WO2020244341A1 - 一种差速驱动装置及agv - Google Patents

一种差速驱动装置及agv Download PDF

Info

Publication number
WO2020244341A1
WO2020244341A1 PCT/CN2020/087264 CN2020087264W WO2020244341A1 WO 2020244341 A1 WO2020244341 A1 WO 2020244341A1 CN 2020087264 W CN2020087264 W CN 2020087264W WO 2020244341 A1 WO2020244341 A1 WO 2020244341A1
Authority
WO
WIPO (PCT)
Prior art keywords
differential drive
drive unit
drive device
rolling element
differential
Prior art date
Application number
PCT/CN2020/087264
Other languages
English (en)
French (fr)
Inventor
俞文涛
吴超
Original Assignee
杭州海康机器人技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201920858917.3U external-priority patent/CN210027020U/zh
Priority claimed from CN201910494728.7A external-priority patent/CN112046278B/zh
Priority claimed from CN202010322808.7A external-priority patent/CN113525552B/zh
Application filed by 杭州海康机器人技术有限公司 filed Critical 杭州海康机器人技术有限公司
Priority to KR1020217043432A priority Critical patent/KR20220016231A/ko
Priority to US17/437,328 priority patent/US20220177032A1/en
Priority to EP20818056.2A priority patent/EP3929064A4/en
Priority to JP2021556352A priority patent/JP7252371B2/ja
Publication of WO2020244341A1 publication Critical patent/WO2020244341A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D11/00Steering non-deflectable wheels; Steering endless tracks or the like
    • B62D11/02Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides
    • B62D11/04Steering non-deflectable wheels; Steering endless tracks or the like by differentially driving ground-engaging elements on opposite vehicle sides by means of separate power sources
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/16Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing
    • B60K17/165Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing of differential gearing provided between independent half axles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/07568Steering arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0046Disposition of motor in, or adjacent to, traction wheel the motor moving together with the vehicle body, i.e. moving independently from the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0061Disposition of motor in, or adjacent to, traction wheel the motor axle being parallel to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/60Industrial applications, e.g. pipe inspection vehicles
    • B60Y2200/62Conveyors, floor conveyors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/80Other vehicles not covered by groups B60Y2200/10 - B60Y2200/60
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts

Definitions

  • This application relates to the technical field of wheel drives, in particular to a differential drive device and an AGV.
  • the current AGV (Automated Guided Vehicle) is mostly driven by a differential drive device.
  • the differential drive device refers to an integrated mechanical structure that integrates a drive motor, a reducer, and a drive wheel. Compared with the traditional AGV car Differential speed control mode, high integration of differential drive device, strong adaptability, and rapid deployment of AGVs, mobile robots, etc.
  • the slewing bearing is generally used to realize the rotational connection between the differential drive and the car body.
  • the slewing bearing must occupy the height of the differential drive in the vertical direction, which causes the total height of the differential drive to be relatively large. The problem of limited applications in scenarios with high space requirements.
  • the purpose of the embodiments of the present application is to provide a differential drive device and AGV to effectively reduce the total height of the differential drive device.
  • the specific technical solutions are as follows:
  • the embodiment of the application provides a differential drive device, which includes a differential drive unit, a top plate and an outer cover.
  • the top plate is installed on the top of the outer cover.
  • the differential drive unit is located in the outer cover on the lower side of the top plate.
  • the top plate is supported above the differential drive unit.
  • the inner side wall of the outer cover is circular.
  • a first rolling element is provided on the side of the differential drive unit, and the first rolling element is in rolling connection with the lower side of the top plate.
  • two first rolling elements are installed on the side of the differential drive unit, and the two first rolling elements are symmetrically arranged with respect to the center of rotation of the differential drive unit.
  • a second rolling element is provided on the side of the differential drive unit, and the second rolling element is in rolling connection with the inner side wall of the outer cover.
  • two second rolling elements are installed on the side of the differential drive unit, and the two second rolling elements are symmetrically arranged with respect to the rotation center of the differential drive unit.
  • a first rolling element is provided on the side of the differential drive unit, and the first rolling element is rolling connected to the lower side of the top plate; an end of the first rolling element near the inner side wall of the outer cover is provided with a groove, and a groove is installed in the groove The second rolling element, the second rolling element partially protrudes out of the groove and is in rolling connection with the inner side wall of the outer cover.
  • the second rolling element is a roller bearing
  • a bearing seat is provided on the side wall of the differential drive unit
  • the roller bearing is installed on the bearing seat.
  • the top of the first rolling element is higher than the differential drive unit; the turning diameter of the differential drive unit is smaller than the inner diameter of the outer cover.
  • a pin shaft is provided on the side of the differential drive unit, an annular limiting groove is provided on the inner side wall of the outer cover at a position corresponding to the pin shaft, and the end of the pin shaft close to the outer cover is located in the limiting groove.
  • the differential drive unit includes a first motor, a second motor, a first reducer, a second reducer, a first drive wheel and a second drive wheel; wherein: the first motor and the second motor are arranged side by side, and The output shafts of the first motor and the second motor are away from each other; the first reducer is connected to the output shaft of the first motor, and the second reducer is connected to the output shaft of the second motor; the first drive wheel is installed on the first reducer away from each other On one side of the first motor, the second drive wheel is installed on the side of the second reducer away from the second motor.
  • a through hole is provided on the top plate, and the differential drive unit is connected to the AGV through the through hole.
  • the differential drive device further includes: a support body;
  • the differential drive unit is hinged to the support body, so that the differential drive unit swings around the lateral axis relative to the support body;
  • the top plate and the outer cover are enclosed to form a mounting frame.
  • the mounting frame is formed with a containing cavity.
  • the support body and the differential drive unit are arranged in the containing cavity.
  • the supporting body supports the mounting frame.
  • the differential drive unit can rotate around the longitudinal axis of the containing cavity. Way to set.
  • the supporting body is a horizontal supporting plate
  • the differential drive unit is arranged below the horizontal supporting plate.
  • the differential drive device further includes a connecting shaft, the differential drive unit and the horizontal support plate are connected by a connecting shaft, and the central axis of the connecting shaft coincides with the transverse axis.
  • the support body includes two vertical plates arranged at intervals, and the differential drive unit is arranged between the two vertical plates.
  • the differential drive device further includes a connecting shaft.
  • the two vertical plates and the differential drive unit are connected by a connecting shaft, and the central axis of the connecting shaft coincides with the transverse axis.
  • a limiting groove arranged in an annular shape is formed on the side wall of the accommodating cavity, and the end of the connecting shaft extends out of the differential drive unit and is arranged in the limiting groove.
  • the differential drive device further includes a first rolling element, and the first rolling element is arranged between the differential drive unit and the outer cover or between the support body and the outer cover.
  • the first rolling element is a ball, a roller or a bearing.
  • the differential drive device further includes a plurality of second rolling elements arranged on the supporting body, and the supporting body supports the top plate through the plurality of second rolling elements.
  • the second rolling element is a ball, a roller or a bearing.
  • the differential drive unit includes a drive wheel and a power unit connected to the drive wheel, and the power unit is hinged with the support body.
  • the axle of the driving wheel is perpendicular to the transverse axis.
  • An embodiment of the present application also provides an AGV, including the above-mentioned differential drive device.
  • the embodiment of the application provides a differential drive device and AGV.
  • the differential drive unit is located in an inverted barrel-shaped container composed of a top plate and an outer cover.
  • the top plate is supported by the differential drive unit, and the bottom end of the outer cover is higher than the differential speed.
  • the bottom end of the drive unit so that the differential drive unit can carry the top plate and the outer cover on its back; and because the differential drive unit itself can rotate, the differential drive unit can rotate relative to the top plate and the outer cover;
  • the differential drive device can realize the functions of in-situ differential rotation and forward and backward walking.
  • the differential drive device provided by this embodiment uses a top plate and a cover instead of the slewing bearing. Since the thickness of the top plate can be much smaller than the height of the slewing bearing, the differential drive provided by this embodiment can effectively reduce the differential drive The total height of the device.
  • Figure 1 is an isometric view of a differential drive device according to an embodiment of the application
  • Figure 2 is a partial exploded view of a differential drive device according to an embodiment of the application.
  • Figure 3 is an overall exploded view of a differential drive device according to an embodiment of the application.
  • Figure 5 is an overall exploded view of a differential drive device according to another embodiment of the application.
  • Fig. 6 is an isometric view of the first rolling element and the second rolling element of the differential drive device according to the embodiment of the application;
  • Fig. 7 is a cross-sectional view of a differential drive device according to an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of a differential drive device of an embodiment of the present application.
  • Fig. 9 is an overall exploded view of a differential drive device according to another embodiment of the present application.
  • FIG. 10 is an overall exploded view of a differential drive device according to another embodiment of the present application.
  • Figure 11 is a schematic front view of the differential drive device of the embodiment of the present application (the top plate is omitted);
  • Fig. 12 is a schematic top view of the differential drive device of the embodiment of the present application (the top plate is omitted).
  • the embodiments of the present application provide a differential drive device and an AGV, which can effectively reduce the total height of the differential drive device.
  • Figures 1 and 2 are schematic structural diagrams of the differential drive device of the embodiment of the application.
  • the differential drive device of this embodiment includes a differential drive unit 2, a top plate 1 and an outer cover 3.
  • the top plate 1 is installed at the top of the cover 3, the differential drive unit 2 is located in the cover 3 under the top plate 1, the top plate 1 is supported above the differential drive unit 2, and the inner side wall of the cover 3 is circular.
  • the differential drive unit refers to an integrated mechanical structure that integrates a drive motor, a reducer, and a drive wheel. It can walk in a straight line and can also realize the function of turning; the differential drive unit is located on the top plate and the outer cover.
  • the top plate is supported above the differential drive unit, that is, the top plate is supported by the differential drive unit.
  • the bottom end of the cover is higher than the bottom end of the differential drive unit, so that the differential drive unit can be backed Walk with the top plate and the outer cover.
  • the differential drive unit since the differential drive unit itself can rotate, the differential drive unit can rotate relative to the top plate and the outer cover. At this time, sliding friction occurs between the top of the differential drive unit and the top plate, and the differential drive unit's Sliding friction occurs between the side part and the inner wall of the outer cover; in summary, the differential drive device can realize the functions of in-situ differential rotation and forward and backward walking.
  • the AGV refers to a transport vehicle equipped with electromagnetic or optical automatic guidance devices, which can travel along a prescribed guidance path, have safety protection and various transfer functions, and the AGV belongs to WMR ( Wheeled Mobile Robot, wheeled mobile robot) category.
  • WMR Wheeled Mobile Robot, wheeled mobile robot
  • a through hole is provided on the top plate, and the differential drive unit is connected to the automatic guided transport vehicle through the through hole.
  • the differential drive device provided by this embodiment uses a top plate and a cover instead of the slewing bearing. Since the thickness of the top plate can be much smaller than the height of the slewing bearing, the differential drive provided by this embodiment can effectively reduce the differential drive The total height of the device.
  • a first rolling element 21 is provided on the side of the differential drive unit 2, and the first rolling element 21 is in rolling connection with the lower side of the top plate 1.
  • the first rolling member rotatably connected to the lower side of the top plate can reduce the friction between the differential drive unit and the top plate, thereby reducing the differential drive unit and the top plate.
  • the wear and tear of the differential drive unit can prolong the service life of the differential drive unit and improve the motion accuracy of the differential drive unit.
  • the first rolling element is arranged on the side instead of the top of the differential drive unit, which can reduce the influence of the overall height of the first rolling element on the total height of the differential drive device.
  • the first rolling element when the first rolling element is installed, it is sufficient that the highest point of the first rolling element is higher than the differential drive unit, and the height difference between the highest point of the first rolling element and the highest point of the differential drive unit can be adjusted accordingly according to actual needs.
  • the first rolling element is installed on the side of the differential drive unit, which can effectively reduce the overall height of the differential drive unit compared to the current technical solution where the slewing bearing is installed on the top of the differential drive unit .
  • two first rolling elements 21 are installed on the side of the differential drive unit 2, and the two first rolling elements 21 are arranged symmetrically with respect to the rotation center of the differential drive unit 2.
  • the two first rolling elements are symmetrically arranged with respect to the rotation center of the differential drive unit, which can balance the forces on the differential drive unit when it contacts the top plate, thereby reducing the differential drive unit’s side effects under the pressure of the top plate.
  • the tilting situation further improves the stability of the differential drive.
  • the first rolling element 21 may be a roller bearing.
  • the roller bearing has the characteristics of simple installation structure and easy installation. Therefore, the use of the roller bearing for the first rolling element can simplify the structure of the differential drive device and improve the assembly efficiency of the differential drive device.
  • the first rolling element can also be a ball, a bull's eye wheel, etc., and can also reduce the friction between the differential drive unit and the top plate.
  • a side plate 28 is connected to the side of the differential drive unit 2, and the roller bearing is installed on the side plate 28.
  • the axis of the first rolling element is horizontal, and the shaft head of the roller bearing can be installed on the side plate to realize the rolling connection between the roller bearing and the top plate, and the line contact between the roller bearing and the top plate can be reduced.
  • the partial force of the small top plate increases the service life of the top plate.
  • the installation method of the roller bearing is simple. For example, if the roller bearing with thread on the shaft head and the side plate with threaded holes are selected, the roller bearing and the side plate are only The threaded connection can be used, and the threaded connection is simple and reliable, which improves the convenience of installation and disassembly of the first rolling element.
  • the first rolling element is installed on the side plate instead of directly on the differential drive unit, which can reduce the installation position on the differential drive unit and improve the structural strength of the differential drive unit; the first rolling element is assembled with the side plate After being integrated, it can be connected to the side wall of the differential drive unit through fasteners.
  • the two first rolling elements 21 are arranged symmetrically with respect to the center of rotation of the differential drive unit 2, and the first
  • the rolling element 21 is a roller bearing
  • the rotation center axis of the roller bearing can be perpendicular to and intersect the rotation center axis of the differential drive unit 2.
  • the roller bearing adopts the above-mentioned arrangement, which can reduce the rolling friction between the roller bearing and the top plate, and can also balance the force of the two symmetrically arranged roller bearings, so that the differential drive unit can achieve the original as much as possible.
  • the ground rotates at a differential speed.
  • a second rolling element 22 is provided on the side of the differential drive unit 2, and the second rolling element 22 is in rolling connection with the inner side wall of the outer cover 3.
  • the second rolling member rotatably connected to the inner side wall of the outer cover can reduce the friction between the differential drive unit and the outer cover, thereby reducing the differential drive unit and the outer cover
  • the wear and tear of the differential drive unit can prolong the service life of the differential drive unit and improve the motion accuracy of the differential drive unit.
  • the second rolling element is arranged on the side wall of the differential drive unit instead of the top or bottom end, so that the highest point of the second rolling element can be lower than the highest point of the differential drive unit when the second rolling element is arranged , The lowest point is higher than the lowest point of the differential drive unit, so that the second rolling element does not affect the total height of the differential drive device.
  • the second rolling element 22 may also be a roller bearing.
  • the roller bearing is vertically installed on the side of the differential drive unit.
  • the roller bearing has the characteristics of simple installation structure and easy installation. Therefore, the use of the roller bearing for the second rolling element can simplify the structure of the differential drive device and improve the assembly efficiency of the differential drive device.
  • two second rolling elements 22 are installed on the side of the differential drive unit 2, and the two second rolling elements 22 are symmetrically arranged with respect to the rotation center of the differential drive unit 2.
  • the two second rolling elements are symmetrically arranged on both sides of the differential drive unit.
  • the differential drive unit can be balanced in force, and on the other hand, the differential drive unit can be limited, reducing the difference.
  • Other parts of the speed drive unit are in contact with the outer cover during movement.
  • the second rolling element 22 is a roller bearing
  • a bearing seat 26 is provided on the side wall of the differential drive unit 2
  • the roller bearing is installed on the bearing seat 26.
  • the axis of the roller bearing is vertical, and the shaft head of the roller bearing is installed on the bearing seat to realize the rolling connection between the roller bearing and the inner side wall of the outer cover, and the roller bearing and the outer cover are in line contact. Reduce the local force of the outer cover and increase the service life of the outer cover.
  • the installation method of the roller bearing is simpler than that of other bearings. For example, use the roller bearing with thread on the shaft head and the mounting seat with threaded holes. , The roller bearing and the mounting seat can be connected by thread, and the threaded connection is simple and reliable, which improves the convenience of installation and disassembly of the second rolling element.
  • the second rolling element can also be a ball, a bull's eye wheel, etc., and can also achieve the effect of reducing the friction between the differential drive unit and the outer cover.
  • a first rolling element 21 is provided on the side of the differential drive unit 2, and the first rolling element 21 is in rolling connection with the lower side of the top plate 1; the first rolling element 21 is close to the outer cover 3
  • One end of the inner side wall is provided with a groove, and a second rolling element 22 is installed in the groove.
  • the differential drive unit is in rolling connection with the top plate through the first rolling member.
  • the first rolling member can reduce the friction between the differential drive unit and the top plate, and on the other hand, it can also be used to carry the vertical from the top plate.
  • the force in the straight direction; the differential drive unit is connected to the inner side wall of the outer cover through the second rolling element.
  • the second rolling element can reduce the friction between the differential drive unit and the outer cover on the one hand, and can also be used for Load the horizontal force from the outer cover.
  • the first rolling element and the second rolling element are assembled together. Compared with the technical solution in which the first rolling element and the second rolling element are respectively installed on the differential drive unit, the number of installations on the differential drive unit can be reduced. The installation position, thereby improving the structural strength of the differential drive unit.
  • first rolling element and the second rolling element is not limited in the embodiments of the present application, and those skilled in the art can make reasonable selections according to actual needs.
  • the top end of the first rolling element 21 is higher than the differential drive unit 2 (see FIG. 3 or FIG. 6 ); the rotation diameter of the differential drive unit 2 is smaller than the inner diameter of the outer cover 3.
  • the first rolling element also constitutes the function of the balance bridge: the differential drive unit contacts the top plate through the first rolling element, so the differential drive unit can rotate around the first rolling element, that is, the differential drive unit is working
  • the differential drive unit can swing around the first rolling member (that is, when one of the drive wheels is raised, the other drive wheel can still keep in contact with the ground),
  • the two driving wheels can be kept in good contact with the ground through this swing, and the situation that the driving wheels are overhead can be reduced, which cannot be achieved by using the slewing bearing solution in the existing differential drive device.
  • the two first rolling elements 21 are symmetrically arranged with respect to the center of rotation of the differential drive unit 2.
  • the connecting line of the two first rolling elements 21 can be perpendicular to the connecting line of the two driving wheels of the differential drive unit 2 (see FIG. 3 or FIG. 6).
  • the two first rolling elements constitute the function of the balance bridge: the differential drive unit contacts the top plate through the two first rolling elements, so the differential drive unit can rotate around the line connecting the two first rolling elements, When the ground is uneven, the differential drive unit can keep the two driving wheels in good contact with the ground through this floating, so as to avoid the driving wheels from being overhead.
  • a pin 27 is provided on the side of the differential drive unit 2, and an annular limit groove is provided on the inner side wall of the outer cover 3 at a position corresponding to the pin 27, and the pin 27 is close to the outer cover.
  • One end of 3 is located in the limit slot.
  • the limit slot can limit the differential drive unit, prevent the differential drive unit from falling out of the outer cover, and keep the entire differential drive unit in one.
  • This embodiment does not limit the number of pin shafts, and multiple pin shafts can be arranged on the side of the differential drive unit.
  • the outer cover is provided with an installation groove on the lower side of the limit groove, the upper end of the installation groove communicates with the limit groove, the lower end communicates with the lower side of the outer cover, and the installation groove is provided with a sealing block detachably connected with the outer cover .
  • the sealing block detachably connected with the outer cover .
  • the pin 27 is mounted on the bearing seat 26.
  • the pin shaft is installed on the bearing seat, which can reduce the installation position on the differential drive unit and improve the structural strength of the differential drive unit.
  • one end of the pin shaft is provided with a thread
  • the bearing seat is provided with a threaded hole
  • the pin shaft and the bearing seat are connected through the threaded hole.
  • the differential drive unit 2 includes a first motor 23, a second motor 23', a first reducer 24, a second reducer 24', a first drive wheel 25, and a second drive wheel. 25'; where: the first motor 23 and the second motor 23' are arranged side by side, and the output shafts of the first motor 23 and the second motor 23' are away from each other; the first reducer 24 is connected with the output shaft of the first motor 23, The second reducer 24' is connected to the output shaft of the second motor 23'; the first drive wheel 25 is installed on the side of the first reducer 24 away from the first motor 23, and the second drive wheel 25' is installed on the second reducer 24' is away from the side of the second motor 23'.
  • the first driving wheel is driven by the first motor
  • the second driving wheel is driven by the second motor.
  • the rotation speed and steering of the first motor and the second motor can be controlled to make the differential drive unit Realize the function of in-situ differential rotation and forward and backward walking.
  • the components in the differential drive unit are arranged in a symmetrical manner, which can balance the forces on the two drive wheels of the differential drive unit, so that the differential drive unit can move more smoothly.
  • two limit posts are provided on the side wall of the differential drive unit, a limit plate is provided on the lower side of the top plate, and the limit plate is located on the movement track of the limit post.
  • the limit post set on the side wall of the differential drive unit will rotate with the differential drive unit relative to the top plate; when the differential drive unit is installed on the AGV trolley, the differential drive unit will pass through the top plate The opened through hole is connected to the AGV trolley (for example, the motor power supply line needs to be connected to the battery on the AGV). Therefore, the limit plate on the top plate is matched with the limit post set on the differential drive unit to limit the difference
  • the rotation angle of the high-speed drive unit can prevent the infinite rotation of the differential drive unit relative to the top plate from causing the connection to be twisted.
  • the existing AGV chassis structure is relatively complex and requires high road surface flatness. When driving on uneven roads, only one driving wheel may land on the ground, resulting in insufficient traction, resulting in slipping and loss of control. And other phenomena.
  • the differential drive device 100 includes a differential drive unit 10, a support body 20, a top plate 31 and an outer cover 32.
  • Mounting frame 30 composed of enclosing.
  • the differential drive unit 10 is hinged to the support body 20 to make the differential drive unit 10 swing relative to the support body 20 around the lateral axis.
  • An accommodating cavity is formed in the mounting frame 30, the support body 20 and the differential drive unit 10 are arranged in the accommodating cavity, the support body 20 supports the mounting frame 30, and the differential drive unit 10 is rotatable around the longitudinal axis of the accommodating cavity Set up.
  • the differential drive device 100 when the differential drive device 100 is applied to an AGV, it can be connected to the bottom of the AGV through the mounting frame 30.
  • the top plate 31 and/or the outer cover 32 can be used to connect with the vehicle body of the AGV. After the mounting frame 30 is connected to the vehicle body, the top plate 31 is arranged horizontally.
  • a housing cavity is formed in the mounting frame 30, the support body 20 and the differential drive unit 10 are arranged in the housing cavity, and the support body 20 supports the mounting frame 30.
  • the speed drive unit 10 is arranged to be rotatable around the longitudinal axis of the accommodating cavity.
  • the differential drive unit 10 is hinged to the support body 20 so that the differential drive unit 10 can swing relative to the support body 20 about the transverse axis.
  • a “universal joint” structure is formed between the differential drive unit 10 and the mounting frame 30.
  • the differential drive unit 10 has two degrees of freedom of rotation relative to the mounting frame 30, one of which is the degree of freedom that the differential drive unit 10 can rotate about the longitudinal axis, and the other is the degree of freedom that the differential drive unit 10 can swing about the transverse axis.
  • Degree of freedom the former is used to realize the steering function of the AGV under the action of the differential drive unit 10, and the latter is used to adapt the differential drive unit 10 to the fluctuations of the road surface, so that the differential drive unit 10 maintains effective contact with the road surface , So as to avoid the phenomenon of lack of traction caused by slipping and direction out of control. It can be seen that when the differential drive device 100 of the embodiment of the present application is applied to an AGV, it can effectively reduce the AGV's requirements for the smoothness of the road surface.
  • the supporting body 20 is a horizontal supporting plate (as shown in FIG. 9), and the differential drive unit 10 is arranged under the horizontal supporting plate.
  • the horizontal support plate refers to a plate structure arranged in a horizontal direction.
  • the differential drive unit 10 is arranged below the horizontal support body, so that the horizontal support body can support the mounting frame 30.
  • the differential drive device 100 further includes a connecting shaft 40.
  • the differential drive unit 10 and the horizontal support are connected by a connecting shaft 40.
  • the central axis of the connecting shaft 40 coincides with the transverse axis, thereby realizing differential drive.
  • the hinge connection between the unit 10 and the support body 20 in turn enables the differential drive unit 10 to swing relative to the support body 20 about the transverse axis.
  • the support body 20 includes two vertical plates 29 arranged at intervals (as shown in FIGS. 10 to 12 ), and the differential drive unit 10 is arranged between the two vertical plates 29.
  • the vertical board 29 refers to a board structure in which the board surface is arranged in the vertical direction.
  • the two vertical plates 29 arranged at intervals can also support the mounting frame 30.
  • the differential drive device 100 further includes a connecting shaft 40. The two vertical plates 29 and the differential drive unit 10 are connected by the connecting shaft 40, and the central axis of the connecting shaft 40 coincides with the transverse axis.
  • the middle part of the connecting shaft 40 is penetrated through the differential drive unit 10, and the two ends of the connecting shaft 40 are correspondingly penetrated through the two vertical plates 29, thereby realizing the connection between the differential drive unit 10 and the support 20
  • the hinge joint enables the differential drive unit 10 to swing relative to the supporting body 20 about the transverse axis.
  • the differential drive device 100 further includes a first rolling element 50, the first rolling element 50 is arranged between the differential drive unit 10 and the outer cover 32 or between the support body 20 and the outer cover 32, and the first rolling element 50 is used for
  • the differential drive unit 10 can rotate around the longitudinal axis of the accommodating cavity, and is beneficial to ensure smooth and stable rotation.
  • first rolling elements 50 there are multiple first rolling elements 50, and the plurality of first rolling elements 50 are arranged at intervals, thereby facilitating a stable rotational relationship between the differential drive unit 10 and the mounting frame 30.
  • first rolling element 50 may be a ball, a roller, a bearing, or the like.
  • the first rolling member 50 may be arranged on the differential drive unit 10 or the horizontal supporting plate.
  • the rolling of 50 on the inner wall of the outer cover 32 can realize the rotation of the differential drive unit 10 around the longitudinal axis of the receiving cavity.
  • the first rolling member 50 may be arranged on the differential drive unit 10 or the vertical plate 29, wherein, since the differential drive unit 10 is arranged on two vertical plates 29, Between the plates 29, in order to reduce the possibility of mutual interference between components, it is a better way to arrange the first rolling element 50 on the vertical plate 29.
  • the differential drive device 100 further includes a plurality of second rolling elements 60 arranged on the support body 20.
  • the support body 20 supports the top plate 31 through the plurality of second rolling elements 60, thereby making the AGV vehicle
  • the weight of the body is mainly transmitted to the support body 20 through the second rolling member 60, so that the first rolling member 50 does not bear the weight of the vehicle body, thereby preventing the first rolling member 50 from being deformed or even damaged.
  • the second rolling element 60 may be a ball, a roller, a bearing, or the like.
  • the second rolling member 60 may be arranged at the corner position of the horizontal support plate. Specifically, a protrusion may be formed at the corner position of the horizontal support plate. Part, and then install the second rolling element 60 on the protruding part. As a result, the second rolling element 60 is unlikely to interfere with other structures.
  • the second rolling element 60 adopts rollers or bearings, its rotation axis can be arranged parallel to the surface of the horizontal support plate, so that the second rolling element 60 can provide more stable support for the top plate 31.
  • the second rolling member 60 can be arranged on the outer side of the vertical plate 29 (the side facing away from the differential drive unit 10).
  • the second rolling member 60 adopts rollers or bearings, and its rotating shaft can be arranged parallel to the surface of the horizontal support plate, so that the second rolling element 60 can provide more stable support for the top plate 31.
  • the rotating shaft of the second rolling element 60 and the connecting shaft 40 can also be integrated as an integral part, that is, the end of the connecting shaft 40 can be extended, and the second rolling element 60 can be installed on the end of the connecting shaft 40 Therefore, it can help reduce the number of parts and save costs.
  • the differential drive unit 10 includes a drive wheel 11 and a power unit 12 connected to the drive wheel 11.
  • the power unit 12 provides power for the rotation of the drive wheel 11, and the power unit 12 is hinged with the support body 20.
  • the axle of the driving wheel 11 is perpendicular to the transverse axis.
  • the height of the driving wheel 11 changes most significantly, thereby causing the driving wheel 11 to change the height of the road surface. Get the best fit.
  • the number of driving wheels 11 is two, and by implementing different control methods on the two driving wheels 11, it is possible to control the forward direction of the AGV.
  • the AGV can be driven forward; when the two driving wheels 11 rotate in the reverse direction at the same speed, the AGV can be driven backward; when the two driving wheels 11 rotate at different speeds.
  • the AGV can be driven to turn.
  • the bottom of the AGV may be additionally provided with support wheels to cooperate with the differential drive device 100 to jointly support the AGV and move the AGV on the ground.
  • a plurality of differential drive devices 100 can also be provided at the bottom of the AGV, so that the AGV can obtain stable support.
  • the power unit 12 includes a motor and a reduction mechanism (not shown in the figure), and the motor is connected to the driving wheel 11 through a reduction mechanism (such as a gear reduction mechanism, a planetary gear reduction mechanism, etc.) to reduce the output speed of the motor. Increase the output torque of the motor.
  • a reduction mechanism such as a gear reduction mechanism, a planetary gear reduction mechanism, etc.
  • the number of motors is one.
  • the deceleration mechanism can be a differential reducer. Therefore, one motor can control the two driving wheels 11 to rotate in the same direction at the same speed, or at different speeds in the same direction. Rotate in opposite directions, so that the driving wheels 11 can drive the AGV to move forward, backward, and turn.
  • the number of motors and deceleration mechanisms can also be two respectively, that is, each motor is connected to a driving wheel 11 through a deceleration mechanism, so that the corresponding driving wheels 11 are controlled by different motors, thereby achieving The two driving wheels 11 rotate in the same direction at the same speed, rotate in the same direction at different speeds, or rotate in opposite directions to each other.
  • a limiting groove (not shown in the figure) arranged in an annular shape is formed on the side wall of the accommodating cavity, and the end of the connecting shaft 40 extends out of the differential drive unit 10 and is arranged in the limiting groove.
  • the connecting shaft 40 is always in a horizontal direction, so that the support body 20 can form an effective and stable support for the mounting frame 30.
  • An embodiment of the present application also provides an AGV, which includes the differential drive device in any of the foregoing embodiments.
  • a housing cavity is formed in the mounting frame of the differential drive device, the support body and the differential drive unit are arranged in the housing cavity, and the support body supports the mounting frame, and the differential drive unit is The differential drive unit is hinged to the support body so that the differential drive unit can swing relative to the support body around the transverse axis.
  • a "universal joint" structure is formed between the differential drive unit and the mounting frame.
  • the differential drive unit has two degrees of freedom of rotation relative to the mounting frame, one of which is the degree of freedom that the differential drive unit can rotate around the longitudinal axis, and the other is the degree of freedom that can swing around the transverse axis.
  • the former is used to realize the steering function of the AGV under the action of the differential drive unit
  • the latter is used to adapt the differential drive unit to the fluctuations of the road surface, so that the differential drive unit maintains effective contact with the road surface, thereby avoiding insufficient traction This can cause slipping and loss of direction. It can be seen that when the differential drive device of the embodiment of the present application is applied to an AGV, it can effectively reduce the AGV's requirements on the smoothness of the road surface.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Retarders (AREA)
  • Non-Deflectable Wheels, Steering Of Trailers, Or Other Steering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

一种差速驱动装置,涉及轮式驱动器领域,用于AGV中,能够有效的减小差速驱动装置的总高度。其包括差速驱动单元(2)、顶板(1)和外罩(3),顶板(1)安装在外罩(3)的顶端,差速驱动单元(2)位于顶板(1)下侧的外罩(3)中,顶板(1)支撑在差速驱动单元(2)上,外罩(3)的内侧壁为圆环形。本申请适用于具有运输功能的设备。

Description

一种差速驱动装置及AGV
本申请要求于2019年06月06日提交中国专利局、申请号为201910494728.7、发明名称为“一种差速驱动装置”,于2019年06月06日提交中国专利局、申请号为201920858917.3、发明名称为“一种差速驱动装置”以及于2020年04月22日提交中国专利局、申请号为202010322808.7、发明名称为“驱动装置及具有其的AGV”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及轮式驱动器技术领域,特别是涉及一种差速驱动装置及AGV。
背景技术
目前的AGV(Automated Guided Vehicle,自动导引运输车)多采用差速驱动装置驱动,差速驱动装置是指集成了驱动电机、减速机、驱动轮等的一体化机械结构,相比传统AGV小车差速控制方式,差速驱动装置集成化高,适配性强,可快速部署AGV、移动式机器人等。
差速驱动装置与车体之间一般采用回转轴承实现转动连接,但是,回转轴承必须占据差速驱动装置竖直方向的高度,这就造成了差速驱动装置的总高度较大,在对高度空间要求较高的场景中应用受限的问题。
发明内容
本申请实施例的目的在于提供一种差速驱动装置及AGV,以有效的减小差速驱动装置的总高度。具体技术方案如下:
本申请实施例提供一种差速驱动装置,包括差速驱动单元、顶板和外罩,顶板安装在外罩的顶端,差速驱动单元位于顶板下侧的外罩中,顶板支撑在差速驱动单元的上方,外罩的内侧壁为圆环形。
可选的,差速驱动单元的侧部设有第一滚动件,第一滚动件与顶板的下侧滚动连接。
可选的,差速驱动单元的侧部安装有两个第一滚动件,两个第一滚动件关于差速驱动单元的回转中心对称布置。
可选的,差速驱动单元的侧部设有第二滚动件,第二滚动件与外罩的内侧壁滚动连接。
可选的,差速驱动单元的侧部安装有两个第二滚动件,两个第二滚动件关于差速驱动单元的回转中心对称布置。
可选的,差速驱动单元的侧部设有第一滚动件,第一滚动件与顶板的下侧滚动连接;第一滚动件靠近外罩内侧壁的一端设有凹槽,凹槽内安装有第二滚动件,第二滚动件部分凸出于凹槽外且与外罩的内侧壁滚动连接。
可选的,第二滚动件为滚轮轴承,差速驱动单元的侧壁上设有轴承座,滚轮轴承安装在轴承座上。
可选的,第一滚动件的顶端高于差速驱动单元;差速驱动单元的回转直径小于外罩的内径。
可选的,差速驱动单元的侧部设有销轴,外罩的内侧壁上对应于销轴的位置设有环形的限位槽,销轴靠近外罩的一端位于限位槽中。
可选的,差速驱动单元包括第一电机、第二电机、第一减速器、第二减速器、第一驱动轮和第二驱动轮;其中:第一电机和第二电机并排设置,且第一电机和第二电机的输出轴相互背离;第一减速器与第一电机的输出轴相连,第二减速器与第二电机的输出轴相连;第一驱动轮安装在第一减速器背离第一电机的一侧,第二驱动轮安装在第二减速器背离第二电机的一侧。
可选的,顶板上设有通孔,差速驱动单元通过通孔与AGV连接。
可选的,差速驱动装置还包括:支撑体;
差速驱动单元与支撑体铰接,以使差速驱动单元相对于支撑体绕横向轴向摆动;
顶板与外罩合围组成安装架,安装架中形成有容纳腔,支撑体和差速驱动单元布置在容纳腔中,支撑体承托起安装架,差速驱动单元以可绕容纳腔的纵向轴线转动的方式设置。
可选的,支撑体为水平支撑板,差速驱动单元布置在水平支撑板的下方。
可选的,差速驱动装置还包括连接轴,差速驱动单元与水平支撑板之间通过连接轴连接,连接轴的中轴线与横向轴线重合。
可选的,支撑体包括两个间隔布置的立板,差速驱动单元布置在两个立板之间。
可选的,差速驱动装置还包括连接轴,两个立板和差速驱动单元之间通过连接轴连接,连接轴的中轴线与横向轴线重合。
可选的,在容纳腔的侧壁上形成有呈环形布置的限位槽,连接轴的端部伸出差速驱动单元且布置在限位槽中。
可选的,差速驱动装置还包括第一滚动件,第一滚动件设置在差速驱动单元与外罩之间或支撑体与外罩之间。
可选的,第一滚动件为滚珠、滚轮或轴承。
可选的,差速驱动装置还包括多个设置在支撑体上的第二滚动件,支撑体通过多个第二滚动件承托起顶板。
可选的,第二滚动件为滚珠、滚轮或轴承。
可选的,差速驱动单元包括驱动轮和连接驱动轮的动力单元,动力单元与支撑体铰接。
可选的,驱动轮的轮轴垂直于横向轴线。
本申请实施例还提供了一种AGV,包括上述差速驱动装置。
本申请实施例提供的一种差速驱动装置及AGV,差速驱动单元位于由顶板和外罩组成的倒扣的桶状容器内,顶板由差速驱动单元支撑,外罩的底端高于差速驱动单元的底端,这样能够使差速驱动单元背着顶板和外罩进行行走运动;并且,由于差速驱动单元自身可以进行旋转,因此,差速驱动单元能够相对于顶板和外罩进行旋转运动;综上,差速驱动装置可以实现原地差速旋转和前进后退的行走功能。本实施例提供的差速驱动装置,采用顶板和外罩代替回转轴承,由于顶板的厚度可以远远小于回转轴承的高度,因此,本实施例提供的差速驱动装置能够有效的减小差速驱动装置的总高度。
附图说明
为了更清楚地说明本申请实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例的差速驱动装置的轴测图;
图2为本申请一实施例的差速驱动装置的局部爆炸图;
图3为本申请一实施例的差速驱动装置的整体爆炸图;
图4为本申请另一实施例的差速驱动装置的局部爆炸图;
图5为本申请另一实施例的差速驱动装置的整体爆炸图;
图6为本申请实施例的差速驱动装置的第一滚动件和第二滚动件的轴测图;
图7为本申请实施例的差速驱动装置的剖视图。
图8是本申请实施例的差速驱动装置的结构示意图;
图9是本申请再一实施例的差速驱动装置的整体爆炸图;
图10是本申请又一实施例的差速驱动装置的整体爆炸图;
图11是本申请实施例的差速驱动装置的主视示意图(省略了顶板);
图12是本申请实施例的差速驱动装置的俯视示意图(省略了顶板)。
具体实施方式
为使本申请的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本申请进一步详细说明。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例提供一种差速驱动装置及AGV,能够有效的减小差速驱动装置的总高度。
图1和图2为本申请实施例的差速驱动装置的结构示意图,如图1和图2所示,本实施例的差速驱动装置包括差速驱动单元2、顶板1和外罩3,顶板1安装在外罩3的顶端,差速驱动单元2位于顶板1下侧的外罩3中,顶板1支撑在差速驱动单元2的上方,外罩3的内侧壁为圆环形。
本实施例,差速驱动单元是指集成了驱动电机、减速器和驱动轮的一体化的机械结构,既能够直线行走,也能够实现转向的功能;差速驱动单元位于由顶板和外罩组成的倒扣的桶状容器内,且顶板支撑在差速驱动单元的上方,即顶板由差速驱动单元支撑,外罩的底端高于差速驱动单元的底端,这样能够使差速驱动单元背着顶板和外罩进行行走运动。
并且,由于差速驱动单元自身可以进行旋转,因此,差速驱动单元能够相对于顶板和外罩进行旋转运动,这时,差速驱动单元的顶部与顶板之间发生滑动摩擦,差速驱动单元的侧部与外罩的内侧壁之间发生滑动摩擦;综上,差速驱动装置可以实现原地差速旋转和前进后退的行走功能。
当差速驱动装置应用于AGV时,AGV是指装备有电磁或光学等自动导引装置,它能够沿规定的导引路径行驶,具有安全保护以及各种移载功能的运输车,AGV属于WMR(Wheeled Mobile Robot,轮式移动机器人)的范畴。
可选的,顶板上设有通孔,差速驱动单元通过通孔与自动引导运输车连接。
将顶板和/或外罩固定在AGV的车体上,并且在顶板上可以开设通孔,通过顶板上开设的通过实现差速驱动单元与AGV之间的接线(例如差速驱动单元的电机供电线需要与AGV上的电池相连),即实现了将差速驱动装置应用于AGV,可实现差速驱动单元与车体之间的相对转动。本实施例提供的差速驱动装置,采用顶板和外罩代替回转轴承,由于顶板的厚度可以远远小于回转轴承的高度,因此,本实施例提供的差速驱动装置能够有效的减小差速驱动装置的总高度。
如图3所示,可选的,差速驱动单元2的侧部设有第一滚动件21,第一滚动件21与顶板1的下侧滚动连接。
本实施例,差速驱动单元在相对于顶板转动时,与顶板的下侧转动连接 的第一滚动件可以减小差速驱动单元与顶板之间的摩擦,从而能够减少差速驱动单元和顶板的磨损,延长差速驱动装置的使用寿命,还能提高差速驱动单元的运动精度。另外,第一滚动件设置在差速驱动单元的侧部而非顶部,可以减小第一滚动件的整体高度对差速驱动装置的总高度的影响,例如,在安装第一滚动件时,使第一滚动件的最高点高于差速驱动单元即可,至于第一滚动件的最高点和差速驱动单元的最高点之间的高度差,则可以根据实际需要做相应调整。本实施例中,第一滚动件安装在差速驱动单元的侧部,相较于目前将回转轴承安装在差速驱动单元的顶端的技术方案,可以有效地减小差速驱动装置的整体高度。
如图3所示,可选的,差速驱动单元2的侧部安装有两个第一滚动件21,两个第一滚动件21关于差速驱动单元2的回转中心对称布置。
本实施例,两个第一滚动件关于差速驱动单元的回转中心对称布置,可以使差速驱动单元与顶板接触时受力平衡,从而能够减少差速驱动单元在顶板的压力作用下发生侧倾的情况,进而提高了差速驱动装置的稳定性。
如图3所示,可选的,第一滚动件21可以为滚轮轴承。滚轮轴承具有安装结构简单,便于安装的特点,因此,第一滚动件采用滚轮轴承可以简化差速驱动装置的结构,提高差速驱动装置的组装效率。
可以理解的是,第一滚动件也可以为滚珠、牛眼轮等,也可以达到减小差速驱动单元与顶板之间的摩擦的作用。
如图3所示,在第一滚动件21为滚轮轴承的情况下,可选的,差速驱动单元2的侧部连接有侧板28,滚轮轴承安装在侧板28上。
本实施例,第一滚动件的轴线水平,将滚轮轴承的轴头安装在侧板上即可实现滚轮轴承与顶板之间的滚动连接,并且,滚轮轴承与顶板之间为线接触,可以减小顶板的局部受力,提高顶板的使用寿命;另外,滚轮轴承的安装方式简单,例如,选用轴头带螺纹的滚轮轴承和带有螺纹孔的侧板,则滚轮轴承和侧板之间就可以通过螺纹连接,螺纹连接的方式简单可靠,提高了第一滚动件安装和拆卸的便捷性。
并且,第一滚动件安装在侧板上而非直接安装在差速驱动单元上,可以 减少差速驱动单元上的安装位,提高差速驱动单元的结构强度;第一滚动件与侧板组装为一体后,通过紧固件与差速驱动单元的侧壁相连即可。
如图3所示,可选的,当差速驱动单元2的侧部安装有两个第一滚动件21,两个第一滚动件21关于差速驱动单元2的回转中心对称布置,且第一滚动件21为滚轮轴承时,在将第一滚动件21安装在差速驱动单元2的侧部时,可以使滚轮轴承的回转中心轴垂直且相交于差动驱动单元2的回转中心轴。
本实施例,滚轮轴承采用上述布置方式,可以减小滚轮轴承与顶板之间的滚动摩擦,还可以使两个对称布置的滚轮轴承受力平衡,从而使差动驱动单元能够尽可能的实现原地差速旋转。
如图3所示,可选的,差速驱动单元2的侧部设有第二滚动件22,第二滚动件22与外罩3的内侧壁滚动连接。
本实施例,差速驱动单元在相对于外罩转动时,与外罩的内侧壁转动连接的第二滚动件可以减小差速驱动单元与外罩之间的摩擦,从而能够减少差速驱动单元和外罩的磨损,延长差速驱动装置的使用寿命,还能提高差速驱动单元的运动精度。另外,第二滚动件设置在差速驱动单元的侧壁上而非顶端或底端,这样,可以在布置第二滚动件时使第二滚动件的最高点低于差速驱动单元的最高点,最低点高于差速驱动单元的最低点,这样可以使第二滚动件不对差速驱动装置的总高度产生影响。
如图3所示,可选的,第二滚动件22也可以为滚轮轴承,这时,滚轮轴承竖直安装在差动驱动单元的侧部。滚轮轴承具有安装结构简单,便于安装的特点,因此,第二滚动件采用滚轮轴承可以简化差速驱动装置的结构,提高差速驱动装置的组装效率。
如图3所示,可选的,差速驱动单元2的侧部安装有两个第二滚动件22,两个第二滚动件22关于差速驱动单元2的回转中心对称布置。
本实施例,两个第二滚动件对称布置在差速驱动单元的两侧,一方面可以使差速驱动单元受力平衡,另一方面还能够对差速驱动单元进行限位,减少了差速驱动单元的其他部位在运动过程中与外罩相接触的情况发生。
如图3所示,可选的,第二滚动件22为滚轮轴承,差速驱动单元2的侧壁 上设有轴承座26,滚轮轴承安装在轴承座26上。
本实施例,滚轮轴承的轴线竖直,将滚轮轴承的轴头安装在轴承座上即可实现滚轮轴承与外罩内侧壁之间的滚动连接,并且,滚轮轴承与外罩之间为线接触,可以减小外罩的局部受力,提高外罩的使用寿命;另外,滚轮轴承的安装方式相较于其他轴承的安装方式较为简单,例如:选用轴头带螺纹的滚轮轴承和带有螺纹孔的安装座,则滚轮轴承和安装座之间就可以通过螺纹连接,螺纹连接的方式简单可靠,提高了第二滚动件安装和拆卸的便捷性。
可以理解的是,第二滚动件也可以为滚珠、牛眼轮等,也能够达到减小差速驱动单元与外罩之间的摩擦的作用。
如图4和图6所示,可选的,差速驱动单元2的侧部设有第一滚动件21,第一滚动件21与顶板1的下侧滚动连接;第一滚动件21靠近外罩3内侧壁的一端设有凹槽,凹槽内安装有第二滚动件22,第二滚动件22部分凸出于凹槽外且与外罩3的内侧壁滚动连接。
本实施例,差速驱动单元通过第一滚动件与顶板滚动连接,第一滚动件一方面可以减小差速驱动单元与顶板之间的摩擦,另一方面还可以用于承载来自顶板的竖直方向的作用力;差速驱动单元通过第二滚动件与外罩的内侧壁滚动连接,第二滚动件一方面可以减小差速驱动单元与外罩之间的摩擦,另一方面还可以用于承载来自外罩的水平方向的作用力。本实施例,第一滚动件和第二滚动件组装在一起,相比于分别将第一滚动件和第二滚动件安装在差速驱动单元上的技术方案,能够减少差速驱动单元上设置的安装位,从而提高了差速驱动单元的结构强度。
可以理解的是,本申请实施例中对第一滚动件和第二滚动件的数量不做限定,本领域技术人员可以根据实际需要做合理选择。
如图2或图4所示,可选的,第一滚动件21的顶端高于差速驱动单元2(参见图3或图6);差速驱动单元2的回转直径小于外罩3的内径。
本实施例,第一滚动件还构成了平衡桥的功能:差速驱动单元通过第一滚动件与顶板接触,因此差速驱动单元可以绕第一滚动件进行旋转,即差速驱动单元在工作过程中,当遇到地面不平整的情况时,差速驱动单元可以绕 着第一滚动件进行摆动(即当其中一个驱动轮被抬高时,另一个驱动轮仍然可以与地面保持接触),可以通过这种摆动使两个驱动轮都与地面保持良好的接触,减少驱动轮被架空的情况,这是现有的差速驱动装置中采用回转轴承方案无法实现的。
如图2或图4所示,可选的,当差速驱动单元2的侧部安装有两个第一滚动件21,两个第一滚动件21关于差速驱动单元2的回转中心对称布置的情况下,可以使两个第一滚动件21的连线垂直于差动驱动单元2的两个驱动轮的连线(参见图3或图6)。
本实施例,两个第一滚动件构成了平衡桥的功能:差速驱动单元通过两个第一滚动件与顶板接触,因此差速驱动单元可以绕两个第一滚动件的连线旋转,在地面不平整时,差速驱动单元可以通过这种浮动使两个驱动轮都与地面保持良好的接触,避免驱动轮被架空。
如图7所示,可选的,差速驱动单元2的侧部设有销轴27,外罩3的内侧壁上对应于销轴27的位置设有环形的限位槽,销轴27靠近外罩3的一端位于限位槽中。
本实施例,限位槽能够对差速驱动单元起到限位作用,防止差速驱动单元从外罩中脱出,使整个差速驱动装置保持一体。本实施例对销轴的数量不做限定,可以在差速驱动单元的侧面上布置多个销轴。
可选的,外罩在限位槽的下侧开设有安装槽,安装槽的上端与限位槽相互连通,下端与外罩的下侧相互连通,安装槽内设有与外罩可拆卸连接的密封块。本实施例,在将差速驱动单元与外罩安装为一体时,首先将密封块拆下,然后将销轴对准安装槽的下端,接着向上推动差速驱动单元,直到销轴位于限位槽中后,再将密封块固定在安装槽内,防止销轴脱出,最终起到防止差速驱动单元从外罩中脱出的作用。
本实施例,将差速驱动单元从外罩中拆除的过程,与将将差速驱动单元与外罩安装为一体的过程互为逆过程,在此不再赘述。
如图3和图7所示,可选的,销轴27安装在轴承座26上。
本实施例,销轴安装在轴承座上,可以减少差速驱动单元上的安装位, 提高差速驱动单元的结构强度。可选的,销轴的一端设有螺纹,轴承座上设有螺纹孔,销轴与轴承座通过螺纹孔连接。
如图5所示,可选的,差速驱动单元2包括第一电机23、第二电机23’、第一减速器24、第二减速器24’、第一驱动轮25和第二驱动轮25’;其中:第一电机23和第二电机23’并排设置,且第一电机23和第二电机23’的输出轴相互背离;第一减速器24与第一电机23的输出轴相连,第二减速器24’与第二电机23’的输出轴相连;第一驱动轮25安装在第一减速器24背离第一电机23的一侧,第二驱动轮25’安装在第二减速器24’背离第二电机23’的一侧。
本实施例,第一驱动轮由第一电机驱动,第二驱动轮由第二电机驱动,实际运动过程中,可以通过控制第一电机和第二电机的转速和转向,从而使差速驱动单元实现原地差速旋转和前进后退的行走功能。本实施例中,差速驱动单元中的各组件采用对称式的布置方式,能够使差速驱动单元的两个驱动轮受力平衡,从而能够使差速驱动单元运动时更加的平稳。
作为本申请实施例的一可选实施方式,差速驱动单元的侧壁上设有两个限位柱,顶板的下侧设有限位板,限位板位于限位柱的运动轨迹上。本实施例,差速驱动单元的侧壁上设置的限位柱,会随着差速驱动单元相对于顶板进行旋转;差速驱动单元安装在AGV小车上时,差速驱动单元会通过顶板上开设的通孔与AGV小车之间进行连线(例如电机供电线需要与AGV上的电池相连),因此,顶板上的限位板与差速驱动单元上设置的限位柱配合,可以限制差速驱动单元的旋转角度,从而能够避免差速驱动单元相对于顶板无限旋转造成连线拧断的情况发生。
现有的AGV底盘结构较为复杂,对路面的平整度要求较高,当在高低不平的路面上行驶时,可能会出现仅有一个驱动轮着地的情况,从而导致牵引力不足,造成打滑、方向失控等现象。
为了解决上述技术问题,如图8至图12所示,本申请实施例提供了一种差速驱动装置100,差速驱动装置100包括差速驱动单元10、支撑体20、顶板31与外罩32合围组成的安装架30。具体地,差速驱动单元10与支撑体20铰接, 以使差速驱动单元10相对于支撑体20绕横向轴向摆动。安装架30中形成有容纳腔,支撑体20和差速驱动单元10布置在容纳腔中,支撑体20承托起安装架30,差速驱动单元10以可绕容纳腔的纵向轴线转动的方式设置。可以理解的是,差速驱动装置100应用于AGV时可通过安装架30连接于AGV的底部。顶板31和/或外罩32可用于与AGV的车体进行连接,当安装架30与车体连接之后,顶板31呈水平布置。
根据本申请实施例的差速驱动装置100,其安装架30中形成有容纳腔,支撑体20和差速驱动单元10布置在容纳腔中,并且,支撑体20承托起安装架30,差速驱动单元10以可绕容纳腔的纵向轴线转动的方式设置,同时,差速驱动单元10与支撑体20铰接,以使差速驱动单元10能够相对于支撑体20绕横向轴线摆动。由此,使差速驱动单元10与安装架30之间形成了“万向节”结构。也就是说,差速驱动单元10相对于安装架30具有两个方向上的转动自由度,其中一个是差速驱动单元10可以绕纵向轴线转动的自由度,另一个是可以绕横向轴线摆动的自由度,前者用于在差速驱动单元10的作用下实现AGV的转向功能,后者用于使差速驱动单元10适应路面的高低起伏变化,使差速驱动单元10保持与路面的有效接触,从而避免出现牵引力不足而造成打滑、方向失控等现象。可见,当本申请实施例的差速驱动装置100应用于AGV时,其能够有效降低AGV对路面的平整度的要求。
可选的,支撑体20为水平支撑板(如图9所示),差速驱动单元10布置在水平支撑板的下方。其中,水平支撑板是指沿水平方向布置的板结构。另外,在AGV运行于路面的情况下,与路面相平行的方向可以理解为水平方向。在本实施例中,差速驱动单元10设置在水平支撑体的下方,便于水平支撑体对安装架30起到承托作用。
可选的,差速驱动装置100还包括连接轴40,差速驱动单元10与水平支撑体之间通过连接轴40连接,连接轴40的中轴线与横向轴线重合,由此,实现差速驱动单元10与支撑体20之间的铰接,进而使差速驱动单元10能够相对于支撑体20绕横向轴线摆动。
可选的,支撑体20包括两个间隔布置的立板29(如图10至图12所示),差速驱动单元10布置在两个立板29之间。其中,立板29是指板面沿竖直方向布 置的板结构。在本实施例中,通过两个间隔布置的立板29也能够对安装架30起到承托作用。进一步地,差速驱动装置100还包括连接轴40,两个立板29和差速驱动单元10之间通过连接轴40连接,连接轴40的中轴线与横向轴线重合。具体地,连接轴40的中部穿设于差速驱动单元10,连接轴40的两端对应地穿设于两个立板29,由此,实现差速驱动单元10与支撑体20之间的铰接,进而使差速驱动单元10能够相对于支撑体20绕横向轴线摆动。
可选的,差速驱动装置100还包括第一滚动件50,第一滚动件50设置在差速驱动单元10与外罩32之间或支撑体20与外罩32之间,第一滚动件50用于使差速驱动单元10能够绕容纳腔的纵向轴线转动,并且有利于保证转动的顺滑和稳定。
可选的,第一滚动件50有多个,并且多个第一滚动件50之间呈间隔布置,由此,有利于差速驱动单元10与安装架30之间的稳定转动关系。进一步地,第一滚动件50可以是滚珠、滚轮或轴承等。
可选的,如图9所示,当支撑体20为水平支撑板时,第一滚动件50既可以设置在差速驱动单元10上,也可以设置在水平支撑板上,通过第一滚动件50在外罩32的内壁上的滚动,可以实现差速驱动单元10绕容纳腔的纵向轴线转动。
如图10所示,当支撑体20采用两个立板29时,第一滚动件50可以设置在差速驱动单元10或立板29上,其中,由于差速驱动单元10设置在两个立板29之间,为了减少部件之间的相互干涉的可能性,第一滚动件50设置在立板29上为更佳的方式。
可选的,差速驱动装置100还包括多个设置在支撑体20上的第二滚动件60,支撑体20通过多个第二滚动件60承托起顶板31,由此,使得AGV的车体的重量主要通过第二滚动件60传递给支撑体20,从而可以使第一滚动件50不承受车体的重量,进而避免第一滚动件50发生变形甚至破坏。
进一步地,第二滚动件60可以是滚珠、滚轮或轴承等。
可选的,如图9所示,当支撑体20为水平支撑板时,第二滚动件60可以布置在水平支撑板的拐角位置,具体地,可以在水平支撑板的拐角位置加工形 成凸出部,再将第二滚动件60安装在凸出部。由此,使第二滚动件60不易与其他结构发生干涉。另外,如果第二滚动件60采用滚轮或轴承,其转轴可以平行于水平支撑板的板面设置,由此可以使第二滚动件60为顶板31提供更稳定的支撑。
如图10所示,当支撑体20采用两个立板29时,第二滚动件60可以设置在立板29的外侧(背离差速驱动单元10的一侧),另外,如果第二滚动件60采用滚轮或轴承,其转轴可以平行于水平支撑板的板面设置,由此可以使第二滚动件60为顶板31提供更稳定的支撑。
另外,也可以将第二滚动件60的转轴与连接轴40集成为一个整体部件,也就是说,可以将连接轴40的端部延长,将第二滚动件60安装于连接轴40的端部,由此,可以有利于减少零件数量,节约成本。
可选的,差速驱动单元10包括驱动轮11和连接驱动轮11的动力单元12,其中,动力单元12为驱动轮11的转动提供动力,动力单元12与支撑体20铰接。
可选的,驱动轮11的轮轴垂直于横向轴线,在此情况下,当动力单元12绕横向轴线摆动时,驱动轮11的高低变化最为显著,由此,使得驱动轮11对路面的高低变化得到最大程度地适应。
可选的,驱动轮11的数量为2个,通过对两个驱动轮11实施不同的控制方式,可以实现对AGV前进方向进行控制。例如,当两个驱动轮11以相同的速度正向转动时,可以带动AGV前进;当两个驱动轮11以相同的速度反向转动时,可以带动AGV后退;当两个驱动轮11以不同的速度正向转动,或者两个驱动轮11中的一个正向转动而另一个反向转动时,可带动AGV进行转弯。
可以理解的是,在AGV的底部还可以另设有支撑轮,以和差速驱动装置100协作,共同对AGV进行支撑和使AGV在地面上移动。或者,也可以在AGV的底部设置多个差速驱动装置100,以使AGV获得稳定的支撑。
可选的,动力单元12包括电机和减速机构(图中未示出),电机通过减速机构(例如齿轮减速机构、行星轮减速机构等)连接驱动轮11,从而减小使电机的输出转速,增加电机的输出扭矩。
可选的,电机的数量是一个,此时,减速机构可选用差速减速机,由此, 通过一个电机即可控制两个驱动轮11以相同速度同向转动、以不同速度同向转动或彼此反向转动,进而使驱动轮11可以带动AGV前进、后退以及转向。
可选的,电机和减速机构的数量也可以分别为两个,即每一个电机均通过一个减速机构连接一个驱动轮11,由此,通过不同的电机对相应的驱动轮11进行控制,从而实现两个驱动轮11以相同速度同向转动、以不同速度同向转动或彼此反向转动等。
可选的,在容纳腔的侧壁上形成有呈环形布置的限位槽(图中未示出),连接轴40的端部伸出差速驱动单元10且布置在限位槽中。由此,可以保证连接轴40始终处于水平方向,进而使支撑体20能够对安装架30形成有效且平稳的支撑。
本申请实施例还提供了一种AGV,其包括上述任一实施例中的差速驱动装置。
根据本申请实施例的AGV,其差速驱动装置的安装架中形成有容纳腔,支撑体和差速驱动单元布置在容纳腔中,并且,支撑体承托起安装架,差速驱动单元以可绕容纳腔的纵向轴线转动的方式设置,同时,差速驱动单元与支撑体铰接,以使差速驱动单元能够相对于支撑体绕横向轴线摆动。由此,使差速驱动单元与安装架之间形成了“万向节”结构。也就是说,差速驱动单元相对于安装架具有两个方向上的转动自由度,其中一个是差速驱动单元可以绕纵向轴线转动的自由度,另一个是可以绕横向轴线摆动的自由度,前者用于在差速驱动单元的作用下实现AGV的转向功能,后者用于使差速驱动单元适应路面的高低起伏变化,使差速驱动单元保持与路面的有效接触,从而避免出现牵引力不足而造成打滑、方向失控等现象。可见,当本申请实施例的差速驱动装置应用于AGV时,其能够有效降低AGV对路面的平整度的要求。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列 出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请保护的范围之内。

Claims (24)

  1. 一种差速驱动装置,其特征在于,包括差速驱动单元、顶板和外罩,所述顶板安装在所述外罩的顶端,所述差速驱动单元位于所述顶板下侧的所述外罩中,所述顶板支撑在所述差速驱动单元的上方,所述外罩的内侧壁为圆环形。
  2. 根据权利要求1所述的差速驱动装置,其特征在于,所述差速驱动单元的侧部设有第一滚动件,所述第一滚动件与所述顶板的下侧滚动连接。
  3. 根据权利要求2所述的差速驱动装置,其特征在于,所述差速驱动单元的侧部安装有两个所述第一滚动件,两个所述第一滚动件关于所述差速驱动单元的回转中心对称布置。
  4. 根据权利要求1所述的差速驱动装置,其特征在于,所述差速驱动单元的侧部设有第二滚动件,所述第二滚动件与所述外罩的内侧壁滚动连接。
  5. 根据权利要求4所述的差速驱动装置,其特征在于,所述差速驱动单元的侧部安装有两个所述第二滚动件,两个所述第二滚动件关于所述差速驱动单元的回转中心对称布置。
  6. 根据权利要求4所述的差速驱动装置,其特征在于,所述第二滚动件为滚轮轴承,所述差速驱动单元的侧壁上设有轴承座,所述滚轮轴承安装在所述轴承座上。
  7. 根据权利要求1所述的差速驱动装置,其特征在于,所述差速驱动单元的侧部设有第一滚动件,所述第一滚动件与所述顶板的下侧滚动连接;
    所述第一滚动件靠近所述外罩内侧壁的一端设有凹槽,所述凹槽内安装有第二滚动件,所述第二滚动件部分凸出于所述凹槽外且与所述外罩的内侧壁滚动连接。
  8. 根据权利要求2或7所述的差速驱动装置,其特征在于,所述第一滚动件的顶端高于所述差速驱动单元;
    所述差速驱动单元的回转直径小于所述外罩的内径。
  9. 根据权利要求1-7任一所述的差速驱动装置,其特征在于,所述差速驱 动单元的侧部设有销轴,所述外罩的内侧壁上对应于所述销轴的位置设有环形的限位槽,所述销轴靠近所述外罩的一端位于所述限位槽中。
  10. 根据权利要求1所述的差速驱动装置,其特征在于,所述差速驱动单元包括第一电机、第二电机、第一减速器、第二减速器、第一驱动轮和第二驱动轮;其中:
    所述第一电机和所述第二电机并排设置,且所述第一电机和所述第二电机的输出轴相互背离;
    所述第一减速器与所述第一电机的输出轴相连,所述第二减速器与所述第二电机的输出轴相连;
    所述第一驱动轮安装在所述第一减速器背离所述第一电机的一侧,所述第二驱动轮安装在所述第二减速器背离所述第二电机的一侧。
  11. 根据权利要求1所述的差速驱动装置,其特征在于,所述顶板上设有通孔,所述差速驱动单元通过所述通孔与AGV连接。
  12. 根据权利要求1所述的差速驱动装置,其特征在于,还包括:支撑体;
    所述差速驱动单元与所述支撑体铰接,以使所述差速驱动单元相对于所述支撑体绕横向轴向摆动;
    所述顶板与所述外罩合围组成安装架,所述安装架中形成有容纳腔,所述支撑体和所述差速驱动单元布置在所述容纳腔中,所述支撑体承托起所述安装架,所述差速驱动单元以可绕所述容纳腔的纵向轴线转动的方式设置。
  13. 根据权利要求12所述的差速驱动装置,其特征在于,所述支撑体为水平支撑板,所述差速驱动单元布置在所述水平支撑板的下方。
  14. 根据权利要求13所述的差速驱动装置,其特征在于,还包括连接轴,所述差速驱动单元与所述水平支撑板之间通过所述连接轴连接,所述连接轴的中轴线与所述横向轴线重合。
  15. 根据权利要求12所述的差速驱动装置,其特征在于,所述支撑体包括两个间隔布置的立板,所述差速驱动单元布置在两个所述立板之间。
  16. 根据权利要求15所述的差速驱动装置,其特征在于,还包括连接轴,两个所述立板和所述差速驱动单元之间通过所述连接轴连接,所述连接轴的中轴线与所述横向轴线重合。
  17. 根据权利要求14或16所述的差速驱动装置,其特征在于,在所述容纳腔的侧壁上形成有呈环形布置的限位槽,所述连接轴的端部伸出所述差速驱动单元且布置在所述限位槽中。
  18. 根据权利要求12所述的差速驱动装置,其特征在于,还包括第一滚动件,所述第一滚动件设置在所述差速驱动单元与所述外罩之间或所述支撑体与所述外罩之间。
  19. 根据权利要求18所述的差速驱动装置,其特征在于,所述第一滚动件为滚珠、滚轮或轴承。
  20. 根据权利要求18所述的差速驱动装置,其特征在于,还包括多个设置在所述支撑体上的第二滚动件,所述支撑体通过多个所述第二滚动件承托起所述顶板。
  21. 根据权利要求20所述的差速驱动装置,其特征在于,所述第二滚动件为滚珠、滚轮或轴承。
  22. 根据权利要求12至21中任一所述的差速驱动装置,其特征在于,所述差速驱动单元包括驱动轮和连接所述驱动轮的动力单元,所述动力单元与所述支撑体铰接。
  23. 根据权利要求22所述的差速驱动装置,其特征在于,所述驱动轮的轮轴垂直于所述横向轴线。
  24. 一种AGV,其特征在于,包括根据权利要求1至23中任一项所述的差速驱动装置。
PCT/CN2020/087264 2019-06-06 2020-04-27 一种差速驱动装置及agv WO2020244341A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217043432A KR20220016231A (ko) 2019-06-06 2020-04-27 차동 구동 장치 및 agv
US17/437,328 US20220177032A1 (en) 2019-06-06 2020-04-27 Differential drive device and agv
EP20818056.2A EP3929064A4 (en) 2019-06-06 2020-04-27 DIFFERENTIAL AND AGV
JP2021556352A JP7252371B2 (ja) 2019-06-06 2020-04-27 差動駆動装置及び無人搬送車

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201910494728.7 2019-06-06
CN201920858917.3U CN210027020U (zh) 2019-06-06 2019-06-06 一种差速驱动装置
CN201910494728.7A CN112046278B (zh) 2019-06-06 2019-06-06 一种差速驱动装置
CN201920858917.3 2019-06-06
CN202010322808.7 2020-04-22
CN202010322808.7A CN113525552B (zh) 2020-04-22 2020-04-22 驱动装置及具有其的agv

Publications (1)

Publication Number Publication Date
WO2020244341A1 true WO2020244341A1 (zh) 2020-12-10

Family

ID=73652079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/087264 WO2020244341A1 (zh) 2019-06-06 2020-04-27 一种差速驱动装置及agv

Country Status (5)

Country Link
US (1) US20220177032A1 (zh)
EP (1) EP3929064A4 (zh)
JP (1) JP7252371B2 (zh)
KR (1) KR20220016231A (zh)
WO (1) WO2020244341A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918743A (zh) * 2021-02-08 2021-06-08 余良 一种具有防碰撞结构的包裹分拣agv设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240032560A (ko) 2022-09-02 2024-03-12 국립금오공과대학교 산학협력단 물품 운송 차량

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872707A (ja) * 1994-06-29 1996-03-19 Bridgestone Corp 無人搬送車
CN202911548U (zh) * 2012-10-24 2013-05-01 上海竞舸自动化科技有限公司 一种agv差速驱动单元
CN205113439U (zh) * 2015-08-25 2016-03-30 福建省鲤东精密机械有限公司 一种用于agv的驱动转向机构
CN207536016U (zh) * 2017-10-21 2018-06-26 四川工商职业技术学院 一种agv差速驱动单元
CN207657586U (zh) * 2017-12-29 2018-07-27 山东泰诚机器人技术有限公司 一种减震散热双向差速agv驱动结构
CN207697493U (zh) * 2017-12-29 2018-08-07 湖北三丰机器人有限公司 一种适应于不平路面行走的agv差速驱动机构
CN210027020U (zh) * 2019-06-06 2020-02-07 杭州海康机器人技术有限公司 一种差速驱动装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016107451A1 (de) * 2015-04-21 2016-10-27 Gesellschaft Für Ingenieurdienste Mbh Selbstfahrende Transport- und Hubfahreinheit und Verfahren zum Bewegen von Objekten mittels der Transport- und Hubfahreinheit
WO2018211481A1 (en) * 2017-05-19 2018-11-22 Newell Gregory Low profile robotic pallet mover
CN107035188B (zh) * 2017-06-21 2023-08-11 山东大学 超薄型agv车辆搬运器
CN108945147B (zh) * 2018-06-22 2023-06-27 深圳市功夫机器人有限公司 一种差动轮及全向移动平台
DE102020108095A1 (de) * 2020-03-24 2021-09-30 Schaeffler Technologies AG & Co. KG Fahrzeugantriebseinheit und Fahrzeug mit einer Fahrzeugantriebseinheit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0872707A (ja) * 1994-06-29 1996-03-19 Bridgestone Corp 無人搬送車
CN202911548U (zh) * 2012-10-24 2013-05-01 上海竞舸自动化科技有限公司 一种agv差速驱动单元
CN205113439U (zh) * 2015-08-25 2016-03-30 福建省鲤东精密机械有限公司 一种用于agv的驱动转向机构
CN207536016U (zh) * 2017-10-21 2018-06-26 四川工商职业技术学院 一种agv差速驱动单元
CN207657586U (zh) * 2017-12-29 2018-07-27 山东泰诚机器人技术有限公司 一种减震散热双向差速agv驱动结构
CN207697493U (zh) * 2017-12-29 2018-08-07 湖北三丰机器人有限公司 一种适应于不平路面行走的agv差速驱动机构
CN210027020U (zh) * 2019-06-06 2020-02-07 杭州海康机器人技术有限公司 一种差速驱动装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3929064A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112918743A (zh) * 2021-02-08 2021-06-08 余良 一种具有防碰撞结构的包裹分拣agv设备

Also Published As

Publication number Publication date
JP2022526118A (ja) 2022-05-23
EP3929064A4 (en) 2022-04-27
US20220177032A1 (en) 2022-06-09
KR20220016231A (ko) 2022-02-08
JP7252371B2 (ja) 2023-04-04
EP3929064A1 (en) 2021-12-29

Similar Documents

Publication Publication Date Title
CN109436119B (zh) 一种非接触轮式爬壁机器人底盘装置
WO2020244341A1 (zh) 一种差速驱动装置及agv
CN105774457A (zh) 一种可升降自适应地形agv小车底盘
CN112238872B (zh) 具备三线轨道部的轨道车辆系统
CN111301087B (zh) 一种机器人底盘
WO2019029537A1 (zh) 一种自动导引运输车
CN210027020U (zh) 一种差速驱动装置
CN114802497A (zh) 一种便携式轮履双摆臂移动机器人
CN209833344U (zh) 运输车及运输车的驱动模块
US20220306209A1 (en) Chassis of automated guided vehicle and automated guided vehicle
WO2018121078A1 (zh) 移动平台
CN111776105A (zh) 一种新型爬楼越障装置
WO2021213066A1 (zh) 驱动装置及具有其的agv
CN209870598U (zh) 运输车
CN112046278B (zh) 一种差速驱动装置
CN116040527A (zh) 一种激光导航车
CN210027667U (zh) 运输车及运输车的驱动模块
CN210478384U (zh) 一种灵活转向的机器人减震底盘
JP2024503754A (ja) 差動駆動装置及び無人搬送車
CN212578591U (zh) 一种机器人用底盘系统
CN101327887A (zh) 用于垂直电梯的驱动装置
CN209888988U (zh) 运输车及运输车的驱动模块
CN211971534U (zh) 一种起重机用行走小车的车轮安装总成
CN111845308A (zh) 运输车及运输车的驱动模块
CN209888628U (zh) 运输车及运输车的驱动模块

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20818056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021556352

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020818056

Country of ref document: EP

Effective date: 20210921

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217043432

Country of ref document: KR

Kind code of ref document: A