WO2020245866A1 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
WO2020245866A1
WO2020245866A1 PCT/JP2019/021945 JP2019021945W WO2020245866A1 WO 2020245866 A1 WO2020245866 A1 WO 2020245866A1 JP 2019021945 W JP2019021945 W JP 2019021945W WO 2020245866 A1 WO2020245866 A1 WO 2020245866A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
active region
type region
type
optical device
Prior art date
Application number
PCT/JP2019/021945
Other languages
English (en)
French (fr)
Inventor
拓磨 鶴谷
拓郎 藤井
硴塚 孝明
松尾 慎治
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US17/615,909 priority Critical patent/US20220320831A1/en
Priority to PCT/JP2019/021945 priority patent/WO2020245866A1/ja
Priority to JP2021524505A priority patent/JPWO2020245866A1/ja
Publication of WO2020245866A1 publication Critical patent/WO2020245866A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • H01S5/0424Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer lateral current injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/11Comprising a photonic bandgap structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2063Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by particle bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
    • H01S5/2072Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion obtained by vacancy induced diffusion

Definitions

  • the present invention relates to an optical device having an active region.
  • an active region is embedded in a thin film.
  • a p-type doping region and a p-type doping region and a p-type doping region are formed on both sides of the rectangular active region so as to be sandwiched from the left and right in the waveguide direction (laser emission direction) in a plan view. It forms an n-type doping region (see Non-Patent Documents 1 to 3).
  • the doping region is created by thermal diffusion or ion implantation.
  • the shape of the doping region formed in this way in a plan view is rectangular or trapezoidal. Further, in order to inject an electric current into the entire active region, the length of the doping region in contact with the side surface of the active region is made equal to the length of the active region in the waveguide (Non-Patent Documents 1 to 3). reference).
  • the activity of a rectangular parallelepiped having an extremely small volume having a length in the waveguide direction of several ⁇ m to several hundred nm and a width of several hundred nm in a plan view. Region is used.
  • the length of the active region in the plan view in the waveguide becomes about the same as the width of the active region, the active region cannot be regarded as a system uniform in the waveguide direction, and the end The effect caused by the effect appears.
  • band discontinuity occurs between the active region having a smaller bandgap and the bulk material having a larger bandgap. For this reason, electric field concentration is generated at the end portion, and the current density around the end portion of the active region becomes particularly high. As a result, the non-uniformity of the current density distribution inside the active region, the non-uniformity of the carrier density distribution due to this non-uniformity, and the wraparound leak current passing around the active region become remarkable.
  • FIGS. 7 and 8. 7 and 8 schematically show a simulation model.
  • a lateral implantation laser that is doped by thermal diffusion or ion implantation, in-plane distribution spread due to the diffusion of the dopant itself is taken into consideration in this fabrication process, and at the time of design, there are hundreds between the active region and the doping region.
  • a non-doping region of about nm is opened as a gap.
  • the active region 301 and the p-type region 302 and the n-type region 303 may be in contact with each other as shown in FIG. 7, or between them as shown in FIG. ,
  • the gaps 304 and 305 may be open.
  • FIG. 9 shows a simulation result of calculating the electron current distribution in the in-plane direction when a positive bias voltage of 1.2 V is applied between the p-type region 302 and the n-type region 303 having the above-mentioned gap-free structure. Shown in. Further, the simulation result of calculating the Hall current distribution in the in-plane direction when a positive bias voltage of 1.2 V is applied between the p-type region 302 and the n-type region 303 having the above-mentioned gap-free structure is shown. It is shown in FIG.
  • the current density is specifically high in the regions surrounded by ellipses in the figure at both the left and right ends of the active region in both the electron current and the Hall current. .. Further, the edge effect is also reflected inside the trapezoidal p-type region and the inside of the n-type region, and it can be seen that the current density is particularly high at the left and right ends of the tip of the trapezoid. An increase in the current density at the end of the p-type region and the end of the n-type region causes an increase in the leakage current passing around the active region.
  • the above-mentioned effects are the simulation result of the electron current distribution when a bias voltage of + 1.2V is applied (see FIG. 11) and the simulation result of the Hall current distribution when a bias voltage of + 1.2V is applied (see FIG. 12). ), It is particularly remarkable when there is a non-doping gap between the active region and the doping region.
  • the region surrounded by the ellipse is the region where the current density is specifically high.
  • non-uniform carrier density in the active region promotes carrier recombination that inhibits stimulated emission of laser light, such as spontaneous emission recombination and Auger recombination, resulting in a decrease in internal quantum efficiency and laser characteristics. Is known to deteriorate. Further, the generation of the leak current passing through the periphery of the active region described above causes a decrease in the current injection efficiency, and adverse effects such as an increase in the threshold current and a decrease in the maximum output power due to heat saturation appear.
  • the present invention has been made to solve the above problems, and an object of the present invention is to suppress the edge effect generated at the edge of the active region.
  • the optical device includes an active region formed on a substrate and p-type regions and n-type regions formed on the substrate with the active region interposed therebetween, and faces the active region of the p-type region in a plan view. Both ends of the first side are rounded away from the active region, and in plan view, both ends of the second side facing the active region of the n-type region are rounded away from the active region.
  • the first side and the two third and fourth sides of the p-shaped region facing each other across the first side are connected by a curve
  • the second side and the two fifth and sixth sides of the n-shaped region facing each other across the second side are connected by a curve.
  • the optical device includes an active region formed on a substrate and a p-type region and an n-type region formed on the substrate with the active region interposed therebetween, and the p-type region and n of the active region in a plan view. Both ends of the first side surface and the second side surface facing the mold region are rounded away from the p-type region and the n-type region, respectively.
  • the active region is an oval in a plan view.
  • the surface of the p-type region facing the active region is formed in contact with the active region, and the surface of the n-type region facing the active region is formed in contact with the active region.
  • the above-mentioned optical device is further provided with a resonator.
  • the edge effect generated at the edge of the active region can be suppressed.
  • FIG. 1 is a plan view showing a configuration of an optical device according to a first embodiment of the present invention.
  • FIG. 2 is a plan view showing the configuration of another optical device according to the first embodiment of the present invention.
  • FIG. 3 is computer graphics showing a simulation result of an electron current distribution when a bias voltage of 1.2 V is applied to another optical device according to the first embodiment of the present invention.
  • FIG. 4 is computer graphics showing a simulation result of a Hall current distribution when a bias voltage of 1.2 V is applied to another optical device according to the first embodiment of the present invention.
  • FIG. 5 is a plan view showing the configuration of the optical device according to the second embodiment of the present invention.
  • FIG. 6 is a plan view showing the configuration of another optical device according to the second embodiment of the present invention.
  • FIG. 7 is a plan view showing a current injection structure of a general lateral injection type photonic crystal laser.
  • FIG. 8 is a plan view showing another current injection structure of a general lateral injection type photonic crystal laser.
  • FIG. 9 shows the electron current distribution in the in-plane direction when a positive bias voltage of 1.2 V is applied to the current injection structure of the general lateral injection type photonic crystal laser shown in FIG. Computer graphics showing the calculated simulation results.
  • FIG. 10 shows the Hall current distribution in the in-plane direction when a positive bias voltage of 1.2 V is applied to the current injection structure of the general lateral injection type photonic crystal laser shown in FIG. Computer graphics showing the calculated simulation results.
  • FIG. 10 shows the Hall current distribution in the in-plane direction when a positive bias voltage of 1.2 V is applied to the current injection structure of the general lateral injection type photonic crystal laser shown in FIG. Computer graphics showing the calculated simulation results.
  • FIG. 9 shows the electron current distribution in the in-plane direction when a positive bias voltage of 1.2 V is
  • FIG. 11 shows the electron current distribution in the in-plane direction when a positive bias voltage of 1.2 V is applied to the current injection structure of the general lateral injection type photonic crystal laser shown in FIG. Computer graphics showing the calculated simulation results.
  • FIG. 12 shows the Hall current distribution in the in-plane direction when a positive bias voltage of 1.2 V is applied to the current injection structure of the general lateral injection type photonic crystal laser shown in FIG. Computer graphics showing the calculated simulation results.
  • This optical device includes an active region 102 formed on the substrate 101, and p-type regions 103 and n-type regions 104 formed across the active region 102. Further, although not shown, a resonator is provided so as to sandwich the active region 102.
  • the substrate 101 is, for example, a well-known photonic crystal, and is composed of, for example, a semiconductor such as InP.
  • the active region 102 is embedded in, for example, a line defect waveguide of a photonic crystal.
  • the p-type region 103 is a region in which p-type impurities are introduced into the photonic crystal by a thermal diffusion method, an ion implantation method, or the like.
  • the n-type region 104 is a region in which n-type impurities are introduced into the photonic crystal by a thermal diffusion method, an ion implantation method, or the like.
  • the active region 102 is formed in a rectangular shape with a first side surface 105 and a second side surface 106.
  • the first side surface 105 and the second side surface 106 are formed along the waveguide direction.
  • the p-type region 103 and the n-type region 104 are formed with the active region 102 interposed therebetween in the directions of the first side surface 105 and the second side surface 106.
  • the surface of the p-type region 103 facing the active region 102 (first side surface 105) is formed in contact with the active region 102 (first side surface 105).
  • the surface of the n-type region 104 facing the active region 102 (second side surface 106) is formed in contact with the active region 102 (second side surface 106).
  • both ends of the first side 107 of the p-type region 103 facing the active region 102 are rounded in a direction away from the active region 102. Further, both ends of the second side 108 of the n-type region 104 facing the active region 102 are rounded in a direction away from the active region 102.
  • the two third sides 131 and the fourth side 133 facing each other with the first side 107 in between are inclined in a direction in which the widths of the two are widened as the distance from the first side 107 increases.
  • the angle formed by the first side 107 and the third side 131 and the angle formed by the first side 107 and the fourth side 133 are obtuse angles, respectively.
  • the first side 107 and the third side 131 of the p-type region 103 configured in this way are connected by a curve 132, and the first side 107 and the fourth side 133 are connected by a curve 134. .. That is, the p-shaped region 103 has a substantially trapezoidal shape with the short upper bottom as the first side 107 and the third side 131 and the fourth side 133 as the legs.
  • the two fifth sides 141 and the sixth sides 143 facing each other across the second side 108 are inclined in a direction in which the widths of the two sides increase as the distance from the second side 108 increases.
  • the angle formed by the second side 108 and the fifth side 141 and the angle formed by the second side 108 and the sixth side 143 are obtuse angles, respectively.
  • the second side 108 and the fifth side 141 of the n-type region 104 configured in this way are connected by a curve 142, and the second side 108 and the sixth side 143 are connected by a curve 144. That is, the n-type region 104 has a substantially trapezoidal shape with the short upper bottom as the second side 108 and the fifth side 141 and the sixth side 143 as the legs.
  • the shape of the p-type region 103 and the shape of the n-type region 104 are symmetrical to each other, but these do not necessarily have to be symmetrical.
  • the first side 107a facing the first side surface 105 of the p-type region 103a is made longer than the second side 108, and the p-type region 103a is made wider than the n-type region 104, and generally more. It is also possible to reduce the resistance value of the p-type region 103a, which is considered to have high resistance.
  • the two third sides 131a and the fourth side 133a facing each other with the first side 107a in between are inclined in a direction in which the widths of the two are widened as the distance from the first side 107a increases.
  • the angle formed by the first side 107a and the third side 131a and the angle formed by the first side 107a and the fourth side 133a are obtuse angles, respectively.
  • the first side 107a and the third side 131a of the p-type region 103a configured in this way are connected by a curve 132a, and the first side 107a and the fourth side 133a are connected by a curve 134a. .. That is, the p-shaped region 103a has a substantially trapezoidal shape with the short upper bottom as the first side 107a and the third side 131a and the fourth side 133a as legs.
  • a resist pattern having an opening at a portion to be a p-type region 103 is formed on a substrate 101 by a well-known lithography technique, and this resist pattern is selectively used as a mask.
  • the p-type region 103 can be formed.
  • a p-type layer containing a high concentration of p-type impurities can be formed on the portion of the substrate 101 to be the p-type region 103 by a well-known lithography technique, and the p-type region 103 can be formed by thermal diffusion. .. The same applies to the n-type region.
  • the p-type of the above-mentioned shape is reduced by the amount of diffusion from the final shape.
  • Region 103 and n-type region 104 can be formed.
  • FIG. 4 shows a simulation result of the Hall current distribution when a bias voltage of 1.2 V is applied to the p-type region 103 and the n-type region 104.
  • the edge effect is suppressed by separating the p-type region and the n-type region at the end of the active region, and as shown in the elliptical region in the figure, the active region and the p-type region are separated. It can be seen that the current is injected into the entire part where the region and the n-type region are in contact with each other. Focusing on the current distribution in the p-type region and n-type region, the end of the trapezoidal shape is smoothly rounded and separated from the end of the active region, so that the end of the active region is as shown in FIGS. 9 to 11. It can be seen that the current density concentration in the part is suppressed and the current is concentrated on the entire upper side of the trapezoid. This effect suppresses the generation of leak current that wraps around the active region.
  • Non-Patent Documents 2 and 3 a structure in which an active region is embedded in a line defect waveguide of a two-dimensional photonic crystal is used.
  • this structure aiming to reduce the resistance value in the p-type region and the n-type region, the waveguide direction of the line defect waveguide region without holes, that is, the active region, instead of the region with holes in the photonic crystal. It is conceivable to form a p-type region and an n-type region. Even in the case of such a configuration, if the configuration of the first embodiment is applied, the same effect as described above can be obtained.
  • This optical device includes an active region 202 formed on the substrate 201, and p-type regions 203 and n-type regions 204 formed across the active region 202. Further, although not shown, a resonator is provided so as to sandwich the active region 202.
  • the substrate 201 is, for example, a well-known photonic crystal, and is composed of, for example, a semiconductor such as InP.
  • the active region 202 is embedded, for example, in a line defect waveguide of a photonic crystal.
  • the p-type region 203 is a region in which p-type impurities are introduced into the photonic crystal by a thermal diffusion method, an ion implantation method, or the like.
  • the n-type region 204 is a region in which n-type impurities are introduced into the photonic crystal by a thermal diffusion method, an ion implantation method, or the like.
  • the shape of the active region 202, the p-type region 203, and the n-type region 204 of the optical device according to the second embodiment will be described in more detail.
  • the active region 202 has a first side surface 205 and a second side surface 206 and is formed in a rectangular shape.
  • the first side surface 205 and the second side surface 206 are formed along the waveguide direction.
  • the p-type region 203 and the n-type region 204 are formed so as to sandwich the active region 202 in the directions of the first side surface 205 and the second side surface 206.
  • the surface of the p-type region 203 facing the active region 202 (first side surface 205) is formed in contact with the active region 202 and faces the active region 202 (second side surface 206) of the n-type region 204. The surface is formed in contact with the active region 202.
  • both ends of the first side surface 205 and the second side surface 206 facing the p-type region 203 and the n-type region 204 of the active region 202 are from the p-type region 203 and the n-type region 204, respectively.
  • Each is rounded away.
  • the active region 202 is an oval in a plan view.
  • the active region 202 having such a shape can be realized by making the mask shape of the photomask used in lithography for forming the active region 202 the same as the shape to be manufactured.
  • the surface of the p-type region 203 facing the active region 202 (first side surface 205) is formed in contact with the active region 202 and faces the active region 202 (second side surface 206) of the n-type region 204.
  • the surface is formed in contact with the active region 202.
  • the p-type region 203 has a substantially trapezoidal shape in which the side facing the active region 202 is an upper base having a short length and the two sides connected to this side are legs. The same applies to the n-type region 204.
  • the shape of the end portion in the waveguide direction is not a straight line but a curved line, and this curve is a straight line on the side surface along the waveguide direction. And connect smoothly.
  • the specific shape of the curve may be a circular arc in a plan view, or may be a smooth curve so that an indivisible part (that is, an angle) does not occur in the outline of the active region 202.
  • the p-type region 203 and the n-type region 204 may have a shape in which the end portion on the side of the active region 202 has an angle.
  • the first side 107 and the third side 131 of the p-type region 103 are connected by a curve 132, and the first side 107 and the fourth side 133 are connected by a curve 134. It is also possible to have a configured configuration.
  • the second side 108 and the fifth side 141 may be connected by a curve 142, and the second side 108 and the sixth side 143 may be connected by a curve 144. It can. These configurations are the same as those in the first embodiment described above.
  • the edge effect is suppressed, and in addition, the p-type region 203 and the n-type region 204 on the active region 202 side. Concentration of current over the entire side is achieved and current injection can be performed more effectively.
  • Non-Patent Documents 2 and 3 a structure in which an active region is embedded in a line defect waveguide of a two-dimensional photonic crystal is used.
  • this structure aiming to reduce the resistance value in the p-type region and the n-type region, the waveguide direction of the line defect waveguide region without holes, that is, the active region, instead of the region with holes in the photonic crystal. It is conceivable to form a p-type region and an n-type region. Even in the case of such a configuration, if the configuration of the second embodiment is applied, the same effect as described above can be obtained.
  • both ends of the first side facing the active region of the p-type region are rounded away from the active region, and both ends of the second side facing the active region of the n-type region are activated. Rounded away from the area. Further, in the present invention, both ends of the first side surface and the second side surface facing the p-type region and the n-type region of the active region are rounded in directions away from the p-type region and the n-type region, respectively. As a result, according to the present invention, the edge effect generated at the edge of the active region can be suppressed.
  • the present invention focuses on the edge effect derived from the shape of the active region, which is a mechanism of deterioration of laser performance that has not been paid attention to in the past, and in order to eliminate the mechanism, the shape of the p-type region and the n-type region near the active region By appropriately controlling the shape of the active region, it is possible to eliminate the non-uniform current density distribution and reduce the leakage current around the active region.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

基板(101)に形成された活性領域(102)と、活性領域(102)を挟んで形成されたp型領域(103)およびn型領域(104)とを備える。p型領域(103)およびn型領域(104)は、活性領域(102)を挟んで形成されている。活性領域(102)の第1側面(105)に向かい合うp型領域(103)の第1辺(107)の両端は、活性領域(102)から離れる方向に丸められている。また、活性領域(102)の第2側面(106)に向かい合うn型領域(104)の第2辺(108)の両端は、活性領域(102)から離れる方向に丸められている。

Description

光デバイス
 本発明は、活性領域を備える光デバイスに関する。
 メンブレンレーザや二次元フォトニック結晶レーザなどに代表される横注入型の光半導体デバイスにおいては、活性領域が薄膜に埋め込まれている。この活性領域に対して電流注入を可能とするために、平面視で、導波方向(レーザ出射方向)に対して左右から挟むように、長方形の活性領域の両側面に、p型ドーピング領域およびn型ドーピング領域を形成している(非特許文献1~3参照)。なお、ドーピング領域は、熱拡散やイオン注入によって作製される。
 このように形成されているドーピング領域の平面視の形状は、長方形ないし台形とされている。また、活性領域の全体に電流を注入するために、活性領域の側面に接するドーピング領域の導波方向長さが、活性領域の導波方向長さに等しくされている(非特許文献1~3参照)。
 上述した横注入レーザの低消費電力化にあたっては、平面視で、導波方向の長さが数μmから数百nm程度、幅が数百nm程度とされた、極めて小さな体積を有する直方体の活性領域が用いられる。このように、活性領域の平面視の導波方向長さが、活性領域の幅と同程度になった場合、活性領域は、導波方向に一様な系であるとは見なせなくなり、端効果に起因する影響が現れる。
 すなわち、活性領域の導波方向端部においては、より小さなバンドギャップを有する活性領域と、より大きなバンドギャップを有するバルク材料との間でのバンド不連続が起こる。このために、上記端部に電界集中が発生して、活性領域端部周辺における電流密度が特に高くなる。このことによって、活性領域内部での電流密度分布の不均一、この不均一に伴うキャリア密度分布の不均一、さらには活性領域の周辺を通過する回り込みリーク電流が顕著になる。
 一般的な横注入型のフォトニック結晶レーザの電流注入構造について、図7,図8を参照して説明する。図7、図8は、シミュレーションモデルを模式的に示している。熱拡散やイオン注入によってドーピングを行う横注入レーザでは、この作製工程において、ドーパント自身の拡散による面内方向の分布広がりを加味し、設計の時点では、活性領域とドーピング領域との間に数百nm程度のノンドープ領域がギャップとして空けられる。
 したがって、ドーパントの拡散の程度に応じて、図7に示すように、活性領域301と、p型領域302およびn型領域303とが、接する場合もあれば、図8のように両者の間に、ギャップ304,305が空く場合もある。
 上述したギャップがない構造のp型領域302とn型領域303との間に1.2Vの正方向のバイアス電圧を印加した際の、面内方向における電子電流分布を計算したシミュレーション結果を図9に示す。また、上述したギャップがない構造のp型領域302とn型領域303との間に1.2Vの正方向のバイアス電圧を印加した際の、面内方向におけるホール電流分布を計算したシミュレーション結果を図10に示す。
 先述の端効果に起因して、電子電流とホール電流のいずれにおいても、活性領域の左右両端部の、図中に楕円で囲った領域において、特異的に電流密度が高くなっていることがわかる。また、端効果は、台形型のp型領域の内部、n型領域の内部においても反映されており、台形先端の左右両端部において特に電流密度が高くなっている様子がわかる。p型領域端部、n型領域端部における電流密度の増大は、活性領域の周辺を通り抜けるリーク電流の増大を招いてしまう。
 上述した効果は、+1.2Vのバイアス電圧を印加したときの電子電流分布のシミュレーション結果(図11参照)、および+1.2Vのバイアス電圧を印加したときのホール電流分布のシミュレーション結果(図12参照)からわかるように、活性領域とドーピング領域との間にノンドープのギャップが存在する場合において特に顕著である。なお、図11,図12において、楕円で囲った領域が、特異的に電流密度が高くなっている領域である。
 一般に、活性領域におけるキャリア密度の不均一は、自然放出再結合やオージェ再結合などの、レーザ光の誘導放出を阻害するキャリア再結合を促進するため、内部量子効率の低下を招いてレーザの特性を劣化させることが知られている。また、前述した活性領域の周辺を通り抜けるリーク電流の発生は、電流注入効率の低下を招き、閾値電流の増大や熱飽和による最大出力パワーの低下などの悪影響が表れる。
 したがって、フォトニック結晶レーザなどで用いられるような数μmからサブμmスケールの短い活性領域に対して効率的に電流を注入し、デバイス特性を最大限引き出すためには、活性領域端部に発生する端効果を抑制する必要がある。
 本発明は、以上のような問題点を解消するためになされたものであり、活性領域の端部に発生する端効果を抑制することを目的とする。
 本発明に係る光デバイスは、基板に形成された活性領域と、基板に活性領域を挟んで形成されたp型領域およびn型領域とを備え、平面視で、p型領域の活性領域に向かい合う第1辺の両端は、活性領域から離れる方向に丸められ、平面視で、n型領域の活性領域に向かい合う第2辺の両端は、活性領域から離れる方向に丸められている。
 上記光デバイスの一構成例において、平面視で、第1辺と、第1辺を挟んで向かい合うp型領域の2つの第3辺,第4辺とは、曲線で接続され、平面視で、第2辺と、第2辺を挟んで向に向かい合うn型領域の2つの第5辺,第6辺とは、曲線で接続されている。
 本発明に係る光デバイスは、基板に形成された活性領域と、基板に活性領域を挟んで形成されたp型領域およびn型領域とを備え、平面視で、活性領域のp型領域およびn型領域にそれぞれ向かい合う第1側面および第2側面の両端は、p型領域およびn型領域から離れる方向にそれぞれ丸められている。
 上記光デバイスの一構成例において、活性領域は、平面視で、長円とされている。
 上記記載の光デバイスにおいて、p型領域の活性領域に向かい合う面は、活性領域に接して形成され、n型領域の活性領域に向かい合う面は、活性領域に接して形成されている。
 上記記載の光デバイスにおいて、さらに、共振器を備える。
 以上説明したことにより、本発明によれば、活性領域の端部に発生する端効果が抑制できる。
図1は、本発明の実施の形態1に係る光デバイスの構成を示す平面図である。 図2は、本発明の実施の形態1に係る他の光デバイスの構成を示す平面図である。 図3は、本発明の実施の形態1に係る他の光デバイスに1.2Vのバイアス電圧を印加した際の、電子電流分布のシミュレーション結果を示すコンピュータグラフィックスである。 図4は、本発明の実施の形態1に係る他の光デバイスに1.2Vのバイアス電圧を印加した際の、ホール電流分布のシミュレーション結果を示すコンピュータグラフィックスである。 図5は、本発明の実施の形態2に係る光デバイスの構成を示す平面図である。 図6は、本発明の実施の形態2に係る他の光デバイスの構成を示す平面図である。 図7は、一般的な横注入型のフォトニック結晶レーザの電流注入構造を示す平面図である。 図8は、一般的な横注入型のフォトニック結晶レーザの他の電流注入構造を示す平面図である。 図9は、図7に示した一般的な横注入型のフォトニック結晶レーザの電流注入構造に対し、1.2Vの正方向のバイアス電圧を印加した際の、面内方向における電子電流分布を計算したシミュレーション結果を示すコンピュータグラフィックスである。 図10は、図7に示した一般的な横注入型のフォトニック結晶レーザの電流注入構造に対し、1.2Vの正方向のバイアス電圧を印加した際の、面内方向におけるホール電流分布を計算したシミュレーション結果を示すコンピュータグラフィックスである。 図11は、図8に示した一般的な横注入型のフォトニック結晶レーザの電流注入構造に対し、1.2Vの正方向のバイアス電圧を印加した際の、面内方向における電子電流分布を計算したシミュレーション結果を示すコンピュータグラフィックスである。 図12は、図8に示した一般的な横注入型のフォトニック結晶レーザの電流注入構造に対し、1.2Vの正方向のバイアス電圧を印加した際の、面内方向におけるホール電流分布を計算したシミュレーション結果を示すコンピュータグラフィックスである。
 以下、本発明の実施の形態に係る光デバイスについて説明する。
[実施の形態1]
 はじめに、本発明の実施の形態1に係る光デバイスについて、図1を参照して説明する。この光デバイスは、基板101に形成された活性領域102と、活性領域102を挟んで形成されたp型領域103およびn型領域104とを備える。また、図示していないが、活性領域102を挟むように共振器を備える。
 基板101は、例えば、よく知られたフォトニック結晶であり、例えば、InPなどの半導体から構成されている。活性領域102は、例えば、フォトニック結晶の線欠陥導波路に埋め込まれている。また、p型領域103は、p型となる不純物を、熱拡散法やイオン注入法などによりフォトニック結晶に導入した領域である。また、n型領域104は、n型となる不純物を、熱拡散法やイオン注入法などによりフォトニック結晶に導入した領域である。
 以下、実施の形態1に係る光デバイスの活性領域102、p型領域103、およびn型領域104について、平面視の形状についてより詳細に説明する。活性領域102は、第1側面105および第2側面106を備えて矩形に形成されている。実施の形態1では、第1側面105および第2側面106は、導波方向に沿って形成されている。また、p型領域103およびn型領域104は、第1側面105および第2側面106の方向に、活性領域102を挟んで形成されている。また、この例では、p型領域103の活性領域102(第1側面105)に向かい合う面は、活性領域102(第1側面105)に接して形成されている。また、n型領域104の活性領域102(第2側面106)に向かい合う面は、活性領域102(第2側面106)に接して形成されている。
 また、p型領域103の活性領域102に向かい合う第1辺107の両端は、活性領域102から離れる方向に丸められている。また、n型領域104の活性領域102に向かい合う第2辺108の両端は、活性領域102から離れる方向に丸められている。
 ここで、p型領域103は、第1辺107を挟んで向かい合う2つの第3辺131,第4辺133は、第1辺107から離れるほど、両者の幅が広がる方向に傾いている。言い換えると、第1辺107と第3辺131とのなす角、第1辺107と第4辺133とのなす角は、各々鈍角とされている。このように構成されたp型領域103の、第1辺107と、第3辺131とは、曲線132で接続され、第1辺107と第4辺133とは、曲線134で接続されている。すなわち、p型領域103は、長さの短い上底を第1辺107とし、第3辺131,第4辺133を脚とした略台形の形状とされている。
 また、n型領域104は、第2辺108を挾んで互いに向かい合う2つの第5辺141,第6辺143は、第2辺108から離れるほど、両者の幅が広がる方向に傾いている。言い換えると、第2辺108と第5辺141とのなす角、第2辺108と第6辺143とのなす角は、各々鈍角とされている。このように構成されたn型領域104の、第2辺108と第5辺141とは、曲線142で接続され、第2辺108と第6辺143とは、曲線144で接続されている。すなわち、n型領域104は、長さの短い上底を第2辺108とし、第5辺141,第6辺143を脚とした略台形の形状とされている。
 ところで、上述した説明では、p型領域103の形状とn型領域104との形状が、互いに対称になっているが、これらは必ずしも対称である必要はない。例えば、図2に示すように、p型領域103aの第1側面105に向かい合う第1辺107aを、第2辺108より長くし、p型領域103aをn型領域104より広くし、一般に、より高抵抗とされるp型領域103aの抵抗値を低減する構成とすることもできる。
 ここで、p型領域103aは、第1辺107aを挟んで向かい合う2つの第3辺131a,第4辺133aは、第1辺107aから離れるほど、両者の幅が広がる方向に傾いている。言い換えると、第1辺107aと第3辺131aとのなす角、第1辺107aと第4辺133aとのなす角は、各々鈍角とされている。このように構成されたp型領域103aの、第1辺107aと、第3辺131aとは、曲線132aで接続され、第1辺107aと第4辺133aとは、曲線134aで接続されている。すなわち、p型領域103aは、長さの短い上底を第1辺107aとし、第3辺131a,第4辺133aを脚とした略台形の形状とされている。
 例えば、よく知られているように、基板101の上に、よく知られたリソグラフィー技術により、p型領域103とする箇所に開口を有するレジストパターンを形成し、このレジストパターンをマスクとして選択的にイオン注入を実施することで、p型領域103が形成できる。また、基板101のp型領域103とする箇所に上に、よく知られたリソグラフィー技術により、p型不純物を高濃度に含んだp型層を形成し、熱拡散によりp型領域103が形成できる。n型領域においても同様である。
 上述したリソグラフィー技術に用いるマスクの設計段階において、熱拡散やイオン注入によるドーパント拡散の効果を考慮し、最終的な形状より拡散する分だけ内側に縮小させておくことで、上述した形状のp型領域103、n型領域104が形成できる。
 次に、実施の形態1に係る光デバイスにおいて、p型領域103、n型領域104に1.2Vのバイアス電圧を印加した際の、電子電流分布のシミュレーション結果を図3に示す。また、実施の形態1に係る光デバイスにおいて、p型領域103、n型領域104に1.2Vのバイアス電圧を印加した際の、ホール電流分布のシミュレーション結果を図4に示す。
 図3、図4に示すように、活性領域の端部ではp型領域,n型領域を離間させることによって端効果が抑制され、図中楕円の領域に示すように、活性領域と、p型領域,n型領域とが接している部分全体への電流注入が起こっていることがわかる。また、p型領域,n型領域における電流分布に着目すると、台形状の端部を滑らかに丸めつつ活性領域の端部から引き離したことによって、図9~11に示したような、活性領域端部での電流密度集中が抑制され、台形の上辺全体に電流が集まっている様子がわかる。この効果は、活性領域の周囲を回り込むリーク電流の発生を抑制する。
 ところで、よく知られたフォトニック結晶レーザでは、波長スケールの光閉じ込めが可能であるため、活性領域の導波方向長さを、活性領域の幅と同程度の数百nmにまで短くすることが可能である。例えば、非特許文献2,3においては、二次元フォトニック結晶の線欠陥導波路内に活性領域が埋め込まれた構造が用いられている。この構造において、p型領域、n型領域における抵抗値の低減を狙って、フォトニック結晶の穴が空いた領域ではなく、穴の空いていない線欠陥導波路領域、すなわち活性領域の導波方向に、p型領域、n型領域を形成することが考えられる。このような構成とする場合においても、実施の形態1の構成を適用すれば、上述同様の効果を得ることができる。
[実施の形態2]
 次に、本発明の実施の形態2に係る光デバイスについて、図5を参照して説明する。この光デバイスは、基板201に形成された活性領域202と、活性領域202を挟んで形成されたp型領域203およびn型領域204とを備える。また、図示していないが、活性領域202を挟むように共振器を備える。
 基板201は、例えば、よく知られたフォトニック結晶であり、例えば、InPなどの半導体から構成されている。活性領域202は、例えば、フォトニック結晶の線欠陥導波路に埋め込まれている。また、p型領域203は、p型となる不純物を、熱拡散法やイオン注入法などによりフォトニック結晶に導入した領域である。また、n型領域204は、n型となる不純物を、熱拡散法やイオン注入法などによりフォトニック結晶に導入した領域である。
 以下、実施の形態2に係る光デバイスの活性領域202、p型領域203、およびn型領域204について、平面視の形状についてより詳細に説明する。
 活性領域202は、第1側面205および第2側面206を備えて矩形に形成されている。実施の形態2では、第1側面205と第2側面206とは、導波方向に沿って形成されている。また、p型領域203およびn型領域204は、第1側面205および第2側面206の方向に、活性領域202を挟んで形成されている。また、この例では、p型領域203の活性領域202(第1側面205)に向かい合う面は、活性領域202に接して形成され、n型領域204の活性領域202(第2側面206)に向かい合う面は、活性領域202に接して形成されている。
 また、実施の形態2における光デバイスは、活性領域202のp型領域203およびn型領域204にそれぞれ向かい合う第1側面205および第2側面206の両端が、p型領域203およびn型領域204から離れる方向にそれぞれ丸められている。例えば、活性領域202は、平面視で、長円とされている。このような形状とされた活性領域202は、活性領域202を形成するためのリソグラフィーで用いるフォトマスクのマスク形状を、作製しようとする形状と同様にすることで、実現できる。
 なお、この例では、p型領域203の活性領域202(第1側面205)に向かい合う面は、活性領域202に接して形成され、n型領域204の活性領域202(第2側面206)に向かい合う面は、活性領域202に接して形成されている。また、実施の形態2において、p型領域203は、活性領域202に向かい合う辺を、長さの短い上底とし、この辺に接続する2つの辺を脚とした略台形の形状とされている。n型領域204も同様である。
 従来、平面視で長方形の活性領域が用いられていたが、実施の形態2では、導波方向の端部の形状を直線ではなく曲線とし、かつ、この曲線を導波方向に沿う側面の直線と滑らかに接続する。曲線の具体的な形状としては、平面視円弧としてもよく、また、活性領域202の概形に微分不可能な部位(すなわち、角)が発生しないような滑らかな曲線であればよい。なお、p型領域203およびn型領域204は、活性領域202の側の端部が角を有する形状とすることができる。
 また、図6に示すように、p型領域103の、第1辺107と、第3辺131とが、曲線132で接続され、第1辺107と第4辺133とが、曲線134で接続された構成とすることもできる。同様に、n型領域104の、第2辺108と第5辺141とが、曲線142で接続され、第2辺108と第6辺143とが、曲線144で接続された構成とすることもできる。これらの構成は、前述した実施の形態1と同様である。
 実施の形態2によれば、活性領域202の平面視の形状に、角が存在しないので、端効果が抑制され、加えて、p型領域203、n型領域204の、活性領域202の側の辺全体への電流の集中が達成され、より効果的に電流注入が実施できる。
 ところで、よく知られたフォトニック結晶レーザでは、波長スケールの光閉じ込めが可能であるため、活性領域の導波方向長さを、その幅と同程度の数百nmにまで短くすることが可能である。例えば、非特許文献2,3においては、二次元フォトニック結晶の線欠陥導波路内に活性領域が埋め込まれた構造が用いられている。この構造において、p型領域、n型領域における抵抗値の低減を狙って、フォトニック結晶の穴が空いた領域ではなく、穴の空いていない線欠陥導波路領域、すなわち活性領域の導波方向に、p型領域、n型領域を形成することが考えられる。このような構成とする場合においても、実施の形態2の構成を適用すれば、上述同様の効果を得ることができる。
 以上に説明したように、本発明では、p型領域の活性領域に向かい合う第1辺の両端を、活性領域から離れる方向に丸め、n型領域の活性領域に向かい合う第2辺の両端を、活性領域から離れる方向に丸めた。また、本発明では、活性領域のp型領域およびn型領域にそれぞれ向かい合う第1側面および第2側面の両端は、p型領域およびn型領域から離れる方向にそれぞれ丸めた。この結果、本発明によれば、活性領域の端部に発生する端効果を抑制することができる。
 本発明は、活性領域の形状に由来する端効果という、従来は着目されてこなかったレーザ性能劣化のメカニズムに注目し、その解消のために活性領域近傍のp型領域、n型領域の形状や活性領域の形状を適切に制御することで、電流密度分布不均一の解消および活性領域周囲のリーク電流の低減を達成するものである。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 101…基板、102…活性領域、103…p型領域、104…n型領域、105…第1側面、106…第2側面、107…第1辺、108…第2辺、131…第3辺、132…曲線、133…第4辺、134…曲線、141…第5辺、142…曲線、143…第6辺、144…曲線。

Claims (6)

  1.  基板に形成された活性領域と、
     前記基板に前記活性領域を挟んで形成されたp型領域およびn型領域と
     を備え、
     平面視で、前記p型領域の活性領域に向かい合う第1辺の両端は、前記活性領域から離れる方向に丸められ、
     平面視で、前記n型領域の活性領域に向かい合う第2辺の両端は、前記活性領域から離れる方向に丸められている
     ことを特徴とする光デバイス。
  2.  請求項1記載の光デバイスにおいて、
     平面視で、前記第1辺と、前記第1辺を挟んで向かい合う前記p型領域の2つの第3辺,第4辺とは、曲線で接続され、
     平面視で、前記第2辺と、前記第2辺を挟んで向に向かい合う前記n型領域の2つの第5辺,第6辺とは、曲線で接続され
    ていることを特徴とする光デバイス。
  3.  基板に形成された活性領域と、
     前記基板に前記活性領域を挟んで形成されたp型領域およびn型領域と
     を備え、
     平面視で、前記活性領域の前記p型領域および前記n型領域にそれぞれ向かい合う第1側面および第2側面の両端は、前記p型領域および前記n型領域から離れる方向にそれぞれ丸められている
     ことを特徴とする光デバイス。
  4.  請求項3記載の光デバイスにおいて、
     前記活性領域は、平面視で、長円とされていることを特徴とする光デバイス。
  5.  請求項1~4のいずれか1項に記載の光デバイスにおいて、
     前記p型領域の前記活性領域に向かい合う面は、前記活性領域に接して形成され、
     前記n型領域の前記活性領域に向かい合う面は、前記活性領域に接して形成されていることを特徴とする光デバイス。
  6.  請求項1~5のいずれか1項に記載の光デバイスにおいて、
     共振器をさらに備えることを特徴とする光デバイス。
PCT/JP2019/021945 2019-06-03 2019-06-03 光デバイス WO2020245866A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/615,909 US20220320831A1 (en) 2019-06-03 2019-06-03 Optical Device
PCT/JP2019/021945 WO2020245866A1 (ja) 2019-06-03 2019-06-03 光デバイス
JP2021524505A JPWO2020245866A1 (ja) 2019-06-03 2019-06-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021945 WO2020245866A1 (ja) 2019-06-03 2019-06-03 光デバイス

Publications (1)

Publication Number Publication Date
WO2020245866A1 true WO2020245866A1 (ja) 2020-12-10

Family

ID=73651959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021945 WO2020245866A1 (ja) 2019-06-03 2019-06-03 光デバイス

Country Status (3)

Country Link
US (1) US20220320831A1 (ja)
JP (1) JPWO2020245866A1 (ja)
WO (1) WO2020245866A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026051A1 (en) * 1994-03-24 1995-09-28 Vixel Corporation Integration of laser with photodiode for feedback control
WO2011027555A1 (ja) * 2009-09-01 2011-03-10 日本電信電話株式会社 フォトニック結晶デバイス
US20130092897A1 (en) * 2010-04-05 2013-04-18 The Board Of Trustees Of The Leland Stanford Juni Ultrafast photonic crystal cavity single-mode light-emitting diode
JP2016021565A (ja) * 2014-06-23 2016-02-04 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス 歪みゲルマニウム膜を含むデバイス
US9401583B1 (en) * 2015-03-30 2016-07-26 International Business Machines Corporation Laser structure on silicon using aspect ratio trapping growth
US20180048123A1 (en) * 2015-03-06 2018-02-15 Stmicroelectronics (Crolles 2) Sas Germanium-on-silicon laser in cmos technology

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8471352B2 (en) * 2010-04-05 2013-06-25 The Board Of Trustees Of The Leland Stanford Junior University Practical electrically pumped photonic crystal nanocavity
JP6622152B2 (ja) * 2016-07-01 2019-12-18 日本電信電話株式会社 光素子
US10910794B2 (en) * 2017-07-04 2021-02-02 Samsung Electronics Co., Ltd. Light-emitting device comprising photonic cavity

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995026051A1 (en) * 1994-03-24 1995-09-28 Vixel Corporation Integration of laser with photodiode for feedback control
WO2011027555A1 (ja) * 2009-09-01 2011-03-10 日本電信電話株式会社 フォトニック結晶デバイス
US20130092897A1 (en) * 2010-04-05 2013-04-18 The Board Of Trustees Of The Leland Stanford Juni Ultrafast photonic crystal cavity single-mode light-emitting diode
JP2016021565A (ja) * 2014-06-23 2016-02-04 コミッサリア ア レネルジー アトミーク エ オ エナジーズ アルタナティブス 歪みゲルマニウム膜を含むデバイス
US20180048123A1 (en) * 2015-03-06 2018-02-15 Stmicroelectronics (Crolles 2) Sas Germanium-on-silicon laser in cmos technology
US9401583B1 (en) * 2015-03-30 2016-07-26 International Business Machines Corporation Laser structure on silicon using aspect ratio trapping growth

Also Published As

Publication number Publication date
JPWO2020245866A1 (ja) 2020-12-10
US20220320831A1 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
JP6209129B2 (ja) 半導体光素子
US10374388B2 (en) Optical semiconductor device
JPH05243669A (ja) 半導体レーザ素子
JP2006165309A (ja) 半導体レーザ素子
JP4472278B2 (ja) 半導体レーザ素子
US7839909B2 (en) Heterostructure, injector laser, semiconductor amplifying element and a semiconductor optical amplifier a final stage
JP2014150151A (ja) フォトニック結晶デバイス
JPS6237907B2 (ja)
WO2020245866A1 (ja) 光デバイス
JP2010021430A (ja) 半導体光素子
JP4953392B2 (ja) 光半導体装置
JP2018006590A (ja) 光半導体素子
JPWO2002021578A1 (ja) 半導体レーザ素子
JP2011023493A (ja) 半導体レーザ
JP2007103581A (ja) 埋込型半導体レーザ
JP2019102585A (ja) 光デバイス
KR101111720B1 (ko) 활성층 상에 유전체층이 형성된 측면 발광형 반도체 레이저다이오드
WO2024029062A1 (ja) 半導体光デバイス
JP6496906B2 (ja) 半導体発光装置
JPH02305487A (ja) 半導体レーザ
JP4124921B2 (ja) 半導体レーザ装置
JPH06334259A (ja) 半導体レーザ装置
JP2005010277A (ja) 電気吸収型光変調器
JPS5916432B2 (ja) 複合半導体レ−ザ素子
JPS59218786A (ja) 単一軸モ−ド半導体レ−ザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021524505

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931767

Country of ref document: EP

Kind code of ref document: A1