝点をアライメントサークルの中に入れることによりアライメントを行った後(図12のTaをアライメントサークルMaに入れるのと同様)、アライメントサークル内の角膜輝点の有無を画像メモリの解析によって行い、アライメントサークル内に角膜輝点が検出されることと同時に、上述の実施例のように測定光束の外周部の画素m1〜m8の明るさをチェックする。
m1〜m8全てが所定のスレッショルドレベル80より暗くなった時に測定可能の表示、たとえば表示装置1に「Align OK」等と表示を出して測定スイッチの押ボタン動作を促すか、測定動作を自動で開始するようにする。また、このとき角膜輝点がアライメントサークル内に検出されたにもかかわらず、m1〜m8のうち、少なくとも1ヶ所がスレッショルドレベルより明るければ、上述の実施例の移動方法(図17(a),(b),(c))に従い、移動すべき方向(A,B,C等の矢印)を表示するようにする。
また、本実施例では、角膜に平行光束を投影して角膜中心に輝点を形成し、その輝点をアライメントと作動距離合わせの基準に用いた場合を説明したが、被検眼と装置の最終アライメント目標を瞳孔の中心にするアライメントの場合でも同様に適用できる。
上述した実施例で瞳孔の面積中心Dcをアライメント目標Ma内に位置するようにCPU60は左右・上下駆動モータを駆動制御して、作動距離方向は虹彩部のピントが合うように前後動モーターを駆動制御する。(虹彩の紋様のピントで作動距離を合わせるのは周知の方法である)
このようにして行う瞳孔中心アライメントと、上述の実施例で述べた測定領域外周部の画素の明るさチェック及び上記の虹彩にけられた場合の移動方法を組み合わせると、測定光束が虹彩にけられる危険性がもっとも少ない瞳孔中心で測定光束がけられた際の移動も少なくて済むので、より早いアライメントが可能になる。
更に、図18に示すように画像メモリ64上に測定領域38aの最外周部に設けたチェック画素m1〜m8の外側にn1〜n8のような更に外側のチェック画素を設けて、m1〜m8のいずれかが虹彩に蹴られた場合にn1〜n8の明るさをチェックすることにより移動方向と移動量を決めることも可能である。
即ち、図16のようにm2,m3,m4の画素が虹彩により蹴られた場合はその反対側にある外周部の画素n7,n6,n8の明るさを順次チェックして、n7,n8,n6のうち暗い画素の方向(ベクトル和の方向)に移動するように制御することも可能である。
このとき内側のチェック画素と外側のチェック画素の距離dは図17(c)に示したcの距離と同じにとってあるので、図17の実施例と同様の移動距離を判定することができる。
本発明の実施例に係る眼屈折力計の外観図である。 測定部2の駆動機構の説明図である。 測定部2の光学配置図である。 6分割絞り、6分割プリズムの斜視図である。 アライメントプリズム絞りの斜視図である。 ブロック回路構成図である。 操作パネルの配置図である。 設定モード画面の説明図である。 オートアライメント説明用の前眼部画像である。 オートアライメント説明用の前眼部画像である。 オートアライメント説明用の前眼部画像である。 オートアライメント説明用の前眼部画像である。 画像メモリ64上の測定光束の通過領域38aとチェックする画素m1〜m8の位置関係の説明図である。 前眼部画像とチェックする画素m1〜m8の位置関係の説明図である。 前眼部画像とチェックする画素m1〜m8の位置関係の説明図である。 チェックする画素m1〜m8と移動方向・移動量の説明図である。 第二の実施例の第一のチェック画素m1〜m8と第二のチェック画素n1〜n8の説明図である。
符号の説明
47 前眼部観察用2次元撮像素子
64 前眼部の画像メモリ
64c 画像メモリの中心
Dc 瞳孔像の面積中心
Ma,Mb アライメント許容範囲
Ta,Tb,Tc 測定光源による角膜輝点像
38a 画像メモリ上の測定光束の通過領域
m1〜m8 画像メモリ上で明るさをチェックする画素
n1〜n8 画像メモリ上で明るさをチェックする第二の領域の画素

Claims (5)

  1. 被検眼の瞳孔を介して、眼底に光束を投影し、眼光束の眼底反射光束を受光して被検眼の眼屈折力を計測する眼屈折力測定装置において
    被検眼の前眼部を撮像する撮像手段
    該撮像手段で撮像された前眼部像を記憶する記憶手段
    被検眼と装置の作動距離を検出する作動距離検出手段
    前記記憶された前眼部像で、眼屈折力測定の投影光束又は眼底反射光束が通過する記憶画像の領域のうち、最外周上に設けられた複数箇所の記憶画素の明るさ情報を取得する手段
    前記作動距離検出手段からの位置合わせ情報と該明るさ情報の取得手段によって得られた情報から前記投影光束及び反射光束が被検眼瞳孔を通過可能かどうかを判定する判定手段を有することを特徴とする眼屈折力測定装置。
  2. 前記取得された明るさ情報から装置の検眼部移動する方向と移動量を算出し、少なくとも移動すべき方向を指示する指示手段を有することを特徴とする請求項第一項に記載の眼屈折力測定装置。
  3. 検眼部を被検眼に対して、上下左右及び前後に移動させる駆動手段
    前記移動方向の指示手段からの指示により該駆動手段の駆動を制御する駆動制御手段を有する請求項第2項に記載の眼屈折力測定装置。
  4. 被検眼の瞳孔中心を求める手段を有し
    前記駆動制御手段は該瞳孔中心に前記検眼部の光軸が一致するように前記駆動手段を制御する請求項第3項に記載の眼屈折力測定装置。
  5. 被検眼の瞳孔を介して、眼底に光束を投影し、眼光束の眼底反射光束を受光して被検眼の眼屈折力を計測する眼屈折力測定装置において
    被検眼の前眼部を撮像する撮像手段
    該撮像手段で撮像された前眼部像を記憶する記憶手段
    被検眼と装置の作動距離を検出する作動距離検出手段
    前記記憶された前眼部像で、眼屈折力測定の投影光束又は眼底反射光束が通過する記憶画像の領域で最外周上に位置する複数箇所の明るさ情報を検出する第一の明るさ検出手段
    前記測定光束の通過領域の外側に設けられ前記第一の明るさ情報の検出箇所と同心に位置する複数箇所の第二の明るさ検出手段
    前記作動距離検出手段からの位置合わせ情報と前記第一の明るさ検出手段からの情報により前記投影光束及び反射光束が被検眼瞳孔を通過可能かどうかを判定する判定手段
    前記第一と第二の明るさ検出手段からの情報により装置の検眼部を移動する方向と移動量を算出し、少なくとも移動すべき方向を指示する指示手段を有することを特徴とする眼屈折力測定装置。
JP2003332679A 2003-09-25 2003-09-25 眼屈折力測定装置 Withdrawn JP2005095354A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003332679A JP2005095354A (ja) 2003-09-25 2003-09-25 眼屈折力測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003332679A JP2005095354A (ja) 2003-09-25 2003-09-25 眼屈折力測定装置

Publications (1)

Publication Number Publication Date
JP2005095354A true JP2005095354A (ja) 2005-04-14

Family

ID=34460906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003332679A Withdrawn JP2005095354A (ja) 2003-09-25 2003-09-25 眼屈折力測定装置

Country Status (1)

Country Link
JP (1) JP2005095354A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502346A (ja) * 2005-07-29 2009-01-29 アルコン リフラクティブホライズンズ,インコーポレイティド 眼科装置位置合わせシステム及びその方法
CN103976708A (zh) * 2014-05-20 2014-08-13 深圳市莫廷影像技术有限公司 角膜顶点对准方法和系统及眼轴光程长度测量方法和系统
JP2017119028A (ja) * 2015-12-29 2017-07-06 株式会社ニデック 眼底撮影装置
CN112773323A (zh) * 2019-11-06 2021-05-11 上海三联(集团)有限公司 一种十字孔镜片及眼镜验配测量架
CN113729619A (zh) * 2021-09-24 2021-12-03 北京鹰瞳科技发展股份有限公司 便携式眼底相机及锁定/解锁其的方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009502346A (ja) * 2005-07-29 2009-01-29 アルコン リフラクティブホライズンズ,インコーポレイティド 眼科装置位置合わせシステム及びその方法
US9011418B2 (en) 2005-07-29 2015-04-21 Alcon Refractivehorizons, Inc. Ophthalmic device positioning system and associated methods
CN103976708A (zh) * 2014-05-20 2014-08-13 深圳市莫廷影像技术有限公司 角膜顶点对准方法和系统及眼轴光程长度测量方法和系统
JP2017119028A (ja) * 2015-12-29 2017-07-06 株式会社ニデック 眼底撮影装置
CN112773323A (zh) * 2019-11-06 2021-05-11 上海三联(集团)有限公司 一种十字孔镜片及眼镜验配测量架
CN113729619A (zh) * 2021-09-24 2021-12-03 北京鹰瞳科技发展股份有限公司 便携式眼底相机及锁定/解锁其的方法
CN113729619B (zh) * 2021-09-24 2024-01-16 北京鹰瞳科技发展股份有限公司 便携式眼底相机及锁定/解锁其的方法

Similar Documents

Publication Publication Date Title
JP4769365B2 (ja) 眼科装置、及びそのオートアライメント方法
JP5954982B2 (ja) 眼科装置および制御方法並びに制御プログラム
US7470025B2 (en) Ophthalmic apparatus
JP6071304B2 (ja) 眼科装置及びアライメント方法
JP6006519B2 (ja) 眼科装置
US9089290B2 (en) Ophthalmologic apparatus, ophthalmologic control method, and program
JP4533013B2 (ja) 眼科装置
US7478909B2 (en) Opthalmologic apparatus
JP2013230303A (ja) 眼科装置
JP5342211B2 (ja) 眼屈折力測定装置
JP4428987B2 (ja) 眼科装置
JP2013128648A (ja) 眼科装置および眼科制御方法並びにプログラム
JP4136690B2 (ja) 眼科装置
JP2002238852A (ja) 検眼装置
JP2005095354A (ja) 眼屈折力測定装置
JP4136691B2 (ja) 眼科装置
JP4136689B2 (ja) 眼科装置及びその制御方法
JP4745550B2 (ja) 角膜測定装置
JP2005095355A (ja) 眼科装置
JP2006122411A (ja) 眼屈折力測定装置
JP2005006869A (ja) 眼科装置及び模擬眼
JP5187995B2 (ja) 眼科装置
JP2001309888A (ja) 眼屈折測定装置
JP2001292966A (ja) 眼屈折測定装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205