WO2020250605A1 - 陸揚げケーブル及び部分陸揚げケーブル - Google Patents
陸揚げケーブル及び部分陸揚げケーブル Download PDFInfo
- Publication number
- WO2020250605A1 WO2020250605A1 PCT/JP2020/018778 JP2020018778W WO2020250605A1 WO 2020250605 A1 WO2020250605 A1 WO 2020250605A1 JP 2020018778 W JP2020018778 W JP 2020018778W WO 2020250605 A1 WO2020250605 A1 WO 2020250605A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cable
- optical fiber
- landing
- core wire
- fiber core
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 claims abstract description 308
- 238000004891 communication Methods 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims description 56
- 230000008878 coupling Effects 0.000 claims description 26
- 238000010168 coupling process Methods 0.000 claims description 26
- 238000005859 coupling reaction Methods 0.000 claims description 26
- 239000003643 water by type Substances 0.000 claims description 22
- 238000005516 engineering process Methods 0.000 claims description 18
- 238000009412 basement excavation Methods 0.000 claims description 15
- 238000009933 burial Methods 0.000 claims description 15
- 238000009434 installation Methods 0.000 claims description 14
- 238000003860 storage Methods 0.000 claims description 13
- 239000004698 Polyethylene Substances 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 9
- -1 polyethylene Polymers 0.000 claims description 9
- 229920000573 polyethylene Polymers 0.000 claims description 9
- 239000011347 resin Substances 0.000 claims description 8
- 229920005989 resin Polymers 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 abstract description 30
- 230000003287 optical effect Effects 0.000 description 28
- 238000010586 diagram Methods 0.000 description 24
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 230000005540 biological transmission Effects 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 230000003321 amplification Effects 0.000 description 10
- 238000003199 nucleic acid amplification method Methods 0.000 description 10
- 230000008901 benefit Effects 0.000 description 9
- 229910052742 iron Inorganic materials 0.000 description 9
- 230000009467 reduction Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 238000010292 electrical insulation Methods 0.000 description 4
- 241000842962 Apoda limacodes Species 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000004873 anchoring Methods 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/4471—Terminating devices ; Cable clamps
- G02B6/4472—Manifolds
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4439—Auxiliary devices
- G02B6/4471—Terminating devices ; Cable clamps
- G02B6/4472—Manifolds
- G02B6/4475—Manifolds with provision for lateral branching
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/46—Processes or apparatus adapted for installing or repairing optical fibres or optical cables
- G02B6/50—Underground or underwater installation; Installation through tubing, conduits or ducts
- G02B6/506—Underwater installation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/22—Cables including at least one electrical conductor together with optical fibres
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/14—Submarine cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4416—Heterogeneous cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
- G02B6/4401—Optical cables
- G02B6/4415—Cables for special applications
- G02B6/4427—Pressure resistant cables, e.g. undersea cables
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/46—Processes or apparatus adapted for installing or repairing optical fibres or optical cables
- G02B6/56—Processes for repairing optical cables
- G02B6/562—Processes for repairing optical cables locatable, e.g. using magnetic means
Definitions
- the present invention relates to an optical communication system using a submarine cable.
- Submarine communication cable systems are widely used as a means of realizing communication between land and land across the sea.
- the medium for transmitting the signal is an optical fiber, and the transmission loss is compensated by an optical amplifier in the repeater for relay transmission.
- the power to drive the optical amplifier is supplied from the land stations at both ends of the cable through the feeder lines in the cable.
- the landing cable (Landing cable, ShoreEnd cable) is a name for a submarine cable constructed in the cable landing work, and is a submarine cable from the landing point to the offshore construction section.
- a beach manhole At the landing point, what constitutes a demarcation point called a beach manhole is generally installed.
- the landing cable is pulled to the beach manhole and connected to the land cable.
- a land cable connects the beach manhole and the Cable Landing Station.
- Submarine cable congestion The landing of submarine cables is concentrated on the coast near the big city, and multiple submarine cables are pulled into one landing station building, so the submarine cables have to approach each other and become crowded. Considering the repair of submarine cables, a certain distance is required between the submarine cables, but it becomes difficult when it is crowded. Crossing of submarine cables is also a problem.
- the HDD method may be required when a new submarine cable is additionally landed due to the construction of a seawall after that.
- the sea is a public common land, and it is necessary to obtain the consent of fishermen and other people involved in the joint use of the construction area to land the cable.
- the period during which landing work can be carried out is often limited to the season when fishing is inactive.
- the construction period is required to be shortened as much as possible. (4) Necessity of cable protection work.
- a resin protective tube is attached to the cable and then bolted by a diver of the resin protective tube in order to prevent damage to the submarine cable due to fishing activities such as bottom trawling and anchoring of ships.
- simultaneous burying by a cable laying ship is generally performed from the landing point to a water depth of about 1000 to 1500 m.
- the laying work of the landing cable is much more time-consuming than the construction method in which the submarine cable is simply placed on the seabed. Therefore, the construction cost per distance for laying the landing cable is significantly higher than the construction cost for laying in the open ocean and deep sea. (5) Protection of the natural environment.
- a general submarine cable for optical communication is a composite cable having a plurality of (about 6 to 16) optical fibers and one feeding line.
- the feed line is a lead wire for supplying power to a submarine repeater or the like.
- the optical fiber is housed in a pipe-like structure to protect it from high water pressure.
- the number of optical fiber cores (optical fiber cores) per cable has been generally about 1000 for backbone transmission on land since the 1990s.
- the number of optical fiber cores is restricted mainly for the following two reasons. (1) Since there is an upper limit to the number of optical amplification repeaters that can be mounted to compensate for the transmission loss of the optical fiber due to the limitation of the power supply from the landing station, there is an upper limit to the number of optical fiber cores that can be used as a result. (2) There is an upper limit to the number of optical fiber cores that can be accommodated inside a pipe-shaped structure. ⁇ Streaming off> A method called streaming-off, which is often used in submarine cable laying work, will be described.
- Streaming off occurs, for example, when a submarine cable laying vessel needs to temporarily release the cable at sea.
- Streaming-off is a construction method in which the end point of the submarine cable, which is the resumption point of construction, is temporarily laid on the seabed by adding a rope with a wire for searching and an unnecessary submarine cable in order to make it easier to pull up when resuming.
- the end point of the submarine cable is watertightly sealed with a cap that can withstand water pressure, and is connected to the streaming cable.
- the optical fiber core wire inside the streaming cable is not connected to the optical fiber core wire of the submarine cable, and only the mechanical tensile strength between the streaming cable and the submarine cable is secured.
- Grapnel anchor When pulling up the cable, lower the small anchor called Grapnel anchor from the ship to the seabed, run the anchor so that it is as orthogonal to the cable as possible, hook the streaming cable, and pull it up. If the anchor is hooked too close to the tip of the streaming cable, the streaming cable will slip off due to the imbalance of the left and right weights of the streaming cable during lifting, so hook the anchor not too close to the tip.
- the route for temporary laying of the streaming cable is set in consideration of the area where the Grapnel anchor runs at the time of withdrawal.
- streaming off has been described in the case where the end point of the cable during laying is temporarily released from the laying ship and placed on the seabed.
- streaming off is also used in cases where the submarine cable is not connected at the time of installation and is extended or expanded by connecting the submarine cable to the end in the future.
- branching There are several types of branching. First, regarding the branching of light, there are those that branch in units of optical fiber cores and those that branch in units of wavelengths (groups) that pass through one optical fiber core, and the band distribution and directions are fixed. It can be classified into those that are targeted and those that are variable by remote control.
- Branching of the feeder As for the branching of the feeder, it is more complicated than the branching of light, including the configuration of grounding at the branching point, and various types are used.
- ⁇ Purpose of cable branching> There are two main purposes for installing a cable branching device on the seabed.
- Branching of Communication Route A typical form of a submarine cable network connecting a plurality of landings will be described with reference to FIGS. 11 and 12.
- FIG. 11 is a conceptual diagram showing the form of a network using a submarine branching device (BU).
- BU submarine branching device
- the individual branches are shown in FIG.
- vehicles for different grounds are routed to different directions on the seabed so that they branch or merge.
- the destination of an optical signal is divided according to the optical fiber core wire through which it is flowing and the wavelength group in wavelength division multiplexing.
- FIG. 12 is a conceptual diagram showing a form of a network called Festoon. In this form, it is not necessary to place the branch on the seabed, but the number of landing cables increases. Each landing point has a structure as shown in FIG.
- FIG. 15 is a conceptual diagram showing the configuration of a submarine cable system that makes landing cables redundant. Since the submarine cable is easily damaged by fishing activities, ship anchors, etc., especially in shallow seas, techniques for providing a redundant configuration with a plurality of landing cables are disclosed in, for example, Patent Documents 1 and 2. ⁇ Landing of multiple cables without gaps> Construction work may be carried out to land multiple submarine cables at one landing site. This is the above-mentioned network form called Festoon, and is generally used. In this case, a method is used in which the first one is landed, laid offshore, streamed off, and then the second one is landed. The first submarine cable will be streamed off after laying, at least to areas that do not require coordination with fishermen.
- Landing without a gap is a great advantage because it makes it possible to set up heavy machinery at the landing point and coordinate with fishermen at once.
- connection between optical fiber cores and feeders (2) electrical insulation, (3) water pressure resistance, and (4) tensile strength equivalent to that of a cable.
- Various measures have been taken to realize this.
- the optical fiber is fused and connected, and the reinforcing sleeve and the extra length of the optical fiber are wound around the center and accommodated.
- the entire core of the connection is molded with polyethylene (polyethylene, hereinafter abbreviated as PE) to obtain insulation.
- PE polyethylene
- UJ consortium also qualifies connection technicians, and a qualified person called UJ Director can board a laying vessel together with a connection jig to enable high-quality submarine cable connection even at sea.
- UJ Director can board a laying vessel together with a connection jig to enable high-quality submarine cable connection even at sea.
- a device equipped with an electric circuit, such as an optical amplifier repeater is housed in a metal pressure-resistant container capable of radiating heat, covered with a pressure-resistant lid, sealed by welding, and shipped from the factory.
- a cable coupling portion is used for the connection portion between such a device and the submarine cable.
- the structure is described, for example, in Non-Patent Document 1.
- the core part of the cable coupling part has a structure similar to UJ Joint, but the basic difference is that one of the optical wiring is called a tail cable.
- the tail cable is described in Non-Patent Document 1 p. It is described in 123, 129.
- the tail cable is a flexible wire that combines an optical fiber and a feeder, made to withstand high water pressure in the deep sea. Since it is a wire used for wiring inside the housing structure (but outside the pressure resistant container), tensile strength is not required.
- the end of the tail cable on the pressure resistant container side is integrated with a component called a feedthrough, and the optical fiber and the feeder are connected to the inside of the housing via the feedthrough.
- the feedthrough has the ability to prevent water from entering the housing even if water should enter the tail cable.
- a metal fitting called a chip which acts like a feedthrough, is integrated at the end of the tail cable on the coupling portion side, and an optical fiber and a feeder are connected to the center of the coupling portion via the chip. ..
- the core of the connection is PE-molded including the chip, and electrical insulation is realized. In this way, the core of the connection between the cable coupling and UJ looks like a PE-molded cocoon ball.
- the cable coupling connection work is done at the submarine cable factory before loading on the laying vessel. Since cable couplings do not need to be connected on board, they have not yet been standardized in the industry and are based on manufacturer-specific specifications. ⁇ Retention wire retaining part> Submarine cables are designed and manufactured with strict specifications of tensile strength because a load of several tons can be obtained by suspending submarine cables and equipment for several thousand meters from the laying ship on the sea surface to the seabed. Therefore, the cable connection portion also needs to have the same tensile strength.
- the cable contains a tensile strength wire, which provides tension strength.
- the connection portion requires a tensile strength wire retaining portion having a structure for firmly retaining the tensile strength wire.
- the tensile strength wire retaining portion is described on page 1 of Non-Patent Document 1. 89, p. It is described in 129.
- the basic structure is a structure in which the tensile strength wire in the cable is separated and spread, and the separated tensile strength wire is sandwiched between the funnel-shaped metal fitting and the pin to be pushed into it. There are these fasteners at both ends of the cable connection, which are tightly connected to the connection structure. With this structure, tensile strength comparable to that of the cable itself is realized.
- the core part including this tensile strength wire retaining part is all molded with polyethylene.
- Submarine cables include basic structural cables and armored cables with exterior iron wires wrapped around them for protection. There are various types of exteriors depending on the degree of protection. The above-mentioned tensile strength wire is inside the non-exterior cable, but it is also necessary to retain the exterior iron wire when connecting the exterior cable, and it is realized by the same structure.
- ⁇ Progress and obsolescence of submarine communication cables> Next, the technological progress of submarine communication cables and the accompanying technological obsolescence will be described. In particular, the field of telecommunications equipment is known for its rapid technological progress and the accompanying technological obsolescence. Even after the transition from coaxial cables to optical fiber cables for communication submarine cables, technological progress continues, and the performance of submarine cable systems that have been laid and in operation continues to be inferior to the latest models.
- wavelength division multiplexing technology Today, optical fiber transmission using wavelength division multiplexing technology is commonly used in backbone transmission lines.
- One of the features of wavelength division multiplexing technology is that the overall transmission capacity can be increased in response to increasing demand by adding or updating optical transceivers at both ends of the cable. Even with such expandability, technical expansion has become severe, and the situation of migrating from old cable systems to new cable systems continues. The reasons are as follows. (1) Optical characteristics of optical fiber. As the modulation speed of the transmission signal is increased, the demand for optical characteristics such as wavelength dispersion and polarization mode dispersion becomes stricter, and there is a restriction in the direction of increasing the transmission speed. (2) Band of optical amplification repeater, number of optical fiber cores that can be amplified.
- optical characteristics (wavelength dispersion and polarization mode dispersion) of optical fibers which were one of the causes of technological obsolescence, were alleviated at once by the digital coherent technology put into practical use in the early 2010s.
- Digital coherent technology has put into practical use the equalization of analog-to-digital converted signal waveforms by real-time arithmetic processing. As a result, even a slightly old optical fiber cable can be used as a cutting-edge large-capacity transmission line with almost no trouble.
- An object of the present invention is to provide a landing cable or the like that can suppress the occurrence of landing work.
- the landing cable of the present invention is a landing cable installed offshore from the cable landing point, and is an optical fiber core wire used from the beginning of communication by the landing cable.
- a spare optical fiber core wire which is a spare optical fiber core wire is provided, and the spare optical fiber core wire is the preliminary light from the end point on the cable landing point side. It is connected to the boundary point with the cable section not including the fiber core wire, and at the boundary point, the spare optical fiber core wire end point, which is the end point of the spare optical fiber core wire, is kept in a state where it can be used in the future.
- the landing cable or the like of the present invention can suppress the occurrence of landing work.
- a spare optical fiber core wire (spare optical fiber core wire) for expansion is provided in the landing cable.
- the spare optical fiber core wire is provided on the assumption that more optical fiber core wires will be used in the future in the submarine cable ahead of the cable boundary point (offshore side).
- FIG. 1 is a conceptual diagram showing the configuration of a submarine cable system 100, which is an example of the submarine cable system of the present embodiment.
- the submarine cable system 100 connects the landing station building 16 and the oncoming landing station (not shown) via the seabed.
- the landing cable 121 is a part of the submarine cable system 100, and is a submarine cable that is landed at the landing station building 16 via the land cable 18.
- a beach manhole 17 that forms a demarcation point is installed.
- the landing cable 121 and the land cable 18 are connected.
- the landing cable 121 is directly pulled into the landing station building 16 without going through the land cable 18.
- the land section is connected by the land cable 18 having a high flexibility.
- the first repeater 11 is the first repeater when the landing cable 121 is traced offshore from the landing point 97.
- the submarine equipment such as BU explained in the background technology section appears before the repeater, but including those submarine equipment, they will be collectively referred to as the first repeater here. ..
- the landing cable 121 includes an optical fiber having 48 optical fiber core wires (not shown) and a feeder line. This feeder is for supplying power to the repeaters in the submarine cable system 100 including the first repeater 11. Of the 48 optical fiber core wires described above, 16 are used for communication with other countries from the beginning of communication by the submarine cable system 100. The remaining 32 optical fiber cores are spare optical fiber cores that are not used at the beginning and are to be expanded when the number of optical fiber cores used in the future increases.
- the 32 spare optical fiber core wires for these expansions are connected to the boundary point 119 in the sea through the landing cable 121.
- the boundary point 119 is set in the cable coupling on the landing point side of the first repeater 11. That is, the spare optical fiber core wire is not guided to the inside of the main body for optical amplification of the first repeater, and is not connected to the submarine cable beyond that.
- Boundary point 119 is set outside the territorial waters line (12 nautical miles (22.2 km) from the coast). Since the distance from the coastline to the first repeater 11 is generally about 30 to 50 km, it can be expected to cross the territorial waters line. Therefore, it is desirable that the boundary point 119 is set near the first repeater 11.
- boundary point 119 is any of a range beyond the section where the cable burial method is required, a range beyond the section where the HDD method is required, and a range beyond the section where permission for installation work is required. Is set to.
- FIG. 2 is a conceptual diagram showing a configuration example of the first repeater 11 shown in FIG.
- the structure of a general repeater will be described.
- the mounting configuration of what constitutes the boundary point 119 in this embodiment will be described.
- the first repeater 11 includes a cable coupling portion 24 on the land side, a repeater housing 37, and a cable coupling portion on the offshore side (not shown).
- the cable coupling portion 24 includes a boot 38, a storage portion 35, and a bellows portion 36. The same applies to the cable coupling on the offshore side.
- the boot 38 is a conical member that protects the vicinity of the cable connection.
- the bellows portion 36 has a bellows shape, and the relative angle between the main body of the cable coupling portion and the repeater housing 37 can be changed.
- the storage unit 35 includes a mold unit 34.
- the mold portion 34 is, for example, one molded from polyethylene. Electrical insulation is ensured by molding with polyethylene.
- the mold portion 34 includes a tensile strength wire retaining portion 33 and an optical fiber extra length storage portion 31 inside.
- the landing cable 121 is fixed to the inside of the mold portion 34 by the tensile strength wire retaining portion 33.
- the optical fiber core wire in the landing cable 121 and the tail cable 23 extending from the inside of the repeater housing 37 are fusedly connected and accommodated in the mold portion 34.
- the present mounting configuration stores the end points of the preliminary optical fiber core wires connected from the landing point 97 in a mold portion, for example, in a wound state.
- the landing cable 121 is the same as that shown in FIG. 1, and includes 48 optical fiber core wires and a feeder line. Although not shown, 48 optical fiber core wires are exposed to the right by a predetermined length from the end fixed to the tensile strength wire retaining portion 33 of the landing cable 121.
- 16 optical fiber cores used from the beginning of communication are connected to the tail cable 23 and further offshore via an optical amplifier (not shown) inside the repeater housing 37. It is connected to the optical fiber core wire of the submarine cable to go.
- 32 of these 48 optical fiber core wires are stored in the optical fiber extra length storage unit 31 by, for example, being rolled up.
- 16 pairs of optical fiber core wires may be loopback-connected to each other. As a result, the number of test executions for monitoring the continuity of these 32 spare optical fiber core wires from land is half that of the case where the loopback connection is not made. Therefore, it becomes easy to monitor the continuity of these 32 spare optical fiber core wires from land.
- the total number of optical fiber cores provided in the landing cable is 48, of which 16 are the optical fiber cores (initially used optical fiber cores) used from the beginning of communication.
- the total number of optical fiber cores, the number of initially used optical fiber cores, and the number of spare optical fiber cores included in the landing cable of the present embodiment are not limited to these numbers.
- the landing cable of this embodiment includes a spare optical fiber core wire. Spare fiber optic cores are pre-included in the landing cables to be laid in case the number of fiber optic cores used increases due to future updates of submarine cables beyond the boundary. When the number of optical fiber core wires used increases, it is possible to suppress the occurrence of new cable landing work by using this spare optical fiber core wire as well.
- the number of optical fiber cores used at the beginning of cable installation may be less than the maximum number of cores that can be accommodated in the cable.
- One is when the power supplied to the amplification repeater is limited. Since there is an upper limit to the power supply from the landing station to the submarine cable, there is a limit to the power that can be used by each amplification repeater.
- An amplification repeater for each core wire is stored in the amplification repeater main body, and as the number of core wires increases, the number of amplifiers also increases and the required power increases.
- the power limit per repeater is strict, the number of core wires that can be amplified and relayed is limited.
- the other is the case where the maximum number of optical fiber cores that can be accommodated is not required when predicting the future increase in communication demand at the time of installation.
- the number of optical fiber cores is selected to be smaller than the maximum number of optical fiber cores that can be accommodated in order to minimize the investment required.
- the energy conversion efficiency of the optical amplifier in the repeater is improved and the power required for the optical amplification relay per optical fiber core wire is reduced due to future technological improvement.
- the spare optical fiber core wire already provided can be used, so that the number of optical fiber core wires used can be increased without updating the landing cable. It will be possible.
- the landing cable of the present embodiment can reuse the communication ground as a communication line for a new communication route changed from the original communication ground.
- the landing cable of this embodiment Even with the landing cable of this embodiment, if the number of optical fiber core wires used in the submarine cable is to be increased, it is necessary to re-lay the submarine cable and repeater beyond the boundary point. However, when the landing cable of the present embodiment is used, a spare optical fiber core wire is included in the landing cable in advance. Therefore, the landing cable of the present embodiment can be used as a part of a new optical submarine cable system without laying a new landing cable.
- the boundary point which is the end point on the offshore side of the preliminary optical fiber core wire, is also set outside the territorial waters, that is, on the high seas.
- each country enforces the law of the license system for civil engineering and construction.
- the license system applies to the territorial waters covered by the sovereignty of the country. Therefore, construction work carried out in the territorial waters can only be carried out by a contractor with a civil engineering license in that country.
- construction work in the territorial waters is an economic activity within the country, so it is necessary to comply with the tax system of that country. Therefore, construction work in the territorial waters is laborious and costly, and it is desirable to avoid it if possible.
- the law of the country generally does not apply. Therefore, since the spare optical fiber core wire is laid in advance to the outside of the territorial waters, the benefit of labor and cost reduction can be enjoyed.
- the boundary point is also set in a range beyond the section where the cable burial method or the horizontal excavation method is required. Since the cable burial method is for burying the submarine cable, it is more costly than the method of simply placing the submarine cable on the seabed.
- the horizontal excavation method is more costly because, as described in the background technology section, a dedicated excavator is required and a route design based on a preliminary boring survey is required. If the boundary point is set in a range beyond the section where the cable burial method or horizontal excavation method is required, the method of simply placing it on the seabed can be applied, and the benefit of cost reduction can be enjoyed. Can be done.
- the boundary point is also set in a range beyond the section requiring the acquisition of permission for installation work. As a result, even if the country is overseas or the law of the country is applied, it is not necessary to obtain a license, and the benefit of labor and cost reduction can be enjoyed.
- the installation position of the boundary point is not limited to the inside of the cable coupling portion.
- a boundary point may be set in the submarine cable connection portion provided between the coastline and the first repeater.
- the spare optical fiber cores be connected as close to the first repeater as possible.
- the boundary point may be set offshore from the first repeater.
- the first repeater also needs to be provided with an optical amplifier for the spare optical fiber core wire. Therefore, the price of the first repeater rises because it is a special product whose specifications are different from those of many other repeaters.
- spare products synthetic machines
- spare machines for repairing repeaters and submarine cables, which require a long time to manufacture, are stored in a warehouse on land and shipped. Perform repair work. Since this spare machine needs to be prepared for each type of repeater, as the number of types increases, the cost for manufacturing and holding the spare machine also increases.
- the landing cable of the first embodiment has only an extra optical fiber core wire as a spare for future expansion, and does not have a spare feeder (spare feeder). Therefore, in the landing cable of the first embodiment, a new submarine cable cannot be additionally connected to the landing cable.
- FIG. 3 is a conceptual diagram showing the configuration of the submarine cable system 200, which is an example of the submarine cable system of the present embodiment.
- the landing cable 221 of the submarine cable system 200 includes a spare optical fiber core wire and a spare feeder line that are not initially used.
- the preliminary optical fiber core wire is branched at the branching portion 41, and the end points of the branched optical fiber core wire and the preliminary feeding line form a boundary point 219.
- the landing cable 221 has the same number of optical fibers as the sum of the number of optical fiber core wires provided by the four branched submarine cables 21a to 21d and the same number of optical fiber core wires as the number of power supply lines provided by each branched submarine cable. It is equipped with a power supply line.
- the landing cable 221 is a single landing cable.
- the number of optical fiber cores distributed to each branched submarine cable is arbitrary, but here, an example in the case of 16 cables will be described.
- the branching portion 41 branches the optical fiber core wire group and the feeding line provided in the landing cable 221 into each branched submarine cable.
- the boundary point 219 which is the boundary between the cable section including the spare optical fiber core wire and the spare feeder line and the cable section not including the spare power feeding line, is composed of the branch portion 41 and the branch submarine cables 21a to 21d.
- the branch portion 41 what constitutes the boundary point in the narrow sense is the branch portion 41.
- the first repeater 11 is a general one similar to many other repeaters in the submarine cable system 200, and the number of optical fiber cores of the cable before and after the repeater is also the same as that of other repeaters.
- the branched submarine cables 21a, 21b and 21d are expansion reserves that are not initially used.
- the offshore ends of the bifurcated submarine cables 21a, 21b and 21d are watertightly sealed and streaming-off.
- Streaming-off is a method of mechanically adding a streaming cable and laying it on the seabed in order to make it easier to pull up the submarine cable end point, which is the construction restart point, as explained in the background technology section. (Optical fiber core wire and feeding line are not connected.)
- the branched submarine cable 21c is connected to other countries via a plurality of repeaters beyond it. Communication between the home country and another country is performed by the optical fiber core wire provided in the branched submarine cable 21c.
- the branch portion 41 and the branch submarine cables 21a to 21d constituting the boundary point 219 are naturally set between the coastline and the first repeater 11.
- the branch portion 41 and the branch submarine cables 21a to 21d constituting the boundary point 219 are also set outside the territorial waters, that is, on the high seas.
- each country enforces the law of the license system for civil engineering and construction.
- the license system applies to the territorial waters covered by the sovereignty of the country. Therefore, construction work carried out in the territorial waters can only be carried out by a contractor with a civil engineering license in that country.
- construction work in the territorial waters is an economic activity within the country, so it is necessary to comply with the tax system of that country. Therefore, construction work in the territorial waters is laborious and costly, and it is desirable to avoid it if possible.
- the law of the country generally does not apply. Therefore, by setting the boundary point 219 outside the territorial waters, the benefit of labor and cost reduction can be enjoyed.
- the branch portion 41 and the branch submarine cables 21a to 21d constituting the boundary point 219 are also set in a range beyond the section where the cable burial method or the horizontal excavation method is required. Since the cable burial method is for burying the submarine cable, it is more costly than the method of simply placing the submarine cable on the seabed. The horizontal excavation method is more costly because, as described in the background technology section, a dedicated excavator is required and a route design based on a preliminary boring survey is required. If the boundary point 219 is set in a range beyond the section where the cable burial method or horizontal excavation method is required, the method of simply placing it on the seabed can be applied, and the benefit of cost reduction can be enjoyed. Can be done.
- the branch portion 41 and the branch submarine cables 21a to 21d constituting the boundary point 219 are also set in a range beyond the section requiring the acquisition of permission for installation work. As a result, even if the country is overseas or the law of the country is applied, it is not necessary to obtain a license, and the benefit of labor and cost reduction can be enjoyed.
- FIG. 4 is a conceptual diagram showing the landing cable 21 which is the first configuration example of the landing cable 221 of FIG.
- the landing cable 21 shown in FIG. 4 is a bundle of a plurality of minimum basic units of a submarine cable called an LW (Light Weight Cable) core cable and provided with an exterior.
- LW core cable may be abbreviated as the LW core.
- FIG. 4A is a cross-sectional view of the landing cable 21.
- FIG. 4B is a cross-sectional view showing the configuration of the LW core cable 51n, which is a configuration example of the LW core cables 51a to 51d shown in FIG. 4A.
- the exterior iron wire 52 of the landing cable 21 shown in FIG. 4 is for protecting the cable from fishing activities in shallow water, anchoring of a ship, contact with a cable burying machine during landing work, and the like.
- the landing cable 21 has a structure in which four LW core cables 51a to 51d are gently wound around an interposition 53 and filled with an inclusion such as resin.
- the LW core cable 51n shown in FIG. 4B is a basic unit of a general submarine cable.
- the LW core cable 51n includes an optical fiber accommodating pipe 56, a plurality of tensile strength wires 562 arranged so as to surround the optical fiber accommodating pipe 56, and a pipe-shaped feeder line 54 covering the outside thereof. And the outside thereof is covered with an insulating coating material 57.
- the tensile strength wire 562 is a steel wire for holding and withstanding when tension is applied to the cable.
- the optical fiber accommodating pipe 56 is a strong steel pipe that withstands the optical fiber so as not to apply water pressure, and accommodates the optical fiber core wire.
- FIG. 5 is a conceptual diagram showing a cross section of the landing cable 21, which is a second configuration example of the landing cable 221 shown in FIG. 3 having six LW core cables 51a to 51f. Each LW core cable has the same configuration as the LW core cable 51n shown in FIG. 4 (b).
- FIG. 6 is a cross-sectional conceptual diagram showing the landing cable 21 which is the third configuration example of the landing cable 221 shown in FIG. Unlike the first and second configuration examples, the landing cable 21 shown in FIG. 6 is configured as one cable, not as an aggregate of the basic unit structure (LW core) of the submarine cable.
- FIG. 6A is a cross-sectional view of the landing cable 21, and
- FIG. 6B is a cross-sectional view showing a feeder line 62 which is a configuration example of each feeder shown in FIG. 6A.
- the landing cable 21 shown in FIG. 6 has a tensile strength wire 61 at the center, and feeding lines 62a to 62e with an insulating coating are arranged concentrically around the tensile strength wire 61.
- the optical fiber accommodating pipes 63a to 63e are further arranged in the valley where the feeder lines are in contact with each other, and the structure up to this point is resin-molded.
- the landing cable 21 is further wound with a protective exterior iron wire 52 on the outside thereof.
- the tensile strength wire 58 is for realizing the tension performance of the cable, and serves as a central interposition during cable manufacturing.
- the feeder line 62 is formed by covering the feeder conductor 621 with a feeder line coating 622 which is an insulating material such as resin.
- the optical fiber accommodating pipe 63 does not have to be as strong as that used for LW core cables.
- the configuration shown in FIG. 6 includes optical fiber accommodating pipes for the number of branches. However, the optical fiber core wires may be put together in one pipe. In that case, it is necessary to distribute the optical fiber core wire at the branch portion described later so as not to make a mistake.
- the exterior iron wire 52 is the same as that shown in FIGS. 4 and 5.
- first and second configuration examples are collective cables of LW cores
- general connection parts and connection technology can be used by disassembling the landing cable 21 to the LW core, but it becomes a little thicker.
- it ends up
- the third configuration example by optimally designing the cable for landing specialized in shallow water, the specification values of tension resistance and water pressure resistance can be relaxed, so the structure can be simplified, and the diameter and weight can be reduced.
- special connection parts are required.
- the branch portion 41 shown in FIG. 3 is described by an example in which the number of branches is four, but in the following description, in order to avoid complication of the drawing, an example in which the number of branches is three will be described.
- FIG. 7 is a conceptual diagram showing a first configuration example of the branch portion 41.
- the branch portion 41 shown in FIG. 7 is used when the landing cable 21 is a collective cable of a plurality of LW core cables as in the structure shown in FIGS. 4 and 5.
- the branch portion 41 shown in FIG. 7 includes boots 45a and 46a to 46c and a housing 47.
- the housing 47 includes an exterior wire fastening portion 42 and mold portions 44a to 44c. Mold portions 44a to 44c include tensile strength wire retaining portions 43a to 43c.
- the exterior iron wire of the landing cable 21 (corresponding to the exterior iron wire 52 in FIG. 4) is fixed to the housing 47 by the exterior wire retaining portion 42.
- the LW core cables 51a to 51c of the landing cable 21 are guided to the inside of the mold portions 44a to 44c in the housing 47.
- the LW core cables 51a to 51c are UJ compliant. UJ is described in the Background Technology section.
- the branched submarine cables 21a to 21c also conform to the UJ specifications.
- the branched submarine cables 21a to 21c are fixed to the mold portions 44a to 44c by the tensile strength wire retaining portions 43a to 43c.
- the branched submarine cables 21a to 21c are fixed to the housing 47.
- the branched submarine cables 21a to 21c are fixed to the exterior iron wire provided in the landing cable 21 via the housing 47.
- optical fiber core wire and feed line of the optical fiber (not shown) included in the LW core cable guided to each mold portion are the optical fiber core wire and feed line of the optical fiber included in the branched submarine cable fixed to the mold member. Be connected. The connection is made by the method disclosed in the UJ specifications. UJ is described in the Background Technology section.
- the mold portions 44a to 44c are internally molded with, for example, polyethylene. It is generally known that by molding with polyethylene, it is possible to secure connection between optical fiber core wires and feeder lines, electrical insulation, water pressure resistance, and tensile strength equivalent to that of a cable.
- FIG. 8 is a conceptual diagram showing a second configuration example of the branch portion 41.
- the branch portion 41 shown in FIG. 8 is used when the landing cable 21 is specially designed as shown in FIG. 6 and does not include an LW core cable.
- the branch portion 41 shown in FIG. 8 is shown in FIG. 7 in that the optical wiring from the landing cable 21 drawn into each mold portion is not the LW core cables 51a to 51c of the landing cable 21 but the tail cables 48a to 48c. Different from the one. Tail cables are described in the Background Techniques section.
- the tail cables 48a to 48c are also fixed to the mold portions 44a to 44c by the tips 39a to 39c. Chips are described in the Background Techniques section.
- the branch portion 41 shown in FIG. 8 also uses the same configuration as the cable coupling to connect between the optical fiber core lines and the power supply lines between the tail cables 48a to 48c and the branch submarine cables 21a to 21c.
- the points to be performed are different from those shown in FIG. Cable coupling is described in the Background Techniques section.
- FIG. 9 is a conceptual diagram showing a third configuration example of the branch portion 41.
- the housings 47a to 47c including the molding portions 44a to 44c are provided outside the housing 47 and are connected to the housing 47 by universal joints 49a to 49c. 7 or different from that shown in FIG. Further, the branch portion 41 shown in FIG. 9 is different from that shown in FIG. 7 or 8 in that the boots 46a to 46c cover the housings 47a to 47c.
- the optical wirings 50a to 50c shown in FIG. 9 are any of the LW core cables 51a to 51c shown in FIG. 7 and the tail cables 48a to 48c shown in FIG.
- the optical wirings 50a to 50c are the LW core cables 51a to 51c shown in FIG. 7
- the optical wirings 50a to 50c are connected to the branched submarine cables 21a to 21c in a manner conforming to, for example, UJ specifications.
- the optical wirings 50a to 50c are the tail cables 48a to 48c shown in FIG. 8
- the optical wirings 50a to 50c are connected to the branch submarine cables 21a to 21c by, for example, the cable coupling described above.
- the landing cable includes a spare optical fiber core wire and a spare feeder line in case it becomes necessary to add a new submarine cable in the future.
- These spare lines are connected to a streamed off branch submarine cable. Therefore, the submarine cable system enables the addition of submarine cables without performing new landing work by connecting a new submarine cable to the branched submarine cable that has been streamed off. Therefore, the submarine cable system can suppress the occurrence of new landing work.
- the spare optical fiber core wire of the landing cable of the first and second embodiments cannot be used for communication because it is not connected to the communication ground. However, the spare fiber optic core wire can be applied to vibration and temperature sensing applications in the section where the landing cable is laid. This will be described as the third embodiment.
- optical fiber sensing Originally, an optical fiber, which is a medium for transmitting a signal, can carry information on the temperature and vibration of the environment in which the optical fiber is placed on the light transmitted therein. Therefore, the optical fiber core wire has come to be used for sensing applications as well.
- FIG. 10 is a wiring conceptual diagram showing a configuration example in which optical fiber sensing is applied to the configuration of the submarine cable system 100 shown in FIG.
- the interrogator 70 periodically sends pulsed light to the optical fiber core of the landing cable 121. Then, weak light returns from the optical fiber core wire to the interrogator 70 due to the backscattered light phenomenon in the optical fiber core wire. By analyzing this light, it is possible to obtain information on the temperature and vibration of various parts of the optical fiber core wire at the moment when the pulsed light passes.
- One of the features of optical fiber sensing is that only one optical fiber core wire is required, and no electric wire for power or signal transmission is required. Therefore, fiber optic sensing can be applied to the preliminary fiber optic core of the landing cable of any embodiment, whereby the landing cable 121 monitors the temperature and vibration of the seabed in the section up to boundary point 119. It can be used to do.
- FIG. 17 is a conceptual diagram showing the configuration of the landing cable 321x, which is the minimum configuration of the landing cable of the embodiment.
- the landing cable 321x is a landing cable installed offshore from the cable landing point.
- the landing cable 321x also includes an initially used optical fiber core wire 56ax, which is an optical fiber core wire used from the beginning of communication by the landing cable 321x, and an initially used feeder 54x, which is a feeder used from the beginning.
- the landing cable 321x includes a spare optical fiber core wire 56bx, which is a spare optical fiber core wire.
- the spare optical fiber core wire 56bx is connected from the end point on the cable landing point side to the boundary point with the cable section not including the spare optical fiber core wire 56bx. Further, the spare optical fiber core wire end point, which is the end point of the spare optical fiber core wire 56bx at the boundary point, is kept in a state where it can be used in the future.
- the arrangement of the initially used optical fiber core wire 56ax, the spare optical fiber core wire 56bx, and the initially used feeder line 54x is not limited to the case shown in FIG. 17, and is arbitrary.
- the spare optical fiber core wire 56bx is a spare and its end is kept ready for future use. Therefore, when the number of optical fiber cores of the submarine cable connected to the landing cable 321x increases, a new connection of the optical fiber cores straddling the coastline is possible by the spare optical fiber cores 56bx. Therefore, the landing cable 321x can suppress the occurrence of new landing work of the submarine cable.
- the landing cable 321x exhibits the effects described in the [Effects of the Invention] section due to the above configuration.
- the landing cable 321x shown in FIG. 17 is, for example, the landing cable 21 shown in FIG. 1 or FIG.
- the initially used feeder line 54x is, for example, the feeder line shown in FIG. 4, the feeder line included in the LW core cables 51a to 51f shown in FIG. 5, or the feeder line 54a to 54e shown in FIG. It has been used since the beginning of communication.
- the initially used optical fiber core wire 56ax is, for example, an optical fiber included in the landing cable 21 connected to the optical fiber included in the submarine cable 22 shown in FIG.
- the initially used optical fiber core wire 56ax is also connected to, for example, the optical fiber core wire included in the tail cable 23 among the optical fiber core wires included in the landing cable 121 shown in FIG.
- the initially used optical fiber core wire 56ax is, for example, an optical fiber core wire included in the optical fiber included in the landing cable 21 connected to the optical fiber core wire included in the optical fiber included in the branched submarine cable 21c shown in FIG. is there.
- the landing point is, for example, the landing point 97 shown in FIG. 1 or FIG.
- the spare optical fiber core wire 56bx is, for example, an optical fiber core wire included in the optical fiber included in the landing cable 21 that is not connected to the optical fiber core wire included in the submarine cable 22 shown in FIG.
- the spare optical fiber core wire 56bx is, for example, an optical fiber in which the vicinity of the end thereof is stored in the optical fiber extra length accommodating portion 31 shown in FIG.
- the spare optical fiber core wire 56bx is, for example, the light included in the optical fiber included in the landing cable 21 connected to the optical fiber core wire group included in the optical fiber included in the branched submarine cables 21a, 21b and 21d shown in FIG. It is a fiber optic core wire.
- boundary point is, for example, the boundary point 119 shown in FIG. 1 or FIG. 10 or the boundary point 219 shown in FIG.
- the preliminary optical fiber core wire end point is, for example, the end point of the optical fiber core wire included in the optical fiber included in the landing cable 21 housed in the optical fiber extra length storage portion 31 shown in FIG.
- the preliminary optical fiber core wire end point is, for example, an optical fiber core wire included in the optical fiber included in the landing cable 21 connected to the optical fiber core wire group included in the branched submarine cables 21a, 21b and 21d shown in FIG. It is the end point of.
- a spare optical fiber core wire is used. Equipped with a spare fiber optic core The preliminary optical fiber core wire is connected from an end point on the cable landing point side to a boundary point with a cable section that does not include the preliminary optical fiber core wire.
- the boundary point is the landing cable described in Appendix 1 located on the land side of the cable coupling portion on the land side of the first repeater or submarine equipment when traced from the landing point.
- the landing cable described in Appendix 1 or Appendix 2 whose boundary point is outside the territory.
- the boundary point is at least one of a range beyond the area where the cable burial method is required, a range where the horizontal excavation method is required, and a range where the installation work license is required.
- An additional feeder line is provided at the end point on the side of the landing point.
- the preliminary optical fiber core wire and the preliminary feeding line are connected to the boundary point.
- the end point of the preliminary optical fiber core wire and the end point of the preliminary feeder line which is the end point of the preliminary feeder line, are kept in a state where they can be used in the future, are bundled into one, and are on the offshore side thereof. Equipped with a cable branch at the tip of It is branched into an initially used submarine cable having the initially used optical fiber core wire and the initially used feeder, and a plurality of spare submarine cables having the spare optical fiber core wire and the spare feeder.
- the boundary point and the reserve submarine cable are the range on the land side of the first repeater or the land side cable coupling portion of the first submarine equipment when traced from the landing point, are overseas, and are cables. Of Appendix 1 to Appendix 4, the range exceeds the area where the burial method is required, the area where the horizontal excavation method is required, and the area where the installation work license is required.
- the boundary point, the reserve submarine cable, and the streaming cable are in the range on the land side of the cable coupling portion, are outside the territory, and are in the range beyond the area where the cable burial method is required.
- the cable branching device separates a cable obtained by combining a plurality of the non-exterior submarine cables into units of the non-exterior submarine cable, and is connected by using existing submarine cable connection parts and connection technology.
- the landing cable described in 6. (Appendix 8) The landing cable according to any one of Supplementary note 1 to Supplementary note 7, wherein the spare optical fiber core wire is loopback-connected to the other spare optical fiber core wire at the boundary point. (Appendix 9) The landing cable according to any one of Supplementary note 1 to Supplementary note 8, wherein a part of the optical fiber core wires connected to the boundary point is used for optical fiber sensing applications.
- Appendix 10 In any one of Appendix 1 to Appendix 9, where the boundary point is assumed to be outside the territory of the country where the landing point is set, or outside the territory of the country. Partial landing cables that are all parts of said area of the described submarine cables.
- Appendix 11 It is equipped with an optical fiber core wire group consisting of multiple optical fiber core wires and a feeder line group consisting of feeder lines, and is installed from the landing point. The end that is not at the landing point is either at the first repeater, which is the first repeater when tracing from the landing point, or between the landing point and the first repeater.
- the optical fiber core wire group includes a first optical fiber core wire group and a second optical fiber core wire group.
- the optical fiber core wire of the first optical fiber core wire group is the optical fiber core wire connected to the submarine cable after the first repeater, which is the submarine cable ahead of the first repeater.
- the optical fiber core wire of the second optical fiber core wire group is a spare optical fiber core wire that is not connected to the submarine cable after the first repeater.
- the core wire end of the optical fiber core wire of the second optical fiber core wire group is kept available. Landing cable. (Appendix 12) The landing cable according to Appendix 11, wherein the end of the core wire extends beyond the territorial waters. (Appendix 13) Whether the end of the core wire is in a range beyond the area where the cable burial method is required, or the area where the horizontal excavation method is required exceeds the area where it is required, or the installation work is licensed.
- Appendix 14 The landing cable according to any one of Appendix 11 to Appendix 13, wherein the optical fiber cores included in the second optical fiber core group are loopback-connected.
- Appendix 15 The sea side optical fiber end portion of the optical fiber including the optical fiber core wire of the second optical fiber core wire group is held by the optical fiber extra length storage portion, so that the second optical fiber core wire group is said to have the same.
- (Appendix 19) The landing cable according to Appendix 18, wherein the resin is polyethylene.
- (Appendix 20) The landing cable according to any one of Supplementary note 17 to Supplementary note 19, wherein the connecting device is provided in the first repeater.
- (Appendix 21) A branch portion is provided, and the portion on the sea side from the branch portion is divided into a second plurality of branch submarine cables, and some of the branch submarine cables are connected to the submarine cables after the first repeater.
- the landing according to any one of Supplementary note 11 to Supplementary note 14 wherein the optical fiber core wire included in the other branched submarine cable is the optical fiber core wire of the second optical fiber core wire group. cable.
- (Appendix 22) The landing cable according to Appendix 21, wherein the optical fiber core wire of the second optical fiber core wire group is assumed to be used when another submarine cable is added in the future.
- (Appendix 23) The end of the branch submarine cable, which is the end not connected to the branch of the part of the branch submarine cable, is streamed off, and is included in the part of the branch submarine cable due to the streaming off.
- the landing cable according to Appendix 21 or Appendix 22, wherein the core end of the optical fiber core of the second optical fiber core group is kept in the available state.
- (Appendix 24) The landing cable according to Appendix 23, wherein the streaming off is the connection of a dummy submarine cable or rope to the end of the branch submarine cable and the sealing of the end of the branch submarine cable.
- (Appendix 25) The landing cable according to any one of Supplementary note 21 to Supplementary note 24, wherein the number of feeding lines is the plurality.
- (Appendix 26) The landing cable according to any one of Appendix 21 to Appendix 25, comprising a configuration in which a second plurality of non-exterior submarine cables without an exterior are bundled.
- (Appendix 27) The optical fiber core corresponding to the combination of the submarine cable optical fiber core wire after the first repeater of the submarine cable after the first repeater and the submarine cable feeding line after the first repeater of the submarine cable after the first repeater.
- the sea-side core wire end is located outside the region of the country where the land-side core wire end is installed, or the land-side core wire end is located in the region of the country where the land-side core wire end is installed.
- a partial landing cable that is all part of the area of the landing submarine cable according to any one of Appendix 11 to Appendix 27, which is expected to be installed outside.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
- Optical Communication System (AREA)
Abstract
Description
海底通信ケーブルシステムは、海を跨った陸地間の通信を実現する手段として広く用いられている。信号を伝える媒体は光ファイバであり、その伝送損失は中継器内の光増幅器により補償されて中継伝送される。光増幅器を駆動する電力は、ケーブル両端の陸上局から、ケーブル内の給電線を通じて給電される。
<ケーブル陸揚げ工事の難しさ>
海底ケーブルの需要拡大が続いている中で、陸揚げ工事が難しくなり、コストが高くなっている。その主な理由を次に述べる。
(1)海底ケーブルの混雑。海底ケーブルの陸揚げは大都市に近い海岸に集中し、一つの陸揚げ局舎に複数の海底ケーブルを引き込むため、海底ケーブルが互いに接近せざるを得なくなり混み合うことになる。海底ケーブルの修理を考えると海底ケーブル間に一定の離隔が必要であるが、込み合うとそれが難しくなる。海底ケーブル同士の交差も問題となる。新しいケーブルの下になったケーブルは引き揚げられなくなる。
(2)陸揚げに適した場所の減少。海底ケーブルの陸揚げ地としては、私有地ではない遠浅の砂浜が理想的である。しかしながら、近年はそのような場所が少なくなり、水平掘削(HDD: Horizontal Directional Drilling)工法により海岸線の地下に管路を形成する方法も用いられる。HDD工法には専用掘削機が必要である。また、HDD工法は地質次第では失敗するリスクが高いことから、事前のボーリング調査に基づくルート設計が必要である。そのため、HDD工法は高コストである。
(3)漁業者などとの調整。海は公共の共有地であり、ケーブル陸揚げには、漁業者をはじめとする施工域の共同利用関係者の同意を得る必要がある。またケーブル陸揚げ工事期間中はケーブルルート周辺から網や籠を避けてもらう必要があり、漁を制約することになる。そのため、陸揚げ工事が実施可能な期間は、漁が不活発な季節などに限定されることが多い。さらに、工事期間はできるだけ短縮することが求められる。
(4)ケーブル保護工事の必要性。底引き網などの漁業活動や船の錨による海底ケーブルの損傷を防ぐため、岩地の浅海では、ケーブルに樹脂保護管を付けた上で、樹脂保護管のダイバーによるボルト留めが一般的に行われる。また、土砂底質であれば、陸揚げ地点から水深1000~1500m程度の範囲まで、ケーブル敷設船による敷設同時埋設が一般的に行われる。十分に深い海域の敷設では海底ケーブルを海底に置くだけの工法なのに比べると、陸揚げケーブルの敷設工事は大幅に手間がかかる。そのため、陸揚げケーブルの敷設の距離当たりの工事費は、外洋・深海における敷設の工事費と比較して、大幅に高い。
(5)自然環境保護。海岸は自然保護区域に指定されるケースが増えており、少しでも景観を変える工事は許認可がおりにくい。
(6)領海内工事免許規制。一般に各国の領海内(12海里、約22.2km)の工事は、当該国の建設業法の免許保有業者のみが施工可能であり、また工事船も当該国の船籍であることが求められる(カボタージュ(Cabotage)規制)。これらを満たしてもなお工事許認可申請の処理が容易に進まないことも多く、ケーブルシステム全体の施工計画に深刻な影響が生じることがある。そのため、多国間を結ぶ海底ケーブルシステムの建設では、各国の領海内と公海の工事を分けて管理し、陸揚げ国ごとに異なる業者と契約するなどが必要になる。この点も高コストの要因になっている。
<目的に応じたケーブルの構成>
一般的な光通信用の海底ケーブルは、複数本(6~16本程度)の光ファイバと、一本の給電線を持つ複合ケーブルである。給電線は、海底中継器などへの給電用の導線である。光ファイバは高い水圧から守るためにパイプ状の構造物の中に収容されている。
<ストリーミングオフ>
海底ケーブル敷設工事でよく用いられるストリーミングオフ(streaming-off)という手法について説明する。ストリーミングオフは、例えば、海底ケーブル敷設船が、ケーブルを洋上で一時的に手放す必要が生じた時に行われる。ストリーミングオフは、工事再開点となる海底ケーブル端点を、再開時に引き揚げやすくするために、探線用のワイヤ入りロープや不要な海底ケーブルなどを継ぎ足して海底に仮敷設する工法である。
<将来延長する可能性のあるケーブルの先のストリーミングオフ>
以上においては、ストリーミングオフを、敷設途中のケーブルの端点を一時的に敷設船から手放して海底に置く事例で説明した。しかしながら、海底に設置した装置から伸びる海底ケーブルのうち、設置時は未接続とし、将来、その先に海底ケーブルをつないで延長、拡張するような事例でも、ストリーミングオフは用いられる。
<ケーブル分岐構成>
今日では、ケーブルを分岐して複数の対地に陸揚げする海底分岐装置(BU: Branching Unit)が広く用いられている。
<ケーブル分岐の目的>
海底にケーブル分岐装置を設置する目的には大きく分けて次の二つがある。
(1)通信ルートの分岐
複数の陸揚げ地を結ぶ海底ケーブルネットワークの代表的な形態を図11及び図12を参照して説明する。
(2)ルート冗長による障害耐性向上
図15は陸揚げケーブルを冗長化する海底ケーブルシステムの構成を表す概念図である。海底ケーブルは、特に浅い海において、漁業活動や船のアンカーなどにより傷つけられやすいため、複数本の陸揚げケーブルで冗長構成を備える技術が、例えば特許文献1及び2に開示されている。
<複数ケーブルの、間を空けない陸揚げ>
一つの陸揚げ地に複数本の海底ケーブルを陸揚げする工事が行われることがある。これは前述のFestoonと呼ばれるネットワーク形態であり、一般的に用いられている。この場合、まず一本目を陸揚げして沖まで敷設してストリーミングオフし、次に二本目を陸揚げするという工法が用いられる。一本目の海底ケーブルは、少なくとも漁業者との調整などが必要ないエリアまでは敷設を終えてからストリーミングオフする。
<海底ケーブル接続技術UJ>
今日では、海底ケーブルの接続部は、業界団体であるUniversal Jointing (UJ) consortiumが仕様化し、供給しているUniversal Jointか、それと類似の構成のJointで実現されている。英語でUniversal Jointは自在継手を指すが、ここでいうUJは UJ consortiumが名づけた名称で、自在継手のことではない。
<ケーブルカップリング>
光増幅中継器のように電気回路が搭載される装置は、放熱が可能な金属製の耐圧容器に収容され、耐圧蓋をしたうえで溶接により密閉されて工場出荷される。そのような装置と海底ケーブルの接続部には、ケーブルカップリング部(cable coupling部)と呼ばれるものが用いられる。その構造は例えば非特許文献1に説明されている。
<抗張力線引留め部>
海面の敷設船から海底までの数1000m分の海底ケーブルと海底機器を吊り下げると数トンもの荷重となるため、海底ケーブルは引張強度を厳密に仕様化し、設計製造されている。したがってケーブル接続部も同等の引張強度が必要となる。ケーブルには抗張力線が含まれておりそれで張力強度を実現している。接続部ではその抗張力線を強固に引き留める構造を有する抗張力線引留め部が必要である。抗張力線引留め部は、非特許文献1のp.89、p.129に説明されている。
<海底通信ケーブルの進歩と陳腐化について>
次に、海底通信ケーブルの技術進歩と、それに付随する技術的な陳腐化について説明する。とりわけ通信機器の分野は、技術進歩とそれにともなう技術的な陳腐化が早いことで知られる。通信用海底ケーブルは、同軸ケーブルから光ファイバケーブルに移行した後も、技術の進歩が続き、敷設され運用中の海底ケーブルシステムは最新型に比べて性能が見劣りする状況が続いている。
<近年の通信用海底ケーブルの陳腐化について>
次に、特に近年の通信用海底ケーブルの技術的な陳腐化の傾向を追加説明する。技術陳腐化要因の一つであった光ファイバの光学特性(波長分散と偏波モード分散)については、2010年代初めに実用化されたデジタルコヒーレント技術によって、条件が一気に緩和された。デジタルコヒーレント技術によって、アナログ-デジタル変換した信号波形のリアルタイム演算処理による等化が実用化された。その結果、多少古い光ファイバケーブルでも最先端の大容量伝送の伝送路としてほぼ支障なく使えるようになった。
<複数本の陸揚げケーブル設置>
これまでもFestoon構成において、一つの地点に複数本をケーブル陸揚げすることは行われていた。ただ将来拡張用の陸揚げケーブルを、長いストリーミングケーブルのごとくに、予め敷設することは、大きな費用が生じるにも関わらず費用削減効果が不確かであったため、これまではほとんど行われていない。
<第一実施形態>
本実施形態の海底ケーブルシステムでは、陸揚げケーブル内に拡張用の予備の光ファイバ心線(予備光ファイバ心線)が設けられる。予備光ファイバ心線は、ケーブル境界点よりも先(沖側)の海底ケーブルにおいて、将来、より多くの光ファイバ心線が使用される場合を想定して設けられるものである。予備光ファイバ心線が設けられることにより、使用される光ファイバ心線数が、将来、増加した場合にも、敷設済みの陸揚げケーブルの継続使用が可能になる。そのため、本実施形態の海底ケーブルシステムは、ケーブル陸揚げ工事の発生を抑える効果を奏する。
[構成と動作]
図1は、本実施形態の海底ケーブルシステムの例である海底ケーブルシステム100の構成を表す概念図である。海底ケーブルシステム100は、陸揚げ局舎16と図示されない対向陸揚げ局とを海底経由で結ぶものである。陸揚げケーブル121は、海底ケーブルシステム100の一部であり、陸上ケーブル18を介して陸揚げ局舎16に陸揚げしている海底ケーブルである。
[効果]
本実施形態の陸揚げケーブルは予備の光ファイバ心線を備えている。予備の光ファイバ心線は、境界点から先の海底ケーブルの将来の更新により光ファイバ心線使用数が増やした場合に備えて、敷設される陸揚げケーブルに予め含められるものである。光ファイバ心線使用数が増えた場合に、この予備の光ファイバ心線も含めて使用されることにより、新たなケーブル陸揚げ工事の発生を抑えることが可能となる。
<第二実施形態>
第一実施形態の陸揚げケーブルは、将来拡張用の予備として光ファイバ心線のみを余分に持ち、予備の給電線(予備給電線)を持たない。そのため、第一実施形態の陸揚げケーブルは、陸揚げケーブルに新たな海底ケーブルを追加接続することはできない。
[構成と動作]
図3は、本実施形態の海底ケーブルシステムの例である海底ケーブルシステム200の構成を表す概念図である。海底ケーブルシステム200の陸揚げケーブル221は当初は使用しない予備光ファイバ心線及び予備給電線を備える。その予備光ファイバ心線は分岐部41で分岐され、分岐された光ファイバ心線及び予備給電線の各々の端点が境界点219を構成する。
なお、図示はされないが、分岐海底ケーブル21cは、その先の複数の中継器を経由して、他の国まで接続されている。自国と他国との間の通信は、分岐海底ケーブル21cが備える光ファイバ心線により行われる。
図4(b)は、図4(a)に表すLWコアケーブル51a乃至51dの構成例であるLWコアケーブル51nの構成を表す断面図である。
[効果]
本実施形態の海底ケーブルシステムは、将来、新たな海底ケーブルを増設する必要が生じた場合に備えて、陸揚げケーブルが予備光ファイバ心線及び予備給電線を備えている。それら予備線は、ストリーミングオフされた分岐海底ケーブルに繋がっている。そのため、前記海底ケーブルシステムは、ストリーミングオフされた分岐海底ケーブルに新たな海底ケーブルを接続することにより、新たな陸揚げ工事を行わない、海底ケーブルの増設を可能とする。そのため、前記海底ケーブルシステムは、新たな陸揚げ工事の発生を抑え得る。
<第三実施形態>
第一及び第二実施形態の陸揚げケーブルの予備光ファイバ心線は、通信対地と繋がっていないため通信には使えない。しかしながら、予備光ファイバ心線は、陸揚げケーブルが敷設されている区間の振動や温度のセンシング用途に適用されることが可能である。これを第三実施形態として説明する。
光ファイバセンシングの特長の一つは、光ファイバ心線が1本だけあればよく、電力や信号伝送のための電線を要しないという事である。そのため光ファイバセンシングをいずれかの実施形態の陸揚げケーブルの予備光ファイバ心線に適用することが可能であり、それにより、陸揚げケーブル121を、境界点119までの区間の海底の温度や振動をモニタすることに活用できる。
<実施形態の最小限の実施形態>
図17は、実施形態の陸揚げケーブルの最小限の構成である陸揚げケーブル321xの構成を表す概念図である。
(付記1)
ケーブル陸揚げ地点から沖に設置される陸揚げケーブルであって、
前記陸揚げケーブルによる通信の開始当初より使用される光ファイバ心線である当初使用光ファイバ心線及び前記開始当初より使用される給電線である当初使用給電線に加えて予備の光ファイバ心線である予備光ファイバ心線を備え、
前記予備光ファイバ心線は、前記ケーブル陸揚げ地点側の端点から前記予備光ファイバ心線を含まないケーブル区間との境界点まで繋がっており、
前記境界点において前記予備光ファイバ心線の端点である予備光ファイバ心線端点が将来利用可能な状態に保持されている陸揚げケーブル。
(付記2)
前記境界点は、前記陸揚げ地点からたどった場合の最初の中継器又は海底機器の陸側のケーブルカップリング部より陸側にある付記1に記載された陸揚げケーブル。
(付記3)
前記境界点は領海外にある、付記1又は付記2に記載された陸揚げケーブル。
(付記4)
前記境界点は、ケーブル埋設工法が必要とされる区域を超える範囲、水平掘削工法が必要とされる区域を超える範囲及び設置作業の許認可取得を要する区域を超える範囲、のうちの少なくともいずれかにある、付記1乃至付記3のうちのいずれか一に記載された陸揚げケーブル。
(付記5)
前記陸揚げ地点の側の端点において、予備給電線をさらに備え、
前記予備光ファイバ心線及び前記予備給電線は、前記境界点まで繋がっており、
当該境界点において、前記予備光ファイバ心線端点と前記予備給電線の端点である予備給電線端点とが、将来利用可能な状態に保持されており、1本に束ねられており、その沖側の先端にケーブル分岐器を備え、
前記当初使用光ファイバ心線及び前記当初使用給電線を備える当初使用海底ケーブルと、前記予備光ファイバ心線及び前記予備給電線とを持った複数本の予備海底ケーブルと、に分岐され、
前記予備海底ケーブル内の海底端点において、前記予備光ファイバ心線端点と前記予備給電線端点とは、将来利用可能な状態に保たれており、
前記境界点及び前記予備海底ケーブルが、前記陸揚げ地点からたどった場合の最初の中継器もしくは前記最初の海底機器の陸側のケーブルカップリング部より陸側の範囲であり、領海外であり、ケーブル埋設工法が必要とされる区域を超える範囲であり、水平掘削工法が必要とされる区域を超える範囲であり、設置作業の許認可取得を要する区域を超える範囲にある付記1乃至付記4のうちのいずれか一に記載された陸揚げケーブル。
(付記6)
前記予備海底ケーブルの海底端部にはストリーミングケーブルが接続されており、
前記境界点、前記予備海底ケーブル及び前記ストリーミングケーブルが、前記ケーブルカップリング部より陸側の範囲であり、前記領海外であり、前記ケーブル埋設工法が必要とされる区域を超える範囲であり、前記水平掘削工法が必要とされる区域を超える範囲であり、前記許認可取得を要する区域を超える範囲にある付記5に記載された陸揚げケーブル。
(付記7)
無外装海底ケーブルを複数本複合してなる複合海底ケーブルであって、前記無外装海底ケーブルは光ファイバ心線と給電線とを備え、
前記ケーブル分岐器は、前記無外装海底ケーブルを複数本複合したケーブルを前記無外装海底ケーブルの単位に分離して、既存の海底ケーブル接続部品及び接続技術を利用して接続される付記5又は付記6に記載された陸揚げケーブル。
(付記8)
前記境界点において、前記予備光ファイバ心線が他の前記予備光ファイバ心線とループバック接続される、付記1乃至付記7のうちのいずれか一に記載された陸揚げケーブル。
(付記9)
前記境界点まで繋がっている光ファイバ心線のうちの一部が光ファイバセンシング用途に用いられる付記1乃至付記8のうちのいずれか一に記載された陸揚げケーブル。
(付記10)
前記境界点が、前記陸揚げ地点が設定される国の領域の外にあるか、或いは、前記国の領域の外にあることが想定されている、付記1乃至付記9のうちのいずれか一に記載された海底ケーブルの前記領域の内のすべての部分である部分陸揚げケーブル。
(付記11)
複数本の光ファイバ心線からなる光ファイバ心線群と給電線からなる給電線群とを備え、陸揚げ地点から設置され、
前記陸揚げ地点に無い端部が、前記陸揚げ地点からたどった場合の最初の中継器である第一中継器にあるか前記陸揚げ地点と前記第一中継器までの間にあるかのいずれかであり、
前記光ファイバ心線群は第一光ファイバ心線群と第二光ファイバ心線群とを含み、
前記第一光ファイバ心線群の前記光ファイバ心線は、前記第一中継器から先の海底ケーブルである第一中継器以降海底ケーブルに接続中の前記光ファイバ心線であり、
前記第二光ファイバ心線群の前記光ファイバ心線は前記第一中継器以降海底ケーブルに接続されていない予備の前記光ファイバ心線であり、
前記第二光ファイバ心線群の前記光ファイバ心線の心線端部が利用可能な状態に保たれている、
陸揚げケーブル。
(付記12)
前記心線端部が領海を超える範囲にある、付記11に記載された陸揚げケーブル。
(付記13)
前記心線端部が、ケーブル埋設工法が必要とされる区域を超える範囲にあるか、水平掘削工法が必要とされる区域が必要とされる区域を超える範囲にあるか、設置作業の許認可取得を要する区域を超える範囲にあるか、のうちの少なくともいずれかである、付記11又は付記12に記載された陸揚げケーブル。
(付記14)
前記第二光ファイバ心線群に含まれる光ファイバ心線同士がループバック接続されている、付記11乃至付記13のうちのいずれか一に記載された陸揚げケーブル。
(付記15)
前記第二光ファイバ心線群の前記光ファイバ心線を備える光ファイバの海側の光ファイバ端部が光ファイバ余長収納部に保持されることにより、前記第二光ファイバ心線群の前記光ファイバ心線が前記利用可能な状態に保たれている、付記11乃至付記14のうちのいずれか一に記載された陸揚げケーブル。
(付記16)
前記第二光ファイバ心線群の前記光ファイバ心線が、前記第一中継器以降海底ケーブルが備える第一中継器以降海底ケーブル光ファイバ心線の本数が増えた場合に使用されることが想定されたものである、付記15に記載された陸揚げケーブル。
(付記17)
前記第一光ファイバ心線群の前記光ファイバ心線の海側の前記心線端部は接続装置により前記第一中継器以降海底ケーブルに接続されており、前記光ファイバ余長収納部は前記接続装置に含まれる、付記16に記載された陸揚げケーブル。
(付記18)
前記光ファイバ余長収納部が樹脂によりモールドされている、付記17に記載された陸揚げケーブル。
(付記19)
前記樹脂がポリエチレンである、付記18に記載された陸揚げケーブル。
(付記20)
前記接続装置が前記第一中継器に備えられている、付記17乃至付記19のうちのいずれか一に記載された陸揚げケーブル。
(付記21)
分岐部を備えており、前記分岐部から海側の部分が第二の複数本の分岐海底ケーブルに分かれており、一部の前記分岐海底ケーブルが前記第一中継器以降海底ケーブルに接続されており、他の前記分岐海底ケーブルに含まれる前記光ファイバ心線が前記第二光ファイバ心線群の前記光ファイバ心線である、付記11乃至付記14のうちのいずれか一に記載された陸揚げケーブル。
(付記22)
前記第二光ファイバ心線群の前記光ファイバ心線が、将来、他の海底ケーブルが増設された場合に使用されることが想定されたものである、付記21に記載された陸揚げケーブル。
(付記23)
前記一部の前記分岐海底ケーブルの前記分岐部に接続されていない方の端部である分岐海底ケーブル端部がストリーミングオフされており、当該ストリーミングオフにより、前記一部の前記分岐海底ケーブルに含まれる前記第二光ファイバ心線群の前記光ファイバ心線の前記心線端部が前記利用可能な状態に保たれている、付記21又は付記22に記載された陸揚げケーブル。
(付記24)
前記ストリーミングオフが、前記分岐海底ケーブル端部へのダミーの海底ケーブル又はロープの接続と前記分岐海底ケーブル端部の封止である、付記23に記載された陸揚げケーブル。
(付記25)
前記給電線の本数が前記複数本である、付記21乃至付記24のうちのいずれか一に記載された陸揚げケーブル。
(付記26)
外装の無い無外装海底ケーブルを第二の複数本束ねた構成を備える、付記21乃至付記25のうちのいずれか一に記載された陸揚げケーブル。
(付記27)
前記第一中継器以降海底ケーブルの第一中継器以降海底ケーブル光ファイバ心線と前記第一中継器以降海底ケーブルの第一中継器以降海底ケーブル給電線との組合せに相当する、前記光ファイバ心線と前記給電線との組合せを、第三の複数本備える、付記21乃至付記25のうちのいずれか一に記載された陸揚げケーブル。
(付記28)
海側の前記心線端部が、陸側の前記心線端部が設置される国の領域の外に設置されているか、或いは、陸側の前記心線端部が設置される国の領域の外に設置されることが想定されている、付記11乃至付記27のうちのいずれか一に記載された陸揚げ海底ケーブルの前記領域の内のすべての部分である部分陸揚げケーブル。
11 第一中継器
16 陸揚げ局舎
17 ビーチマンホール
18 陸上ケーブル
119、219 境界点
121、221 陸揚げケーブル
321x 陸揚げケーブル
21a、21b、21c、21d 分岐海底ケーブル
23 テールケーブル
24 ケーブルカップリング部
31 光ファイバ余長収納部
33、43a、43b、43c 抗張力線引留め部
34 モールド部
35 格納部
36 ベローズ部
37 中継器筐体
38、45a、46a、46b、46c ブーツ
39a、39b、39c チップ
41 分岐部
42 外装線引留め部
44a、44b、44c モールド部
47、47a、47b、47c 筐体
48a、48b、48c テールケーブル
49a、49b、49c 自在継手
51 LWコアケーブル
51a、51b、51c、51d、51e、51n LWコアケーブル
52 外装鉄線
54 給電線
54x 当初使用給電線
56 光ファイバ収容パイプ
56ax 当初使用光ファイバ心線
56bx 予備光ファイバ心線
61 抗張力線
62、62a、62b、62c、62d、62e 給電線
621 給電導体
622 給電線被覆
63、63a、63b、63c、63d、63e 光ファイバ収容パイプ
70 インテロゲータ
97 陸揚げ地点
Claims (28)
- ケーブル陸揚げ地点から沖に設置される陸揚げケーブルであって、
前記陸揚げケーブルによる通信の開始当初より使用される光ファイバ心線である当初使用光ファイバ心線及び前記開始当初より使用される給電線である当初使用給電線に加えて予備の光ファイバ心線である予備光ファイバ心線を備え、
前記予備光ファイバ心線は、前記ケーブル陸揚げ地点側の端点から前記予備光ファイバ心線を含まないケーブル区間との境界点まで繋がっており、
前記境界点において前記予備光ファイバ心線の端点である予備光ファイバ心線端点が将来利用可能な状態に保持されている陸揚げケーブル。 - 前記境界点は、前記陸揚げ地点からたどった場合の最初の中継器又は海底機器の陸側のケーブルカップリング部より陸側にある請求項1に記載された陸揚げケーブル。
- 前記境界点は領海外にある、請求項1又は請求項2に記載された陸揚げケーブル。
- 前記境界点は、ケーブル埋設工法が必要とされる区域を超える範囲、水平掘削工法が必要とされる区域を超える範囲及び設置作業の許認可取得を要する区域を超える範囲、のうちの少なくともいずれかにある、請求項1乃至請求項3のうちのいずれか一に記載された陸揚げケーブル。
- 前記陸揚げ地点の側の端点において、予備給電線をさらに備え、
前記予備光ファイバ心線及び前記予備給電線は、前記境界点まで繋がっており、
当該境界点において、前記予備光ファイバ心線端点と前記予備給電線の端点である予備給電線端点とが、将来利用可能な状態に保持されており、1本に束ねられており、その沖側の先端にケーブル分岐器を備え、
前記当初使用光ファイバ心線及び前記当初使用給電線を備える当初使用海底ケーブルと、前記予備光ファイバ心線及び前記予備給電線とを持った複数本の予備海底ケーブルと、に分岐され、
前記予備海底ケーブル内の海底端点において、前記予備光ファイバ心線端点と前記予備給電線端点とは、将来利用可能な状態に保たれており、
前記境界点及び前記予備海底ケーブルが、前記陸揚げ地点からたどった場合の最初の中継器もしくは前記最初の海底機器の陸側のケーブルカップリング部より陸側の範囲であり、領海外であり、ケーブル埋設工法が必要とされる区域を超える範囲であり、水平掘削工法が必要とされる区域を超える範囲であり、設置作業の許認可取得を要する区域を超える範囲にある請求項1乃至請求項4のうちのいずれか一に記載された陸揚げケーブル。 - 前記予備海底ケーブルの海底端部にはストリーミングケーブルが接続されており、
前記境界点、前記予備海底ケーブル及び前記ストリーミングケーブルが、前記ケーブルカップリング部より陸側の範囲であり、前記領海外であり、前記ケーブル埋設工法が必要とされる区域を超える範囲であり、前記水平掘削工法が必要とされる区域を超える範囲であり、前記許認可取得を要する区域を超える範囲にある請求項5に記載された陸揚げケーブル。 - 無外装海底ケーブルを複数本複合してなる複合海底ケーブルであって、前記無外装海底ケーブルは光ファイバ心線と給電線とを備え、
前記ケーブル分岐器は、前記無外装海底ケーブルを複数本複合したケーブルを前記無外装海底ケーブルの単位に分離して、既存の海底ケーブル接続部品及び接続技術を利用して接続される請求項5又は請求項6に記載された陸揚げケーブル。 - 前記境界点において、前記予備光ファイバ心線が他の前記予備光ファイバ心線とループバック接続される、請求項1乃至請求項7のうちのいずれか一に記載された陸揚げケーブル。
- 前記境界点まで繋がっている光ファイバ心線のうちの一部が光ファイバセンシング用途に用いられる請求項1乃至請求項8のうちのいずれか一に記載された陸揚げケーブル。
- 前記境界点が、前記陸揚げ地点が設定される国の領域の外にあるか、或いは、前記国の領域の外にあることが想定されている、請求項1乃至請求項9のうちのいずれか一に記載された海底ケーブルの前記領域の内のすべての部分である部分陸揚げケーブル。
- 複数本の光ファイバ心線からなる光ファイバ心線群と給電線からなる給電線群とを備え、陸揚げ地点から設置され、
前記陸揚げ地点に無い端部が、前記陸揚げ地点からたどった場合の最初の中継器である第一中継器にあるか前記陸揚げ地点と前記第一中継器までの間にあるかのいずれかであり、
前記光ファイバ心線群は第一光ファイバ心線群と第二光ファイバ心線群とを含み、
前記第一光ファイバ心線群の前記光ファイバ心線は、前記第一中継器から先の海底ケーブルである第一中継器以降海底ケーブルに接続中の前記光ファイバ心線であり、
前記第二光ファイバ心線群の前記光ファイバ心線は前記第一中継器以降海底ケーブルに接続されていない予備の前記光ファイバ心線であり、
前記第二光ファイバ心線群の前記光ファイバ心線の心線端部が利用可能な状態に保たれている、
陸揚げケーブル。 - 前記心線端部が領海を超える範囲にある、請求項11に記載された陸揚げケーブル。
- 前記心線端部が、ケーブル埋設工法が必要とされる区域を超える範囲にあるか、水平掘削工法が必要とされる区域が必要とされる区域を超える範囲にあるか、設置作業の許認可取得を要する区域を超える範囲にあるか、のうちの少なくともいずれかである、請求項11又は請求項12に記載された陸揚げケーブル。
- 前記第二光ファイバ心線群に含まれる光ファイバ心線同士がループバック接続されている、請求項11乃至請求項13のうちのいずれか一に記載された陸揚げケーブル。
- 前記第二光ファイバ心線群の前記光ファイバ心線を備える光ファイバの海側の光ファイバ端部が光ファイバ余長収納部に保持されることにより、前記第二光ファイバ心線群の前記光ファイバ心線が前記利用可能な状態に保たれている、請求項11乃至請求項14のうちのいずれか一に記載された陸揚げケーブル。
- 前記第二光ファイバ心線群の前記光ファイバ心線が、前記第一中継器以降海底ケーブルが備える第一中継器以降海底ケーブル光ファイバ心線の本数が増えた場合に使用されることが想定されたものである、請求項15に記載された陸揚げケーブル。
- 前記第一光ファイバ心線群の前記光ファイバ心線の海側の前記心線端部は接続装置により前記第一中継器以降海底ケーブルに接続されており、前記光ファイバ余長収納部は前記接続装置に含まれる、請求項16に記載された陸揚げケーブル。
- 前記光ファイバ余長収納部が樹脂によりモールドされている、請求項17に記載された陸揚げケーブル。
- 前記樹脂がポリエチレンである、請求項18に記載された陸揚げケーブル。
- 前記接続装置が前記第一中継器に備えられている、請求項17乃至請求項19のうちのいずれか一に記載された陸揚げケーブル。
- 分岐部を備えており、前記分岐部から海側の部分が第二の複数本の分岐海底ケーブルに分かれており、一部の前記分岐海底ケーブルが前記第一中継器以降海底ケーブルに接続されており、他の前記分岐海底ケーブルに含まれる前記光ファイバ心線が前記第二光ファイバ心線群の前記光ファイバ心線である、請求項11乃至請求項14のうちのいずれか一に記載された陸揚げケーブル。
- 前記第二光ファイバ心線群の前記光ファイバ心線が、将来、他の海底ケーブルが増設された場合に使用されることが想定されたものである、請求項21に記載された陸揚げケーブル。
- 前記一部の前記分岐海底ケーブルの前記分岐部に接続されていない方の端部である分岐海底ケーブル端部がストリーミングオフされており、当該ストリーミングオフにより、前記一部の前記分岐海底ケーブルに含まれる前記第二光ファイバ心線群の前記光ファイバ心線の前記心線端部が前記利用可能な状態に保たれている、請求項21又は請求項22に記載された陸揚げケーブル。
- 前記ストリーミングオフが、前記分岐海底ケーブル端部へのダミーの海底ケーブル又はロープの接続と前記分岐海底ケーブル端部の封止である、請求項23に記載された陸揚げケーブル。
- 前記給電線の本数が前記複数本である、請求項21乃至請求項24のうちのいずれか一に記載された陸揚げケーブル。
- 外装の無い無外装海底ケーブルを第二の複数本束ねた構成を備える、請求項21乃至請求項25のうちのいずれか一に記載された陸揚げケーブル。
- 前記第一中継器以降海底ケーブルの第一中継器以降海底ケーブル光ファイバ心線と前記第一中継器以降海底ケーブルの第一中継器以降海底ケーブル給電線との組合せに相当する、前記光ファイバ心線と前記給電線との組合せを、第三の複数本備える、請求項21乃至請求項25のうちのいずれか一に記載された陸揚げケーブル。
- 海側の前記心線端部が、陸側の前記心線端部が設置される国の領域の外に設置されているか、或いは、陸側の前記心線端部が設置される国の領域の外に設置されることが想定されている、請求項11乃至請求項27のうちのいずれか一に記載された陸揚げ海底ケーブルの前記領域の内のすべての部分である部分陸揚げケーブル。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/617,442 US20220252818A1 (en) | 2019-06-13 | 2020-05-11 | Landing cable and partial landing cable |
JP2021525946A JP7099631B2 (ja) | 2019-06-13 | 2020-05-11 | 陸揚げケーブル及び部分陸揚げケーブル |
CN202080031818.3A CN113748470A (zh) | 2019-06-13 | 2020-05-11 | 登陆缆线和部分登陆缆线 |
EP20822805.6A EP3985689A4 (en) | 2019-06-13 | 2020-05-11 | LANDING CABLE AND PARTIAL LANDING CABLE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-110497 | 2019-06-13 | ||
JP2019110497 | 2019-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020250605A1 true WO2020250605A1 (ja) | 2020-12-17 |
Family
ID=73781923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/018778 WO2020250605A1 (ja) | 2019-06-13 | 2020-05-11 | 陸揚げケーブル及び部分陸揚げケーブル |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220252818A1 (ja) |
EP (1) | EP3985689A4 (ja) |
JP (1) | JP7099631B2 (ja) |
CN (1) | CN113748470A (ja) |
WO (1) | WO2020250605A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11784481B2 (en) * | 2019-12-04 | 2023-10-10 | Subcom, Llc | Submarine cable architecture with redundancy for facilitating shared landing site |
JPWO2021199663A1 (ja) * | 2020-03-30 | 2021-10-07 | ||
US11487063B2 (en) * | 2020-03-31 | 2022-11-01 | Subcom, Llc | Pair routing between three undersea fiber optic cables |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151731A (ja) * | 1982-03-05 | 1983-09-09 | Nec Corp | 海底光ケ−ブル方式 |
JPH0787013A (ja) | 1993-09-10 | 1995-03-31 | Fujitsu Ltd | 光海底ケーブルシステム |
JPH09258082A (ja) * | 1996-03-18 | 1997-10-03 | Fujitsu Ltd | 光海底ケーブル伝送システム |
JP2002124141A (ja) | 2000-10-13 | 2002-04-26 | Hitachi Cable Ltd | 直流電力ケーブル |
US6731879B1 (en) | 1999-08-18 | 2004-05-04 | Alcatel | Submarine communications system and landing-stage therefor |
JP2007173943A (ja) * | 2005-12-19 | 2007-07-05 | Fujitsu Ltd | 光海底伝送システム |
JP2019110497A (ja) | 2017-12-20 | 2019-07-04 | 株式会社Jvcケンウッド | 制御装置、制御方法、プログラム |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6510270B1 (en) * | 2001-07-24 | 2003-01-21 | Ocean Design, Inc. | Sub-oceanic cable network system and method |
EP2393221B1 (en) * | 2010-06-03 | 2015-07-22 | Alcatel Lucent | Undersea power distribution system |
CN103916182B (zh) * | 2011-12-26 | 2016-08-24 | 国家电网公司 | 海底通信光纤在线监测方法 |
WO2014160787A1 (en) * | 2013-03-26 | 2014-10-02 | Tgs Geophysical Company (Uk) Limited | High pressure splice housing |
DE102015109493A1 (de) * | 2015-04-07 | 2016-10-13 | Lios Technology Gmbh | Verfahren und Vorrichtung für die Überwachung eines Seekabels |
CN106199878B (zh) * | 2016-08-22 | 2022-12-02 | 江苏亨通海洋光网系统有限公司 | 一种可监测电性能的海陆缆接头盒及其电性能监测方法 |
CN107247320A (zh) * | 2017-05-16 | 2017-10-13 | 天津亿利科能源科技发展股份有限公司 | 一种海底铠装光缆登海洋平台的方法 |
US10461852B1 (en) * | 2018-08-07 | 2019-10-29 | Facebook, Inc. | Submarine cable network architecture |
US11784481B2 (en) * | 2019-12-04 | 2023-10-10 | Subcom, Llc | Submarine cable architecture with redundancy for facilitating shared landing site |
-
2020
- 2020-05-11 WO PCT/JP2020/018778 patent/WO2020250605A1/ja active Application Filing
- 2020-05-11 US US17/617,442 patent/US20220252818A1/en not_active Abandoned
- 2020-05-11 JP JP2021525946A patent/JP7099631B2/ja active Active
- 2020-05-11 EP EP20822805.6A patent/EP3985689A4/en active Pending
- 2020-05-11 CN CN202080031818.3A patent/CN113748470A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151731A (ja) * | 1982-03-05 | 1983-09-09 | Nec Corp | 海底光ケ−ブル方式 |
JPH0787013A (ja) | 1993-09-10 | 1995-03-31 | Fujitsu Ltd | 光海底ケーブルシステム |
JPH09258082A (ja) * | 1996-03-18 | 1997-10-03 | Fujitsu Ltd | 光海底ケーブル伝送システム |
US6731879B1 (en) | 1999-08-18 | 2004-05-04 | Alcatel | Submarine communications system and landing-stage therefor |
JP4526168B2 (ja) | 1999-08-18 | 2010-08-18 | アルカテル−ルーセント | 海底通信システムとそのためのランディングステージ |
JP2002124141A (ja) | 2000-10-13 | 2002-04-26 | Hitachi Cable Ltd | 直流電力ケーブル |
JP2007173943A (ja) * | 2005-12-19 | 2007-07-05 | Fujitsu Ltd | 光海底伝送システム |
JP2019110497A (ja) | 2017-12-20 | 2019-07-04 | 株式会社Jvcケンウッド | 制御装置、制御方法、プログラム |
Non-Patent Citations (2)
Title |
---|
NOBORU OHYAMAMORIJI KUWABARA: "Optical Submarine Cable Communication", 1991, KDD ENGINEERING AND CONSULTING, INC. |
See also references of EP3985689A4 |
Also Published As
Publication number | Publication date |
---|---|
US20220252818A1 (en) | 2022-08-11 |
CN113748470A (zh) | 2021-12-03 |
EP3985689A4 (en) | 2022-08-10 |
EP3985689A1 (en) | 2022-04-20 |
JPWO2020250605A1 (ja) | 2020-12-17 |
JP7099631B2 (ja) | 2022-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020250605A1 (ja) | 陸揚げケーブル及び部分陸揚げケーブル | |
US10954652B2 (en) | Assembly and method for installing a subsea cable | |
US8668406B2 (en) | Subsea cable installation | |
CA2161106A1 (en) | Method and device for continuously laying and burying a flexible submarine cable | |
AU2015282418B2 (en) | Towable subsea oil and gas production systems | |
US8747025B2 (en) | Offshore cable laying method | |
CN113898324B (zh) | 一种位于海床泥面下的水下生产的防护系统及方法 | |
CN109901273B (zh) | 超深水海底光缆接线盒海上布放的施工方法 | |
CN110573779B (zh) | 在海床上铺设管束的方法 | |
US10794139B2 (en) | Umbilical method | |
WO2002043214A9 (en) | Cable installation | |
CN206789840U (zh) | 一种海缆湿插拔设备 | |
Jeroense | Recommendations for Mechanical Testing of Submarine Cables (and Their Accessories) | |
Arkell et al. | Design, manufacture and installation of 150 kV submarine cable system for the Java–Madura interconnection | |
Arnaud et al. | Proposal for a commercial interconnection among the Hawaiian islands based on the results of the Hawaii Deep Water Cable program | |
Doyen et al. | Experiences with different cable designs and laying methods in conjunction with the power supply of the islands in the North-and Baltic-Sea | |
CA3224534A1 (en) | Subsea cable bundle installation | |
Galloway et al. | 150 kV Java-Madura submarine cable system interconnection | |
CN115116664A (zh) | 一种深水电缆及其敷设方法 | |
Nakanishi et al. | Completion of an optical fiber composite 500-kV DC submarine OF cable project | |
JPS6373812A (ja) | 分岐海底ケ−ブルの敷設工法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20822805 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021525946 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2020822805 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2020822805 Country of ref document: EP Effective date: 20220113 |