WO2020245916A1 - 電力変換装置及び電力変換制御装置 - Google Patents
電力変換装置及び電力変換制御装置 Download PDFInfo
- Publication number
- WO2020245916A1 WO2020245916A1 PCT/JP2019/022176 JP2019022176W WO2020245916A1 WO 2020245916 A1 WO2020245916 A1 WO 2020245916A1 JP 2019022176 W JP2019022176 W JP 2019022176W WO 2020245916 A1 WO2020245916 A1 WO 2020245916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- converter
- power
- arm
- star connection
- Prior art date
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 124
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 claims abstract description 82
- 239000003990 capacitor Substances 0.000 claims description 172
- 230000010349 pulsation Effects 0.000 claims description 45
- 230000000644 propagated effect Effects 0.000 claims 1
- 230000018199 S phase Effects 0.000 description 32
- 238000001514 detection method Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 8
- 230000004048 modification Effects 0.000 description 7
- 238000012986 modification Methods 0.000 description 7
- 230000007935 neutral effect Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000007812 deficiency Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/40—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
- H02M5/42—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
- H02M5/44—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
- H02M5/453—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
- H02M5/458—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M5/4585—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0012—Control circuits using digital or numerical techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M5/00—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
- H02M5/02—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
- H02M5/04—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
- H02M5/22—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M5/225—Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode comprising two stages of AC-AC conversion, e.g. having a high frequency intermediate link
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/4835—Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/49—Combination of the output voltage waveforms of a plurality of converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the embodiment of the present invention relates to a power conversion device and a power conversion control device.
- a power converter indirect AC converter
- Some power converters that convert relatively large amounts of power are connected in series with single-phase converter cells to form a multi-level converter. Further, due to an event or the like occurring on the load side of the power conversion device, the active power supplied to each phase of the second multi-phase AC power becomes unbalanced, and the first multi-phase AC power is supplied. The effect may have spread to the AC system on the power supply side.
- the problem to be solved by the present invention is to provide a power conversion device and a power conversion control device that reduce the imbalance between each phase of the active power supplied to the load side of the power conversion device from affecting the power supply side AC system. Is to provide.
- the power converter of the embodiment includes a first power converter, a plurality of DCDC converters, and a second power converter.
- the first power converter includes a plurality of first positive side arms, a plurality of first negative side arms, and a first positive side star connection for connecting the plurality of first positive side arms in a star shape.
- the first negative side star connection that connects the plurality of first negative side arms in a star shape, and the first positive side star connection and the first negative side star connection are connected to each phase of the power supply side AC system, respectively.
- the plurality of first positive side arms and the plurality of first negative side arms, including the first terminal mutually convert the first AC power and the first DC power of the power supply side AC system. ..
- the plurality of isolated DCDC converters convert the first DC power and the second DC power to each other.
- the second power converter includes a plurality of second positive side arms, a plurality of second negative side arms, and a second positive side star connection for connecting the plurality of second positive side arms in a star shape.
- the second negative side star connection that connects the plurality of second negative side arms in a star shape, and the second positive side star connection and the second negative side star connection are connected to each phase of the load side AC system, respectively.
- the plurality of second positive side arms and the plurality of second negative side arms mutually convert the second DC power and the second AC power, including the second terminal.
- the block diagram of the power conversion apparatus of an embodiment The block diagram of the single-phase converter cell of an embodiment.
- the block diagram of the single-phase converter cell of an embodiment. The figure for demonstrating the definition of the signal name of the converter of embodiment.
- the block diagram of the control part of an embodiment. The block diagram of the deviation amount calculation unit 12011 of an embodiment.
- the power conversion device described below supplies desired AC power to an AC motor, which is an example of a load.
- the power converter of the embodiment includes an indirect AC converter.
- the description of connecting in the embodiment includes electrically connecting.
- FIG. 1 is a configuration diagram of a power conversion device according to an embodiment.
- the power conversion device 1 shown in FIG. 1 includes, for example, a converter 2, an inverter 3, a DCDC conversion device group 4, a converter-side capacitor group 5, an inverter-side capacitor group 6, and a control unit 10.
- the converter 2, the inverter 3, the DCDC converter group 4, the converter-side capacitor group 5, and the inverter-side capacitor group 6 form the main circuit of the power converter 1.
- the power supply side AC system 7 supplies, for example, a polyphase AC power (first AC power) to the power conversion device 1.
- the power supply side AC system 7 supplies three-phase AC power of r-phase, s-phase, and t-phase.
- the load-side AC system 8 supplies multi-phase AC power (second AC power) from, for example, the power conversion device 1 to the load device.
- the load-side AC system 8 supplies three-phase AC power of u-phase, v-phase, and w-phase.
- the converter 2 (first power converter) mutually converts the first AC power and the first DC power of the power supply side AC system 7.
- the converter 2 converts the first AC power into the first DC power at the time of power running, and converts the first DC power into the first AC power at the time of regeneration.
- the converter 2 includes first AC connection terminals 201, 202, and 203 connected to the r-phase, s-phase, and t-phase of the power supply-side AC system 7, respectively.
- the converter 2 transfers the first AC power to and from the power supply side AC system 7 via the first AC connection terminals 201, 202, 203.
- the converter 2 includes a first positive star connection 210 centered on the neutral point 210P and a first negative star connection 220 having a neutral point 220N.
- Each of the r-phase, s-phase, and t-phase of the first positive-side star connection 210 and the first negative-side star connection 220 is connected to the first AC connection terminals 201, 202, and 203 in a star shape, respectively.
- the first positive side star connection 210 and the first negative side star connection 220 are not distinguished, they are collectively referred to as "converter star connection".
- the star connection may be a Y-type connection.
- the converter 2 includes an r-phase first arm 2110, an s-phase first arm 2120, a t-phase first arm 2130, an r-phase second arm 2210, an s-phase second arm 2220, and a t-phase second arm 2230. And the reactors 2119, 2129, 2139, 2219, 2229, 2239 .
- the r-phase of the first positive-side star connection 210 is provided with the r-phase first arm 2110, the s-phase is provided with the s-phase first arm 2120, and the t-phase is provided with the t-phase first arm 2130.
- the r-phase first arm 2110, the s-phase first arm 2120, and the t-phase first arm 2130 are collectively referred to as a "converter first arm" (a plurality of first positive arm).
- the r-phase second arm 2210 is provided in the r-phase of the first negative-side star connection 220, the s-phase second arm 2220 is provided in the s-phase, and the t-phase second arm 2230 is provided in the t-phase.
- the r-phase second arm 2210, the s-phase second arm 2220, and the t-phase second arm 2230 are collectively referred to as a "converter second arm" (plural first negative arm).
- each phase of the converter star connection is provided with a converter first arm and a converter second arm, respectively.
- the first arm of the converter and the second arm of the converter include at least one single-phase converter cell (see, for example, FIG. 2), and mutually convert the first AC power and the first DC power of the power supply side AC system 7. To do.
- the converter first arm and the converter second arm of the examples shown below each include four single-phase converter cells. This number is an example, and may be 3 or less, or 5 or more.
- the r-phase first arm 2110 is provided with single-phase converter cells 2111 to 2114.
- the r-phase second arm 2210 is provided with single-phase converter cells 2215 to 2218.
- the notation of the single-phase converter cells 2112, 2113, 2216, and 2217 in FIG. 1 is omitted.
- Each of the above single-phase converter cells converts a part of the first AC power of the power supply side AC system 7 and a part of the above first DC power into each other.
- a series circuit in which the single-phase converter cells are connected in series for each arm is connected by a star connection.
- Each phase of the converter first arm and the converter second arm is provided with a series circuit including a single-phase converter cell.
- the converter first arm and the converter second arm may be connected via a reactor.
- the r-phase first arm 2110 and the r-phase second arm 2210 are connected via the reactor 2119 and the reactor 2219.
- the above-mentioned reactor may be a single-phase reactor provided in each of the converter first arm and the converter second arm, or may be a coupling reactor.
- the single-phase converter cell of the converter 2 is associated with one DCDC converter in the DCDC converter group 4 described later and one first capacitor in the converter-side capacitor group 5 described later.
- the DC side of the single-phase converter cell is connected in parallel to the first DC terminal of one DCDC converter in the DCDC converter group 4 and the first capacitor in the converter side capacitor group 5. ..
- a capacitor 5111 is connected to the single-phase converter cell 2111.
- a capacitor 5114 is connected to the single-phase converter cell 2114.
- capacitors 5112 and 5113 the same applies to the capacitors 5112 and 5113. That is, capacitors 5111 to 5114 are connected to the single-phase converter cells 2111 to 2114.
- capacitors 5215 to 5218 are connected to the single-phase converter cells 2215 to 2218. The same applies to the s phase and the t phase. See FIG. 3 for details.
- the above-mentioned capacitors 5111 to 5114, capacitors 5215 to 5218, and the like are examples of the first capacitor.
- the inverter 3 (second power converter) converts the second DC power and the second AC power into each other.
- the inverter 3 converts the second DC power into the second AC power at the time of power running, and converts the second AC power into the second DC power at the time of regeneration.
- the inverter 3 includes second AC connection terminals 301, 302, and 303, which are connected to the u-phase, v-phase, and w-phase of the load-side AC system 8, respectively.
- the inverter 3 transfers the second AC power to and from the load device M connected to the load-side AC system 8 via the second AC connection terminals 301, 302, and 303.
- the inverter 3 includes a second positive star connection 310 centered on the neutral point 310P and a second negative star connection 320 centered on the neutral point 320N.
- Each of the u-phase v-phase w-phase of the second positive side star connection 310 and the second negative side star connection 320 is connected to the second AC connection terminals 301, 302, and 303 in a star shape, respectively.
- the second positive side star connection 310 and the second negative side star connection 320 are not distinguished, they are collectively referred to as "inverter star connection”.
- the inverter 3 includes a u-phase first arm 3110, a v-phase first arm 3120, a w-phase first arm 3130, a u-phase second arm 3210, a v-phase second arm 3220, and a w-phase second arm 3230. And the reactors 3119, 3129, 3139, 3219, 3229, 3239.
- the u-phase of the second positive star connection 310 is provided with the u-phase first arm 3110, the v-phase is provided with the v-phase first arm 3120, and the w-phase is provided with the w-phase first arm 3130.
- the u-phase first arm 3110, the v-phase first arm 3120, and the w-phase first arm 3130 are collectively referred to as an "inverter first arm" (a plurality of arms on the second positive side).
- the u-phase of the second negative star connection 320 is provided with the u-phase second arm 3210, the v-phase is provided with the v-phase second arm 3220, and the w-phase is provided with the w-phase second arm 3230.
- the u-phase second arm 3210, the v-phase second arm 3220, and the w-phase second arm 3230 are collectively referred to as an "inverter second arm" (a plurality of second negative arm).
- each phase of the inverter star connection is provided with an inverter first arm and an inverter second arm, respectively.
- the inverter first arm and the inverter second arm include at least one single-phase inverter cell, and mutually convert the second AC power and the second DC power of the load-side AC system 8.
- the inverter first arm and the inverter second arm of the examples shown below each include four single-phase inverter cells. This number is an example, and may be 3 or less, or 5 or more, as long as it is equal to the number of single-phase converter cells in the converter 2.
- the u-phase first arm 3110 is provided with cascade-connected single-phase inverter cells 3111 to 3114.
- the u-phase second arm 3210 is provided with cascade-connected single-phase inverter cells 3215 to 3218.
- the notation of the single-phase inverter cells 3112, 3113, 3216, and 3217 is omitted.
- Each of the above single-phase inverter cells converts a part of the second AC power of the load-side AC system 8 and a part of the above second DC power into each other.
- a series circuit in which a single-phase inverter cell is connected in series for each arm is connected by a star connection.
- Each phase of the inverter first arm and the inverter second arm is provided with a series circuit including a single-phase inverter cell.
- the inverter first arm and the inverter second arm may be connected via a reactor.
- the u phase first arm 3110 and the u phase second arm 3210 are connected via the reactor 3119 and the reactor 3219.
- Each of the above reactors has an inductive reactance of the same magnitude.
- the reactor may be a single-phase reactor provided in each of the inverter first arm and the inverter second arm, or may be a coupled reactor.
- the single-phase inverter cell of the inverter 3 is associated with one DCDC converter in the DCDC converter group 4 described later and one second capacitor in the inverter side capacitor group 6 described later.
- the DC side of the inverter 3 is connected to the second DC terminal of each DCDC converter of the DCDC converter group 4 described later.
- the capacitors 6111 to 6114 are connected to the single-phase inverter cells 3111 to 3114 as in the converter 2 described above.
- Capacitors 6215 to 6218 are connected to the single-phase inverter cells 3215 to 3218.
- the notation of capacitors 6112, 6113, 6216, 6217 is omitted.
- the above-mentioned capacitors 6111 to 6114, capacitors 6215 to 6218, and the like are examples of the second capacitor.
- the DCDC converter group 4 includes a plurality of DCDC converters capable of bidirectional power transmission.
- the DCDC converters 4111 to 4114 and 4215 to 4218 that connect the r-phase and the u-phase are examples of a plurality of DCDC converters.
- the DCDC converters 4112, 4113, 4216, and 4217 are omitted in FIG.
- a plurality of DCDC converters connecting the s phase and the v phase and a plurality of DCDC converters connecting the t phase and the w phase also omit the notation of the reference numerals.
- the case of connecting the s phase and the v phase and the case of connecting the t phase and the w phase are the same as the case of connecting the r phase and the u phase described above.
- the plurality of DCDC converters are collectively referred to as a DCDC converter 4000.
- the DCDC converter 4000 includes a first DC terminal and a second DC terminal.
- the first DC terminal of the DCDC converter 4000 is connected to the DC side of the single-phase converter cell of the converter 2
- the second DC terminal of the DCDC converter 4000 is connected to the DC side of the single-phase converter cell of the inverter 3. .
- the DCDC converter 4000 electrically connects the DC side of the single-phase converter cell of the converter 2 and the DC side of the single-phase converter cell of the inverter 3.
- the DCDC converter 4000 is an isolated DC power converter that is connected to the converter 2 and the inverter 3 and converts power in both directions.
- the DCDC converter 4111 electrically connects the DC side of the single-phase converter cell 2111 and the DC side of the single-phase inverter cell 3111.
- the DCDC converter 4114 electrically connects the DC side of the single-phase converter cell 2114 and the DC side of the single-phase inverter cell 3114.
- the above-mentioned DCDC converter 4111 is an example of the first DCDC converter.
- the single-phase converter cell 2111 is an example of the first single-phase converter cell.
- the single-phase inverter cell 3111 is an example of the first single-phase inverter cell.
- the DCDC converter 4114 is an example of the second DCDC converter.
- the single-phase converter cell 2114 is an example of a second single-phase converter cell.
- the single-phase inverter cell 3114 is an example of the second single-phase inverter cell.
- the DCDC converter 4111 and the DCDC converter 4114 are insulated from each other and controlled independently.
- the DCDC converter 4111 and the DCDC converter 4114 are connected via at least a single-phase converter cell 2111.
- the DCDC converter 4111 and the DCDC converter 4114 are connected via at least a single-phase converter cell 2111 and a single-phase converter cell 2114.
- the DCDC converter 4111 and the DCDC converter 4114 are connected via at least a single-phase inverter cell 3111.
- the DCDC converter 4111 and the DCDC converter 4114 are connected via at least a single-phase inverter cell 3111 and a single-phase inverter cell 3114.
- the DCDC converter 4000 includes two single-phase full bridge circuits and a single-phase transformer.
- the DCDC converter 4000 the DC voltage of the single-phase converter cell connected to the first single-phase full bridge circuit and the DC voltage of the single-phase inverter cell connected to the second single-phase full bridge circuit are matched so as to match. Adjust the amount of power conversion. As a result, the DCDC converter 4000 mutually converts the power on the DC side of the first single-phase full bridge circuit (first DC power) and the power on the DC side of the second single-phase full bridge circuit (second DC power). By doing so, electric power is mutually converted between the converter 2 and the inverter 3.
- the DCDC converter 4000 is not limited to the above circuit method, and may form an isolated DCDC converter capable of transmitting DC power to each other by another circuit method.
- the combination of two three-phase bridge circuits and a three-phase transformer is an example of a modification of the DCDC converter 4000.
- FIG. 2A and 2B are block diagrams of the single-phase converter cell of the embodiment. 2A and 2B show the single-phase converter cell 2111.
- the single-phase converter cell 2111 is, for example, a single-phase full bridge type in which a plurality of semiconductor elements are combined as shown in FIG. 2B.
- the semiconductor device illustrated in FIG. 2B is an IGBT (Insulated Gate Bipolar Transistor).
- the semiconductor element is not limited to the IGBT, and may be another type such as an FET.
- the description shown in FIG. 2A omits the single-phase converter cell 2111 shown in FIG. 2B.
- the AC side of the single-phase converter cell 2111 of the embodiment is cascade-connected to other single-phase converter cells 2112, 2113, and 2114 in a common arm (r-phase first arm 2110).
- a capacitor 5111 corresponding to the DC side of the single-phase converter cell 2111 of the embodiment is provided. Further, the single-phase converter cell 2111 is provided with a voltage detector VDET that detects the terminal voltage (converter side capacitor voltage) of the capacitor 5111. The voltage detected by the voltage detector VDET is used for control in the control unit 10.
- Single-phase converter cells other than the single-phase converter cell 2111 are similarly configured.
- the circuit configuration of the single-phase converter cell and the circuit configuration of the single-phase inverter cell may be the same or different.
- the single-phase converter cell and the single-phase inverter cell are not limited to the single-phase full bridge and have other configurations as long as they have a configuration capable of converting a DC voltage to an AC voltage without being limited to the circuit shown. It may be.
- the neutral point clamp type and the half bridge type are examples of other configurations of the single-phase converter cell.
- the converter 2 outputs a voltage of Vr / 2 by the r-phase first arm 2110 and outputs a voltage of -Vr / 2 by the r-phase second arm 2210.
- Vr which is the sum of the above voltages
- the voltage of Vr is output to the r phase of the first alternating current.
- the s phase and the t phase as in the r phase.
- the DCDC converter 4111 includes a capacitor 5111 (first capacitor) provided in association with the single-phase converter cell 2111 and a capacitor 6111 (second capacitor) provided in association with the single-phase inverter cell 3111. It is connected to the capacitor).
- the DCDC converter 4111 is an example of one DCDC converter among a plurality of DCDC converters.
- the single-phase converter cell 2111 is an example of one single-phase converter cell among a plurality of single-phase converter cells.
- the single-phase inverter cell 3111 is an example of one single-phase inverter cell among a plurality of single-phase inverter cells.
- the DCDC converter 4111 controls the conversion of DC power so that the instantaneous value of the voltage of the capacitor 6111 is constant. The same applies to the other DCDC converter 4000.
- FIG. 3 is a diagram for explaining the definition of the signal name of the converter of the embodiment.
- the three-phase phase voltage (instantaneous value) of the AC system 7 on the power supply side is indicated by the system voltage detection values vS ⁇ r, vS ⁇ s, and vS ⁇ t, and when these are summarized, the system voltage detection value vS ⁇ rst I will write it.
- ⁇ (hat)" indicates that the character following it is a superscript.
- the system voltage detection value vS ⁇ rst is expressed as shown in the formula (1).
- the left side of equation (1) is expressed as a vector.
- the right-hand side is divided into the components of the matrix.
- the superscript of the variable on the right side identifies each component of the matrix.
- the superscript "T" in the matrix indicates a translocation matrix.
- phase current detection values iS ⁇ r, iS ⁇ s, and iS ⁇ t are indicated by the system current detection values iS ⁇ rst (not shown).
- the direction in which the phase current of each phase goes from the power supply side AC system 7 to the converter 2 is positive.
- the fundamental frequency of the AC power of the AC system 7 on the power supply side is indicated by fS.
- the detected value of the voltage of the capacitor of each arm of the converter 2 is specified as follows.
- the capacitor voltages vCNV_DC1 ⁇ r and vCNV_DC4 ⁇ r are the voltages of the capacitors 5111 and 5114 related to the r-phase first arm.
- the voltages of the capacitors 5111 to 5114 related to the first arm of the r-phase are collectively referred to as the capacitor voltage vCNV_DC1-4 ⁇ r.
- the capacitor voltages vCNV_DC5 ⁇ r and vCNV_DC8 ⁇ r are the voltages of the capacitors 5215 and 5218 related to the r-phase second arm.
- the voltages of the capacitors 5215 to 5218 related to the second arm of the r-phase are collectively referred to as the capacitor voltage vCNV_DC5-8 ⁇ r.
- the capacitor voltage vCNV_DC1-4 ⁇ s and the capacitor voltage vCNV_DC5-8 ⁇ s are the voltages of the capacitors 5121 to 5124 related to the s-phase first arm and the capacitors 5125 to 5128 related to the s-phase second arm.
- the capacitor voltage vCNV_DC1-4 ⁇ t and the capacitor voltage vCNV_DC5-8 ⁇ t are the voltages of the capacitors 5131 to 5134 related to the t-phase first arm and the capacitors 5135 to 5138 related to the t-phase second arm.
- the voltage of the capacitor of each arm of the converter 2 is called the converter side capacitor voltage.
- the voltage of the r-phase first arm 2110 of the converter 2 is indicated by vCNV_P ⁇ r, and the voltage of the r-phase second arm 2210 is indicated by vCNV_N ⁇ r.
- the voltage of the s-phase first arm 2120 is indicated by vCNV_P ⁇ s
- the voltage of the s-phase second arm 2220 is indicated by vCNV_N ⁇ s
- the voltage of the t-phase first arm 2130 is indicated by vCNV_P ⁇ . It is indicated by t
- the voltage of the t-phase second arm 2230 is indicated by vCNV_N ⁇ t.
- the voltage generated by the single-phase converter cell in the r-phase first arm 2110 is defined as follows.
- the voltage generated by the single-phase converter cell 2111 is indicated by vCNV_1 ⁇ r.
- the voltage generated by the single-phase converter cell 2114 in the r-phase second arm 2210 is indicated by vCNV_4 ⁇ r
- the voltage generated by the single-phase converter cell 2115 is indicated by vCNV_5 ⁇ r
- the voltage generated by the single-phase converter cell 2118 is indicated by vCNV_8. Indicated by ⁇ r.
- the current flowing through the r-phase first arm 2110 is indicated by iCNV_P ⁇ r, and the current flowing through the r-phase second arm 2210 is indicated by iCNV_N ⁇ r.
- the current flowing through the s-phase first arm 2120 is indicated by iCNV_P ⁇ s, and the current flowing through the s-phase second arm 2220 is indicated by iCNV_N ⁇ s.
- the current flowing through the t-phase first arm 2130 is indicated by iCNV_P ⁇ t, and the current flowing through the t-phase second arm 2230 is indicated by iCNV_N ⁇ t.
- the current detector 210i is provided in the first positive side star connection 210, detects the current flowing through each arm of the first positive side star connection 210, and outputs the detected value (iCNV_P ⁇ rst).
- the current detector 220i detects the current flowing through each arm of the first negative star connection 220 and outputs the detected value (iCNV_N ⁇ rst).
- the above is an example of detecting the current of each phase.
- the current detector 210i and the current detector 220i detect the current of the r-phase s-phase and the remaining t from the detected current value.
- the phase current value may be calculated using the following equations (2) and (3).
- FIG. 4 is a diagram for explaining the definition of the signal name of the inverter of the embodiment.
- the definition of the signal name of the inverter is defined in the same manner as the definition of the signal name of the converter described above.
- the rst phase is replaced with the uvw phase, and the notation of "CNV" is replaced with "INV". A part of them will be described below.
- phase voltage (instantaneous value) of the load-side AC system 8 is indicated by the load voltage detection value vM ⁇ uvw
- phase current (instantaneous value) is indicated by the system current detection value iM ⁇ uvw. In FIG. 4, this is described separately for each phase.
- the direction in which the phase current of each phase goes from the load-side AC system 8 to the inverter 3 is positive.
- the fundamental frequency of the AC power of the load-side AC system 8 is indicated by fM.
- the detected value of the voltage of the capacitor of each arm of the inverter 3 is specified as follows.
- the capacitor voltage vINV_DC1-4 ⁇ u is the voltage of the capacitors 6111 to 6114 related to the u-phase first arm.
- the capacitor voltage vINV_DC5-8 ⁇ u is the voltage of the capacitors 6215 to 6218 related to the u-phase second arm.
- the voltage of the capacitor of each arm of the inverter 3 is called the inverter side capacitor voltage.
- the voltage of the u-phase first arm 3110 of the inverter 3 is indicated by vINV_P ⁇ u
- the voltage of the u-phase second arm 3210 is indicated by vINV_N ⁇ u.
- the voltage generated by the single-phase converter cell in the u-phase first arm 3110 is defined as follows.
- the voltage generated by the single-phase inverter cell 3111 is indicated by vINV_1 ⁇ u.
- the v phase and the w phase are the same as the u phase.
- the current detector 310i is provided in the second positive star connection 310, detects the current flowing through each arm of the second positive star connection 310, and outputs the detected value (iINV_P ⁇ uvw).
- the current detector 320i is provided in the second negative side star connection 320, detects the current flowing through each arm of the second negative star connection 320, and outputs the detected value (iINV_N ⁇ uvw).
- the above is an example of detecting the current of each phase, but the current detector 310i and the current detector 320i detect the current of any two phases, and the remaining phases are detected from the detected current values.
- the current value of may be calculated.
- the power conversion device 1 of the embodiment implements the following control, for example.
- the converter 2 controls so that the DC amounts of the capacitor voltage on the converter side are the same. At that time, each single-phase converter cell of the converter 2 is controlled so as to stabilize the converter-side capacitor voltage to a predetermined voltage.
- the DCDC converter 4000 controls so that the inverter-side capacitor voltage is constant and its instantaneous value is stabilized.
- the DCDC converter 4000 may apply a known phase shift control to the control thereof.
- the inverter 3 receives control from the host device and controls the load device M by a control method such as vector control. With the operation of the load device M, the balance of each phase of the load side AC system 8 may be lost, or low frequency pulsation may occur in the inverter side capacitor voltage.
- the low-frequency pulsation of the inverter-side capacitor voltage occurs as a single-phase power pulsation when the fundamental frequency (fM) of the AC power of the load-side AC system 8 is lower than the fundamental frequency fS (fM ⁇ fS). Contains 2fM components.
- the fundamental frequency (fM) of AC power is 1 (Hz) and the fundamental frequency fS is 50 (Hz)
- a power pulsation of 2 (Hz) occurs. If it is a pulsating component in this frequency region, the above low frequency pulsation can be reduced by passing a reverse phase current of 50 (Hz: fundamental frequency fS) through the converter 2.
- the inverter 3 controls to reduce this.
- the inverter 3 superimposes a high-frequency zero-phase voltage on an AC voltage, and causes a circulating current of the high-frequency frequency to flow in the inverter 3.
- the above-mentioned "high-frequency zero-phase voltage” is a superposition of a zero-phase voltage having a frequency component higher than the basic frequency (fM) of the AC of the load-side AC system 8 on the AC voltage.
- the harmonic component (sine wave) of the fundamental frequency (fM) of AC power is an example of the above-mentioned "high frequency component”.
- the inverter 3 reduces the low frequency pulsation of the inverter side capacitor voltage. This is called “inverter side low frequency pulsating power reduction control”.
- the power conversion device 1 combines low frequency pulsation power reduction control on the converter side and low frequency pulsation power reduction control on the inverter side to reduce low frequency pulsation components of DC voltage such as the capacitor voltage on the inverter side.
- the distribution of the low-frequency pulsating power reduction control on the converter side and the low-frequency pulsating power reduction control on the inverter side may be predetermined.
- FIG. 5 is a configuration diagram of the control unit 10 of the embodiment.
- the control unit 10 includes a converter control unit 12 (first control unit) and an inverter control unit 13 (second control unit).
- the converter control unit 12 includes an average voltage calculation unit 1201, a first ⁇ 0 converter 1202, a first PN-YZ converter 1203, an arm balance control unit 1204, an adder 1206, and a PLL circuit 1207 (not shown in the figure).
- PLL Phase-Locked Loop
- the average voltage calculation unit 1201, the first ⁇ 0 converter 1202, and the first PN-YZ converter 1203 form a converter charge state detection unit 1205.
- the converter charge state detection unit 1205 has, for example, the command value of the DC voltage (capacitor voltage command value vDC ⁇ *) applied to each capacitor and the detection value of the capacitor voltage on the converter side, which are common to the capacitors of each arm of the converter 2. The balance of the capacitor voltage on the converter side is detected based on.
- the converter charge state detection unit 1205 will be described.
- the average voltage calculation unit 1201 includes six deviation amount calculation units 12011.
- the deviation amount calculation unit 12011 determines the deviation amount of the capacitor voltage in each arm based on the capacitor voltage command value vDC ⁇ * of each arm of the converter 2 and the detected value of the capacitor voltage of each arm of the converter 2. Calculated for each arm.
- FIG. 6 is a configuration diagram of the deviation amount calculation unit 12011 of the embodiment.
- the deviation amount calculation unit 12011 includes LPF calculation units 12011a and 12011b, subtractors 12011c and 12011d, and an average calculation unit 12011e.
- the capacitor voltage vCNV_DC1-4 ⁇ r will be described as an example of the capacitor voltage on the converter side to be detected. The same applies to other cases.
- the LPF calculation unit 12011a is a low-frequency pass filter (referred to as “LPF”) and extracts a low-frequency component of the capacitor voltage vCNV_DC1 ⁇ r.
- the LPF calculation unit 12011b is an LPF, and similarly extracts a low frequency component of the capacitor voltage vCNV_DC4 ⁇ r.
- the cutoff frequency of the LPF is determined so that the alternating current fundamental wave component (fS) is cut off.
- the low frequency component of the capacitor voltage vCNV_DC2-3 ⁇ r is extracted by the LPF calculation unit (not shown).
- the subtractor 12011c subtracts the capacitor voltage command value vDC ⁇ * from the low frequency component of the capacitor voltage vCNV_DC1 ⁇ r, and outputs the resulting voltage deviation ⁇ vCNV_DC1 ⁇ r.
- the subtractor 12011d subtracts the capacitor voltage command value vDC ⁇ * from the low frequency component of the capacitor voltage vCNV_DC4 ⁇ r, and outputs the resulting voltage deviation ⁇ vCNV_DC4 ⁇ r.
- the voltage deviation ⁇ vCNV_DC2-3 ⁇ r is similarly calculated by a subtractor (not shown).
- the average calculation unit 12011e calculates the average value of the voltage deviation ⁇ vCNV_DC1-4 ⁇ r (capacitor voltage deviation amount ⁇ vCNV_DCP ⁇ r).
- the capacitor voltage deviation amount ⁇ vCNV_DCP ⁇ r is the average value of the deviation amount of the capacitor voltage vCNV_DC1-4 ⁇ r of the capacitors 5111 to 5114 of the r-phase first arm with respect to the above capacitor voltage command value vDC ⁇ *.
- the capacitor voltage deviation amount ⁇ vCNV_DCN ⁇ r is the average value of the deviation amount of the capacitor voltage vCNV_DC5-8 ⁇ r of the capacitors 5115 to 5118 of the r-phase second arm with respect to the above-mentioned capacitor voltage command value vDC ⁇ *.
- the capacitor voltage deviation amount ⁇ vCNV_DCP ⁇ s is the average value of the deviation amounts of the voltages of the capacitors 5121 to 5124 of the s-phase first arm with respect to the above-mentioned capacitor voltage command value vDC ⁇ *.
- the capacitor voltage deviation amount ⁇ vCNV_DCN ⁇ s is the average value of the deviation amounts of the voltages of the capacitors 5125 to 5128 of the s-phase second arm with respect to the above-mentioned capacitor voltage command value vDC ⁇ *.
- the capacitor voltage deviation amount ⁇ vCNV_DCP ⁇ t is the average value of the deviation amounts of the voltages of the capacitors 5131 to 5134 of the t-phase first arm with respect to the above-mentioned capacitor voltage command value vDC ⁇ *.
- the capacitor voltage deviation amount ⁇ vCNV_DCN ⁇ t is the average value of the deviation amounts of the voltages of the capacitors 5135 to 5138 of the t-phase second arm with respect to the above-mentioned capacitor voltage command value vDC ⁇ *.
- the value output by the average voltage calculation unit 1201 is the average value of each deviation amount, but in the following description, each output value is simply referred to as "capacitor voltage deviation amount".
- the average voltage calculation unit 1201 outputs the amount of capacitor voltage deviation of each phase as three-phase signals ( ⁇ vCNV_DCP ⁇ rst and ⁇ vCNV_DCN ⁇ rst) of the fixed coordinate system.
- the first ⁇ 0 converter 1202 converts a three-phase signal in the fixed coordinate system into a two-phase signal in the fixed coordinate system. This is called " ⁇ 0 conversion".
- the first ⁇ 0 converter 1202 is divided into a first arm and a second arm of the converter 2 to carry out “ ⁇ 0 conversion”.
- the first ⁇ 0 converter 1202 calculates the capacitor voltage deviation amount ⁇ vCNV_DCP ⁇ ⁇ 0 of the first arm of the converter 2 using the equation (4) based on the capacitor voltage deviation amount ⁇ vCNV_DCP ⁇ rst.
- the first ⁇ 0 converter 1202 calculates the capacitor voltage deviation amount ⁇ vCNV_DCN ⁇ ⁇ 0 of the second arm of the converter 2 based on the capacitor voltage deviation amount ⁇ vCNV_DCN ⁇ rst using the equation (5).
- the determinant [C ⁇ ⁇ 0] used for the “ ⁇ 0 conversion” in the above equation is shown in equation (6).
- the first PN-YZ converter 1203 converts the variable based on the two-phase signal of the fixed coordinate system coordinate-transformed by the first ⁇ 0 converter 1202. This conversion process is called "PN-YZ conversion".
- the first PN-YZ converter 1203 converts the variable using the following equation (7) based on the capacitor voltage deviation amount ⁇ vCNV_DCP ⁇ ⁇ 0 and the capacitor voltage deviation amount ⁇ vCNV_DCN ⁇ ⁇ 0, and the capacitor voltage deviation amount Calculate ⁇ vCNV_DCY ⁇ ⁇ 0 and the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ ⁇ 0 to separate the DC voltage imbalance between the arms.
- the arm balance control unit 1204 generates a current command value so that the voltages of the respective arms become equal to each other based on the calculation result by the first PN-YZ converter 1203.
- the arm balance control unit 1204 has a current command value iCNV_ZB ⁇ d * and a current command value iCNV_ZB ⁇ q for adjusting the circulating current based on the capacitor voltage deviation amount ⁇ vCNV_DCY ⁇ ⁇ 0 and the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ ⁇ . * And generate.
- the arm balance control unit 1204 supplies the generated current command value iCNV_ZB ⁇ d * to the d-axis adder 1206d described later, and supplies the current command value iCNV_ZB ⁇ q * to the q-axis adder 1206q described later.
- the details of the arm balance control unit 1204 will be described later.
- the first low-frequency pulsation power reduction control unit 1217 has a current command value iCNV_ZLF ⁇ d based on the low-frequency pulsation components ⁇ pM ⁇ ⁇ * and ⁇ pM ⁇ ⁇ * of the ⁇ 0 coordinate system supplied from the inverter control unit 13. * And the current command value iCNV_ZLF ⁇ q * are calculated.
- the inverter control unit 13 includes at least an LF_PPS controller 1322 and a second ⁇ 0 converter 1323. Details of the first low-frequency pulsating power reduction control unit 1217 and the inverter control unit 13 will be described later.
- the adder 1206 adds the calculation result of the arm balance control unit 1204 and the calculation result of the first low frequency pulsating power reduction control unit 1217 described later.
- the adder 1206 includes a d-axis adder 1206d and a q-axis adder 1206q.
- the d-axis adder 1206d adds the current command value iCNV_ZB ⁇ d * of the first input signal and the current command value iCNV_ZLF ⁇ d * of the second input signal described later, and outputs the current command value iCNV_Z ⁇ d *. To do.
- the q-axis adder 1206q adds the current command value iCNV_ZB ⁇ q * of the first input signal and the current command value iCNV_ZLF ⁇ q * of the second input signal described later, and outputs the current command value iCNV_Z ⁇ q *. To do.
- the PLL circuit 1207 includes, for example, an r-phase PLL circuit (not shown), an s-phase PLL circuit, and a t-phase PLL circuit.
- the r-phase PLL circuit of the PLL circuit 1207 extracts, for example, the fundamental wave component of the voltage of the power supply side AC system 7 based on the voltage between the AB lines and generates the phase ⁇ CNV ⁇ r.
- the phase ⁇ CNV ⁇ r is synchronized with the phase of the fundamental wave of the r-phase voltage of the power supply side AC system 7.
- the s-phase PLL circuit of the PLL circuit 1207 generates a phase ⁇ CNV ⁇ s based on the BC line voltage.
- the s-phase PLL circuit of the PLL circuit 1207 generates a phase ⁇ CNV ⁇ t based on the CA line voltage.
- the phase ⁇ CNV ⁇ r, the phase ⁇ CNV ⁇ s, and the phase ⁇ CNV ⁇ t have a (2 ⁇ / 3) radian phase difference from each other.
- the phase ⁇ CNV ⁇ rst is equivalent to the integrated value of the power supply angular frequency (electric angular velocity) ⁇ , and may be indicated by the product of the power supply angular frequency ⁇ and the time information (t) in the description.
- the PLL circuit 1207 may be a three-phase PLL.
- the PLL circuit 1207 extracts the fundamental wave component of the system voltage based on the system voltage detection value vs ⁇ rst of the power supply side AC system 7, and generates the phase ⁇ CNV ⁇ rst synchronized with the fundamental wave component.
- the PLL circuit 1207 supplies a representative value of the phase ⁇ CNV ⁇ rst to the first dq0 converter 1209, the second dq0 converter 1210, the system current ACR1212, and the first dq0 inverse converter 1215, which will be described later.
- the first dq0 converter 1209 performs ⁇ 0 conversion on the three-phase signal of the fixed coordinate system, and further performs “ ⁇ 0-dq0 conversion” using the determinant shown in the equation (9) to perform 2 of the fixed coordinate system.
- the phase signal is converted into a two-phase signal in a rotating coordinate system with reference to the dq0 axis.
- the above two-step conversion using the reference angle signal ⁇ CNV ⁇ rst is collectively called “three-phase ⁇ dq0 conversion”.
- the system voltage detection value vS ⁇ rst of the power supply side AC system 7 detected by the voltage detector (not shown) is an example of a three-phase signal of the fixed coordinate system.
- the system voltage detection value vS ⁇ dq is an example of a two-phase signal in a rotating coordinate system.
- the first dq0 converter 1209 performs a three-phase-dq0 conversion of the system voltage detection value vS ⁇ rst according to the following equation (8), and calculates the system voltage detection value vS ⁇ dq0 as a result. Since the value of the system voltage detection value vS ⁇ 0 is 0, the subsequent processing related to the system voltage detection value vS ⁇ 0 may be omitted.
- the second dq0 converter 1210 has the rst phase current value iCNV_P ⁇ rst of the first arm of the detected value of each arm current of the converter 2 and the second arm.
- the three-phase-dq0 conversion with respect to the rst phase current value iCNV_N ⁇ rst converts each into an rst phase current value iCNV_P ⁇ dq0 of the first arm and an rst phase current value iCNV_N ⁇ dq0 of the second arm.
- the calculation may be omitted.
- the second PN-YZ converter 1211 uses the above-mentioned "PN-YZ conversion" to obtain the rst phase current value iCNV_P ⁇ dq of the first arm and the rst phase current value iCNV_N ⁇ dq of the second arm using the equation (12). Based on the above, it is converted into the rst phase system side current value iCNV_Y ⁇ dq and the rst phase circulating current value iCNV_Z ⁇ dq.
- the rst phase system side current value iCNV_Y represents the system side current
- the rst phase circulating current value iCNV_Z represents the circulating current circulating in the converter 2.
- the system current ACR1212 includes, for example, the rst phase system side current value iCNV_Y ⁇ dq, the inverter side active power command value pM ⁇ *, the converter side reactive power command value qS ⁇ *, the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ 0, and the system.
- the rst phase voltage command value vCNV_Y ⁇ dq * is calculated based on the voltage detection value vS ⁇ dq and the phase ⁇ CNV ⁇ rst.
- the inverter-side active power command value pM ⁇ * and the converter-side reactive power command value qS ⁇ * are command values from the host device. Details of the system current ACR121212 will be described later.
- the first circulating current control unit 1213 (hereinafter referred to as "first circulating current ACR1213") sets the current command value iCNV_Z ⁇ d *, the current command value iCNV_Z ⁇ q *, and the rst phase circulating current value iCNV_Z ⁇ dq. Based on this, the rst phase voltage command value vCNV_Z ⁇ dq * is generated. Details of the first circulating current ACR1213 will be described later.
- the first YZ-PN converter 1214 performs the inverse conversion of the above-mentioned "PN-YZ conversion” (see equation (7)). This is called “YZ-PN conversion”.
- the first YZ-PN converter 1214 converts the rst phase voltage command value vCNV_Y ⁇ dq * and the rst phase voltage command value vCNV_Z ⁇ dq * into the rst phase voltage command value vCNV_P ⁇ dq of the first arm by YZ-PN conversion.
- * And the rst phase voltage command value vCNV_N ⁇ dq * of the second arm are converted.
- the first dq0 inverse converter 1215 carries out the inverse conversion of the above-mentioned dq0 conversion (see equation (9)). This is called “dq0 inverse conversion”.
- the first dq0 inverse converter 1215 uses dq0 inverse conversion to obtain the rst phase voltage command value vCNV_P ⁇ dq * of the first arm and the rst phase voltage command value vCNV_P ⁇ 0 of the zero-phase component of the first arm. Generates the rst phase voltage command value vCNV_P ⁇ rst *.
- the first dq0 inverse converter 1215 of the second arm is based on the rst phase voltage command value vCNV_N ⁇ dq * of the second arm and the rst phase voltage command value vCNV_N ⁇ 0 of its zero-phase component by the dq0 inverse conversion. Generates the rst phase voltage command value vCNV_N ⁇ rst *.
- the values of the rst phase voltage command value vCNV_P ⁇ 0 and the rst phase voltage command value vCNV_N ⁇ 0 may be set to 0 for simplicity, and the 3nth-order zero of the fundamental wave is used in order to use the overmodulation region. It may be a phase component.
- the above "3n order" indicates an order that is a natural number multiple of 3.
- the CNV controller 1216 controls each single-phase converter cell in the converter 2 based on the rst phase voltage command value vCNV_P ⁇ rst * of the first arm and the rst phase voltage command value vCNV_N ⁇ rst * of the second arm. Generate a gate pulse GPCNV to do. For example, the number of single-phase converter cells in the converter 2 is 24 in total because two arms are provided for each phase of the three-phase alternating current and four single-phase converter cells are provided for each arm. become. If the single-phase converter cell is a full-bridge type, each single-phase converter cell has four switching elements, so that the total number of gate pulse signals is 96.
- the converter control unit 12 performs the following control using the above configuration. ⁇ Control to keep the DC amount of all converter side capacitor voltage constant ⁇ Converter side low frequency pulsating power reduction control
- the first "control that keeps the DC amount of all converter-side capacitor voltages constant” is layered into a plurality of controls (sub-controls) shown below, and even if it is realized by a combination of the plurality of controls. Good.
- the CNV controller 1216 adjusts the active power flowing in from the power supply side AC system 7 to control so that the arithmetic mean value of all the converter side capacitor voltages becomes a desired value.
- ⁇ Arm balance control The CNV controller 1216 controls the circulating current flowing in the converter 2 (converter) so that the average value of the DC capacitor voltage on the converter side of each arm becomes equal. This is called “capacitor voltage balance control”, and the details will be described later.
- the CNV controller 1216 may perform individual balance control when balancing the converter-side DC capacitor voltage in each arm. Note that this individual balance control is a control that does not interfere with the adjustment of the arm output voltage.
- the CNV controller 1216 can be controlled independently without affecting the above-mentioned "DC voltage batch control" and "arm balance control". For example, when the r-phase first arm outputs a voltage that is 100% of the rated voltage, the ratio of the voltage (cell output voltage) output by each of the four single-phase converter cells in the arm is equalized (for example, 25%). : 25%: 25%: 25%.) May be assigned. Not limited to this, the ratio of the cell output voltage may be unevenly finely adjusted and assigned according to the DC voltage.
- the control for individually adjusting the value assigned to each single-phase converter cell in the arm in this way is "individual balance control". For example, with the above adjustments, the cell output voltage ratio can be assigned unevenly (eg, 20%: 30%: 25%: 25%). At that time, the total value is set to be 100%.
- the description of the individual balance control will be omitted in the following description, and the case where the ratio of the voltages output by the single-phase converter cells is equalized will be described.
- capacitor voltage balance control for example, in order to stabilize the DC component of the capacitor voltage, the unbalanced component of the capacitor voltage may be separated and adjusted so that it becomes zero.
- the average voltage calculation unit 1201 in the converter charge state detection unit 1205 first performs LPF calculation on the detected value of the converter-side capacitor voltage to reduce the pulsating component depending on the AC basic frequency (fs), and then each of them. Calculate the deviation from the capacitor voltage command value vDC ⁇ *. Further, the average voltage calculation unit 1201 calculates the arithmetic mean in the arm for the above deviation amount. An example is as described above.
- the converter charge state detection unit 1205 calculates the capacitor voltage deviation amount ⁇ vCNV_DCY ⁇ ⁇ 0 and the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ ⁇ 0.
- the converter charge state detection unit 1205 supplies the capacitor voltage deviation amount ⁇ vCNV_DCY ⁇ ⁇ 0 and the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ ⁇ to the arm balance control 1204. These indicate the amount of DC voltage imbalance between the arms.
- the converter charge state detection unit 1205 supplies the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ 0 to the system current ACR1212.
- the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ 0 indicates the difference (deviation amount) between the average of all capacitor voltages and the capacitor voltage command value vDC ⁇ *.
- the arm balance control unit 1204 calculates the command value of the circulating current using the calculation result of the first PN-YZ converter 1203.
- the converter control unit 12 performs feedback control based on the detected value of the current flowing through the arm.
- the second ⁇ 0 converter 1210 performs ⁇ 0 conversion and the second PN-YZ converter 1211 performs "PN-YZ conversion" with respect to the detected value of the current flowing through the arm.
- the rst phase system side current value iCNV_Y ⁇ dq of the calculation result of the second PN-YZ converter 1211 indicates the magnitude of the current on the power supply side AC system 7 side.
- the rst phase system side current value iCNV_Z ⁇ dq indicates the circulating current flowing in the converter 2.
- the system current ACR1212 adjusts the system current iCNV_Y based on the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ 0 in order to transfer the excess and deficiency power from the power supply (this is called “DC voltage batch control”). ..
- FIG. 7 is a block diagram of the system current ACR1212 of the embodiment.
- the system current ACR1212 includes arithmetic units 1212a to 1212l.
- VS indicates the effective line voltage value of the power supply side AC system 7.
- vS ⁇ dq indicates the system voltage detection value corresponding to the system voltage detection value vS ⁇ rst. In the case described later, the system voltage detection value vS ⁇ dq is used for the feedforward term.
- the arithmetic unit 1212a multiplies the reactive power command value qS ⁇ * on the converter side by a predetermined coefficient "1 / VS" based on the effective line voltage value of the AC system 7 on the power supply side, and the reactive current output command value iCNV_Y ⁇ q *. Is calculated.
- the arithmetic unit 1212b subtracts the rst phase system side current value iCNV_Y ⁇ q from the reactive current output command value iCNV_Y ⁇ q *.
- the arithmetic unit 1212c has a first q-axis system voltage command value vCNV_Y1 ⁇ such that the deviation becomes zero based on the deviation amount of the rst phase system side current value iCNV_Y ⁇ q with respect to the reactive current output command value iCNV_Y ⁇ q *.
- the calculation unit 1212c may perform a proportional integration calculation according to the calculation formula “KS + KS / sTS” to calculate the first q-axis system voltage command value vCNV_Y1 ⁇ q *.
- the above "KS” is, for example, a predetermined proportional gain.
- the above "KS / TS” is, for example, a predetermined integrated gain.
- the above "TS” is a predetermined calculation cycle, and "s" in the denominator of the calculation formula is a Laplace operator.
- the "KS" of the proportional gain and the integrated gain may have different values.
- the arithmetic unit 1212d calculates the reactive current output command value iCNV_Y ⁇ d * by multiplying the inverter side active power command value pM ⁇ * by a predetermined coefficient "1 / VS" in the same manner as above.
- the arithmetic unit 1212e multiplies the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ 0 by a predetermined coefficient “K0A”.
- K0A is, for example, a predetermined constant.
- the arithmetic unit 1212f adds the arithmetic results of the arithmetic unit 1212d and the arithmetic unit 1212e to calculate the reactive current output command value iCNV_Y ⁇ d *.
- the arithmetic unit 1212g subtracts the rst phase system side current value iCNV_Y ⁇ d from the reactive current output command value iCNV_Y ⁇ d *.
- the arithmetic unit 1212h has a first d-axis system voltage command value vCNV_Y1 ⁇ such that the deviation becomes zero based on the deviation amount of the rst phase system side current value iCNV_Y ⁇ d with respect to the reactive current output command value iCNV_Y ⁇ d *. Calculate d *.
- the arithmetic unit 1212i calculates the second q-axis system voltage command value vCNV_Y2 ⁇ q * by multiplying the reactive current output command value iCNV_Y ⁇ d * by a predetermined coefficient " ⁇ LB".
- the above "LB” is, for example, the reactance of Reactor 3119.
- the arithmetic unit 1212j calculates the second d-axis system voltage command value vCNV_Y2 ⁇ d * by multiplying the reactive current output command value iCNV_Y ⁇ q * by a predetermined coefficient “ ⁇ LB”.
- the above-mentioned "LB” is, for example, the reactance of reactor 3219, and its value may be the same as that of reactor 3119.
- the arithmetic unit 1212k adds the second d-axis system voltage command value vCNV_Y2 ⁇ d * and the system voltage detection value vS ⁇ d, and further obtains the first d-axis system voltage command value vCNV_Y1 ⁇ d * from the sum. Subtract to calculate the resulting rst phase voltage command value vCNV_Y ⁇ d *.
- the arithmetic unit 1212l subtracts the first q-axis system voltage command value vCNV_Y1 ⁇ q * and the second q-axis system voltage command value vCNV_Y2 ⁇ q * from the system voltage detection value vS ⁇ q, and the result is Calculate the rst phase voltage command value vCNV_Y ⁇ q *.
- the system current ACR1212 stabilizes the DC component of the capacitor voltage by exchanging and receiving the excess and deficiency of the total capacitor voltage with the power supply side AC system 7 by the above-mentioned "system voltage batch control".
- FIG. 8 is a configuration diagram of the arm balance control unit 1204 of the embodiment.
- the arm balance control unit 1204 includes arithmetic units 1204a to 1204h.
- the arithmetic unit 1204a calculates the first current command value ICNV_ZB ⁇ f * by multiplying the capacitor voltage deviation amount ⁇ vCNV_DCY ⁇ 0 by a predetermined coefficient “KCNV_DCY ⁇ 0”.
- the calculation unit 1204b calculates the magnitude (absolute value
- the arithmetic unit 1204c calculates the second current command value ICNV_ZB ⁇ b * by multiplying the absolute value
- the arithmetic unit 1204d calculates the declination ⁇ CNV_ZB ⁇ b * based on the capacitor voltage deviation amount ⁇ vCNV_DCY ⁇ ⁇ by using the following equation (13).
- the calculation unit 1204e calculates the magnitude (absolute value
- the arithmetic unit 1204f calculates the second current command value ICNV_Zdc ⁇ b * by multiplying the absolute value
- the arithmetic unit 1204g calculates the declination ⁇ CNV_Zdc ⁇ b * based on the capacitor voltage deviation amount ⁇ vCNV_DCZ ⁇ ⁇ by using the following equation (14).
- the arithmetic unit 1204h has the above-mentioned first current command value ICNV_ZB ⁇ f *, second current command value ICNV_ZB ⁇ b *, deviation angle ⁇ CNV_ZB ⁇ b *, and second current command value ICNV_Zdc ⁇ f *. Based on the deviation angle ⁇ CNV_Zdc ⁇ f *, the current command value iCNV_ZB ⁇ d * and the current command value iCNV_ZB ⁇ q * are calculated using the following equation (15).
- the first to third terms of the above equation (15) correspond to the positive and negative phases of the system frequency and the magnitude of the DC circulating current. By adjusting these values, it is possible to control the flow of a desired circulating current.
- FIG. 9 is a configuration diagram of the first low-frequency pulsating power reduction control unit 1217 of the embodiment.
- the first low-frequency pulsating power reduction control unit 1217 includes arithmetic units 1217a to 1217d.
- the calculation unit 1217a calculates the magnitude (absolute value
- the arithmetic unit 1217b calculates the current command value ICNV_ZLF ⁇ b * by multiplying the absolute value
- the conversion gain "GCNV_LF ⁇ ⁇ " is an example of a conversion coefficient (conversion rate) for converting electric power into electric current.
- the calculation unit 1217c calculates the declination ⁇ CNV_ZLF ⁇ b * based on the low frequency pulsation component ⁇ pM ⁇ ⁇ * using the following equation (16).
- the arithmetic unit 1217d uses the following equation (17) to generate the current command value iCNV_ZLF ⁇ d * and the current command value iCNV_ZLF ⁇ . Calculate q * and.
- the above equation (17) corresponds to the one obtained by extracting the reverse phase current component of the arm balance control from the above equation (15).
- is different from the constant (predetermined coefficient "KCNV_DCY ⁇ 0") used by the arithmetic unit 1204a of the arm balance control unit 1204.
- the above constants in arm balance control are defined as control gains.
- the converted gain "GCNV_LF” is defined as a gain for calculating how much current is required from the input pulsating power.
- the conversion gain "GCNV_LF” should be set to a value that can cancel all the pulsating power. If there is not enough current capacity in the converter 2 to supply circulating power that can cancel all the pulsating power, or if the "INV side low frequency pulsation control" described later is also used, the conversion gain "GCNV_LF” is used as appropriate. It may be reduced, or it may be reduced depending on the operating state of the converter 2.
- the adder 1206 adds the current command value iCNV_ZB ⁇ dq * as a result of the above arm balance control and the current command value iCNV_ZLF ⁇ dq * as a result of the CNV side low frequency pulsation reduction control, and finally The circulating current command value (current command value iCNV_Z ⁇ dq *).
- FIG. 10 is a block diagram of the first circulating current ACR1213 of the embodiment.
- the first circulating current ACR1213 includes arithmetic units 1213b, 1213c, 1213g to 1213l.
- the arithmetic unit 1213b subtracts the rst phase system side current value iCNV_Z ⁇ q from the current command value iCNV_Z ⁇ q *.
- the arithmetic unit 1213c has a first q-axis system voltage command value vCNV_Z1 ⁇ q * such that the deviation becomes zero based on the deviation amount of the rst phase system side current value iCNV_Z ⁇ q with respect to the current command value iCNV_Z ⁇ q *. Is calculated.
- the calculation unit 1213c may perform a proportional calculation in which the coefficient is defined by "KCNV_Z ⁇ dq" to calculate the first q-axis system voltage command value vCNV_Z1 ⁇ q *.
- the arithmetic unit 1213g subtracts the rst phase system side current value iCNV_Z ⁇ d from the current command value iCNV_Z ⁇ d *.
- the arithmetic unit 1213h has a first d-axis system voltage command value vCNV_Z1 ⁇ d * such that the deviation becomes zero based on the deviation amount of the rst phase system side current value iCNV_Z ⁇ d with respect to the current command value iCNV_Z ⁇ d *. Is calculated.
- the calculation unit 1213i calculates the second q-axis system voltage command value vCNV_Z2 ⁇ q * by multiplying the current command value iCNV_Z ⁇ d * by a predetermined coefficient " ⁇ LB”.
- the arithmetic unit 1213j calculates the second d-axis system voltage command value vCNV_Z2 ⁇ d * by multiplying the current command value iCNV_Z ⁇ q * by a predetermined coefficient “ ⁇ LB”.
- the arithmetic unit 1213k subtracts the first d-axis system voltage command value vCNV_Z1 ⁇ d * from the second d-axis system voltage command value vCNV_Z2 ⁇ d *, and the resulting rst phase voltage command value vCNV_Z ⁇ d * Is calculated.
- the arithmetic unit 1213l subtracts the first q-axis system voltage command value vCNV_Z1 ⁇ q * from the second q-axis system voltage command value vCNV_Z2 ⁇ q *, and the resulting rst phase voltage command value vCNV_Z ⁇ q * Is calculated.
- the rst phase voltage command value vCNV_Z ⁇ q * calculated by the first circulating current ACR1213 is converted into a gate pulse GPCNV ⁇ rst by the first dq0 inverse converter 1215 and the CNV controller 1216 in the subsequent stage, and each of the converters 2
- the arm is controlled by its gate pulse GPCNV ⁇ rst.
- the converter control unit 12 can flow a desired circulating current inside the converter 2.
- the converter control unit 12 uses the converter control unit 12 as the first circulating current to flow through the first positive side star connection 210 and the first negative side star connection 220, and is the reverse of the fundamental wave with respect to the fundamental wave positive phase current related to the AC power of the power supply side AC system 7.
- the converter 2 may be controlled so that the phase current flows.
- the converter control unit 12 may control the converter 2 so that the active power of each phase of the power supply side AC system 7 is aligned.
- FIG. 11 is a configuration diagram of the inverter control unit 13 of the embodiment.
- the inverter control unit 13 includes a third dq0 converter 1310, a third PN-YZ converter 1311, a motor current ACR 1312, a second circulating current control unit 1313, a second YZ-PN converter 1314, and a second dq0 inverse converter. 1315, INV controller 1316, INV current command value phase calculation unit 1321, LF_PPS controller 1322, second ⁇ 0 converter 1323, and second low frequency pulsating power reduction control unit 1324 (the description in the figure is "No. 2LF_RPP control unit ”), a zero-phase voltage calculation unit 1325, and a multiplier 1326.
- the third dq0 converter 1310 uses the uvw phase current value iINV_P ⁇ uvw of the first arm and the uvw phase current value iINV_N ⁇ uvw of the second arm of the detected value of each arm current of the inverter 3 as the phase ⁇ INV for coordinate conversion.
- the uvw phase current value iINV_P ⁇ dq of the first arm and the uvw phase current value iINV_N ⁇ dq of the second arm are converted.
- the third PN-YZ converter 1311 performs PN-YZ conversion.
- the third PN-YZ converter 1311 has uvw phase system side current values iINV_Y ⁇ dq and uvw based on the uvw phase current value iINV_P ⁇ dq of the first arm and the uvw phase current value iINV_N ⁇ dq of the second arm. Convert to the phase circulating current value iINV_Z ⁇ dq.
- the uvw phase system side current value iINV_Y represents the system side current
- the uvw phase circulating current value iINV_Z represents the circulating current circulating in the converter 2.
- the motor current control unit 1312 (hereinafter referred to as "motor ACR1312") has an uvw phase voltage command value vINV_Y ⁇ dq * based on the uvw phase system side current value iINV_Y ⁇ dq and the motor current command value iINV_Y ⁇ dq *. Is calculated.
- the motor current ACR1312 includes, for example, arithmetic units 1312b, 1312c, 1312g to 1312l.
- the arithmetic units 1312b, 1312c, 1312g to 1312l correspond to the above-mentioned system currents ACR1213, 1212b, 1212c, 1212g to 1212l.
- FIG. 7 and the description thereof will be referred to.
- the second circulating current control unit 1313 (hereinafter referred to as “second circulating current ACR1313”) has an uvw phase voltage command value vINV_Z based on the current command value iINV_ZLF ⁇ dq * and the uvw phase circulating current value iINV_Z ⁇ dq. Generate ⁇ dq *.
- the second circulating current ACR1313 includes arithmetic units 1313b, 1313c, 1313g to 1313l.
- the arithmetic units 1313b, 1313c, 1313g to 1313l correspond to the arithmetic units 1213b, 1213c, 1213g to 1213l of the first circulating current ACR1213.
- FIG. 10 and the description thereof will be referred to.
- the second YZ-PN converter 1314 performs YZ-PN conversion, and sets the uvw phase voltage command value vINV_Y ⁇ dq * and the uvw phase voltage command value vINV_Z ⁇ dq * to the uvw phase voltage command value of the first arm. It is converted into vINV_P ⁇ dq * and the uvw phase voltage command value vINV_N ⁇ dq * of the second arm.
- the zero-phase voltage calculation unit 1325 specifies the zero-phase voltage output by the inverter 3 so as to superimpose the "high-frequency zero-phase voltage" on the AC voltage for the above-mentioned "inverter-side low-frequency pulsating power reduction control". Generates the uvw phase voltage command value vINV_LF ⁇ 0 *.
- the zero-phase voltage calculation unit 1325 may be set so that the output voltage of the inverter 3 is not saturated when adjusting the magnitude (amplitude) and phase of the zero-phase voltage of the inverter 3.
- the multiplier 1326 calculates the uvw phase voltage command value vINV_LFN ⁇ 0, which is a negative value whose absolute value is equal to the uvw phase voltage command value vINV_LF ⁇ 0 *, based on the uvw phase voltage command value vINV_LF ⁇ 0 *.
- the second dq0 inverse converter 1315 is based on the uvw phase voltage command value vINV_P ⁇ dq * of the first arm and the uvw phase voltage command value vINV_LF ⁇ 0 * of its zero-phase component, and is based on the coordinate conversion phase ⁇ INV.
- the reverse conversion of dq0 is performed to generate the uvw phase voltage command value vINV_P ⁇ uvw * of the first arm.
- the second dq0 inverse converter 1315 similarly performs dq0 inverse conversion based on the uvw phase voltage command value vINV_N ⁇ dq * of the second arm and the uvw phase voltage command value vINV_LFN ⁇ 0 * of its zero-phase component. Then, the uvw phase voltage command value vINV_N ⁇ uvw * of the second arm is generated.
- the INV controller 1316 controls each single-phase inverter cell in the inverter 3 based on the uvw phase voltage command value vINV_P ⁇ uvw * of the first arm and the uvw phase voltage command value vINV_N ⁇ uvw * of the second arm. Generate a gate pulse GPINV to do. For example, the number of single-phase inverter cells in the inverter 3 is the same as that of the converter 2, and the total number is 24. If the single-phase inverter cell is a full-bridge type, the total number of gate pulse signals will be 96 as in the converter 2.
- the INV current command value phase calculation unit 1321, the LF_PPS controller 1322, the second ⁇ 0 converter 1323, and the second low frequency pulsating power reduction control unit 1324 will be collectively described in the explanation of control.
- the INV current command value phase calculation unit 1321 calculates the motor current command value iINV_Y ⁇ dq * of the dq axis and the phase for coordinate conversion ( ⁇ INV) based on the speed FBK.
- the INV current command value phase calculation unit 1321 controls the vector based on the speed reference specified by the host controller and the angular velocity (referred to as speed FBK) of the motor M detected by the speed detector SS (FIG. 1). It is advisable to calculate the motor current command value iINV_Y ⁇ dq * of the dq axis by a known technique such as. Further, the INV current command value phase calculation unit 1321 calculates, for example, the coordinate conversion phase ⁇ INV by integrating the velocity FBK.
- V / f control constant voltage-frequency ratio control
- torque control may be applied instead of speed control. May be replaced with.
- the motor ACR1312 calculates the uvw phase voltage command value vINV_Y ⁇ dq * based on the uvw phase system side current value iINV_Y ⁇ dq and the motor current command value iINV_Y ⁇ dq *.
- the second circulating current ACR1313 generates the uvw phase voltage command value vINV_Z ⁇ dq * based on the current command value iINV_ZLF ⁇ dq * and the uvw phase circulating current value iINV_Z ⁇ dq.
- the motor ACR1312 and the second circulating current ACR1313 perform current control with their respective components.
- the above Y component represents the drive current of the motor, and the motor ACR1312 performs current control so as to follow the motor current command value obtained above.
- FIG. 12 is a block diagram of the LF_PPS controller 1322 of the embodiment.
- the LF_PPS controller 1322 has a low frequency pulsation component ( ⁇ pM ⁇ ) included in the power pM supplied to the motor M based on the motor current command value iINV_Y ⁇ dq * and the uvw phase voltage command value vINV_Y ⁇ dq *. uvw *) is calculated.
- the LF_PPS controller 1322 includes a third dq0 inverse converter 1322a, a fourth dq0 inverse converter 1322b, and arithmetic units 1322c to 1322j.
- the third dq0 inverse converter 1322a performs dq0 inverse conversion based on the coordinate conversion phase ⁇ INV, and performs the Y component vINV_Y ⁇ dq * of the uvw phase voltage command value of the dq axis and the uvw phase voltage of the zero phase component.
- the Y component vINV_Y ⁇ uvw * of the uvw phase voltage command value is generated based on the Y component vINV_Y ⁇ 0 of the command value.
- the uvw phase voltage command value vINV_Y ⁇ 0 value is 0.
- the fourth dq0 inverse converter 1322b performs dq0 inverse conversion based on the coordinate conversion phase ⁇ INV, and performs the Y component iINV_Y ⁇ dq * of the uvw phase current command value of the dq axis and the uvw phase current of the zero phase component.
- the Y component iINV_Y ⁇ uvw * of the uvw phase current command value is generated based on the Y component iINV_Y ⁇ 0 of the command value.
- the value of the uvw phase current command value iINV_Y ⁇ 0 is 0.
- the arithmetic units 1322c, 1322d, 1322e are multipliers.
- the arithmetic units 1322c, 1322d, and 1322e multiply the Y component vINV_Y ⁇ uvw * of the uvw phase voltage command value and the Y component iINV_Y ⁇ uvw * of the uvw phase current command value for each component, and generate an instantaneous power command for the uvw phase. Calculate the value pM ⁇ uvw *.
- the arithmetic unit 1322f is an adder, and adds each component of the instantaneous power command value pM ⁇ uvw * of the uvw phase.
- the total value of the instantaneous power command value pM ⁇ uvw * of the uvw phase becomes the active power command value pM ⁇ *.
- the arithmetic unit 1322g divides the active power command value pM ⁇ * by 3 and allocates the quotient to each phase to obtain the reference value in the subsequent stage.
- the arithmetic units 1322h, 1322i, and 1322j are subtractors, and from each component of the instantaneous power command value pM ⁇ uvw * of the uvw phase, a reference value (active power command value pM ⁇ * / 3) allocated to each phase is obtained. Subtract.
- the calculation results of the calculation units 1322h, 1322i, and 1322j are the low-frequency pulsation components ( ⁇ pM ⁇ uvw *) included in each phase.
- the LF_PPS controller 1322 can separate the low-frequency pulsating components of the uvw phase for each phase.
- the second ⁇ 0 converter 1323 converts the low frequency pulsation component ( ⁇ pM ⁇ uvw *) of the uvw phase into the low frequency pulsation component ( ⁇ pM ⁇ ⁇ 0 *) of the fixed coordinate system by the ⁇ 0 conversion.
- the second ⁇ 0 converter 1323 outputs a low frequency pulsation component ( ⁇ pM ⁇ ⁇ *) to the second low frequency pulsation power reduction control unit 1324 described later and the first low frequency pulsation power reduction control unit 1217 described above. ..
- the second ⁇ 0 converter 1323 does not have to output the zero-phase component.
- the fundamental frequency fM and the phase of the second AC power output by the inverter 3 are different from the fundamental frequency fS and the phase of the first AC power supplied to the converter 2.
- the second ⁇ 0 converter 1323 represents the low frequency pulsation component in a fixed coordinate system by ⁇ 0 conversion.
- the converter 2 and the inverter 3 can share the value of the low-frequency pulsation component as information in the fixed coordinate system.
- the converter 2 and the inverter 3 are controlled based on the values of the low-frequency pulsation components in the fixed coordinate system, thereby enabling the control in cooperation with each other.
- the second low frequency pulsation power reduction control unit 1324 controls the circulating current in the inverter 3 using the low frequency pulsation component ( ⁇ pM ⁇ ⁇ *). ..
- the second low-frequency pulsating power reduction control unit 1324 shown in FIG. 11 has a different configuration from the first low-frequency pulsating power reduction control unit 1217 shown in FIG. 7.
- the second low frequency pulsation power reduction control unit 1324 generates the current command value iINV_ZLF ⁇ ⁇ * based on the low frequency pulsation component ( ⁇ pM ⁇ ⁇ *).
- the second low-frequency pulsating power reduction control unit 1324 uses the following equation (18) to convert the low-frequency pulsating component ⁇ pM ⁇ ⁇ * into the conversion gain “GINV_LF ⁇ ⁇ ” in the same manner as on the converter 2 side. Multiply by to calculate the current command value IINV_ZLF ⁇ ⁇ *.
- the conversion gain "GINV_LF ⁇ ⁇ " is an example of a conversion coefficient (conversion rate) for converting electric power into electric current.
- control unit 10 sets the ratio of the conversion gain “GCNV_LF ⁇ ⁇ ” and the conversion gain “GINV_LF ⁇ ⁇ ” to an appropriate value in advance or adaptively according to the operating state of the power conversion device 1. By setting to, the effect of reducing low frequency pulsating power can be optimized. The above ratio may be determined accordingly.
- the second low frequency pulsating power reduction control unit 1324 performs ⁇ 0 inverse conversion on the current command value IINV_ZLF ⁇ ⁇ * of the circulating current obtained above to generate the current command value IINV_ZLF ⁇ uvw * of the uvw phase. At this time, the zero-phase value is set to 0.
- the second low-frequency pulsating power reduction control unit 1324 calculates the current command value iINV_ZLF ⁇ uvw * based on the current command value IINV_ZLF ⁇ uvw * using the following equation (19).
- the second low-frequency pulsating power reduction control unit 1324 applies dq conversion to the current command value iINV_ZLF ⁇ uvw * to calculate the current command value iINV_ZLF ⁇ dq *.
- the second circulating current ACR1313 is a uvw phase voltage command value based on the current command value iINV_ZLF ⁇ dq * calculated by the second low frequency pulsating power reduction control unit 1324 by the same method as the first circulating current ACR1213 described above. Generate vINV_Z ⁇ dq *.
- the zero-phase voltage calculation unit 1325 may generate the uvw phase voltage command value vINV_LF ⁇ 0 * by using the following equation (20).
- fX frequency components higher than the fundamental wave frequency fM
- fX fundamental wave frequency
- X in the above formula (20) is an identifier used for identifying the above frequency component fX.
- VX ⁇ 0 * is the command value of the zero-phase voltage of the frequency component fX defined by the effective value.
- ⁇ X and ⁇ X ⁇ 0 indicate the angular velocity of the frequency component fX and the phase of the zero-phase voltage.
- the inverter 3 circulates in the converter 2 by using the low frequency pulsation component ⁇ pM ⁇ ⁇ * and the conversion gain “GINV_LF ⁇ ⁇ ” that converts electric power into current as in the case of the converter 2. Determine the current.
- the converted gain "GINV_LF ⁇ ⁇ " shown in the above equation (20) is used for controlling the zero-phase current in the same manner as the converted gain "GCNV_LF ⁇ ⁇ " of the first circulating current ACR1213, but the converted gain.
- the values may be different from those of "GCNV_LF".
- the storage unit of the control unit 10 is allocated an area for storing the conversion gain "GCNV_LF ⁇ ⁇ " and the conversion gain "GINV_LF ⁇ ⁇ ", and the data defining these is stored in advance in that area.
- the converter control unit 12 adjusts the magnitude (amplitude) of the zero-phase voltage component on the converter 2 side by using the conversion gain “GCNV_LF ⁇ ⁇ ”.
- the inverter control unit 13 adjusts the magnitude (amplitude) of the zero-phase voltage component on the inverter 3 side by using the conversion gain “GINV_LF ⁇ ⁇ ”.
- the converter 2 and the inverter 3 independently determine the magnitude (amplitude) of each zero-phase voltage component by using the conversion gain "GCNV_LF ⁇ ⁇ " and the conversion gain "GINV_LF ⁇ ⁇ ", respectively. be able to.
- the control unit 10 sets the ratio of the conversion gain "GCNV_LF ⁇ ⁇ " to the conversion gain "GINV_LF ⁇ ⁇ ” to an appropriate value in advance or adaptively according to the operating state of the power conversion device 1. , The effect of reducing low frequency pulsating power can be optimized.
- the above conversion gain "GCNV_LF ⁇ ⁇ ” and conversion gain “GINV_LF ⁇ ⁇ ” are examples of conversion rates.
- the inverter 3 superimposes the zero-phase voltage of the frequency component fX based on the conversion gain "GINV_LF ⁇ ⁇ ".
- the pulsating power derived from the fundamental wave frequency fM is reduced by passing a circulating current of the same frequency through the inverter 3.
- the converter 2 superimposes the zero-phase voltage of the frequency component fX based on the conversion gain "GCNV_LF ⁇ ⁇ ", and causes a circulating current of the same frequency to flow in the converter 2, so that the fundamental wave frequency fM Reduces the pulsating power derived from.
- the converter 2 and the inverter 3 may use a sine wave having a frequency component fX or a square wave having a frequency component fX as their respective zero-phase voltage components.
- the converter 2 (first power converter) is the first positive side that connects the converter first arm, the converter second arm, and the converter first arm in a star shape.
- the star connection 210, the first negative star connection 220 that connects the converter second arm in a star shape, and the first positive star connection 210 and the first negative star connection 220 are connected to each phase of the power supply side AC system 7.
- the first AC connection terminals 201, 202, and 203 (first terminals) to be connected to each other are included, and the converter first arm and the converter second arm supply the first AC power and the first DC power of the power supply side AC system 7. Convert to each other.
- the plurality of isolated DCDC converters 4000 convert the first DC power and the second DC power to each other.
- Inverter 3 (second power converter) has an inverter first arm, an inverter second arm, a second positive star connection 310 for connecting the inverter first arm in a star shape, and an inverter second arm in a star shape.
- Second AC connection terminals 301, 302, 303 that connect the second negative star connection 320, the second positive star connection 310, and the second negative star connection 320 to each phase of the load side AC system 8, respectively. (Second terminal) is included, and the inverter first arm and the inverter second arm mutually convert the second DC power and the second AC power.
- the first positive side star connection 210 and the first negative side star connection 220 are connected to the power supply side AC system 7, and the second positive side star connection 310 and the second negative side star connection 310 are connected.
- the converter 2 and the inverter 3 reduce the imbalance between each phase of the active power supplied to the load side of the power converter, thereby reducing the above load. It is possible to reduce the influence of the imbalance between each phase of the active power of the side AC system 8 on the power supply side AC system 7.
- the converter 1st arm and the converter 2nd arm of the converter 2 are connected in a so-called double star type by the converter star connection.
- the inverter 1st arm and the inverter 2nd arm of the inverter 3 are connected in a so-called double star type by an inverter star connection.
- the number of single-phase converter cells in each phase is smaller than the number in the case of delta connection. The same applies when the inverter 3 is connected to the load side AC system 8.
- the converter control unit 12 has the converter 2 so that the first circulating current including the fundamental wave reverse phase current related to the power supply side AC system 7 flows through the first positive side star connection 210 and the first negative side star connection 220. It is good to control. In this case, the converter 2 can flow the first circulating current whose current amount is adjusted based on the rst phase voltage command value vCNV_Z ⁇ dq * generated by the first circulating current ACR1213.
- the inverter control unit 13 may control the inverter 3 by adjusting the second circulating current flowing through the second positive side star connection 310 and the second negative side star connection 320.
- the inverter 3 can flow a second circulating current adjusted to a current amount based on the uvw phase voltage command value vINV_Z ⁇ dq * generated by the second circulating current ACR1313.
- the converter control unit 12 and the inverter control unit 13 may calculate the above-mentioned adjustment amount of the first circulating current and the adjustment amount of the second circulating current based on the state quantity of the inverter 3.
- the velocity FBK is an example of the state quantity of the inverter 3.
- the converter control unit 12 in the control unit 10 uses the fundamental wave positive related to the first AC power as the first circulating current to flow through the first positive side star connection 210 and the first negative side star connection 220.
- the converter 2 is controlled so that the fundamental wave reverse phase current with respect to the phase current flows.
- the inverter control unit 13 controls so that the second circulating current flows through the second positive side star connection 310 and the second negative side star connection 320.
- the converter control unit 12 and the inverter control unit 13 may independently control the first circulating current and the second circulating current using predetermined coefficients. As a result, the amount of adjustment by the converter control unit 12 and the inverter control unit 13 can be reduced.
- the inverter control unit 13 detects the low frequency pulsation component of the DC side power (second DC power) of the second single-phase full bridge circuit in the inverter 3 as the state quantity of the inverter 3, and the converter.
- the control unit 12 may adjust the first circulating current in the inverter 2 based on the low frequency pulsation component of the electric power on the DC side of the second single-phase full bridge circuit.
- the inverter control unit 13 is based on the low frequency pulsation component of the DC voltage of the second DC power, so that the low frequency pulsation component of the DC voltage of the second DC power is reduced.
- the second circulating current in 3 may be adjusted.
- each of the plurality of single-phase converter cells in the converter 2 is provided with a first capacitor.
- the converter control unit 12 is a plurality of single-phase converter cells based on the DC amount of the voltage of the first capacitor and the low-frequency pulsation component of the DC voltage of the second DC power provided in each of the plurality of single-phase converter cells.
- the first circulating current of the opposite phase of the fundamental wave of the first AC power may be adjusted so as to keep the DC amount of the voltage of the first capacitor constant.
- the control unit 10 includes, for example, a storage unit (not shown), a CPU (central processing unit), a drive unit, and an acquisition unit.
- the storage unit, the CPU, the drive unit, and the acquisition unit are connected in the control unit via, for example, a BUS.
- the storage unit includes a semiconductor memory.
- the CPU includes a processor that executes a desired process according to a software program.
- the drive unit generates control signals for each unit of the power conversion device 1 according to the control of the CPU.
- the acquisition unit acquires the detection results of each current sensor and each voltage sensor.
- the CPU of the control unit 10 controls the main circuit of each phase by the drive unit based on the detection results of the current sensor and the voltage sensor acquired by the acquisition unit.
- the control unit 10 may realize a part or all of the processing by the processing of the software program as described above, or may be realized by hardware instead. Further, the control unit 10 may be appropriately divided and configured, thereby ensuring the insulation property of the circuit.
- each single-phase converter cell, each single-phase inverter cell, and a single-phase full-bridge circuit of the DCDC converter 4000 including a two-level single-phase self-excited converter have been illustrated.
- Each single-phase converter cell, each single-phase inverter cell, and the single-phase full-bridge circuit of the DCDC converter 4000 is not limited to this, and is a single-phase self-excited converter of any level of 3 levels or higher. It's okay. In that case, it is advisable to provide a number of capacitors corresponding to the number of levels.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Ac-Ac Conversion (AREA)
Abstract
実施形態の電力変換装置は、第1電力変換器と、複数のDCDC変換装置と、第2電力変換器と、を備える。第1電力変換器は、複数の第1正側のアームと、複数の第1負側のアームと、前記複数の第1正側のアームをスター型に接続する第1正側スター結線と、前記複数の第1負側のアームをスター型に接続する第1負側スター結線と、前記第1正側スター結線と前記第1負側スター結線とを電源側交流系統の各相にそれぞれ接続する第1端子とを含み、前記複数の第1正側のアームと前記複数の第1負側のアームとが前記電源側交流系統の第1交流電力と第1直流電力とを相互に変換する。複数のDCDC変換装置は、前記第1直流電力と第2直流電力を相互に変換する。第2電力変換器は、複数の第2正側のアームと、複数の第2負側のアームと、前記複数の第2正側のアームをスター型に接続する第2正側スター結線と、前記複数の第2負側のアームをスター型に接続する第2負側スター結線と、前記第2正側スター結線と前記第2負側スター結線とを負荷側交流系統の各相にそれぞれ接続する第2端子とを含み、前記複数の第2正側のアームと前記複数の第2負側のアームとが前記第2直流電力と第2交流電力とを相互に変換する。
Description
本発明の実施形態は、電力変換装置及び電力変換制御装置に関する。
電源側交流系統から供給される第1の多相交流電力を、第2の多相交流電力に間接変換方式で変換する電力変換装置(間接交流変換装置:indirect AC converter)がある。比較的大きな電力を変換する電力変換装置には、単相コンバータセルを直列に接続してマルチレベル変換器を構成するものがある。
また、電力変換装置の負荷側に生じた事象等により、上記の第2の多相交流電力の各相に供給される有効電力が不平衡になり、上記の第1の多相交流電力を供給する電源側交流系統にその影響が波及することがあった。
また、電力変換装置の負荷側に生じた事象等により、上記の第2の多相交流電力の各相に供給される有効電力が不平衡になり、上記の第1の多相交流電力を供給する電源側交流系統にその影響が波及することがあった。
本発明が解決しようとする課題は、電力変換装置の負荷側に供給される有効電力の各相間の不平衡が、電源側交流系統に影響することを軽減させる電力変換装置及び電力変換制御装置を提供することである。
実施形態の電力変換装置は、第1電力変換器と、複数のDCDC変換装置と、第2電力変換器と、を備える。第1電力変換器は、複数の第1正側のアームと、複数の第1負側のアームと、前記複数の第1正側のアームをスター型に接続する第1正側スター結線と、前記複数の第1負側のアームをスター型に接続する第1負側スター結線と、前記第1正側スター結線と前記第1負側スター結線とを電源側交流系統の各相にそれぞれ接続する第1端子とを含み、前記複数の第1正側のアームと前記複数の第1負側のアームとが前記電源側交流系統の第1交流電力と第1直流電力とを相互に変換する。絶縁型の複数のDCDC変換装置は、前記第1直流電力と第2直流電力を相互に変換する。第2電力変換器は、複数の第2正側のアームと、複数の第2負側のアームと、前記複数の第2正側のアームをスター型に接続する第2正側スター結線と、前記複数の第2負側のアームをスター型に接続する第2負側スター結線と、前記第2正側スター結線と前記第2負側スター結線とを負荷側交流系統の各相にそれぞれ接続する第2端子とを含み、前記複数の第2正側のアームと前記複数の第2負側のアームとが前記第2直流電力と第2交流電力とを相互に変換する。
以下、実施形態の電力変換装置及び電力変換制御装置を、図面を参照して説明する。以下に説明の電力変換装置は、負荷の一例である交流電動機(モータ)に所望の交流電力を供給する。実施形態の電力変換装置は、間接交流変換装置(indirect AC converter)を含む。実施形態における接続するという記載は、電気的に接続することを含む。
電力変換装置の構成例を図1に示す。図1は、実施形態における電力変換装置の構成図である。
図1に示す電力変換装置1は、例えば、コンバータ2と、インバータ3と、DCDC変換装置群4と、コンバータ側キャパシタ群5と、インバータ側キャパシタ群6と、制御部10とを備える。コンバータ2と、インバータ3と、DCDC変換装置群4と、コンバータ側キャパシタ群5と、インバータ側キャパシタ群6は、電力変換装置1の主回路を形成する。電源側交流系統7は、例えば電力変換装置1に多相交流電力(第1交流電力)を供給する。例えば、電源側交流系統7は、r相s相t相の三相交流電力を供給する。負荷側交流系統8は、例えば電力変換装置1から負荷装置に多相交流電力(第2交流電力)を供給する。例えば、負荷側交流系統8は、u相v相w相の三相交流電力を供給する。
図1に示す電力変換装置1は、例えば、コンバータ2と、インバータ3と、DCDC変換装置群4と、コンバータ側キャパシタ群5と、インバータ側キャパシタ群6と、制御部10とを備える。コンバータ2と、インバータ3と、DCDC変換装置群4と、コンバータ側キャパシタ群5と、インバータ側キャパシタ群6は、電力変換装置1の主回路を形成する。電源側交流系統7は、例えば電力変換装置1に多相交流電力(第1交流電力)を供給する。例えば、電源側交流系統7は、r相s相t相の三相交流電力を供給する。負荷側交流系統8は、例えば電力変換装置1から負荷装置に多相交流電力(第2交流電力)を供給する。例えば、負荷側交流系統8は、u相v相w相の三相交流電力を供給する。
まず、コンバータ2について説明する。
コンバータ2(第1電力変換器)は、電源側交流系統7の第1交流電力と第1直流電力とを相互に変換する。換言すれば、コンバータ2は、力行時に第1交流電力を第1直流電力に変換し、回生時に第1直流電力を第1交流電力に変換する。例えば、コンバータ2は、電源側交流系統7のr相s相t相にそれぞれ接続される第1交流接続端子201、202、203を備える。コンバータ2は、電源側交流系統7との間で、第1交流接続端子201、202、203を介して第1交流電力を授受する。
コンバータ2(第1電力変換器)は、電源側交流系統7の第1交流電力と第1直流電力とを相互に変換する。換言すれば、コンバータ2は、力行時に第1交流電力を第1直流電力に変換し、回生時に第1直流電力を第1交流電力に変換する。例えば、コンバータ2は、電源側交流系統7のr相s相t相にそれぞれ接続される第1交流接続端子201、202、203を備える。コンバータ2は、電源側交流系統7との間で、第1交流接続端子201、202、203を介して第1交流電力を授受する。
コンバータ2は、中性点210Pを中心にする第1正側スター結線210と、中性点220Nにする第1負側スター結線220とを含む。第1正側スター結線210と第1負側スター結線220のr相s相t相のそれぞれは、スター型に第1交流接続端子201、202、203にそれぞれ接続される。第1正側スター結線210と第1負側スター結線220を区別しない場合には、それらを纏めて単に「コンバータスター結線」と呼ぶ。なお、上記のスター結線は、Y型結線であってもよい。
コンバータ2は、r相第1アーム2110と、s相第1アーム2120と、t相第1アーム2130と、r相第2アーム2210と、s相第2アーム2220と、t相第2アーム2230と、リアクトル2119、2129、2139、2219、2229、2239とを備える。
第1正側スター結線210のr相にr相第1アーム2110が設けられ、s相にs相第1アーム2120が設けられ、t相にt相第1アーム2130が設けられている。r相第1アーム2110と、s相第1アーム2120と、t相第1アーム2130とを纏めて、単に「コンバータ第1アーム」(複数の第1正側のアーム)と呼ぶ。
第1負側スター結線220のr相にr相第2アーム2210が設けられ、s相にs相第2アーム2220が設けられ、t相にt相第2アーム2230が設けられている。r相第2アーム2210と、s相第2アーム2220と、t相第2アーム2230とを纏めて、単に「コンバータ第2アーム」(複数の第1負側のアーム)と呼ぶ。
換言すれば、コンバータスター結線の各相には、コンバータ第1アームとコンバータ第2アームとがそれぞれ設けられている。コンバータ第1アームとコンバータ第2アームは、少なくとも1個の単相コンバータセル(例えば、図2参照。)を含み、電源側交流系統7の第1交流電力と第1直流電力とを相互に変換する。以下に示す事例のコンバータ第1アームとコンバータ第2アームは、それぞれ4個の単相コンバータセルを備える。この個数は一例であり、3個以下でもよく、5個以上でもよい。
例えば、r相第1アーム2110には、単相コンバータセル2111から2114が設けられる。r相第2アーム2210には、単相コンバータセル2215から2218が設けられる。なお、図1における単相コンバータセル2112、2113、2216、2217の表記を省略する。s相とt相についても同様であるが、単相コンバータセルの符号の表記を省略する。
上記の各単相コンバータセルは、電源側交流系統7の第1交流電力の一部と上記の第1直流電力の一部を相互に変換する。
上記の通り、コンバータ2のコンバータ第1アームとコンバータ第2アームにおいて、アーム毎に単相コンバータセルを直列に接続した直列回路がスター結線で接続されている。コンバータ第1アームとコンバータ第2アームの各相には、単相コンバータセルを含む直列回路が設けられている。
なお、コンバータ第1アームとコンバータ第2アームを直接接続すると、コンバータ2内で短絡電流が流れる。これを防ぐためには、例えば、コンバータ第1アームとコンバータ第2アームとをリアクトルを介して接続するとよい。r相の場合には、リアクトル2119とリアクトル2219とを介してr相第1アーム2110とr相第2アーム2210とを接続する。s相とt相についても同様である。なお、上記のリアクトルは、コンバータ第1アームとコンバータ第2アームに各々に設けられた単相リアクトルであってもよいし、結合リアクトルであってもよい。
コンバータ2の単相コンバータセルには、後述するDCDC変換装置群4の中の1つのDCDC変換装置と、後述するコンバータ側キャパシタ群5の中の1つの第1キャパシタとが対応付けられている。単相コンバータセルの直流側は、DCDC変換装置群4の中の1つのDCDC変換装置の第1直流端子と、コンバータ側キャパシタ群5の中の1つの第1キャパシタとに並列に接続されている。
例えば、単相コンバータセル2111には、キャパシタ5111が接続されている。単相コンバータセル2114には、キャパシタ5114が接続されている。図示を省略するがキャパシタ5112、5113についても同様である。すなわち、単相コンバータセル2111から2114には、キャパシタ5111から5114が接続されている。同様に単相コンバータセル2215から2218には、キャパシタ5215から5218が接続されている。s相とt相についても同様である。その詳細は、図3を参照する。上記のキャパシタ5111から5114と、キャパシタ5215から5218などは、第1キャパシタの一例である。
次に、インバータ3について説明する。
インバータ3(第2電力変換器)は、第2直流電力と第2交流電力とを相互に変換する。インバータ3は、力行時に第2直流電力を第2交流電力に変換し、回生時に第2交流電力を第2直流電力に変換する。例えば、インバータ3は、負荷側交流系統8のu相v相w相にそれぞれ接続される第2交流接続端子301、302、303を備える。インバータ3は、負荷側交流系統8に接続される負荷装置Mとの間で、第2交流接続端子301、302、303を介して第2交流電力を授受する。
インバータ3(第2電力変換器)は、第2直流電力と第2交流電力とを相互に変換する。インバータ3は、力行時に第2直流電力を第2交流電力に変換し、回生時に第2交流電力を第2直流電力に変換する。例えば、インバータ3は、負荷側交流系統8のu相v相w相にそれぞれ接続される第2交流接続端子301、302、303を備える。インバータ3は、負荷側交流系統8に接続される負荷装置Mとの間で、第2交流接続端子301、302、303を介して第2交流電力を授受する。
インバータ3は、中性点310Pを中心にする第2正側スター結線310と、中性点320Nを中心にする第2負側スター結線320とを含む。第2正側スター結線310と第2負側スター結線320のu相v相w相のそれぞれは、スター型に第2交流接続端子301、302、303にそれぞれ接続される。第2正側スター結線310と第2負側スター結線320を区別しない場合には、それらを纏めて単に「インバータスター結線」と呼ぶ。
インバータ3は、u相第1アーム3110と、v相第1アーム3120と、w相第1アーム3130と、u相第2アーム3210と、v相第2アーム3220と、w相第2アーム3230と、リアクトル3119、3129、3139、3219、3229、3239とを備える。
第2正側スター結線310のu相にu相第1アーム3110が設けられ、v相にv相第1アーム3120が設けられ、w相にw相第1アーム3130が設けられている。u相第1アーム3110と、v相第1アーム3120と、w相第1アーム3130とを纏めて、単に「インバータ第1アーム」(複数の第2正側のアーム)と呼ぶ。
第2負側スター結線320のu相にu相第2アーム3210が設けられ、v相にv相第2アーム3220が設けられ、w相にw相第2アーム3230が設けられている。u相第2アーム3210と、v相第2アーム3220と、w相第2アーム3230とを纏めて、単に「インバータ第2アーム」(複数の第2負側のアーム)と呼ぶ。
換言すれば、インバータスター結線の各相には、インバータ第1アームとインバータ第2アームとがそれぞれ設けられている。インバータ第1アームとインバータ第2アームは、少なくとも1個の単相インバータセルを含み、負荷側交流系統8の第2交流電力と第2直流電力とを相互に変換する。以下に示す事例のインバータ第1アームとインバータ第2アームは、それぞれ4個の単相インバータセルを備える。この個数は一例であり、コンバータ2における単相コンバータセルの個数に等しければ、3個以下でもよく、5個以上でもよい。
例えば、u相第1アーム3110には、カスケード接続された単相インバータセル3111から3114が設けられる。u相第2アーム3210には、カスケード接続された単相インバータセル3215から3218が設けられる。なお、単相インバータセル3112、3113、3216、3217の表記を省略する。v相とw相についても同様であるが、符号の表記を省略する。
上記の各単相インバータセルは、負荷側交流系統8の第2交流電力の一部と上記の第2直流電力の一部を相互に変換する。
上記の通り、インバータ3のインバータ第1アームとインバータ第2アームにおいて、アーム毎に単相インバータセルを直列に接続した直列回路がスター結線で接続されている。インバータ第1アームとインバータ第2アームの各相には、単相インバータセルを含む直列回路が設けられている。
なお、インバータ第1アームとインバータ第2アームを直接接続すると、インバータ3内で短絡電流が流れる。これを防ぐために、例えば、インバータ第1アームとインバータ第2アームとをリアクトルを介して接続するとよい。u相の場合には、リアクトル3119とリアクトル3219とを介してu相第1アーム3110とu相第2アーム3210とを接続する。v相とw相についても同様である。上記の各リアクトルは、同じ大きさの誘導性リアクタンスを有する。なお、上記のリアクトルは、インバータ第1アームとインバータ第2アームに各々に設けられた単相リアクトルであってもよいし、結合リアクトルであってもよい。
インバータ3の単相インバータセルには、後述するDCDC変換装置群4の中の1つのDCDC変換装置と、後述するインバータ側キャパシタ群6の中の1つの第2キャパシタとが対応付けられている。インバータ3の直流側は、後述するDCDC変換装置群4の各DCDC変換装置の第2直流端子に接続されている。
例えば、インバータ3においても前述のコンバータ2と同様に、単相インバータセル3111から3114には、キャパシタ6111から6114が接続されている。単相インバータセル3215から3218には、キャパシタ6215から6218が接続されている。なお、キャパシタ6112、6113、6216、6217の表記を省略する。v相とw相についても同様である。その詳細は、図4を参照する。上記のキャパシタ6111から6114と、キャパシタ6215から6218などは、第2キャパシタの一例である。
次に、DCDC変換装置群4について説明する。
DCDC変換装置群4は、双方向に電力伝送可能な複数個のDCDC変換装置を備える。例えば、r相とu相を繋ぐDCDC変換装置4111から4114、4215から4218は、複数個のDCDC変換装置の一例である。なお、図1の中でDCDC変換装置4112、4113、4216、4217の表記を省略する。s相とv相を繋ぐ複数個のDCDC変換装置とt相とw相を繋ぐ複数個のDCDC変換装置も、符号の表記を省略する。s相とv相を繋ぐ場合も、t相とw相を繋ぐ場合も、上記のr相とu相を繋ぐ場合と同様である。複数個のDCDC変換装置を纏めて、DCDC変換装置4000と呼ぶ。
DCDC変換装置群4は、双方向に電力伝送可能な複数個のDCDC変換装置を備える。例えば、r相とu相を繋ぐDCDC変換装置4111から4114、4215から4218は、複数個のDCDC変換装置の一例である。なお、図1の中でDCDC変換装置4112、4113、4216、4217の表記を省略する。s相とv相を繋ぐ複数個のDCDC変換装置とt相とw相を繋ぐ複数個のDCDC変換装置も、符号の表記を省略する。s相とv相を繋ぐ場合も、t相とw相を繋ぐ場合も、上記のr相とu相を繋ぐ場合と同様である。複数個のDCDC変換装置を纏めて、DCDC変換装置4000と呼ぶ。
例えば、DCDC変換装置4000は、第1直流端子と第2直流端子とを備える。DCDC変換装置4000の第1直流端子は、コンバータ2の単相コンバータセルの直流側に接続され、DCDC変換装置4000の第2直流端子は、インバータ3の単相コンバータセルの直流側に接続される。DCDC変換装置4000は、コンバータ2の単相コンバータセルの直流側と、インバータ3の単相コンバータセルの直流側を電気的に接続する。上記の通り、DCDC変換装置4000は、コンバータ2とインバータ3とに接続され、双方向に電力を変換する絶縁型の直流電力変換器である。
第1番目の組み合わせの一例として、DCDC変換装置4111は、単相コンバータセル2111の直流側と、単相インバータセル3111の直流側を電気的に接続する。第2番目の組み合わせの一例として、DCDC変換装置4114は、単相コンバータセル2114の直流側と、単相インバータセル3114の直流側を電気的に接続する。
上記のDCDC変換装置4111は、第1番目のDCDC変換装置の一例である。単相コンバータセル2111は、第1番目の単相コンバータセルの一例である。単相インバータセル3111は、第1番目の単相インバータセルの一例である。また、DCDC変換装置4114は、第2番目のDCDC変換装置の一例である。単相コンバータセル2114は、第2番目の単相コンバータセルの一例である。単相インバータセル3114は、第2番目の単相インバータセルの一例である。
なお、DCDC変換装置4111とDCDC変換装置4114は、互いに絶縁されていて、かつ独立して制御される。例えば、DCDC変換装置4111とDCDC変換装置4114は、少なくとも単相コンバータセル2111を経て接続される。別の観点では、DCDC変換装置4111とDCDC変換装置4114は、少なくとも単相コンバータセル2111と単相コンバータセル2114を経て接続される。また、DCDC変換装置4111とDCDC変換装置4114は、少なくとも単相インバータセル3111を経て接続される。別の観点では、DCDC変換装置4111とDCDC変換装置4114は、少なくとも単相インバータセル3111と単相インバータセル3114を経て接続される。
例えば、DCDC変換装置4000は、2つの単相フルブリッジ回路と、単相変圧器とを備える。
DCDC変換装置4000は、第1単相フルブリッジ回路に接続される単相コンバータセルの直流電圧と、第2単相フルブリッジ回路に接続される単相インバータセルの直流電圧が整合するように、電力変換量を調整する。これにより、DCDC変換装置4000は、第1単相フルブリッジ回路の直流側の電力(第1直流電力)と第2単相フルブリッジ回路の直流側の電力(第2直流電力)を相互に変換することにより、コンバータ2とインバータ3との間で電力を相互に変換する。
なお、DCDC変換装置4000は、上記の回路方式に制限されることなく、他の回路方式で、相互に直流電力を伝送可能な絶縁型のDCDC変換器を形成してもよい。例えば、2つの三相ブリッジ回路と三相変圧器との組み合わせは、DCDC変換装置4000の変形例の一例である。
図2Aと図2Bは、実施形態の単相コンバータセルの構成図である。
図2Aと図2Bに、単相コンバータセル2111を示す。単相コンバータセル2111は、例えば図2Bに示すように複数の半導体素子を組み合わせた単相フルブリッジ型である。図2Bに例示する半導体素子は、IGBT(Insulated Gate Bipolar Transistor)である。半導体素子は、IGBTに限らず、FETなど他の種類のものでもよい。図2Aに示す記載は、図2Bに示す単相コンバータセル2111を省略して記載したものである。
図2Aと図2Bに、単相コンバータセル2111を示す。単相コンバータセル2111は、例えば図2Bに示すように複数の半導体素子を組み合わせた単相フルブリッジ型である。図2Bに例示する半導体素子は、IGBT(Insulated Gate Bipolar Transistor)である。半導体素子は、IGBTに限らず、FETなど他の種類のものでもよい。図2Aに示す記載は、図2Bに示す単相コンバータセル2111を省略して記載したものである。
実施形態の単相コンバータセル2111の交流側は、共通するアーム(r相第1アーム2110)内の他の単相コンバータセル2112、2113、2114とカスケード接続される。
実施形態の単相コンバータセル2111の直流側には、それに対応するキャパシタ5111が設けられている。さらに、単相コンバータセル2111には、キャパシタ5111の端子電圧(コンバータ側キャパシタ電圧)を検出する電圧検出器VDETが設けられている。電圧検出器VDETで検出された電圧は、制御部10における制御に利用される。単相コンバータセル2111以外の単相コンバータセルも同様に構成される。
単相コンバータセルの回路構成と、単相インバータセルの回路構成は、同一でもよく、異なっていてもよい。なお、単相コンバータセルと単相インバータセルは、図示する回路に制限されなることなく、直流電圧から交流電圧に変換できる構成を有するものであれば、単相フルブリッジに限らず、他の構成でもよい。中性点クランプ型、ハーフブリッジ型は、単相コンバータセルの他の構成の一例である。
次に、コンバータ2のr相を例示して電力変換に係る動作の概要について説明する。コンバータ2は、r相第1アーム2110によってVr/2の電圧を出力し、r相第2アーム2210によって-Vr/2の電圧を出力する。これにより、第1交流のr相には上記の各電圧が加算されたVr の電圧が出力される。s相とt相についてもr相と同様である。インバータ側についても同様である。
図1と図2Aと図2Bを参照して、DCDC変換装置4111を基準に、キャパシタ5111とキャパシタ6111との関係を整理する。図1に示すようにDCDC変換装置4111は、単相コンバータセル2111に対応付けて設けられたキャパシタ5111(第1キャパシタ)と、単相インバータセル3111に対応付けて設けられたキャパシタ6111(第2キャパシタ)とに接続されている。なお、DCDC変換装置4111は、複数のDCDC変換装置の中の1つのDCDC変換装置の一例である。単相コンバータセル2111は、複数の単相コンバータセルの中の1つの単相コンバータセルの一例である。単相インバータセル3111は、複数の単相インバータセルの中の1つの単相インバータセルの一例である。例えば、DCDC変換装置4111は、キャパシタ6111の電圧の瞬時値を一定にするように直流電力の変換を制御する。DCDC変換装置4000の他のものも同様である。
次に、図3と図4とを参照して、実施形態の信号名の定義について説明する。
図3は、実施形態のコンバータの信号名の定義について説明するための図である。
電源側交流系統7の3相の相電圧(瞬時値)を、系統電圧検出値vS^r、vS^s、vS^tで示し、これらを纏める場合には、系統電圧検出値vS^rstと記す。本文の説明の中で上記の「^(ハット)」は、それに続く文字が上付き文字であることを示す。
図3は、実施形態のコンバータの信号名の定義について説明するための図である。
電源側交流系統7の3相の相電圧(瞬時値)を、系統電圧検出値vS^r、vS^s、vS^tで示し、これらを纏める場合には、系統電圧検出値vS^rstと記す。本文の説明の中で上記の「^(ハット)」は、それに続く文字が上付き文字であることを示す。
これに対し、後述する演算式の中では、例えば、系統電圧検出値vS^rstを、式(1)に示すように表記する。式(1)の左辺は、ベクトルで表記したもの。右辺は、行列の成分に分けて表記したものである。右辺の変数の上付き文字により、行列の各成分を識別する。なお、行列の上付き文字の「T」は、転地行列を示す。
同じく3相の相電流(瞬時値)を系統電流検出値iS^r、iS^s、iS^tで示し、これらを纏めて系統電流検出値iS^rst(不図示)で示す。各相の相電流が、電源側交流系統7からコンバータ2に向かう方向を正にする。電源側交流系統7の交流電力の基本周波数をfSで示す。
コンバータ2の各アームのキャパシタの電圧の検出値を、下記のように規定する。例えば、キャパシタ電圧vCNV_DC1^r、vCNV_DC4^rは、r相第1アームに係るキャパシタ5111、5114の電圧である。r相第1アームに係るキャパシタ5111から5114の電圧を纏めてキャパシタ電圧vCNV_DC1-4^rと表記する。キャパシタ電圧vCNV_DC5^r、vCNV_DC8^rは、r相第2アームに係るキャパシタ5215、5218の電圧である。r相第2アームに係るキャパシタ5215から5218の電圧を纏めてキャパシタ電圧vCNV_DC5-8^rと表記する。同様に、キャパシタ電圧vCNV_DC1-4^sとキャパシタ電圧vCNV_DC5-8^sは、s相第1アームに係るキャパシタ5121から5124と、s相第2アームに係るキャパシタ5125から5128の電圧である。キャパシタ電圧vCNV_DC1-4^tとキャパシタ電圧vCNV_DC5-8^tは、t相第1アームに係るキャパシタ5131から5134と、t相第2アームに係るキャパシタ5135から5138の電圧である。上記のコンバータ2の各アームのキャパシタの電圧のことを、コンバータ側キャパシタ電圧と呼ぶ。
コンバータ2のr相第1アーム2110の電圧を、vCNV_P^rで示し、r相第2アーム2210の電圧を、vCNV_N^rで示す。図示を省略するが、s相第1アーム2120の電圧を、vCNV_P^sで示し、s相第2アーム2220の電圧を、vCNV_N^sで示し、t相第1アーム2130の電圧を、vCNV_P^tで示し、t相第2アーム2230の電圧を、vCNV_N^tで示す。
r相第1アーム2110における単相コンバータセルが発生させる電圧を、下記のように規定する。単相コンバータセル2111が発生させる電圧をvCNV_1^rで示す。r相第2アーム2210における単相コンバータセル2114が発生させる電圧をvCNV_4^rで示し、単相コンバータセル2115が発生させる電圧をvCNV_5^rで示し、単相コンバータセル2118が発生させる電圧をvCNV_8^rで示す。r相の他の単相コンバータセルが発生させる電圧についても同様である。記載を省略するが、s相とt相についても同様である。
r相第1アーム2110に流れる電流を、iCNV_P^rで示し、r相第2アーム2210に流れる電流を、iCNV_N^rで示す。s相第1アーム2120に流れる電流を、iCNV_P^sで示し、s相第2アーム2220に流れる電流を、iCNV_N^sで示す。t相第1アーム2130に流れる電流を、iCNV_P^tで示し、t相第2アーム2230に流れる電流を、iCNV_N^tで示す。
なお、電流検出器210iは、第1正側スター結線210に設けられ、第1正側スター結線210の各アームに流れる電流を検出して、その検出値(iCNV_P^rst)を出力する。電流検出器220iは、第1負側スター結線220の各アームに流れる電流を検出し、その検出値(iCNV_N^rst)を出力する。なお、上記は各相の電流を検出する場合の事例であるが、例えば電流検出器210iと電流検出器220iは、r相s相の電流を検出して、検出された電流値から残りのt相の電流値を、次の式(2)と式(3)とを用いて算出してもよい。
図4は、実施形態のインバータの信号名の定義について説明するための図である。インバータの信号名の定義は、前述のコンバータの信号名の定義と同様に規定する。rst相をuvw相に置き換えるとともに、「CNV」の表記を「INV」に置き換えている。以下、その一部について説明する。
負荷側交流系統8の相電圧(瞬時値)を負荷電圧検出値vM^uvwで示し、相電流(瞬時値)を系統電流検出値iM^uvwで示す。図4の中では、これを各相に分けて記載する。各相の相電流が、負荷側交流系統8からインバータ3に向かう方向を正にする。負荷側交流系統8の交流電力の基本周波数をfMで示す。
インバータ3の各アームのキャパシタの電圧の検出値を、下記のように規定する。キャパシタ電圧vINV_DC1-4^uは、u相第1アームに係るキャパシタ6111から6114の電圧である。キャパシタ電圧vINV_DC5-8^uは、u相第2アームに係るキャパシタ6215から6218の電圧である。上記のインバータ3の各アームのキャパシタの電圧のことを、インバータ側キャパシタ電圧と呼ぶ。
インバータ3のu相第1アーム3110の電圧を、vINV_P^uで示し、u相第2アーム3210の電圧を、vINV_N^uで示す。
u相第1アーム3110における単相コンバータセルが発生させる電圧を、下記のように規定する。単相インバータセル3111が発生させる電圧をvINV_1^uで示す。vINV_4^u、vINV_5^u、vINV_8^uについても、上記と同様である。
上記に関し、v相とw相についてはu相と同様である。
なお、電流検出器310iは、第2正側スター結線310に設けられ、第2正側スター結線310の各アームに流れる電流を検出して、その検出値(iINV_P^uvw)を出力する。電流検出器320iは、第2負側スター結線320に設けられ、第2負側スター結線320の各アームに流れる電流を検出し、その検出値(iINV_N^uvw)を出力する。なお、上記は各相の電流を検出する場合の事例であるが、電流検出器310iと電流検出器320iは、何れか2相分の電流を検出して、検出された電流値から残りの相の電流値を算出してもよい。
以下、実施形態の電力変換装置1における制御について、より具体的な例を挙げて説明する。
まず、電力変換装置1における制御の概要について説明する。実施形態の電力変換装置1は、例えば、以下の制御を実施する。
・コンバータ側キャパシタ電圧の安定化
例えば、コンバータ2は、コンバータ側キャパシタ電圧の直流量を揃えるように制御する。その際に、コンバータ2の各単相コンバータセルは、コンバータ側キャパシタ電圧を所定の電圧に安定化させるように制御する。
例えば、コンバータ2は、コンバータ側キャパシタ電圧の直流量を揃えるように制御する。その際に、コンバータ2の各単相コンバータセルは、コンバータ側キャパシタ電圧を所定の電圧に安定化させるように制御する。
・インバータ側キャパシタ電圧の安定化
DCDC変換装置4000は、インバータ側キャパシタ電圧が一定になるように、その瞬時値を安定化させるように制御する。例えば、DCDC変換装置4000は、その制御に既知の位相シフト制御を適用してもよい。
DCDC変換装置4000は、インバータ側キャパシタ電圧が一定になるように、その瞬時値を安定化させるように制御する。例えば、DCDC変換装置4000は、その制御に既知の位相シフト制御を適用してもよい。
・負荷装置Mの稼働状況を制御
インバータ3は、上位装置からの制御を受けて、ベクトル制御などの制御方法によって負荷装置Mを制御する。負荷装置Mの稼働に伴い、負荷側交流系統8の各相のバランスが崩れたり、インバータ側キャパシタ電圧に低周波脈動が生じたりする場合がある。上記のインバータ側キャパシタ電圧の低周波脈動には、負荷側交流系統8の交流電力の基本周波数(fM)が、基本周波数fSよりも低い場合(fM < fS)に、単相の電力脈動として発生する2fMの成分が含まれる。例えば、交流電力の基本周波数(fM)を1(Hz)、基本周波数fSを50(Hz)とすると、2(Hz)の電力脈動が発生する。この周波数領域の脈動成分であれば、コンバータ2に50(Hz: 基本周波数fS)の逆相電流を流すことで、上記の低周波脈動を低減できる。
インバータ3は、上位装置からの制御を受けて、ベクトル制御などの制御方法によって負荷装置Mを制御する。負荷装置Mの稼働に伴い、負荷側交流系統8の各相のバランスが崩れたり、インバータ側キャパシタ電圧に低周波脈動が生じたりする場合がある。上記のインバータ側キャパシタ電圧の低周波脈動には、負荷側交流系統8の交流電力の基本周波数(fM)が、基本周波数fSよりも低い場合(fM < fS)に、単相の電力脈動として発生する2fMの成分が含まれる。例えば、交流電力の基本周波数(fM)を1(Hz)、基本周波数fSを50(Hz)とすると、2(Hz)の電力脈動が発生する。この周波数領域の脈動成分であれば、コンバータ2に50(Hz: 基本周波数fS)の逆相電流を流すことで、上記の低周波脈動を低減できる。
・「インバータ側低周波脈動電力低減制御」
インバータ側キャパシタ電圧に低周波脈動が生じた場合、インバータ3は、これを低減させるように制御する。例えば、インバータ3は、高周波の零相電圧を交流電圧に重畳させて、上記の高周波の周波数の循環電流をインバータ3内に流す。上記の「高周波の零相電圧」とは、負荷側交流系統8の交流の基本周波数(fM)よりも高い周波数成分の零相電圧を交流電圧に重畳させたものである。例えば、交流電力の基本周波数(fM)の高調波成分(正弦波)は、上記の「高い周波数成分」の一例である。これにより、インバータ3は、インバータ側キャパシタ電圧の低周波脈動を低減させる。これを、「インバータ側低周波脈動電力低減制御」と呼ぶ。
インバータ側キャパシタ電圧に低周波脈動が生じた場合、インバータ3は、これを低減させるように制御する。例えば、インバータ3は、高周波の零相電圧を交流電圧に重畳させて、上記の高周波の周波数の循環電流をインバータ3内に流す。上記の「高周波の零相電圧」とは、負荷側交流系統8の交流の基本周波数(fM)よりも高い周波数成分の零相電圧を交流電圧に重畳させたものである。例えば、交流電力の基本周波数(fM)の高調波成分(正弦波)は、上記の「高い周波数成分」の一例である。これにより、インバータ3は、インバータ側キャパシタ電圧の低周波脈動を低減させる。これを、「インバータ側低周波脈動電力低減制御」と呼ぶ。
・「コンバータ側低周波脈動電力低減制御」
インバータ側キャパシタ電圧に生じた低周波脈動成分は、コンバータ2側に伝搬して、コンバータ側キャパシタ電圧に低周波脈動成分が生じる。コンバータ2は、インバータ側低周波脈動電力低減制御の演算結果(例えば、インバータ側の低周波脈動電力推定値)に応じて、コンバータ2内に、交流の基本波(基本周波数fS)の逆相循環電流を流し、コンバータ側キャパシタ電圧に生じた低周波脈動成分を低減させる。これを、「コンバータ側低周波脈動電力低減制御」と呼ぶ。
インバータ側キャパシタ電圧に生じた低周波脈動成分は、コンバータ2側に伝搬して、コンバータ側キャパシタ電圧に低周波脈動成分が生じる。コンバータ2は、インバータ側低周波脈動電力低減制御の演算結果(例えば、インバータ側の低周波脈動電力推定値)に応じて、コンバータ2内に、交流の基本波(基本周波数fS)の逆相循環電流を流し、コンバータ側キャパシタ電圧に生じた低周波脈動成分を低減させる。これを、「コンバータ側低周波脈動電力低減制御」と呼ぶ。
電力変換装置1は、コンバータ側低周波脈動電力低減制御及びインバータ側低周波脈動電力低減制御を組み合わせて、インバータ側キャパシタ電圧等の直流電圧の低周波脈動成分を低減させる。例えば、コンバータ側低周波脈動電力低減制御とインバータ側低周波脈動電力低減制御の配分は、予め決定されていてもよい。
次に、図5を参照して、実施形態の制御部10の構成例について説明する。図5は、実施形態の制御部10の構成図である。
制御部10は、コンバータ制御部12(第1制御部)と、インバータ制御部13(第2制御部)とを備える。
制御部10は、コンバータ制御部12(第1制御部)と、インバータ制御部13(第2制御部)とを備える。
まず、コンバータ制御部12について説明する。
コンバータ制御部12は、平均電圧演算ユニット1201と、第1αβ0変換器1202と、第1PN-YZ変換器1203と、アームバランス制御部1204と、加算器1206と、PLL回路1207(図中の記載は「PLL(Phase-Locked Loop)」。)と、第1dq0変換器1209と、第2dq0変換器1210と、第2PN-YZ変換器1211と、系統電流ACR(Automatic Current Regulator)1212と、第1循環電流制御部1213と、第1YZ-PN変換器1214と、第1dq0逆変換器1215と、CNV制御器1216と、第1低周波脈動電力低減制御部1217(図中の記載は「第1LF_RPP制御部」。)とを備える。平均電圧演算ユニット1201と、第1αβ0変換器1202と、第1PN-YZ変換器1203は、コンバータ充電状態検出ユニット1205を形成する。
コンバータ制御部12は、平均電圧演算ユニット1201と、第1αβ0変換器1202と、第1PN-YZ変換器1203と、アームバランス制御部1204と、加算器1206と、PLL回路1207(図中の記載は「PLL(Phase-Locked Loop)」。)と、第1dq0変換器1209と、第2dq0変換器1210と、第2PN-YZ変換器1211と、系統電流ACR(Automatic Current Regulator)1212と、第1循環電流制御部1213と、第1YZ-PN変換器1214と、第1dq0逆変換器1215と、CNV制御器1216と、第1低周波脈動電力低減制御部1217(図中の記載は「第1LF_RPP制御部」。)とを備える。平均電圧演算ユニット1201と、第1αβ0変換器1202と、第1PN-YZ変換器1203は、コンバータ充電状態検出ユニット1205を形成する。
コンバータ充電状態検出ユニット1205は、例えば、コンバータ2の各アームのキャパシタに共通して、各キャパシタに掛ける直流電圧の指令値(キャパシタ電圧指令値vDC^*)と、コンバータ側キャパシタ電圧の検出値とに基づいて、コンバータ側キャパシタ電圧のバランスを検出する。以下、コンバータ充電状態検出ユニット1205の一例について説明する。
平均電圧演算ユニット1201は、6個の偏差量演算ユニット12011を備える。偏差量演算ユニット12011は、コンバータ2の各アームのキャパシタ電圧指令値vDC^*と、コンバータ2の各アームのキャパシタの電圧の検出値とに基づいて、各アームにおけるキャパシタの電圧の偏差量を、アーム毎に算出する。
図6を参照して、上記の各アームにおけるキャパシタの電圧の偏差量の算出について説明する。図6は、実施形態の偏差量演算ユニット12011の構成図である。偏差量演算ユニット12011は、LPF演算ユニット12011a、12011bと、減算器12011c、12011dと、平均演算ユニット12011eとを備える。
以下、検出対象のコンバータ側キャパシタ電圧としてキャパシタ電圧vCNV_DC1-4^rを例示して説明する。その他の場合も同様である。
例えば、LPF演算ユニット12011aは、低周波通過フィルタ(「LPF」という。)であり、キャパシタ電圧vCNV_DC1^rの低周波成分を抽出する。LPF演算ユニット12011bは、LPFであり、同様にキャパシタ電圧vCNV_DC4^rの低周波成分を抽出する。例えば、LPF演算ユニット12011aとLPF演算ユニット12011bのLPF特性は、交流の基本波成分(fS)が遮断されるように、LPFの遮断周波数が決定される。図示されないLPF演算ユニットによって、同様にキャパシタ電圧vCNV_DC2-3^rの低周波成分が同様に抽出される。
減算器12011cは、キャパシタ電圧vCNV_DC1^rの低周波成分からキャパシタ電圧指令値vDC^*を減算して、その結果の電圧偏差ΔvCNV_DC1^rを出力する。減算器12011dは、キャパシタ電圧vCNV_DC4^rの低周波成分からキャパシタ電圧指令値vDC^*を減算して、その結果の電圧偏差ΔvCNV_DC4^rを出力する。図示されない減算器によって、電圧偏差ΔvCNV_DC2-3^rが同様に算出される。
平均演算ユニット12011e(図中の記載は「AVE」。)は、電圧偏差ΔvCNV_DC1-4^rの平均値(キャパシタ電圧偏差量ΔvCNV_DCP^r)を算出する。
図5に戻りコンバータ2の各アームにおけるキャパシタの電圧の偏差量について整理する。
キャパシタ電圧偏差量ΔvCNV_DCP^rは、r相第1アームのキャパシタ5111から5114のキャパシタ電圧vCNV_DC1-4^rの上記キャパシタ電圧指令値vDC^*に対する偏差量の平均値である。キャパシタ電圧偏差量ΔvCNV_DCN^rは、r相第2アームのキャパシタ5115から5118のキャパシタ電圧vCNV_DC5-8^rの上記キャパシタ電圧指令値vDC^*に対する偏差量の平均値である。キャパシタ電圧偏差量ΔvCNV_DCP^sは、s相第1アームのキャパシタ5121から5124の電圧の上記キャパシタ電圧指令値vDC^*に対する偏差量の平均値である。キャパシタ電圧偏差量ΔvCNV_DCN^sは、s相第2アームのキャパシタ5125から5128の電圧の上記キャパシタ電圧指令値vDC^*に対する偏差量の平均値である。キャパシタ電圧偏差量ΔvCNV_DCP^tは、t相第1アームのキャパシタ5131から5134の電圧の上記キャパシタ電圧指令値vDC^*に対する偏差量の平均値である。キャパシタ電圧偏差量ΔvCNV_DCN^tは、t相第2アームのキャパシタ5135から5138の電圧の上記キャパシタ電圧指令値vDC^*に対する偏差量の平均値である。上記の通り平均電圧演算ユニット1201が出力する値は、各偏差量の平均値であるが、以下の説明では、それぞれ出力する値を単に「キャパシタ電圧偏差量」と呼ぶ。
上記の通り、平均電圧演算ユニット1201は、各相のキャパシタ電圧偏差量を、固定座標系の3相信号(ΔvCNV_DCP^rstとΔvCNV_DCN^rst)として出力する。
第1αβ0変換器1202は、固定座標系の3相信号を固定座標系の2相信号に変換する。これを「αβ0変換」と呼ぶ。第1αβ0変換器1202は、コンバータ2の第1アームと第2アームとに分けて、「αβ0変換」を実施する。例えば、第1αβ0変換器1202は、コンバータ2の第1アームのキャパシタ電圧偏差量ΔvCNV_DCP^αβ0を、キャパシタ電圧偏差量ΔvCNV_DCP^rstに基づいて、式(4)を用いて算出する。第1αβ0変換器1202は、コンバータ2の第2アームのキャパシタ電圧偏差量ΔvCNV_DCN^αβ0を、キャパシタ電圧偏差量ΔvCNV_DCN^rstに基づいて、式(5)を用いて算出する。上記の式中の「αβ0変換」に用いられる行列式[C^αβ0]を式(6)に示す。
第1PN-YZ変換器1203は、第1αβ0変換器1202によって座標変換された固定座標系の2相信号に基づいて、その変数を変換する。この変換処理を「PN-YZ変換」と呼ぶ。例えば、第1PN-YZ変換器1203は、キャパシタ電圧偏差量ΔvCNV_DCP^αβ0とキャパシタ電圧偏差量ΔvCNV_DCN^αβ0に基づいて、次の式(7)を用いてその変数を変換して、キャパシタ電圧偏差量ΔvCNV_DCY^αβ0とキャパシタ電圧偏差量ΔvCNV_DCZ^αβ0とを算出して、アーム間の直流電圧アンバランス量を分離する。
次に、アームバランス制御部1204について説明する。
アームバランス制御部1204は、第1PN-YZ変換器1203による演算結果に基づいて、各アームの電圧が互いに等しくなるような電流指令値を生成する。
アームバランス制御部1204は、第1PN-YZ変換器1203による演算結果に基づいて、各アームの電圧が互いに等しくなるような電流指令値を生成する。
例えば、アームバランス制御部1204は、キャパシタ電圧偏差量ΔvCNV_DCY^αβ0とキャパシタ電圧偏差量ΔvCNV_DCZ^αβとに基づいて、循環電流を調整するための電流指令値iCNV_ZB^d*と電流指令値iCNV_ZB^q*とを生成する。アームバランス制御部1204は、生成した電流指令値iCNV_ZB^d*を後述のd軸加算器1206dに供給し、電流指令値iCNV_ZB^q*を後述のq軸加算器1206qに供給する。アームバランス制御部1204の詳細については、後述する。
次に、第1低周波脈動電力低減制御部1217について説明する。
第1低周波脈動電力低減制御部1217は、インバータ制御部13から供給されるαβ0座標系の低周波脈動成分~pM^α*と~pM^β*とに基づいて、電流指令値iCNV_ZLF^d*と電流指令値iCNV_ZLF^q*とを算出する。インバータ制御部13は、少なくともLF_PPS制御器1322と、第2αβ0変換器1323とを含む。第1低周波脈動電力低減制御部1217と、インバータ制御部13の詳細については、後述する。
第1低周波脈動電力低減制御部1217は、インバータ制御部13から供給されるαβ0座標系の低周波脈動成分~pM^α*と~pM^β*とに基づいて、電流指令値iCNV_ZLF^d*と電流指令値iCNV_ZLF^q*とを算出する。インバータ制御部13は、少なくともLF_PPS制御器1322と、第2αβ0変換器1323とを含む。第1低周波脈動電力低減制御部1217と、インバータ制御部13の詳細については、後述する。
加算器1206は、アームバランス制御部1204の演算結果と、後述する第1低周波脈動電力低減制御部1217の演算結果とを加算する。例えば、加算器1206は、d軸加算器1206dとq軸加算器1206qを備える。d軸加算器1206dは、第1入力信号の電流指令値iCNV_ZB^d*と、後述する第2入力信号の電流指令値iCNV_ZLF^d*とを加算して、電流指令値iCNV_Z^d*を出力する。q軸加算器1206qは、第1入力信号の電流指令値iCNV_ZB^q*と、後述する第2入力信号の電流指令値iCNV_ZLF^q*とを加算して、電流指令値iCNV_Z^q*を出力する。
次に、PLL回路1207について説明する。
PLL回路1207は、例えば、図示されないr相PLL回路と、s相PLL回路と、t相PLL回路と備える。PLL回路1207のr相PLL回路は、例えば、A-B線間電圧に基づいて電源側交流系統7の電圧の基本波成分などを抽出し、位相θCNV^rを生成する。位相θCNV^rは、電源側交流系統7のr相の電圧の基本波の位相に同期している。同様に、PLL回路1207のs相PLL回路は、B-C線間電圧に基づいて位相θCNV^sを生成する。PLL回路1207のs相PLL回路は、C-A線間電圧に基づいて位相θCNV^tを生成する。位相θCNV^rと、位相θCNV^sと、位相θCNV^tは、互いに(2π/3)ラジアンの位相差がある。位相θCNV^rstは、電源角周波数(電気角速度)ωの積分値と等価であり、説明の中で電源角周波数ωと時刻情報(t)の積で示すことがある。
PLL回路1207は、例えば、図示されないr相PLL回路と、s相PLL回路と、t相PLL回路と備える。PLL回路1207のr相PLL回路は、例えば、A-B線間電圧に基づいて電源側交流系統7の電圧の基本波成分などを抽出し、位相θCNV^rを生成する。位相θCNV^rは、電源側交流系統7のr相の電圧の基本波の位相に同期している。同様に、PLL回路1207のs相PLL回路は、B-C線間電圧に基づいて位相θCNV^sを生成する。PLL回路1207のs相PLL回路は、C-A線間電圧に基づいて位相θCNV^tを生成する。位相θCNV^rと、位相θCNV^sと、位相θCNV^tは、互いに(2π/3)ラジアンの位相差がある。位相θCNV^rstは、電源角周波数(電気角速度)ωの積分値と等価であり、説明の中で電源角周波数ωと時刻情報(t)の積で示すことがある。
なお、PLL回路1207は、三相PLLであってもよい。この場合、PLL回路1207は、電源側交流系統7の系統電圧検出値vs^rstに基づいて系統電圧の基本波成分を抽出し、基本波成分に同期した位相θCNV^rstを生成する。
PLL回路1207は、位相θCNV^rstの代表値を、後述する第1dq0変換器1209と、第2dq0変換器1210と、系統電流ACR1212と、第1dq0逆変換器1215とに供給する。
第1dq0変換器1209は、固定座標系の3相信号に対するαβ0変換を実施し、さらに、式(9)に示す行列式を用いた「αβ0-dq0変換」を実施することにより固定座標系の2相信号からdq0軸を基準にした回転座標系の2相信号に変換する。基準角度信号θCNV^rstを利用した上記の2段階の変換を纏めて「三相-dq0変換」と呼ぶ。電圧検出器(不図示)によって検出された、電源側交流系統7の系統電圧検出値vS^rstは、固定座標系の3相信号の一例である。系統電圧検出値vS^dqは、回転座標系の2相信号の一例である。第1dq0変換器1209は、次の式(8)に従い、系統電圧検出値vS^rstの三相-dq0変換を実施して、その結果の系統電圧検出値vS^dq0を算出する。なお、系統電圧検出値vS^0の値が0であるため、系統電圧検出値vS^0に関わる後段の処理を省略してもよい。
第2dq0変換器1210は、同じく、式(10)と式(11)とに示すようにコンバータ2の各アーム電流の検出値の第1アームのrst相電流値iCNV_P^rstと、第2アームのrst相電流値iCNV_N^rstとに対する三相-dq0変換によって、夫々を第1アームのrst相電流値iCNV_P^dq0と、第2アームのrst相電流値iCNV_N^dq0とに変換する。なお、第1アームのrst相電流値iCNV_P^0と、第2アームのrst相電流値iCNV_N^0の成分を後段の処理では利用しないため、その算出を省略してもよい。
第2PN-YZ変換器1211は、前述した「PN-YZ変換」によって、式(12)を用いて第1アームのrst相電流値iCNV_P^dqと、第2アームのrst相電流値iCNV_N^dqとに基づいて、rst相系統側電流値iCNV_Y^dqと、rst相循環電流値iCNV_Z^dqとに変換する。
上記の式(12)において、rst相系統側電流値iCNV_Yが系統側電流を表し、rst相循環電流値iCNV_Zがコンバータ2内を循環する循環電流を表す。
系統電流ACR1212は、例えば、rst相系統側電流値iCNV_Y^dqと、インバータ側有効電力指令値pM^*と、コンバータ側無効電力指令値qS^*と、キャパシタ電圧偏差量ΔvCNV_DCZ^0と、系統電圧検出値vS^dqと、位相θCNV^rstとに基づいて、rst相電圧指令値vCNV_Y^dq*を算出する。例えば、インバータ側有効電力指令値pM^*と、コンバータ側無効電力指令値qS^*は、上位装置からの指令値である。系統電流ACR1212の詳細については、後述する。
第1循環電流制御部1213(以下、「第1循環電流ACR1213」という。)は、電流指令値iCNV_Z^d*と、電流指令値iCNV_Z^q*と、rst相循環電流値iCNV_Z^dqとに基づいて、rst相電圧指令値vCNV_Z^dq*を生成する。第1循環電流ACR1213の詳細については、後述する。
第1YZ-PN変換器1214は、前述の「PN-YZ変換」(式(7)参照。)の逆変換を実施する。これを「YZ―PN変換」と呼ぶ。第1YZ-PN変換器1214は、YZ―PN変換によって、rst相電圧指令値vCNV_Y^dq*と、rst相電圧指令値vCNV_Z^dq*とを、第1アームのrst相電圧指令値vCNV_P^dq*と、第2アームのrst相電圧指令値vCNV_N^dq*とに変換する。
第1dq0逆変換器1215は、前述のdq0変換(式(9)参照。)の逆変換を実施する。これを「dq0逆変換」と呼ぶ。第1dq0逆変換器1215は、dq0逆変換によって、第1アームのrst相電圧指令値vCNV_P^dq*と、その零相成分のrst相電圧指令値vCNV_P^0とに基づいて、第1アームのrst相電圧指令値vCNV_P^rst*を生成する。第1dq0逆変換器1215は、dq0逆変換によって、第2アームのrst相電圧指令値vCNV_N^dq*と、その零相成分のrst相電圧指令値vCNV_N^0とに基づいて、第2アームのrst相電圧指令値vCNV_N^rst*を生成する。なお、上記のrst相電圧指令値vCNV_P^0とrst相電圧指令値vCNV_N^0の値は、簡単のために0にしてもよく、過変調領域を利用するために基本波の3n次の零相成分にしてもよい。上記の「3n次」は、3の自然数倍の次数を示す。
CNV制御器1216は、第1アームのrst相電圧指令値vCNV_P^rst*と、第2アームのrst相電圧指令値vCNV_N^rst*とに基づいて、コンバータ2内の各単相コンバータセルを制御するためのゲートパルスGPCNVを生成する。例えば、コンバータ2内の単相コンバータセルの個数は、3相交流の夫々の相に2個づつアームが設けられ、各アームに4個の単相コンバータセルが設けられているから、全24個になる。単相コンバータセルがフルブリッジ型であれば各単相コンバータセルが4個のスイッチング素子を備えているので、ゲートパルスの信号数は、全96個になる。
次に、実施形態のコンバータ制御部12の制御の詳細について説明する。
コンバータ制御部12は、上記の構成を利用して以下の制御を実施する。
・すべてのコンバータ側キャパシタ電圧の直流量を一定にする制御
・コンバータ側低周波脈動電力低減制御
コンバータ制御部12は、上記の構成を利用して以下の制御を実施する。
・すべてのコンバータ側キャパシタ電圧の直流量を一定にする制御
・コンバータ側低周波脈動電力低減制御
以下、コンバータ制御部12による上記の2つの制御について順に説明する。
第1番目の「すべてのコンバータ側キャパシタ電圧の直流量を一定にする制御」は、以下に示す複数の制御(サブ制御)に階層化されていて、その複数の制御の組み合わせによって実現されてもよい。
第1番目の「すべてのコンバータ側キャパシタ電圧の直流量を一定にする制御」は、以下に示す複数の制御(サブ制御)に階層化されていて、その複数の制御の組み合わせによって実現されてもよい。
・直流電圧一括制御:
CNV制御器1216は、電源側交流系統7から流入する有効電力を調整することで、すべてのコンバータ側キャパシタ電圧の算術平均値が所望の値になるように制御する。
CNV制御器1216は、電源側交流系統7から流入する有効電力を調整することで、すべてのコンバータ側キャパシタ電圧の算術平均値が所望の値になるように制御する。
・アームバランス制御:
CNV制御器1216は、コンバータ2(変換器)内を流れる循環電流を制御することで、各アームのコンバータ側直流キャパシタ電圧の平均値が均等になるように制御する。これを、「キャパシタ電圧バランス制御」と呼び、その詳細を後述する。
CNV制御器1216は、コンバータ2(変換器)内を流れる循環電流を制御することで、各アームのコンバータ側直流キャパシタ電圧の平均値が均等になるように制御する。これを、「キャパシタ電圧バランス制御」と呼び、その詳細を後述する。
・個別バランス制御:
CNV制御器1216は、各アーム内のコンバータ側直流キャパシタ電圧をバランスさせる際に、個別バランス制御を行ってもよい。
なお、この個別バランス制御は、アーム出力電圧の調整と非干渉な制御である。CNV制御器1216は、上記の「直流電圧一括制御」及び「アームバランス制御」に影響を与えずに独立に制御することが可能である。例えば、r相第1アームが、定格電圧の100%の電圧を出力する場合に、アーム内の4つの単相コンバータセルがそれぞれ出力する電圧(セル出力電圧)の比率を均等(例えば、25% : 25% : 25% : 25%。)に割り当ててもよい。これに制限されず、直流電圧に応じてセル出力電圧の比率を不均等に微調整して割り当ててもよい。このようにアーム内の各単相コンバータセルに割り当てる値を個別に調整するための制御が「個別バランス制御」である。例えば、上記の調整により、セル出力電圧の比率を不均等(例えば、20% :30% : 25% : 25%。)に割り当てることができる。その際に合計値が100%になるように設定される。なお、説明を簡略化するため、以下の説明では、個別バランス制御の説明を省略し、単相コンバータセルがそれぞれ出力する電圧の比率を均等にした場合について説明する。
CNV制御器1216は、各アーム内のコンバータ側直流キャパシタ電圧をバランスさせる際に、個別バランス制御を行ってもよい。
なお、この個別バランス制御は、アーム出力電圧の調整と非干渉な制御である。CNV制御器1216は、上記の「直流電圧一括制御」及び「アームバランス制御」に影響を与えずに独立に制御することが可能である。例えば、r相第1アームが、定格電圧の100%の電圧を出力する場合に、アーム内の4つの単相コンバータセルがそれぞれ出力する電圧(セル出力電圧)の比率を均等(例えば、25% : 25% : 25% : 25%。)に割り当ててもよい。これに制限されず、直流電圧に応じてセル出力電圧の比率を不均等に微調整して割り当ててもよい。このようにアーム内の各単相コンバータセルに割り当てる値を個別に調整するための制御が「個別バランス制御」である。例えば、上記の調整により、セル出力電圧の比率を不均等(例えば、20% :30% : 25% : 25%。)に割り当てることができる。その際に合計値が100%になるように設定される。なお、説明を簡略化するため、以下の説明では、個別バランス制御の説明を省略し、単相コンバータセルがそれぞれ出力する電圧の比率を均等にした場合について説明する。
次に、上記の「キャパシタ電圧バランス制御」について説明する。
キャパシタ電圧バランス制御は、例えば、キャパシタ電圧の直流成分を安定化するために、キャパシタ電圧のアンバランス成分を分離して、それが0になるように調整するものであってよい。
キャパシタ電圧バランス制御は、例えば、キャパシタ電圧の直流成分を安定化するために、キャパシタ電圧のアンバランス成分を分離して、それが0になるように調整するものであってよい。
例えば、コンバータ充電状態検出ユニット1205における平均電圧演算ユニット1201は、コンバータ側キャパシタ電圧の検出値にまずLPF演算を施して交流の基本周波数(fs)に依存する脈動成分を低減させて、その後、各々キャパシタ電圧指令値vDC^*との偏差を計算する。また、平均電圧演算ユニット1201は、上記の偏差量について、アーム内の算術平均を計算する。その一例は、先に説明した通りである。
コンバータ充電状態検出ユニット1205は、平均電圧演算ユニット1201の演算結果に対して、第1αβ0変換器1202がαβ0変換を実施して、第1PN-YZ変換器1203が「PN-YZ変換」を実施する。これによりコンバータ充電状態検出ユニット1205は、キャパシタ電圧偏差量ΔvCNV_DCY^αβ0と、キャパシタ電圧偏差量ΔvCNV_DCZ^αβ0とを算出する。コンバータ充電状態検出ユニット1205は、キャパシタ電圧偏差量ΔvCNV_DCY^αβ0とキャパシタ電圧偏差量ΔvCNV_DCZ^αβをアームバランス制御1204に供給する。これらは、アーム間の直流電圧アンバランス量を示す。コンバータ充電状態検出ユニット1205は、キャパシタ電圧偏差量ΔvCNV_DCZ^0を系統電流ACR1212に供給する。キャパシタ電圧偏差量ΔvCNV_DCZ^0は、全キャパシタ電圧の平均とキャパシタ電圧指令値vDC^*との差(偏差量)を示す。
アームバランス制御部1204は、第1PN-YZ変換器1203の演算結果を用いて循環電流の指令値を算出する。
さらに、コンバータ制御部12は、アームに流れる電流の検出値に基づいた、帰還制御を実施する。例えば、アームに流れる電流の検出値に対して、第2αβ0変換器1210がαβ0変換を実施して、第2PN-YZ変換器1211が「PN-YZ変換」を実施する。第2PN-YZ変換器1211の演算結果のrst相系統側電流値iCNV_Y^dqは、電源側交流系統7側の電流の大きさを示す。rst相系統側電流値iCNV_Z^dqは、コンバータ2内を流れる循環電流を示す。
系統電流ACR1212は、この過不足分の電力を電源から授受するために、キャパシタ電圧偏差量ΔvCNV_DCZ^0に基づいて、系統電流iCNV_Yを調整する(これを、「直流電圧一括制御」と呼ぶ。)。
次に、実施形態の「直流電圧一括制御」に関わる系統電流ACR1212について説明する。図7は、実施形態の系統電流ACR1212の構成図である。系統電流ACR1212は、演算ユニット1212aから1212lを備える。なお、VSは、電源側交流系統7の線間電圧実効値を示す。vS^dqは、系統電圧検出値vS^rstに対応する系統電圧検出値を示す。後述する事例では、系統電圧検出値vS^dqを、フィードフォワード項に利用する。
演算ユニット1212aは、コンバータ側無効電力指令値qS^*に、電源側交流系統7の線間電圧実効値に基づく所定の係数「1/VS」を乗じて、無効電流出力指令値iCNV_Y^q*を算出する。演算ユニット1212bは、無効電流出力指令値iCNV_Y^q*からrst相系統側電流値iCNV_Y^qを減算する。演算ユニット1212cは、無効電流出力指令値iCNV_Y^q*に対するrst相系統側電流値iCNV_Y^qの偏差量に基づいて、その偏差がゼロになるような第1のq軸系統電圧指令値vCNV_Y1^q*を算出する。例えば、演算ユニット1212cは、演算式「KS+KS/sTS」に従った比例積分演算を実施して、第1のq軸系統電圧指令値vCNV_Y1^q*を算出するとよい。上記の「KS」は、例えば予め定められた比例ゲインである。上記の「KS/TS」は、例えば予め定められた積分ゲインである。上記の「TS」は、所定の演算周期であり、演算式の分母の「s」はラプラス演算子である。なお、比例ゲインと積分ゲインの「KS」は、異なる値であってよい。
演算ユニット1212dは、インバータ側有効電力指令値pM^*に、上記と同様に所定の係数「1/VS」を乗じて、無効電流出力指令値iCNV_Y^d*を算出する。演算ユニット1212eは、キャパシタ電圧偏差量ΔvCNV_DCZ^0に、所定の係数「K0A」を乗じる。上記の「K0A」は、例えば予め定められた定数である。演算ユニット1212fは、演算ユニット1212dと演算ユニット1212eの演算結果を加算して、無効電流出力指令値iCNV_Y^d*を算出する。演算ユニット1212gは、無効電流出力指令値iCNV_Y^d*からrst相系統側電流値iCNV_Y^dを減算する。演算ユニット1212hは、無効電流出力指令値iCNV_Y^d*に対するrst相系統側電流値iCNV_Y^dの偏差量に基づいて、その偏差がゼロになるような第1のd軸系統電圧指令値vCNV_Y1^d*を算出する。
演算ユニット1212iは、無効電流出力指令値iCNV_Y^d*に、所定の係数「ωLB」を乗じて、第2のq軸系統電圧指令値vCNV_Y2^q*を算出する。上記の「LB」は、例えばリアクトル3119のリアンクタンスである。演算ユニット1212jは、無効電流出力指令値iCNV_Y^q*に、所定の係数「ωLB」を乗じて、第2のd軸系統電圧指令値vCNV_Y2^d*を算出する。上記の「LB」は、例えばリアクトル3219のリアンクタンスであり、その値はリアクトル3119のリアンクタンスと同じ値であってよい。
演算ユニット1212kは、第2のd軸系統電圧指令値vCNV_Y2^d*と、系統電圧検出値vS^dとを加算し、さらにその和から第1のd軸系統電圧指令値vCNV_Y1^d*を減算して、その結果のrst相電圧指令値vCNV_Y^d*を算出する。演算ユニット1212lは、第1のq軸系統電圧指令値vCNV_Y1^q*と第2のq軸系統電圧指令値vCNV_Y2^q*とを、系統電圧検出値vS^qから減算して、その結果のrst相電圧指令値vCNV_Y^q*を算出する。
系統電流ACR1212は、上記の「系統電圧一括制御」によって、全キャパシタ電圧の過不足分の電力を、電源側交流系統7と授受することによって、キャパシタ電圧の直流成分を安定化させる。
次に、実施形態の「アームバランス制御」に関わるアームバランス制御部1204について説明する。
図8は、実施形態のアームバランス制御部1204の構成図である。アームバランス制御部1204は、演算ユニット1204aから1204hを備える。
演算ユニット1204aは、キャパシタ電圧偏差量ΔvCNV_DCY^0に、所定の係数「KCNV_DCY^0」を乗じて、第1の電流指令値ICNV_ZB^f*を算出する。
演算ユニット1204bは、キャパシタ電圧偏差量ΔvCNV_DCY^αβの大きさ(絶対値|ΔvCNV_DCY^αβ|)を算出する。演算ユニット1204cは、絶対値|ΔvCNV_DCY^αβ|に、所定の係数「KCNV_DCY^αβ」を乗じて、第2の電流指令値ICNV_ZB^b*を算出する。演算ユニット1204dは、キャパシタ電圧偏差量ΔvCNV_DCY^αβに基づく偏角φCNV_ZB^b*を、次の式(13)を用いて算出する。
演算ユニット1204eは、キャパシタ電圧偏差量ΔvCNV_DCZ^αβの大きさ(絶対値|ΔvCNV_DCZ^αβ|)を算出する。演算ユニット1204fは、絶対値|ΔvCNV_DCZ^αβ|に、所定の係数「KCNV_DCZ^αβ」を乗じて、第2の電流指令値ICNV_Zdc^b*を算出する。演算ユニット1204gは、キャパシタ電圧偏差量ΔvCNV_DCZ^αβに基づく偏角φCNV_Zdc^b*を、次の式(14)を用いて算出する。
演算ユニット1204hは、上記の第1の電流指令値ICNV_ZB^f*と、第2の電流指令値ICNV_ZB^b*と、偏角φCNV_ZB^b*と、第2の電流指令値ICNV_Zdc^f*と、偏角φCNV_Zdc^f*とに基づいて、次の式(15)を用いて、電流指令値iCNV_ZB^d*と電流指令値iCNV_ZB^q*とを算出する。
上記の式(15)の第1項から第3項は、系統周波数の正相・逆相、及び直流の循環電流の大きさに対応する。これらの値を調整することにより、所望の循環電流を流すように制御することができる。
次に、実施形態の循環電流制御に関わる第1低周波脈動電力低減制御部1217と、第1循環電流ACR1213とについて、順に説明する。
図9は、実施形態の第1低周波脈動電力低減制御部1217の構成図である。第1低周波脈動電力低減制御部1217は、演算ユニット1217aから1217dを備える。
演算ユニット1217aは、低周波脈動成分~pM^αβ*の大きさ(絶対値|~pM^αβ*|)を算出する。演算ユニット1217bは、絶対値|~pM^αβ*|に、換算ゲイン「GCNV_LF^αβ」を乗じて、電流指令値ICNV_ZLF^b*を算出する。換算ゲイン「GCNV_LF^αβ」は、電力を電流に変換するための変換係数(変換率)の一例である。演算ユニット1217cは、低周波脈動成分~pM^αβ*に基づく偏角φCNV_ZLF^b*を、次の式(16)を用いて算出する。
演算ユニット1217dは、上記の電流指令値ICNV_ZLF^b*と、偏角φCNV_ZLF^b*とに基づいて、次の式(17)を用いて、電流指令値iCNV_ZLF^d*と電流指令値iCNV_ZLF^q*とを算出する。
上記の式(17)は、前述の式(15)から、アームバランス制御の逆相電流成分を抜き出したものに相当する。ただし、絶対値|~pM^αβ*|に乗じる換算ゲイン「GCNV_LF」は、アームバランス制御部1204の演算ユニット1204aが利用する定数(所定の係数「KCNV_DCY^0」)とは異なる。アームバランス制御における上記の定数は、制御ゲインとして規定される。これに対して、換算ゲイン「GCNV_LF」は、入力の脈動電力から、どれだけの電流が必要かを算出するためのゲインとして規定される。
例えば、通常は、換算ゲイン「GCNV_LF」は、脈動電力をすべて打ち消せるだけの値に設定するとよい。コンバータ2の電流容量に余裕がなく、脈動電力をすべて打ち消せるだけの循環電力を供給できない場合や、後述する「INV側低周波脈動制御」を併用する場合などは、換算ゲイン「GCNV_LF」を適宜低減させてもよく、コンバータ2の動作状態によって低減させてもよい。
その後、加算器1206は、上記のアームバランス制御の結果の電流指令値iCNV_ZB^dq*と、CNV 側低周波脈動低減制御の結果の電流指令値iCNV_ZLF^dq*とを足し合わせて、最終的な循環電流指令値(電流指令値iCNV_Z^dq*)とする。
図10は、実施形態の第1循環電流ACR1213の構成図である。第1循環電流ACR1213は、演算ユニット1213b、1213c、1213gから1213lを備える。
演算ユニット1213bは、電流指令値iCNV_Z^q*からrst相系統側電流値iCNV_Z^qを減算する。演算ユニット1213cは、電流指令値iCNV_Z^q*に対するrst相系統側電流値iCNV_Z^qの偏差量に基づいて、その偏差がゼロになるような第1のq軸系統電圧指令値vCNV_Z1^q*を算出する。例えば、演算ユニット1213cは、「KCNV_Z^dq」で係数が規定される比例演算を実施して、第1のq軸系統電圧指令値vCNV_Z1^q*を算出するとよい。
演算ユニット1213gは、電流指令値iCNV_Z^d*からrst相系統側電流値iCNV_Z^dを減算する。演算ユニット1213hは、電流指令値iCNV_Z^d*に対するrst相系統側電流値iCNV_Z^dの偏差量に基づいて、その偏差がゼロになるような第1のd軸系統電圧指令値vCNV_Z1^d*を算出する。
演算ユニット1213iは、電流指令値iCNV_Z^d*に、所定の係数「ωLB」を乗じて、第2のq軸系統電圧指令値vCNV_Z2^q*を算出する。演算ユニット1213jは、電流指令値iCNV_Z^q*に、所定の係数「ωLB」を乗じて、第2のd軸系統電圧指令値vCNV_Z2^d*を算出する。
演算ユニット1213kは、第2のd軸系統電圧指令値vCNV_Z2^d*から、第1のd軸系統電圧指令値vCNV_Z1^d*を減算して、その結果のrst相電圧指令値vCNV_Z^d*を算出する。演算ユニット1213lは、第2のq軸系統電圧指令値vCNV_Z2^q*から、第1のq軸系統電圧指令値vCNV_Z1^q*を減算して、その結果のrst相電圧指令値vCNV_Z^q*を算出する。
第1循環電流ACR1213によって算出されたrst相電圧指令値vCNV_Z^q*は、後段の第1dq0逆変換器1215と、CNV制御器1216とによって、ゲートパルスGPCNV^rstに変換され、コンバータ2の各アームが、そのゲートパルスGPCNV^rstによって制御される。
上記の制御により、コンバータ制御部12は、コンバータ2の内部に、所望の循環電流を流すことができる。
例えば、コンバータ制御部12は、第1正側スター結線210と第1負側スター結線220に流す第1循環電流として、電源側交流系統7の交流電力に係る基本波正相電流に対する基本波逆相電流が流れるように、コンバータ2を制御してもよい。
コンバータ制御部12は、コンバータ2を、電源側交流系統7の各相の有効電力が揃うように制御してもよい。
次に、実施形態のインバータ制御部13について説明する。
図11は、実施形態のインバータ制御部13の構成図である。
図11は、実施形態のインバータ制御部13の構成図である。
インバータ制御部13は、第3dq0変換器1310と、第3PN-YZ変換器1311と、モータ電流ACR1312と、第2循環電流制御部1313と、第2YZ-PN変換器1314と、第2dq0逆変換器1315と、INV制御器1316と、INV電流指令値位相演算ユニット1321と、LF_PPS制御器1322と、第2αβ0変換器1323と、第2低周波脈動電力低減制御部1324(図中の記載は「第2LF_RPP制御部」。)と、零相電圧演算ユニット1325と、乗算器1326とを備える。
第3dq0変換器1310は、インバータ3の各アーム電流の検出値の第1アームのuvw相電流値iINV_P^uvwと、第2アームのuvw相電流値iINV_N^uvwとを、座標変換用位相θINVを基準にした三相-dq0変換によって、第1アームのuvw相電流値iINV_P^dqと、第2アームのuvw相電流値iINV_N^dqとに変換する。
第3PN-YZ変換器1311は、PN-YZ変換を実施する。第3PN-YZ変換器1311は、第1アームのuvw相電流値iINV_P^dqと、第2アームのuvw相電流値iINV_N^dqとに基づいて、uvw相系統側電流値iINV_Y^dqと、uvw相循環電流値iINV_Z^dqとに変換する。uvw相系統側電流値iINV_Yが系統側電流を表し、uvw相循環電流値iINV_Zがコンバータ2内を循環する循環電流を表す。
モータ電流制御部1312(以下、「モータACR1312」という。)は、uvw相系統側電流値iINV_Y^dqと、モータ電流指令値iINV_Y^dq*とに基づいて、uvw相電圧指令値vINV_Y^dq*を算出する。
モータ電流ACR1312は、例えば、演算ユニット1312b、1312c、1312gから1312lを備える。演算ユニット1312b、1312c、1312gから1312lは、前述の系統電流ACR1213の1212b、1212c、1212gから1212lに対応する。上記の対応付けにより、モータ電流ACR1313の詳細な説明については、図7とその説明を参照する。
第2循環電流制御部1313(以下、「第2循環電流ACR1313」という。)は、電流指令値iINV_ZLF^dq*と、uvw相循環電流値iINV_Z^dqとに基づいて、uvw相電圧指令値vINV_Z^dq*を生成する。
第2循環電流ACR1313は、演算ユニット1313b、1313c、1313gから1313lを備える。演算ユニット1313b、1313c、1313gから1313lは、第1循環電流ACR1213の演算ユニット1213b、1213c、1213gから1213lに対応する。上記の対応付けにより、第2循環電流ACR1313の詳細な説明については、図10とその説明を参照する。
第2YZ-PN変換器1314は、YZ-PN変換を実施して、uvw相電圧指令値vINV_Y^dq*と、uvw相電圧指令値vINV_Z^dq*とを、第1アームのuvw相電圧指令値vINV_P^dq*と、第2アームのuvw相電圧指令値vINV_N^dq*とに変換する。
零相電圧演算ユニット1325は、上記の「インバータ側低周波脈動電力低減制御」のために、「高周波の零相電圧」を交流電圧に重畳させるように、インバータ3が出力する零相電圧を指定するuvw相電圧指令値vINV_LF^0*を生成する。なお、零相電圧演算ユニット1325は、インバータ3の零相電圧の大きさ(振幅)及び位相を調整する際に、それらをインバータ3の出力電圧が飽和しないように設定するとよい。
乗算器1326は、uvw相電圧指令値vINV_LF^0*に基づいて、uvw相電圧指令値vINV_LF^0*と絶対値が等しい負の値のuvw相電圧指令値vINV_LFN^0を算出する。
第2dq0逆変換器1315は、第1アームのuvw相電圧指令値vINV_P^dq*と、その零相成分のuvw相電圧指令値vINV_LF^0*とに基づいて、座標変換用位相θINVを基準にしたdq0逆変換を実施して、第1アームのuvw相電圧指令値vINV_P^uvw*を生成する。第2dq0逆変換器1315は、第2アームのuvw相電圧指令値vINV_N^dq*と、その零相成分のuvw相電圧指令値vINV_LFN^0*とに基づいて、同様にdq0逆変換を実施して、第2アームのuvw相電圧指令値vINV_N^uvw*を生成する。
INV制御器1316は、第1アームのuvw相電圧指令値vINV_P^uvw*と、第2アームのuvw相電圧指令値vINV_N^uvw*とに基づいて、インバータ3内の各単相インバータセルを制御するためのゲートパルスGPINVを生成する。例えば、インバータ3内の単相インバータセルの個数は、コンバータ2と同様で全24個になる。単相インバータセルがフルブリッジ型であれば、ゲートパルスの信号数は、コンバータ2と同様に全96個になる。
INV電流指令値位相演算ユニット1321と、LF_PPS制御器1322と、第2αβ0変換器1323と、第2低周波脈動電力低減制御部1324については、制御の説明の中で纏めて説明する。
次に、実施形態のインバータ制御部13の制御について説明する。
INV電流指令値位相演算ユニット1321は、速度FBKに基づいて、dq軸のモータ電流指令値iINV_Y^dq*と座標変換用位相(θINV)を算出する。例えば、INV電流指令値位相演算ユニット1321は、上位制御器から指定される速度基準と速度検出器SS(図1)によって検出されたモータMの角速度(速度FBKという。)に基づいて、ベクトル制御などの既知の技術により、dq軸のモータ電流指令値iINV_Y^dq*を算出するとよい。また、INV電流指令値位相演算ユニット1321は、例えば、速度FBKを積分して座標変換用位相θINVを算出する。
なお、図11に示す構成は、電流マイナループを持つクローズドループ制御を前提としたものであるが、オープンループ制御を適用してもよい。ベクトル制御は、クローズドループ制御の一例であり、V/f制御(電圧周波数比一定制御)はオープンループ制御の一例である。また、上記の構成では速度検出器を用いた速度制御系を例示しているが、速度検出器を用いないセンサレス制御(センサレスベクトル制御)を適用してもよいし、速度制御ではなく、トルク制御に代えてもよい。
モータACR1312は、uvw相系統側電流値iINV_Y^dqと、モータ電流指令値iINV_Y^dq*とに基づいて、uvw相電圧指令値vINV_Y^dq*を算出する。第2循環電流ACR1313は、電流指令値iINV_ZLF^dq*と、uvw相循環電流値iINV_Z^dqとに基づいて、uvw相電圧指令値vINV_Z^dq*を生成する。モータACR1312と第2循環電流ACR1313は、それぞれの成分で電流制御を実施する。上記のY成分がモータの駆動電流をあらわしており、モータACR1312は、上記で得られたモータ電流指令値に追従するよう電流制御を実施する。
次に、図12を参照して、LF_PPS制御器1322について説明する。
図12は、実施形態のLF_PPS制御器1322の構成図である。LF_PPS制御器1322は、モータ電流指令値iINV_Y^dq*と、uvw相電圧指令値vINV_Y^dq*とに基づいて、モータMに供給する電力pMに含まれている低周波脈動成分(~pM^uvw*)を算出する。
図12は、実施形態のLF_PPS制御器1322の構成図である。LF_PPS制御器1322は、モータ電流指令値iINV_Y^dq*と、uvw相電圧指令値vINV_Y^dq*とに基づいて、モータMに供給する電力pMに含まれている低周波脈動成分(~pM^uvw*)を算出する。
例えば、LF_PPS制御器1322は、第3dq0逆変換器1322aと、第4dq0逆変換器1322bと、演算ユニット1322cから1322jとを備える。
第3dq0逆変換器1322aは、座標変換用位相θINVを基準にしたdq0逆変換を実施して、dq軸のuvw相電圧指令値のY成分vINV_Y^dq*と、その零相成分のuvw相電圧指令値のY成分vINV_Y^0とに基づいて、uvw相電圧指令値のY成分vINV_Y^uvw*を生成する。なお、uvw相電圧指令値vINV_Y^0値は、0である。
第4dq0逆変換器1322bは、座標変換用位相θINVを基準にしたdq0逆変換を実施して、dq軸のuvw相電流指令値のY成分iINV_Y^dq*と、その零相成分のuvw相電流指令値のY成分iINV_Y^0とに基づいて、uvw相電流指令値のY成分iINV_Y^uvw*を生成する。なお、uvw相電流指令値iINV_Y^0の値は、0である。
演算ユニット1322c、1322d、1322eは、乗算器である。演算ユニット1322c、1322d、1322eは、uvw相電圧指令値のY成分vINV_Y^uvw*と、uvw相電流指令値のY成分iINV_Y^uvw*とを成分毎に乗算して、uvw相の瞬時電力指令値pM^uvw*を算出する。
演算ユニット1322fは、加算器であり、uvw相の瞬時電力指令値pM^uvw*の各成分を加算する。uvw相の瞬時電力指令値pM^uvw*の合計値が有効電力指令値pM^*になる。演算ユニット1322gは、有効電力指令値pM^*を3で割って、その商を各相に配分して、後段の基準値にする。
演算ユニット1322h、1322i、1322jは、減算器であり、uvw相の瞬時電力指令値pM^uvw*の各成分から、各相に配分された基準値(有効電力指令値pM^*/3)を減算する。演算ユニット1322h、1322i、1322jの演算結果は、各相に含まれていた低周波脈動成分(~pM^uvw*)になる。これにより、LF_PPS制御器1322は、uvw相の低周波脈動成分を相毎に分離することができる。
次に、図10に戻り、LF_PPS制御器1322の後段に設ける第2αβ0変換器1323について説明する。
第2αβ0変換器1323は、αβ0変換によって、uvw相の低周波脈動成分(~pM^uvw*)を、固定座標系の低周波脈動成分(~pM^αβ0*)に変換する。第2αβ0変換器1323は、低周波脈動成分(~pM^αβ*)を、後述する第2低周波脈動電力低減制御部1324と、前述した第1低周波脈動電力低減制御部1217とに出力する。なお、第2αβ0変換器1323は、零相成分を出力しなくてもよい。
第2αβ0変換器1323は、αβ0変換によって、uvw相の低周波脈動成分(~pM^uvw*)を、固定座標系の低周波脈動成分(~pM^αβ0*)に変換する。第2αβ0変換器1323は、低周波脈動成分(~pM^αβ*)を、後述する第2低周波脈動電力低減制御部1324と、前述した第1低周波脈動電力低減制御部1217とに出力する。なお、第2αβ0変換器1323は、零相成分を出力しなくてもよい。
ところで、インバータ3が出力する第2交流電力の基本周波数fMと位相は、コンバータ2に供給される第1交流電力の基本周波数fSと位相と互いに異なる。上記の通り、第2αβ0変換器1323は、αβ0変換によって、低周波脈動成分を固定座標系で表す。これにより、コンバータ2とインバータ3は、上記の低周波脈動成分の値を、固定座標系の情報として共有することができる。コンバータ2とインバータ3は、固定座標系の低周波脈動成分の値に基づいて、それぞれ制御することにより、互いに連携した制御を可能にする。
次に、前述の図11を参照して、第2低周波脈動電力低減制御部1324が低周波脈動成分(~pM^αβ*)を用いてインバータ3内の循環電流を制御することについて説明する。
図11に示される第2低周波脈動電力低減制御部1324は、図7に示された第1低周波脈動電力低減制御部1217とは構成が異なる。
第2低周波脈動電力低減制御部1324は、低周波脈動成分(~pM^αβ*)に基づいて、電流指令値iINV_ZLF^αβ*を生成する。
例えば、第2低周波脈動電力低減制御部1324は、次の式(18)を用いて、上記の低周波脈動成分~pM^αβ*に、コンバータ2側と同様に換算ゲイン「GINV_LF^αβ」を乗じて、電流指令値IINV_ZLF^αβ*を算出する。換算ゲイン「GINV_LF^αβ」は、電力を電流に変換するための変換係数(変換率)の一例である。
CNV 側でも説明したとおり、制御部10は、電力変換装置1の運転状態に応じて、換算ゲイン「GCNV_LF^αβ」と換算ゲイン「GINV_LF^αβ」の比率を、予めまたは適応的に適切な値に設定することで、低周波脈動電力を低減する効果を最適化することができる。上記の比率をこれに従い決定するとよい。
第2低周波脈動電力低減制御部1324は、上記で求めた循環電流の電流指令値IINV_ZLF^αβ*に、αβ0逆変換を施して、uvw相の電流指令値IINV_ZLF^uvw*を生成する。このとき、零相の値を0にする。
次に、第2低周波脈動電力低減制御部1324は、次の式(19)を用いて、電流指令値IINV_ZLF^uvw*に基づいて、電流指令値iINV_ZLF^uvw*を算出する。
次に、第2低周波脈動電力低減制御部1324は、電流指令値iINV_ZLF^uvw*に、dq変換を施して、電流指令値iINV_ZLF^dq*を算出する。
第2循環電流ACR1313は、前述の第1循環電流ACR1213と同様の手法によって、第2低周波脈動電力低減制御部1324によって算出された電流指令値iINV_ZLF^dq*に基づいて、uvw相電圧指令値vINV_Z^dq*を生成する。
この後の、第2dq0逆変換器1315と、INV制御器1316とによる処理は、先に説明した通りである。
なお、零相電圧演算ユニット1325は、次の式(20)を用いて、uvw相電圧指令値vINV_LF^0*を生成するとよい。
ここで、基本波周波数fMよりも高い周波数成分(以下、fX と呼ぶ。)について規定する。上記の式(20)における「X」は、上記の周波数成分fXの識別に用いる識別子である。「VX^0*」は、周波数成分fXの零相電圧の指令値を、実効値で規定したものである。同様に「ωX」と「φX^0」は、周波数成分fXの角速度と、零相電圧の位相を示す。
上記のように、インバータ3は、低周波脈動成分~pM^αβ*と、コンバータ2側と同様に、電力を電流に変換する換算ゲイン「GINV_LF^αβ」とを用いて、コンバータ2内の循環電流を決定する。
なお、上記の式(20)に示す換算ゲイン「GINV_LF^αβ」は、前述の第1循環電流ACR1213の換算ゲイン「GCNV_LF^αβ」と同様に零相電流の制御に利用されるが、換算ゲイン「GCNV_LF」とは互いに異なる値であって良い。
例えば、制御部10の記憶部には、換算ゲイン「GCNV_LF^αβ」と換算ゲイン「GINV_LF^αβ」とを格納する領域が割り当てられていて、これらを規定するデータがその領域に予め格納されている。コンバータ制御部12は、換算ゲイン「GCNV_LF^αβ」を用いて、コンバータ2側の零相電圧の成分の大きさ(振幅)を調整する。インバータ制御部13は、換算ゲイン「GINV_LF^αβ」を用いて、インバータ3側の零相電圧の成分の大きさ(振幅)を調整する。これにより、コンバータ2とインバータ3は、換算ゲイン「GCNV_LF^αβ」と換算ゲイン「GINV_LF^αβ」とをそれぞれ用いることで、夫々の零相電圧の成分の大きさ(振幅)を独立に決定することができる。
なお、制御部10は、電力変換装置1の運転状態に応じて、換算ゲイン「GCNV_LF^αβ」と換算ゲイン「GINV_LF^αβ」の比率を、予めまたは適応的に適切な値に設定することで、低周波脈動電力を低減する効果を最適化することができる。上記の換算ゲイン「GCNV_LF^αβ」と換算ゲイン「GINV_LF^αβ」は、変換率の一例である。
上記のように、換算ゲイン「GCNV_LF^αβ」と換算ゲイン「GINV_LF^αβ」を用いる場合に、インバータ3は、換算ゲイン「GINV_LF^αβ」に基づいて、周波数成分fXの零相電圧を重畳し、かつ同周波数の循環電流をインバータ3内に流すことで、基本波周波数fMに由来の脈動電力を低減させる。これに併せて、コンバータ2は、換算ゲイン「GCNV_LF^αβ」に基づいて、周波数成分fXの零相電圧を重畳し、かつ同周波数の循環電流をコンバータ2内に流すことで、基本波周波数fMに由来の脈動電力を低減させる。
この場合、コンバータ2とインバータ3は、それぞれの零相電圧の成分には、周波数成分fXの正弦波を用いてもよく、周波数成分fXの方形波を用いてもよい。
上記の実施形態の電力変換装置1によれば、コンバータ2(第1電力変換器)は、コンバータ第1アームと、コンバータ第2アームと、コンバータ第1アームをスター型に接続する第1正側スター結線210と、コンバータ第2アームをスター型に接続する第1負側スター結線220と、第1正側スター結線210と第1負側スター結線220とを電源側交流系統7の各相にそれぞれ接続する第1交流接続端子201、202、203(第1端子)とを含み、コンバータ第1アームとコンバータ第2アームとが電源側交流系統7の第1交流電力と第1直流電力とを相互に変換する。絶縁型の複数のDCDC変換装置4000は、前記第1直流電力と第2直流電力を相互に変換する。インバータ3(第2電力変換器)は、インバータ第1アームと、インバータ第2アームと、インバータ第1アームをスター型に接続する第2正側スター結線310と、インバータ第2アームをスター型に接続する第2負側スター結線320と、第2正側スター結線310と第2負側スター結線320とを負荷側交流系統8の各相にそれぞれ接続する第2交流接続端子301、302、303(第2端子)とを含み、インバータ第1アームとインバータ第2アームとが前記第2直流電力と第2交流電力とを相互に変換する。
このような、電力変換装置1では、第1正側スター結線210と第1負側スター結線220とが電源側交流系統7に接続され、第2正側スター結線310と第2負側スター結線320とが負荷側交流系統8に接続されることにより、コンバータ2とインバータ3とが、電力変換装置の負荷側に供給される有効電力の各相間の不平衡を軽減させることで、上記の負荷側交流系統8の有効電力の各相間の不平衡が、電源側交流系統7に影響することを軽減させることができる。
上記の構成の場合、コンバータ2のコンバータ第1アームとコンバータ第2アームは、コンバータスター結線によって所謂ダブルスター型に接続されている。インバータ3のインバータ第1アームとインバータ第2アームは、インバータスター結線によって所謂ダブルスター型に接続されている。この場合、コンバータ2がデルタ結線で接続される場合に比べて各相に掛かる電圧が低くなるため、各相の単相コンバータセルの個数が、デルタ結線の場合の個数よりも少なくなる。インバータ3を負荷側交流系統8に接続する場合も同様である。
コンバータ制御部12は、電源側交流系統7に係る基本波逆相電流を成分に含む第1循環電流が第1正側スター結線210と第1負側スター結線220とに流れるように、コンバータ2を制御するとよい。この場合、コンバータ2は、第1循環電流ACR1213によって生成されたrst相電圧指令値vCNV_Z^dq*に基づいて電流量が調整された第1循環電流を流すことができる。
上記の場合に、インバータ制御部13は、第2正側スター結線310と第2負側スター結線320とに流す第2循環電流を調整して、インバータ3を制御するようにしてもよい。この場合、インバータ3は、第2循環電流ACR1313によって生成されたuvw相電圧指令値vINV_Z^dq*に基づいた電流量に調整された第2循環電流を流すことができる。
さらに、コンバータ制御部12とインバータ制御部13は、上記の第1循環電流の調整量と第2循環電流の調整量を、インバータ3の状態量に基づいて算出してもよい。例えば、速度FBKは、インバータ3の状態量の一例である。
なお、制御部10(電力変換制御装置)におけるコンバータ制御部12は、第1正側スター結線210と第1負側スター結線220に流す第1循環電流として、第1交流電力に係る基本波正相電流に対する基本波逆相電流を流すように、コンバータ2を制御する。インバータ制御部13は、第2正側スター結線310と第2負側スター結線320に第2循環電流を流すように制御する。その際、コンバータ制御部12とインバータ制御部13は、第1循環電流と第2循環電流を所定の係数を用いて独立に制御するとよい。これにより、コンバータ制御部12とインバータ制御部13とによる調整量を軽減することができる。
(変形例)
次に、いくつかの変形例について説明する。
次に、いくつかの変形例について説明する。
第1の変形例では、インバータ制御部13がインバータ3の状態量としてインバータ3における第2単相フルブリッジ回路の直流側の電力(第2直流電力)の低周波脈動成分を検出して、コンバータ制御部12は、第2単相フルブリッジ回路の直流側の電力の低周波脈動成分に基づいて、コンバータ2内の第1循環電流を調整してもよい。これにより、第2単相フルブリッジ回路の直流側の電力の低周波脈動成分が生じている場合に、コンバータ2内に第1循環電流を流すことで、第2単相フルブリッジ回路の直流側の電力の低周波脈動成分の影響をコンバータ2側で軽減させることができる。
第2の変形例では、インバータ制御部13は、上記の第2直流電力の直流電圧の低周波脈動成分に基づいて、第2直流電力の直流電圧の低周波脈動成分が少なくなるように、インバータ3内の第2循環電流を調整してもよい。これにより、第2単相フルブリッジ回路の直流側の電力の低周波脈動成分が生じている場合に、コンバータ2内に第1循環電流を流すことで、第2単相フルブリッジ回路の直流側の電力の低周波脈動成分の影響をコンバータ2側に波及しないように軽減させることができる。
第3の変形例では、コンバータ2における複数の単相コンバータセルには、それぞれ第1キャパシタが設けられている。コンバータ制御部12は、複数の単相コンバータセルにそれぞれ設けられている第1キャパシタの電圧の直流量と第2直流電力の直流電圧の低周波脈動成分とに基づいて、複数の単相コンバータセルの第1キャパシタの電圧の直流量を一定にするように第1交流電力の基本波の逆相の第1循環電流を調整してもよい。
なお、上記の制御部10は、例えば、図示されない記憶部と、CPU(central processing unit)と、駆動部と、取得部とを備える。記憶部と、CPUと、駆動部と、取得部は、例えばBUSを介して制御部内で接続されている。記憶部は、半導体メモリを含む。CPUは、ソフトウェアプログラムに従い、所望の処理を実行するプロセッサを含む。駆動部は、CPUの制御に従い、電力変換装置1の各部に対する制御信号を生成する。取得部は、各電流センサーと各電圧センサーの検出結果を取得する。例えば、制御部10のCPUは、取得部によって取得した電流センサーと電圧センサーの検出結果に基づいて、駆動部によって各相の主回路を制御する。制御部10は、その処理の一部または全部を上記のようにソフトウェアプログラムの処理により実現されてもよく、これに代わりハードウェアによって実現されてもよい。また、制御部10を適宜分割して構成してよく、これによって回路の絶縁性を確保してよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
なお、以上の実施形態の説明では、各単相コンバータセル、各単相インバータセル、及びDCDC変換装置4000の単相フルブリッジ回路として2レベルの単相自励変換器を含むものを例示したが、各単相コンバータセル、各単相インバータセル、及びDCDC変換装置4000の単相フルブリッジ回路は、これに制限されず、3レベルやそれ以上の任意のレベルの単相自励変換器であってよい。その場合には、レベル数に見合った数のキャパシタを設けるとよい。
1…電力変換装置、2…コンバータ(第1電力変換器)、3…インバータ(第2電力変換器)、4…DCDC変換装置群、5…コンバータ側キャパシタ群、6…インバータ側キャパシタ群、7…電源側交流系統、8…負荷側交流系統、10…制御部、12…コンバータ制御部、13…インバータ制御部、210…第1正側スター結線、220…第1負側スター結線、201、202、203…第1交流接続端子、2110…r相第1アーム、2120…s相第1アーム、2130…t相第1アーム、2210…r相第2アーム、2220…s相第2アーム、2230…t相第2アーム、310…第2正側スター結線、320…第2負側スター結線、301、302、303…第2交流接続端子、3110…u相第1アーム、3120…v相第1アーム、3130…w相第1アーム、3210…u相第2アーム、3220…v相第2アーム、3230…w相第2アーム、2111から2114、2215から2218…単相コンバータセル、3111から3114、3215から3218…単相インバータセル、4111から4114、4215から4218、4000…DCDC変換装置、5111から5114、5215から5218…キャパシタ(第1キャパシタ)、6111から6114、6215から6218…キャパシタ(第2キャパシタ)
Claims (18)
- 複数の第1正側のアームと、複数の第1負側のアームと、前記複数の第1正側のアームをスター型に接続する第1正側スター結線と、前記複数の第1負側のアームをスター型に接続する第1負側スター結線と、前記第1正側スター結線と前記第1負側スター結線とを電源側交流系統の各相にそれぞれ接続する第1端子とを含み、前記複数の第1正側のアームと前記複数の第1負側のアームとが前記電源側交流系統の第1交流電力と第1直流電力とを相互に変換する第1電力変換器と、
前記第1直流電力と第2直流電力を相互に変換する絶縁型の複数のDCDC変換装置と、
複数の第2正側のアームと、複数の第2負側のアームと、前記複数の第2正側のアームをスター型に接続する第2正側スター結線と、前記複数の第2負側のアームをスター型に接続する第2負側スター結線と、前記第2正側スター結線と前記第2負側スター結線とを負荷側交流系統の各相にそれぞれ接続する第2端子とを含み、前記複数の第2正側のアームと前記複数の第2負側のアームとが前記第2直流電力と第2交流電力とを相互に変換する第2電力変換器と、
を備える電力変換装置。 - 前記複数のDCDC変換装置は、
前記第1電力変換器と前記第2電力変換器とに接続され、前記第1電力変換器と前記第2電力変換器との間を絶縁し、前記第1電力変換器と前記第2電力変換器との間で電力を相互に変換し、
前記複数のDCDC変換装置の中の1つのDCDC変換装置は、
前記複数の単相コンバータセルの中の1つの単相コンバータセルに対応付けて設けられた第1キャパシタと、
前記複数の単相インバータセルの中の1つの単相インバータセルに対応付けて設けられた第2キャパシタとに接続される、
請求項1記載の電力変換装置。 - 前記1つの単相コンバータセルは、
前記第1交流電力の一部と前記第1直流電力の一部を相互に変換して、
前記1つのDCDC変換装置は、
前記第1直流電力の一部と前記第2直流電力の一部を相互に変換して、
前記1つの単相インバータセルは、
前記第2直流電力の一部と前記第2交流電力の一部を相互に変換する、
請求項2記載の電力変換装置。 - 前記第1正側スター結線と前記第1負側スター結線に流す第1循環電流として、前記第1交流電力に係る基本波正相電流に対する基本波逆相電流が流れるように、前記第1電力変換器を制御する第1制御部
をさらに備える請求項1記載の電力変換装置。 - 前記第1電力変換器を、前記第1交流電力の各相の有効電力が揃うように制御する第1制御部
をさらに備える請求項1記載の電力変換装置。 - 前記第2正側スター結線と前記第2負側スター結線とに流す第2循環電流を調整して、前記第2電力変換器を制御する第2制御部
をさらに備える請求項1記載の電力変換装置。 - 前記第1交流電力に係る基本波逆相電流を成分に含む第1循環電流が前記第1正側スター結線と前記第1負側スター結線とに流れるように、前記第1電力変換器を制御する第1制御部と、
前記第2正側スター結線と前記第2負側スター結線とに流す第2循環電流を調整して、前記第2電力変換器を制御する第2制御部と
を備え、
前記第1制御部と前記第2制御部は、
前記第1循環電流の調整量と前記第2循環電流の調整量を、前記第2電力変換器の状態を示す状態量に基づいて算出する、
請求項1記載の電力変換装置。 - 前記第2制御部は、
前記第2電力変換器の状態量として、前記第2直流電力の低周波脈動成分を検出し、
前記第1制御部は、
前記第2直流電力の低周波脈動成分に基づいて、前記第1循環電流を調整する、
請求項7記載の電力変換装置。 - 前記第2制御部は、
前記第2直流電力の低周波脈動成分に基づいて、前記第2直流電力の低周波脈動成分が少なくなるように、前記第2循環電流を調整する、
請求項7記載の電力変換装置。 - 前記複数の第1正側のアームのそれぞれが、カスケード接続された複数の単相コンバータセルを備え、
前記複数の第2正側のアームのそれぞれが、カスケード接続された複数の単相インバータセルを備え、
前記複数の単相コンバータセルには、それぞれ第1キャパシタが設けられており、
前記第1制御部は、
前記複数の単相コンバータセルにそれぞれ設けられている前記第1キャパシタの電圧の直流量と前記第2直流電力の直流電圧の低周波脈動成分とに基づいて、前記複数の単相コンバータセルに夫々設けられた前記第1キャパシタの電圧の直流量を一定にするように前記第1循環電流を調整する、
請求項7記載の電力変換装置。 - 請求項1記載の電力変換装置を制御する電力変換制御装置であって、
前記第1正側スター結線と前記第1負側スター結線とに流す第1循環電流として、前記第1交流電力に係る基本波正相電流に対する基本波逆相電流を流すように、前記第1電力変換器を制御する第1制御部と、
前記第2正側スター結線と前記第2負側スター結線とに第2循環電流を流すように制御する第2制御部とを備え、
前記第1制御部と前記第2制御部は、
前記第1循環電流と前記第2循環電流の大きさを規定する変換率に基づいて、前記第1循環電流と前記第2循環電流の大きさを制御する
電力変換制御装置。 - カスケード接続される複数の単相コンバータセルを備える第1電力変換器と、
カスケード接続される複数の単相インバータセルを備える第2電力変換器と
前記第1電力変換器と前記第2電力変換器とに接続され、双方向に電力を変換する絶縁型の複数のDCDC変換装置と、
を備え、
前記複数のDCDC変換装置の中の第1番目のDCDC変換装置は、
前記複数の単相コンバータセルの中の第1番目の単相コンバータセルと、前記複数の単相インバータセルの中の第1番目の単相インバータセルとに接続され、
前記複数のDCDC変換装置の中の第2番目のDCDC変換装置は、
前記複数の単相コンバータセルの中の第2番目の単相コンバータセルと、前記複数の単相インバータセルの中の第2番目の単相インバータセルとに接続される、
を備える電力変換装置。 - 前記第1番目のDCDC変換装置と前記第2番目のDCDC変換装置は、
前記第1番目の単相コンバータセルと、前記第2番目の単相コンバータセルとを経て接続される、
請求項12記載の電力変換装置。 - 前記第1番目のDCDC変換装置と前記第2番目のDCDC変換装置は、
前記第1番目の単相インバータセルと、前記第2番目の単相インバータセルとを経て接続される、
請求項12記載の電力変換装置。 - 前記複数の単相インバータセルには、前記複数の単相インバータセルに対応付けられて第2キャパシタがそれぞれ設けられており、
前記第1番目のDCDC変換装置は、
前記第2キャパシタの電圧の瞬時値を一定にするように直流電力の変換を制御する、
請求項12記載の電力変換装置。 - 電源側交流系統の各相に複数の単相コンバータセルが設けられ、前記複数の単相コンバータセルの交流側を前記電源側交流系統の相毎に直列に接続する第1正側スター結線と第1負側スター結線を備える第1電力変換器と、
負荷側交流系統の各相に複数の単相インバータセルが設けられ、前記複数の単相インバータセルの交流側を前記負荷側交流系統の相毎に直列に接続する第2正側スター結線と第2負側スター結線を備える第2電力変換器と、
前記複数の単相コンバータセルの直流側と前記複数の単相インバータセルの直流側とを絶縁し、前記複数の単相コンバータセルの中の1つの単相コンバータセルの直流側と、前記複数の単相インバータセルであって前記1つの単相コンバータセルに対応する単相インバータセルの直流側をそれぞれ繋ぐ複数のDCDC変換装置と
を備える電力変換装置。 - 前記複数のDCDC変換装置の夫々は、
前記第2電力変換器側で発生した低周波脈動電力を、前記第1電力変換器側に伝搬する
請求項16記載の電力変換装置。 - 前記第2電力変換器が接続される前記負荷側交流系統の各相に生じた有効電力の不平衡が、前記第1電力変換器が接続される前記電源側交流系統の各相の有効電力の不平衡に影響しないように前記第1電力変換器と前記第2電力変換器とを制御する制御部
を備える請求項17記載の電力変換装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022176 WO2020245916A1 (ja) | 2019-06-04 | 2019-06-04 | 電力変換装置及び電力変換制御装置 |
US17/419,960 US11855548B2 (en) | 2019-06-04 | 2019-06-04 | Power conversion device and power conversion control device |
CN201980024062.7A CN112335167B (zh) | 2019-06-04 | 2019-06-04 | 电力转换装置及电力转换控制装置 |
JP2020538149A JP7267287B2 (ja) | 2019-06-04 | 2019-06-04 | 電力変換装置及び電力変換制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/022176 WO2020245916A1 (ja) | 2019-06-04 | 2019-06-04 | 電力変換装置及び電力変換制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020245916A1 true WO2020245916A1 (ja) | 2020-12-10 |
Family
ID=73652024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/022176 WO2020245916A1 (ja) | 2019-06-04 | 2019-06-04 | 電力変換装置及び電力変換制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11855548B2 (ja) |
JP (1) | JP7267287B2 (ja) |
CN (1) | CN112335167B (ja) |
WO (1) | WO2020245916A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115186506A (zh) * | 2022-07-29 | 2022-10-14 | 西安西电电力电容器有限责任公司 | 一种高压电容器装置h桥保护调平方法、设备及介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015128455A2 (en) * | 2014-02-28 | 2015-09-03 | Abb Technology Ag | Three-phase to three-phase ac converter |
CN106452099A (zh) * | 2016-10-10 | 2017-02-22 | 中国矿业大学(北京) | 三相级联变换器的新型接法及供电或负载故障时工作方式 |
WO2018225410A1 (ja) * | 2017-06-06 | 2018-12-13 | 株式会社日立製作所 | 電力変換装置および三相電力変換装置 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4166216B2 (ja) * | 2004-12-22 | 2008-10-15 | 株式会社東芝 | 電気鉄道交流き電システム |
JP2008301640A (ja) | 2007-06-01 | 2008-12-11 | Meidensha Corp | 直接高圧インバータ装置 |
WO2010013322A1 (ja) * | 2008-07-30 | 2010-02-04 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP5463289B2 (ja) * | 2008-08-22 | 2014-04-09 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
JP5085742B2 (ja) * | 2008-10-16 | 2012-11-28 | 東芝三菱電機産業システム株式会社 | 電力変換装置 |
WO2010058536A1 (ja) * | 2008-11-18 | 2010-05-27 | 三菱電機株式会社 | 電力変換装置 |
US8792261B2 (en) * | 2009-03-30 | 2014-07-29 | Hitachi, Ltd. | Power conversion device |
EP2667279B1 (en) * | 2011-01-18 | 2019-05-29 | Tokyo Institute of Technology | Power converter and method for controlling same |
JP5822732B2 (ja) * | 2012-01-11 | 2015-11-24 | 東芝三菱電機産業システム株式会社 | 3レベル電力変換装置 |
WO2015111517A1 (ja) * | 2014-01-24 | 2015-07-30 | 東芝キヤリア株式会社 | 電力変換装置、設備機器、及び設備機器システム |
WO2018061184A1 (ja) * | 2016-09-30 | 2018-04-05 | 東芝三菱電機産業システム株式会社 | 無停電電源装置 |
JP6755845B2 (ja) * | 2017-09-26 | 2020-09-16 | 株式会社東芝 | モータ駆動システム |
CN109067193B (zh) * | 2018-08-17 | 2020-03-13 | 燕山大学 | 一种级联型电力电子变压器及其不平衡补偿控制方法 |
KR102475947B1 (ko) * | 2018-11-20 | 2022-12-08 | 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 | 무정전 전원 장치 |
US11757377B2 (en) * | 2020-03-17 | 2023-09-12 | Mitsubishi Electric Corporation | Power conversion device |
-
2019
- 2019-06-04 CN CN201980024062.7A patent/CN112335167B/zh active Active
- 2019-06-04 JP JP2020538149A patent/JP7267287B2/ja active Active
- 2019-06-04 WO PCT/JP2019/022176 patent/WO2020245916A1/ja active Application Filing
- 2019-06-04 US US17/419,960 patent/US11855548B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015128455A2 (en) * | 2014-02-28 | 2015-09-03 | Abb Technology Ag | Three-phase to three-phase ac converter |
CN106452099A (zh) * | 2016-10-10 | 2017-02-22 | 中国矿业大学(北京) | 三相级联变换器的新型接法及供电或负载故障时工作方式 |
WO2018225410A1 (ja) * | 2017-06-06 | 2018-12-13 | 株式会社日立製作所 | 電力変換装置および三相電力変換装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115186506A (zh) * | 2022-07-29 | 2022-10-14 | 西安西电电力电容器有限责任公司 | 一种高压电容器装置h桥保护调平方法、设备及介质 |
CN115186506B (zh) * | 2022-07-29 | 2023-11-14 | 西安西电电力电容器有限责任公司 | 一种高压电容器装置h桥保护调平方法、设备及介质 |
Also Published As
Publication number | Publication date |
---|---|
US20220085729A1 (en) | 2022-03-17 |
CN112335167A (zh) | 2021-02-05 |
US11855548B2 (en) | 2023-12-26 |
JP7267287B2 (ja) | 2023-05-01 |
JPWO2020245916A1 (ja) | 2021-09-13 |
CN112335167B (zh) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20140268970A1 (en) | Matrix converter and method for controlling matrix converter | |
WO2010049976A1 (ja) | 電力変換装置 | |
EP2621046B1 (en) | System and method for reactive power regulation | |
WO2019016991A1 (ja) | 電力変換装置および電力変換システム | |
JPWO2008139518A1 (ja) | 電力変換装置 | |
JP2003153575A (ja) | モーター制御装置 | |
JP3411462B2 (ja) | 電力変換器の制御装置 | |
CN111837327B (zh) | 电力转换装置、电动机驱动系统及控制方法 | |
JP2575500B2 (ja) | 3相変換装置 | |
JP5351390B2 (ja) | 電力変換装置 | |
JP2733724B2 (ja) | 多巻線交流電動機の電流制御装置 | |
WO2020245916A1 (ja) | 電力変換装置及び電力変換制御装置 | |
WO2023238386A1 (ja) | 電力変換装置、および制御装置 | |
EP4415246A1 (en) | Power conversion device and control device | |
US10581338B2 (en) | Power supply system | |
JP4401724B2 (ja) | 電力変換装置 | |
JP2009153297A (ja) | 自励式変換器の制御装置 | |
JP7040077B2 (ja) | 電力変換装置 | |
JP7249471B1 (ja) | 電力変換装置 | |
JP7374395B1 (ja) | 電力変換システム | |
EP4415245A1 (en) | Power conversion device and control device | |
JP7383208B1 (ja) | 電力変換装置 | |
JP2011172387A (ja) | 電力変換制御装置、コンバータ制御回路、電力変換制御方法、電力変換制御用プログラム及び記録媒体 | |
US11949322B2 (en) | Power conversion device | |
JPS6155346B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020538149 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19931731 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19931731 Country of ref document: EP Kind code of ref document: A1 |