WO2020244263A1 - 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用 - Google Patents

一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用 Download PDF

Info

Publication number
WO2020244263A1
WO2020244263A1 PCT/CN2020/077999 CN2020077999W WO2020244263A1 WO 2020244263 A1 WO2020244263 A1 WO 2020244263A1 CN 2020077999 W CN2020077999 W CN 2020077999W WO 2020244263 A1 WO2020244263 A1 WO 2020244263A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
teos
parts
mixed liquid
gel material
Prior art date
Application number
PCT/CN2020/077999
Other languages
English (en)
French (fr)
Inventor
李绍纯
侯东帅
耿永娟
张文娟
金祖权
朱亚光
张友来
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to GB2014224.6A priority Critical patent/GB2595009B/en
Priority to AU2020227037A priority patent/AU2020227037B2/en
Priority to US16/979,467 priority patent/US11879069B2/en
Publication of WO2020244263A1 publication Critical patent/WO2020244263A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/65Additives macromolecular
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/69Particle size larger than 1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides

Definitions

  • the invention relates to the technical field of building surface coatings, in particular to a graphene oxide-TEOS/silane composite gel material and a preparation method and application thereof.
  • the exterior surface coating of buildings is one of the important measures to improve the durability of buildings.
  • the commonly used exterior surface coatings of buildings are generally divided into two types, surface coating type and surface penetration type.
  • the surface coating type coating is to form a covering type coating on the outer surface of the building to close the holes and cracks on the surface of the building, thereby preventing water or corrosive substances from entering the building materials, but at the same time blocking the building materials
  • the internal water evaporation often causes blistering and cracking on the coating surface, which affects the appearance and durability of the building.
  • the surface-permeable coating can penetrate 3 to 5mm into the building material, and form a hydrophobic coating in this area, which will not affect the appearance of the building, and has received general attention from engineers.
  • the purpose of the present invention is to provide a graphene oxide-TEOS/silane composite gel material and its preparation method and application.
  • the graphene oxide-TEOS/silane composite gel material provided by the present invention has good waterproof performance. And corrosion resistance.
  • the present invention provides a graphene oxide-TEOS/silane composite gel material, including the following components by mass: 5 to 45 parts of graphene oxide dispersion, 30 to 90 parts of TEOS, 30 to 80 parts of silane, emulsification
  • concentration of the graphene oxide dispersion liquid is 0.5 to 5%.
  • the particle size of the graphene oxide in the graphene oxide dispersion is 3-8 ⁇ m.
  • the silane is methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, One or more of oxysilane, octyltrimethoxysilane and octyltriethoxysilane.
  • the dispersing agent is one or more of sodium dodecylbenzene sulfonate, polyvinyl alcohol, polyethylene glycol and glycerol.
  • the emulsifier is one or more of Span 80, Ping Ping O and Tween.
  • the present invention also provides a preparation method of the graphene oxide-TEOS/silane composite gel material according to the above technical scheme, which includes the following steps:
  • the step (1) and the step (2) have no time sequence.
  • the mixing in step (3) is carried out under constant temperature conditions.
  • the mixing temperature in the step (3) is 50-80°C, and the mixing time is 2-3h.
  • the step (3) is: adding the first mixed liquid dropwise to the second mixed liquid or adding the second mixed liquid dropwise to the first mixed liquid to obtain a mixed liquid , And then add TEOS dropwise to the mixed solution.
  • the present invention also provides the application of the graphene oxide-TEOS/silane composite gel material described in the above technical solution or the graphene oxide-TEOS/silane composite gel material prepared by the preparation method described in the above technical solution in architectural coatings .
  • the present invention provides a graphene oxide-TEOS/silane composite gel material, which includes the following components in parts by mass: 5 to 45 parts of graphene oxide dispersion, 30 to 90 parts of TEOS, 30 to 80 parts of silane, and emulsification
  • concentration of the graphene oxide dispersion liquid is 0.5 to 5%.
  • the invention prevents external moisture and corrosive ions from entering the interior of the concrete through the lamellar structure of graphene oxide, and the graphene oxide surface has abundant functional groups, such as hydroxyl and carboxyl groups, which can be firmly adsorbed on the concrete surface through chemical reactions ,
  • the graphene oxide surface has abundant functional groups, such as hydroxyl and carboxyl groups, which can be firmly adsorbed on the concrete surface through chemical reactions .
  • Provide a template for the secondary hydration reaction of cement optimize the surface structure of the concrete, increase the surface density, improve the surface strength, improve the waterproof effect and corrosion resistance; at the same time, TEOS is easy to form gel after the hydrolysis reaction, making the product of the present invention The state changes from a solution state to a gel state.
  • the nano SiO 2 formed by the TEOS hydrolysis reaction undergoes a secondary hydration reaction with the cement hydration product Ca(OH) 2 on the concrete surface to form a CSH gel and improve the microscopic appearance of the concrete surface.
  • the structure improves the density of the concrete surface and further enhances its waterproof effect and corrosion resistance.
  • the results of the examples show that after the graphene oxide-TEOS/silane composite gel material provided by the present invention is coated on the surface of a cement substrate, the static contact angle of the cement-based material to water is 118-128°, and the capillary water absorption coefficient is 30.2- 55.1g ⁇ m -2 ⁇ h -1 , the chloride ion diffusion coefficient is 1.0 ⁇ 10 -12 ⁇ 3.5 ⁇ 10 -12 m 2 ⁇ s -1 , compared with the cement-based material without coating treatment in the embodiment, the water resistance
  • the static contact angle is 50-60°
  • the capillary water absorption coefficient is 118.6g ⁇ m -2 ⁇ h -1
  • the chloride ion diffusion coefficient is 7.5 ⁇ 10 -11 m 2 ⁇ s -1 , indicating the graphene oxide-TEOS/ Silane composite gel materials have hydrophobic and anti-corrosion properties after forming a coating on the surface of cement-based materials.
  • the present invention provides a graphene oxide-TEOS/silane composite gel material, including the following components by mass: 5 to 45 parts of graphene oxide dispersion, 30 to 90 parts of TEOS, 30 to 80 parts of silane, emulsification
  • concentration of the graphene oxide dispersion liquid is 0.5 to 5%.
  • the graphene oxide-TEOS/silane composite gel material provided by the present invention includes 5 to 45 parts of graphene oxide dispersion, more preferably 5 to 40 parts, most preferably 15 to 40 parts.
  • the particle size of the graphene oxide in the graphene oxide dispersion is preferably 3 to 8 ⁇ m, more preferably 5 ⁇ m, and the concentration of the graphene oxide dispersion is preferably 0.5 to 5%, more preferably 1 %.
  • the present invention does not specifically limit the source of the graphene oxide dispersion, as long as the commercially available products are well known to those skilled in the art.
  • the graphene oxide has a lamellar structure, which can prevent external moisture and corrosive ions from entering the interior of the concrete, and the surface of the graphene oxide has abundant functional groups, such as hydroxyl, carboxyl, etc., through chemical reactions, firmly Adsorbed on the surface of concrete, it provides a template for the secondary hydration reaction of cement, optimizes the surface structure of concrete, increases surface density, improves surface strength, and improves water resistance and corrosion resistance.
  • the content of graphene oxide increases, when When the content of graphene oxide exceeds 45 parts, the stability of the composite gel material changes suddenly, which affects the stability of the composite gel material, and delamination will also appear immediately after the reaction.
  • the graphene oxide-TEOS/silane composite gel material provided by the present invention includes 30 to 90 parts of TEOS (ethyl orthosilicate), preferably 30 to 60 parts, most Preferably it is 40-55 parts.
  • TEOS ethyl orthosilicate
  • the present invention has no special requirements on the source of the TEOS, and commercially available products well known to those skilled in the art can be used.
  • the TEOS hydrolysis reaction is easy to form a gel, so that the product state of the present invention changes from a solution to a gel.
  • the graphene oxide-TEOS/silane composite gel material provided by the present invention includes 30 to 80 parts of silane, preferably 35 to 70 parts, and most preferably 40 to 60 parts.
  • the silane is preferably methyltrimethoxysilane, methyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, isobutyltrimethoxysilane, isobutyl One or more of triethoxysilane, octyltrimethoxysilane and octyltriethoxysilane.
  • the present invention does not have special requirements for the source of the silane, and those skilled in the art can use silanes that are well-known sources, such as commercially available products.
  • the silane has low surface energy, can modify the surface of concrete to obtain a surface with strong hydrophobicity, thereby inhibiting the adsorption of water on the surface of concrete, and enhancing water resistance and corrosion resistance.
  • the graphene oxide-TEOS/silane composite gel material provided by the present invention includes 1 to 5 parts of dispersant, preferably 2 to 4 parts.
  • the dispersant is preferably one or more of sodium dodecylbenzene sulfonate, polyvinyl alcohol, polyethylene glycol and glycerol.
  • the number average molecular weight of the polyethylene glycol is preferably 2,000.
  • the present invention has no special requirements on the source of the dispersant, and a dispersant whose source is well known to those skilled in the art can be used.
  • the graphene oxide-TEOS/silane composite gel material provided by the present invention includes 1 to 5 parts of emulsifier, preferably 2 to 4 parts.
  • the emulsifier is preferably one or more of Span 80, Ping Ping O and Tween.
  • the present invention has no special requirements on the source of the emulsifier, and only the emulsifier of the source well known to those skilled in the art can be used.
  • the present invention also provides a preparation method of the graphene oxide-TEOS/silane composite gel material according to the above technical scheme, which includes the following steps:
  • the step (1) and the step (2) have no time sequence.
  • the graphene oxide dispersion liquid and the dispersant are mixed to obtain the first mixed liquid.
  • the mixing is preferably performed under constant temperature conditions, and the temperature of the mixing is preferably 40 to 70°C, more preferably 50°C.
  • the mixing method is preferably stirring.
  • the present invention has no special requirements on the speed and time of the stirring, as long as the first mixed liquid can be uniformly mixed.
  • the silane and the emulsifier are mixed to obtain the second mixed liquid.
  • the mixing is preferably carried out under constant temperature conditions, and the temperature of the mixing is preferably 40 to 70°C, and more preferably 50°C.
  • the mixing method is preferably stirring.
  • the present invention has no special requirements on the speed and time of the stirring and mixing, as long as the first mixed liquid can be uniformly mixed.
  • the present invention does not require a time sequence for the preparation of the first mixed liquid and the second mixed liquid.
  • whether the first mixed liquid is prepared first or the second mixed liquid is prepared first has no influence on the preparation of the graphene oxide-TEOS/silane composite gel material.
  • the present invention mixes the first mixed liquid with the second mixed liquid, and adds TEOS to obtain the graphene oxide-TEOS/silane composite gel material.
  • the mixing is carried out under constant temperature conditions, and the temperature of the mixing is preferably 50-80°C, more preferably 55°C.
  • the second mixed liquid before mixing the first mixed liquid and the second mixed liquid, the second mixed liquid is preferably allowed to stand for 24 hours; the standing is preferably carried out under a constant temperature condition, and the temperature of the standing is preferably It is 40 to 70°C, more preferably 50°C. In the present invention, the standing can make the second mixed liquid more uniform.
  • the mixing is preferably performed under stirring conditions, and the stirring rate is preferably 2000 to 5000 r/min, more preferably 3000 to 4000 r/min.
  • the present invention does not specifically limit the stirring time, as long as the mixed liquid can be stirred uniformly.
  • the dripping speed is preferably 2-10 mL/min, more preferably 5 mL/min; in the present invention, the dripping facilitates the fully uniform reaction of silane and graphene oxide, so that the graphene oxide The carried hydroxyl or carboxyl group undergoes a condensation reaction with the alkoxy group on the silane molecular group, and is connected together to avoid local rapid reaction causing uneven product.
  • the present invention preferably adds TEOS dropwise to the uniformly mixed first mixed liquid and the second mixed liquid.
  • the dropping rate is preferably 2-10 mL/min, more preferably 5 mL/min.
  • the present invention also provides the application of the graphene oxide-TEOS/silane composite gel material in the architectural coating of the above technical solution.
  • the present invention has no special requirements for the implementation of the application, and the implementation that is well known to those skilled in the art can be used.
  • the application is specifically preferably: the graphene oxide-TEOS/silane composite gel material is coated on the surface of the building substrate, the number of coating times is 2 to 5 times, and the amount of each time is 200 to 300 g/ m 2 ; After the coating is finished, cover the surface of the building substrate with a plastic film for 3-7 days, remove the plastic film, and obtain a coating with waterproof and anti-corrosion properties.
  • the present invention has no special requirements on the coating method, and the coating method well-known to those skilled in the art can be used, such as roller coating.
  • 60 parts of isobutyltrimethoxysilane, 2 parts of Tween and 3 parts of Span 80 were stirred and mixed at a temperature of 60°C to form a second mixed solution.
  • the second mixed solution was allowed to stand at a temperature of 60°C for 24 hours, and then, At a constant temperature of 60°C and a rotation speed of 3000r/min, the second mixed liquid was added dropwise to the first mixed liquid with a dropping rate of 4mL/min.
  • 40 parts of TEOS were added dropwise to the mixed liquid of the two to obtain oxidation Graphene-TEOS/silane composite gel material.
  • the performance test of cement-based materials without coating treatment has been carried out. After testing, the capillary water absorption coefficient of cement-based materials without coating treatment is as high as 118.6g ⁇ m -2 ⁇ h -1 ; the static contact angle to water is 50 ⁇ 60°; the chloride ion diffusion coefficient is 7.5 ⁇ 10 -11 m 2 ⁇ s -1 .
  • the capillary water absorption coefficient of the cement-based material is 30.2 g ⁇ m -2 ⁇ h -1 ⁇ 55.1g ⁇ m -2 ⁇ h -1 , while the capillary water absorption coefficient of cement-based materials without coating treatment is as high as 118.6g ⁇ m -2 ⁇ h -1 ;
  • the static contact angle of the present invention to water is 118° ⁇ 128 °, while the static contact angle of the cement-based material without coating treatment to water is only 50-60°;
  • the chloride ion diffusion coefficient of the cement-based material of the present invention is 1.0 ⁇ 10 -12 m 2 ⁇ s -1 ⁇ 3.5 ⁇ 10 -12 m 2 ⁇ s -1 , and the chloride ion diffusion coefficient of the same cement-based material without coating treatment is 7.5 ⁇ 10 -11 m 2 ⁇ s -1 ,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

本发明提供了一种氧化石墨烯-TEOS/硅烷复合凝胶材料及其制备方法和应用,属于建筑物表面涂层技术领域。本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料,以质量份计,包括以下质量份数的组分:氧化石墨烯分散液5~45份、TEOS 30~90份、硅烷30~80份、乳化剂1~5份和分散剂1~5份;所述氧化石墨烯分散液的浓度为0.5~5%。本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料涂覆到水泥基材表面后,能够形成疏水性防腐涂层,具有良好的防水和抗腐蚀性能。

Description

一种氧化石墨烯-TEOS/硅烷复合凝胶材料及其制备方法和应用
本申请要求于2019年06月06日提交中国专利局、申请号为CN201910491286.0、发明名称为“一种氧化石墨烯-TEOS/硅烷复合凝胶材料及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及建筑物表面涂层技术领域,尤其涉及一种氧化石墨烯-TEOS/硅烷复合凝胶材料及其制备方法和应用。
背景技术
建筑外表面涂层是提高建筑物耐久性的重要措施之一。目前,常用的建筑外表面涂层一般分为两种,表面涂覆型和表面渗透型。
表面涂覆型涂层是在建筑外表面形成一层覆盖型涂层,封闭建筑物表面的孔洞、裂缝等,从而阻止水分或侵蚀性物质进入到建筑材料内部,但是,同时也阻塞了建筑材料内部的水分蒸发,常引起涂层表面的起泡、开裂等现象,影响建筑物外观和耐久性。
表面渗透型涂层能够渗透到建筑材料内部3~5mm,在该区域形成憎水涂层,不会影响建筑物外观,受到了工程人员的普遍重视。但是,表面渗透型涂层很难阻止水分通过建筑材料表面裂缝进入建筑材料内部,而且渗透型涂层的抗腐蚀性能较差。
发明内容
有鉴于此,本发明的目的在于提供一种氧化石墨烯-TEOS/硅烷复合凝胶材料及其制备方法和应用,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料具有良好的防水性能和抗腐蚀性能。
为了实现上述发明目的,本发明提供以下技术方案:
本发明提供了一种氧化石墨烯-TEOS/硅烷复合凝胶材料,包括以下质量份数的组分:氧化石墨烯分散液5~45份、TEOS 30~90份、硅烷30~80份、乳化剂1~5份和分散剂1~5份;所述氧化石墨烯分散液的浓度为0.5~5%。
优选地,所述氧化石墨烯分散液中氧化石墨烯的粒径为3~8μm。
优选地,所述硅烷为甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、异丁基三甲氧基硅烷、异丁基三乙氧基硅烷、辛基三甲氧基硅烷和辛基三乙氧基硅烷中的一种或多种。
优选地,所述分散剂为十二烷基苯磺酸钠、聚乙烯醇、聚乙二醇和丙三醇中的一种或多种。
优选地,所述乳化剂为司盘80、平平加O和吐温中的一种或多种。
本发明还提供了上述技术方案所述氧化石墨烯-TEOS/硅烷复合凝胶材料的制备方法,包括以下步骤:
(1)将氧化石墨烯分散液与分散剂混合,得到第一混合液;
(2)将硅烷与乳化剂混合,得到第二混合液;
(3)将所述第一混合液与所述第二混合液混合,加入TEOS,得到所述氧化石墨烯-TEOS/硅烷复合凝胶材料;
所述步骤(1)和所述步骤(2)没有时间先后顺序。
优选地,所述步骤(3)的混合在恒温条件下进行。
优选地,所述步骤(3)混合的温度为50~80℃,混合的时间为2~3h。
优选地,所述步骤(3)为:将所述第一混合液滴加到所述第二混合液中或将所述第二混合液滴加到所述第一混合液中,得到混合液,再将TEOS滴加到混合液中。
本发明另提供了上述技术方案所述氧化石墨烯-TEOS/硅烷复合凝胶材料或上述技术方案所述制备方法制得的氧化石墨烯-TEOS/硅烷复合凝胶材料在建筑涂层中的应用。
本发明提供了一种氧化石墨烯-TEOS/硅烷复合凝胶材料,包括以下质量份数的组分:氧化石墨烯分散液5~45份、TEOS 30~90份、硅烷30~80份、乳化剂1~5份和分散剂1~5份;所述氧化石墨烯分散液的浓度为0.5~5%。本发明通过氧化石墨烯的片层状结构,阻止外界水分及侵蚀性离子进入混凝土内部,且氧化石墨烯表面具有丰富的官能团,如羟基、羧基等,可以通过化学反应,牢牢吸附在混凝土表面,为水泥的二次水化反应提供模板,优化混凝土的表面结构,提高表面致密度,改善表面强度,提高防水效果和抗腐蚀性能;同时TEOS水解反应后易形成凝胶,使得本 发明的产品状态由溶液状态变为凝胶状态,TEOS水解反应所形成的纳米SiO 2,与混凝土表面的水泥水化产物Ca(OH) 2发生二次水化反应,形成C-S-H凝胶,改善混凝土表面的微观结构,提高混凝土表面的致密度,进一步增强其防水效果和抗腐蚀性能。
实施例结果表明,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料涂覆到水泥基材表面后,水泥基材料对水的静态接触角为118~128°,毛细吸水系数为30.2~55.1g·m -2·h -1,氯离子扩散系数为1.0×10 -12~3.5×10 -12m 2·s -1,相较于实施例未做涂层处理的水泥基材料对水的静态接触角50~60°,毛细吸水系数118.6g·m -2·h -1,氯离子扩散系数7.5×10 -11m 2·s -1,说明本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料在水泥基材料表面形成涂层后具有疏水、抗腐蚀的特性。
具体实施方式
本发明提供了一种氧化石墨烯-TEOS/硅烷复合凝胶材料,包括以下质量份数的组分:氧化石墨烯分散液5~45份、TEOS 30~90份、硅烷30~80份、乳化剂1~5份和分散剂1~5份;所述氧化石墨烯分散液的浓度为0.5~5%。
以质量份数计,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料包括5~45份的氧化石墨烯分散液,更优选为5~40份,最优选为15~40份。
在本发明中,所述氧化石墨烯分散液中氧化石墨烯的粒径优选为3~8μm,更优选为5μm,所述氧化石墨烯分散液的浓度优选为0.5~5%,更优选为1%。本发明对所述氧化石墨烯分散液的来源没有特殊的限定,采用本领域技术人员所熟知的市售产品即可。在本发明中,所述氧化石墨烯为片层状结构,能够阻止外界水分及侵蚀性离子进入混凝土内部,且氧化石墨烯表面具有丰富的官能团,如羟基、羧基等,通过化学反应,牢牢吸附在混凝土表面,为水泥的二次水化反应提供模板,优化混凝土的表面结构,提高表面致密度,改善表面强度,提高防水效和抗腐蚀性能,但随着氧化石墨烯含量的增加,当氧化石墨烯的含量超过45份后,复合胶凝材料的稳定性骤变,影响复合凝胶材料的稳定性,反应结束后也会立刻出现分层现象。
以氧化石墨烯分散液的重量份为基准,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料包括30~90份的TEOS(正硅酸乙酯),优选为30~60份,最优选为40~55份。本发明对所述TEOS的来源没有特殊要求,采用本领域技术人员熟知的市售产品即可。在本发明中,所述TEOS水解反应后易形成凝胶,使得本发明的产品状态由溶液变为凝胶,TEOS水解反应所形成的纳米SiO 2,与混凝土表面的水泥水化产物Ca(OH) 2发生二次水化反应,形成C-S-H凝胶,改善混凝土表面的微观结构,提高混凝土表面的致密度,进一步增强其防水效果和抗腐蚀性能。
以氧化石墨烯分散液的质量份为基准,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料包括30~80份的硅烷,优选为35~70份,最优选为40~60份。
在本发明中,所述硅烷优选为甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、异丁基三甲氧基硅烷、异丁基三乙氧基硅烷、辛基三甲氧基硅烷和辛基三乙氧基硅烷中的一种或多种。本发明对所述硅烷的来源没有特殊要求,采用本领域技术人员熟知来源的硅烷即可,具体的如市售商品。在本发明中,所述硅烷具有较低的表面能,可对混凝土表面进行改性,获得疏水性强的表面,从而抑制水分在混凝土表面的吸附,增强防水性和抗腐蚀性。
以氧化石墨烯分散液的重量份为基准,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料包括1~5份的分散剂,优选为2~4份。在本发明中,所述分散剂优选为十二烷基苯磺酸钠、聚乙烯醇、聚乙二醇和丙三醇中的一种或多种。在本发明中,所述聚乙二醇的数均分子量优选为2000。本发明对所述分散剂的来源没有特殊要求,采用本领域技术人员熟知来源的分散剂即可。
以氧化石墨烯分散液的重量份为基准,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料包括1~5份的乳化剂,优选为2~4份。在本发明中,所述乳化剂优选为司盘80、平平加O和吐温中的一种或多种。本发明对所述乳化剂的来源没有特殊要求,采用本领域技术人员熟知来源的乳化剂即可。
本发明还提供了上述技术方案所述氧化石墨烯-TEOS/硅烷复合凝胶材料的制备方法,包括以下步骤:
(1)将氧化石墨烯分散液与分散剂混合,得到第一混合液;
(2)将硅烷与乳化剂混合,得到第二混合液;
(3)将所述第一混合液与所述第二混合液混合,加入TEOS,得到所述氧化石墨烯-TEOS/硅烷复合凝胶材料;
所述步骤(1)和所述步骤(2)没有时间先后顺序。
本发明将氧化石墨烯分散液与分散剂混合,得到第一混合液。
在本发明中,所述混合优选在恒温条件下进行,所述混合的温度优选为40~70℃,更优选为50℃。在本发明中,所述混合的方式优选为搅拌,本发明对所述搅拌的速率和时间没有特殊要求,能够得到混合均匀的第一混合液即可。
本发明将硅烷与乳化剂混合,得到第二混合液。
在本发明中,所述混合优选在恒温条件下进行,所述混合的温度优选为40~70℃,进一步优选为50℃。在本发明中,所述混合的方式优选为搅拌,本发明对所述搅拌混合的速率和时间没有特殊要求,能够得到混合均匀的第一混合液即可。
本发明对所述第一混合液和第二混合液的制备没有时间先后顺序的要求。本发明先制备第一混合液还是先制备第二混合液对所述氧化石墨烯-TEOS/硅烷复合凝胶材料的制备没有任何影响。
得到第一混合液和第二混合液后,本发明将所述第一混合液与所述第二混合液混合,加入TEOS,得到所述氧化石墨烯-TEOS/硅烷复合凝胶材料。
在本发明中,所述混合在恒温条件下进行,所述混合的温度优选为50~80℃,更优选为55℃。在本发明中,所述第一混合液和第二混合液在混合前,优选将所述第二混合液静置24h;所述静置优选在恒温条件下进行,所述静置的温度优选为40~70℃,进一步优选为50℃。在本发明中,所述静置能够使第二混合液更加均匀。
在本发明中,所述混合优选在搅拌条件下进行,所述搅拌的速率优选为2000~5000r/min,进一步优选为3000~4000r/min。本发明对所述搅拌的时间没有特殊的限定,能将混合液搅拌均匀即可。
本发明优选采用滴加的方式,将第一混合液滴加到第二混合液中,或将第二混合液滴加到第一混合液中。在本发明中,所述滴加的速度优选为2~10mL/min,更优选为5mL/min;在本发明中,所述滴加有利于硅烷与氧化石墨烯充分均匀反应,使氧化石墨烯所携带的羟基或羧基与硅烷分子基团上的烷氧基发生缩合反应,连接在一起,避免局部的快速反应造成产物不均匀。
混合完成后,本发明优选将TEOS滴加到混合均匀的第一混合液与第二混合液中。在本发明中,所述滴加的速度优选为2~10mL/min,更优选为5mL/min。
本发明另提供了上述技术方案所述氧化石墨烯-TEOS/硅烷复合凝胶材料在建筑涂层中的应用。本发明对所述应用的实施方式没有特殊要求,采用本领域技术人员熟知的实施方式即可。在本发明中,所述应用具体优选为:将所述氧化石墨烯-TEOS/硅烷复合凝胶材料涂覆到建筑基体表面,涂覆次数为2~5次,每次用量为200~300g/m 2;涂覆结束后,在建筑基体表面覆盖塑料膜,覆盖3~7天,去除塑料膜,得到具有防水和抗腐蚀性能的涂层。本发明对所述涂覆的方式没有特殊要求,采用本领域技术人员熟知的涂覆方式即可,具体的如滚涂。
下面结合实施例对本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料及其制备方法和应用进行详细的说明,但是不能把它们理解为对本发明保护范围的限定。
实施例1
以质量份计,将25份氧化石墨烯分散液(浓度1%,粒径5μm)与2份聚乙二醇2000在50℃的温度下搅拌混合,形成第一混合液;
将65份异丁基三乙氧基硅烷、2份司盘80和3份平平加O在60℃的温度下搅拌混合形成第二混合液,将第二混合液在60℃温度下静置24h,然后在60℃恒温,3000r/min的转速下,将第二混合液滴加第一混 合液中,滴加速度为5mL/min,搅拌2.5h在两者的混合液中滴加60份TEOS,得到氧化石墨烯-TEOS/硅烷复合凝胶材料。
采用滚涂的方式在混凝土基体表面滚涂两次氧化石墨烯-TEOS/硅烷复合凝胶材料,共涂覆600g/m 2;涂覆结束后,在基体表面覆盖塑料膜,覆盖7天后,揭掉塑料膜。经测试,混凝土表面接触角达到128°,毛细吸水系数为30.2g·m -2·h -1,氯离子扩散系数为1.0×10 -12m 2·s -1
实施例2
以质量份计,将35份氧化石墨烯分散液(浓度1%,粒径5μm)与3份聚乙烯醇在50℃的温度下搅拌混合,形成第一混合液;
将50份甲基三甲氧基硅烷、3份吐温和2份平平加O在60℃的温度下搅拌混合形成第二混合液,将第二混合液在60℃温度下静置24h,然后在60℃恒温,3000r/min的转速下,将第二混合液滴加第一混合液中,滴加速度为8mL/min,搅拌2h后在两者的混合液中滴加50份TEOS,得到氧化石墨烯-TEOS/硅烷复合凝胶材料。
采用滚涂的方式在混凝土基体表面滚涂两次氧化石墨烯-TEOS/硅烷复合凝胶材料,共涂覆600g/m 2;涂覆结束后,在基体表面覆盖塑料膜,覆盖7天后,揭掉塑料膜。经测试,混凝土表面接触角达到120°,毛细吸水系数为52.3g·m -2·h -1,氯离子扩散系数为2.5×10 -12m 2·s -1
实施例3
以质量份计,将40份氧化石墨烯分散液(浓度2%,粒径8μm)与2份聚乙烯醇、2份聚乙二醇在50℃的温度下搅拌混合,形成第一混合液;
将60份异丁基三甲氧基硅烷、2份吐温和3份司盘80在60℃的温度下搅拌混合形成第二混合液,将第二混合液在60℃温度下静置24h,然后,在60℃恒温,3000r/min的转速下,将第二混合液滴加第一混合液中,滴加速度为4mL/min,搅拌3h后在两者的混合液中滴加40份TEOS,得到氧化石墨烯-TEOS/硅烷复合凝胶材料。
采用滚涂的方式在混凝土基体表面滚涂两次氧化石墨烯-TEOS/硅烷复合凝胶材料,共涂覆600g/m 2;涂覆结束后,在基体表面覆盖塑料膜,覆盖7天后,揭掉塑料膜。经测试,混凝土表面接触角达到118°,毛细 吸水系数为55.1g·m -2·h -1,氯离子扩散系数为3.5×10 -12m 2·s -1
实施例4
以质量份计,将45份氧化石墨烯分散液(浓度0.5%,粒径4μm)与2份丙三醇、2份聚乙烯醇在50℃的温度下搅拌混合,形成第一混合液;
将30份异丁基三甲氧基硅烷、20份甲基三乙基氧基硅烷、30份异丁基三乙氧基硅烷、2份司盘80和2份平平加O在60℃的温度下搅拌混合形成第二混合液,将第二混合液在60℃温度下静置24h,然后在60℃恒温,3000r/min的转速下,将第二混合液滴加第一混合液中,滴加速度为5mL/min,搅拌2.5h在两者的混合液中滴加80份TEOS,得到氧化石墨烯-TEOS/硅烷复合凝胶材料。
采用滚涂的方式在混凝土基体表面滚涂两次氧化石墨烯-TEOS/硅烷复合凝胶材料,共涂覆600g/m 2;涂覆结束后,在基体表面覆盖塑料膜,覆盖7天后,揭掉塑料膜。经测试,混凝土表面接触角达到110°,毛细吸水系数为45.6g·m -2·h -1,氯离子扩散系数为1.5×10 -12m 2·s -1
实施例5
以质量份计,将20份氧化石墨烯分散液(浓度5%,粒径6μm)与1份丙三醇、2份聚乙二醇在50℃的温度下搅拌混合,形成第一混合液;
将15份乙烯基三乙氧基硅烷、20份甲基三乙基氧基硅烷、15份异丁基三乙氧基硅烷、1份司盘80和2份吐温在60℃的温度下搅拌混合形成第二混合液,将第二混合液在60℃温度下静置24h,然后在60℃恒温,3000r/min的转速下,将第二混合液滴加第一混合液中,滴加速度为5mL/min,搅拌2.5h在两者的混合液中滴加30份TEOS,得到氧化石墨烯-TEOS/硅烷复合凝胶材料。
采用滚涂的方式在混凝土基体表面滚涂两次氧化石墨烯-TEOS/硅烷复合凝胶材料,共涂覆600g/m 2;涂覆结束后,在基体表面覆盖塑料膜,覆盖7天后,揭掉塑料膜。经测试,混凝土表面接触角达到112°,毛细吸水系数为36.5g·m -2·h -1,氯离子扩散系数为2.3×10 -12m 2·s -1
实施例6
以质量份计,将10份氧化石墨烯分散液(浓度3%,粒径7μm)与1 份丙三醇、2份聚乙二醇在50℃的温度下搅拌混合,形成第一混合液;
将25份甲基三乙氧基硅烷、15份甲基三甲氧基硅烷、20份辛基三甲氧基硅烷、3份司盘80和2份吐温在60℃的温度下搅拌混合形成第二混合液,将第二混合液在60℃温度下静置24h,然后在60℃恒温,3000r/min的转速下,将第二混合液滴加第一混合液中,滴加速度为5mL/min,搅拌2.5h在两者的混合液中滴加70份TEOS,得到氧化石墨烯-TEOS/硅烷复合凝胶材料。
采用滚涂的方式在混凝土基体表面滚涂两次氧化石墨烯-TEOS/硅烷复合凝胶材料,共涂覆600g/m 2;涂覆结束后,在基体表面覆盖塑料膜,覆盖7天后,揭掉塑料膜。经测试,混凝土表面接触角达到125°,毛细吸水系数为50.6g·m -2·h -1,氯离子扩散系数为2.8×10 -12m 2·s -1
对比例1
对未做涂层处理的水泥基材料进行性能测试,经测试,未做涂层处理的水泥基材料毛细吸水系数高达118.6g·m -2·h -1;对水的静态接触角为50~60°;氯离子扩散系数为7.5×10 -11m 2·s -1
由以上实施例和对比例可知,本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料涂覆到水泥基材表面后,水泥基材料毛细吸水系数为30.2g·m -2·h -1~55.1g·m -2·h -1,而未做涂层处理的水泥基材料毛细吸水系数高达118.6g·m -2·h -1;本发明对水的静态接触角为118°~128°,而未做涂层处理的水泥基材料对水的静态接触角仅为50~60°;本发明水泥基材料氯离子扩散系数为1.0×10 -12m 2·s -1~3.5×10 -12m 2·s -1,而未做涂层处理的相同水泥基材料的氯离子扩散系数为7.5×10 -11m 2·s -1,说明本发明提供的氧化石墨烯-TEOS/硅烷复合凝胶材料在水泥基材料表面形成涂层后能够阻止水分通过建筑材料表面裂缝进入建筑材料内部,具有疏水、抗腐蚀的特性。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本文中所定义的一般原理可以在不脱离本发明的 精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种氧化石墨烯-TEOS/硅烷复合凝胶材料,其特征在于,包括以下质量份数的组分:氧化石墨烯分散液5~45份、TEOS 30~90份、硅烷30~80份、乳化剂1~5份和分散剂1~5份,所述氧化石墨烯分散液的浓度为0.5~5%。
  2. 根据权利要求1所述的氧化石墨烯-TEOS/硅烷复合凝胶材料,其特征在于,所述氧化石墨烯分散液中氧化石墨烯的粒径为3~8μm。
  3. 根据权利要求1所述的氧化石墨烯-TEOS/硅烷复合凝胶材料,其特征在于,所述硅烷为甲基三甲氧基硅烷、甲基三乙氧基硅烷、乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、异丁基三甲氧基硅烷、异丁基三乙氧基硅烷、辛基三甲氧基硅烷和辛基三乙氧基硅烷中的一种或多种。
  4. 根据权利要求1所述的氧化石墨烯-TEOS/硅烷复合凝胶材料,其特征在于,所述分散剂为十二烷基苯磺酸钠、聚乙烯醇、聚乙二醇和丙三醇中的一种或多种。
  5. 根据权利要求1所述的氧化石墨烯-TEOS/硅烷复合凝胶材料,其特征在于,所述乳化剂为司盘80、平平加O和吐温中的一种或多种。
  6. 权利要求1~5任一项所述氧化石墨烯-TEOS/硅烷复合凝胶材料的制备方法,其特征在于,包括以下步骤:
    (1)将氧化石墨烯分散液与分散剂混合,得到第一混合液;
    (2)将硅烷与乳化剂混合,得到第二混合液;
    (3)将所述第一混合液与所述第二混合液混合,加入TEOS,得到所述氧化石墨烯-TEOS/硅烷复合凝胶材料;
    所述步骤(1)和所述步骤(2)没有时间先后顺序。
  7. 根据权利要求6所述的制备方法,其特征在于,所述步骤(3)的混合在恒温条件下进行。
  8. 根据权利要求6或7所述的制备方法,其特征在于,所述步骤(3)混合的温度为50~80℃,混合的时间为2~3h。
  9. 根据权利要求6所述的制备方法,其特征在于,所述步骤(3)为: 将所述第一混合液滴加到所述第二混合液中或将所述第二混合液滴加到所述第一混合液中,得到混合液,再将TEOS滴加到混合液中。
  10. 权利要求1~5任一项所述氧化石墨烯-TEOS/硅烷复合凝胶材料或权利要求6~9任一项所述制备方法制备得到的氧化石墨烯-TEOS/硅烷复合凝胶材料在建筑涂层中的应用。
PCT/CN2020/077999 2019-06-06 2020-03-05 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用 WO2020244263A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2014224.6A GB2595009B (en) 2019-06-06 2020-03-05 Graphene oxide-tetraethyl orthosilicate/silane composite gel material, and preparation method and use thereof
AU2020227037A AU2020227037B2 (en) 2019-06-06 2020-03-05 Graphene oxide-tetraethyl orthosilicate/silane composite gel material, and preparation method and use thereof
US16/979,467 US11879069B2 (en) 2019-06-06 2020-03-05 Graphene orthosilicate/silane composite gel material, and preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910491286.0A CN110183963B (zh) 2019-06-06 2019-06-06 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用
CN201910491286.0 2019-06-06

Publications (1)

Publication Number Publication Date
WO2020244263A1 true WO2020244263A1 (zh) 2020-12-10

Family

ID=67720749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/077999 WO2020244263A1 (zh) 2019-06-06 2020-03-05 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用

Country Status (4)

Country Link
US (1) US11879069B2 (zh)
CN (1) CN110183963B (zh)
AU (1) AU2020227037B2 (zh)
WO (1) WO2020244263A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694784A (zh) * 2021-01-23 2021-04-23 四川省隆鑫科技包装有限公司 一种金色低温丝印油墨及其制备方法
CN116815496A (zh) * 2023-08-02 2023-09-29 吴江市兴业纺织有限公司 一种防尘耐腐蚀面料及其制备方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183963B (zh) 2019-06-06 2020-11-20 青岛理工大学 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用
GB2595009B (en) * 2019-06-06 2023-07-26 Univ Qingdao Technology Graphene oxide-tetraethyl orthosilicate/silane composite gel material, and preparation method and use thereof
CN110204244B (zh) * 2019-06-06 2020-08-18 青岛理工大学 一种氧化石墨烯-teos/硅烷复合纳米材料的制备方法和应用
CN110534723B (zh) * 2019-09-16 2020-10-16 南通鼎鑫电池有限公司 一种高能石墨烯电池负极材料的制备方法
CN111502276B (zh) * 2020-04-21 2022-09-06 湖南鑫迪建设工程有限公司 环保防水保温施工方法
CN113185858B (zh) * 2021-05-07 2022-05-20 中建西部建设新疆有限公司 一种乙烯基硅烷改性氧化石墨烯复合材料及其制备方法和应用
CN113214738B (zh) * 2021-05-13 2022-04-12 青岛理工大学 一种聚多巴胺改性氧化石墨烯改性硅烷乳液及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860304A (zh) * 2015-05-07 2015-08-26 中国人民解放军国防科学技术大学 一种高比表面积氧化硅杂化石墨烯气凝胶及其制备方法
CN107022080A (zh) * 2017-04-28 2017-08-08 青岛理工大学 一种新型硅烷类复合凝胶防水材料的制备方法
CN107699130A (zh) * 2017-11-10 2018-02-16 青岛理工大学 一种硅烷石墨烯复合防水材料及其制备方法
CN108218386A (zh) * 2018-01-23 2018-06-29 贵州省建材产品质量监督检验院 氯硅烷改性氧化石墨烯/二氧化硅保温复合材料制备方法
CN108217632A (zh) * 2018-02-05 2018-06-29 山东佳星环保科技有限公司 具有超高比表面积的石墨烯气凝胶的制备方法
CN109251660A (zh) * 2018-09-21 2019-01-22 青岛理工大学 一种氧化铝溶胶-硅烷复合材料及其制备方法和应用
CN110183963A (zh) * 2019-06-06 2019-08-30 青岛理工大学 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用
CN110204244A (zh) * 2019-06-06 2019-09-06 青岛理工大学 一种氧化石墨烯-teos/硅烷复合纳米材料的制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104177124B (zh) * 2013-05-27 2018-02-16 上海惠邦特种涂料有限公司 一种纳米改性硅烷、硅氧烷防水剂及其制备方法
KR101582834B1 (ko) * 2014-04-14 2016-01-08 한국세라믹기술원 비수계 그래핀 코팅액 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860304A (zh) * 2015-05-07 2015-08-26 中国人民解放军国防科学技术大学 一种高比表面积氧化硅杂化石墨烯气凝胶及其制备方法
CN107022080A (zh) * 2017-04-28 2017-08-08 青岛理工大学 一种新型硅烷类复合凝胶防水材料的制备方法
CN107699130A (zh) * 2017-11-10 2018-02-16 青岛理工大学 一种硅烷石墨烯复合防水材料及其制备方法
CN108218386A (zh) * 2018-01-23 2018-06-29 贵州省建材产品质量监督检验院 氯硅烷改性氧化石墨烯/二氧化硅保温复合材料制备方法
CN108217632A (zh) * 2018-02-05 2018-06-29 山东佳星环保科技有限公司 具有超高比表面积的石墨烯气凝胶的制备方法
CN109251660A (zh) * 2018-09-21 2019-01-22 青岛理工大学 一种氧化铝溶胶-硅烷复合材料及其制备方法和应用
CN110183963A (zh) * 2019-06-06 2019-08-30 青岛理工大学 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用
CN110204244A (zh) * 2019-06-06 2019-09-06 青岛理工大学 一种氧化石墨烯-teos/硅烷复合纳米材料的制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112694784A (zh) * 2021-01-23 2021-04-23 四川省隆鑫科技包装有限公司 一种金色低温丝印油墨及其制备方法
CN116815496A (zh) * 2023-08-02 2023-09-29 吴江市兴业纺织有限公司 一种防尘耐腐蚀面料及其制备方法
CN116815496B (zh) * 2023-08-02 2024-02-27 吴江市兴业纺织有限公司 一种防尘耐腐蚀面料及其制备方法

Also Published As

Publication number Publication date
CN110183963A (zh) 2019-08-30
US11879069B2 (en) 2024-01-23
CN110183963B (zh) 2020-11-20
US20220396705A1 (en) 2022-12-15
AU2020227037B2 (en) 2021-11-18
AU2020227037A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
WO2020244263A1 (zh) 一种氧化石墨烯-teos/硅烷复合凝胶材料及其制备方法和应用
US10927275B2 (en) Alumina sol-silane composite material and preparation method and application thereof
JP7195011B2 (ja) 超疎水性コーティング及びその調製方法と応用、超疎水性発泡コンクリート及びその調製方法
WO2020244506A1 (zh) 一种氧化石墨烯-teos/硅烷复合纳米材料的制备方法和应用
CN111875320B (zh) 一种超疏水微胶囊聚合物水泥基防腐涂料及其制备方法与应用
KR102040964B1 (ko) 라돈 저감을 위한 실리카 에어로겔 코팅제 조성물의 제조방법
GB2595009A (en) Graphene oxide-TEOS/silane composite gel material, preparation method therefor and use thereof
CN110903689B (zh) 一种疏水改性三元膨胀阻燃剂及其制备方法和水性膨胀型防火涂料
CN111087884A (zh) 一种有机硅石膏防水剂的制备方法
CN111363421A (zh) 一种氟硅纳米防水隔热复合材料及其制备方法
CN110845953A (zh) 一种外墙环保涂料及其制备方法
CN114409305A (zh) 液态界面处理剂、环保防水浆料及其制备方法和施工方法
CN113913073B (zh) 一种耐候防水阻燃一体化涂料及其制备方法
CN106116381B (zh) 一种抗裂型无机防水材料
CN112126284B (zh) 一种外墙防水保温涂料及其制备方法
CN113980520A (zh) 一种防水抗裂生态绿色建筑墙体涂料及其制备方法
KR100502278B1 (ko) 콘크리트 표면 마감코팅을 위한 유·무기 가교형 복합폴리머계 코팅제 조성물 및 제조 방법
CN114591101A (zh) 一种混凝土防水材料及其制备方法
JP6560967B2 (ja) 表面含浸材及び構造物
JP6560966B2 (ja) 表面含浸材及び構造物
KR20040058537A (ko) 신·구 콘크리트의 계면 접착강화을 위한 유·무기가교형 복합 폴리머계 코팅제 조성물 및 제조방법
CN113004748B (zh) 涂覆组合物、发泡聚苯乙烯及涂覆组合物的制造方法
KR100254846B1 (ko) 균열방지제
JP6594752B2 (ja) 表面含浸材及び構造物
CN112080203A (zh) 一种用于阿嘎土的防水涂料及其制备方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202014224

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20200305

ENP Entry into the national phase

Ref document number: 2020227037

Country of ref document: AU

Date of ref document: 20200305

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20819181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20819181

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/05/2022).

122 Ep: pct application non-entry in european phase

Ref document number: 20819181

Country of ref document: EP

Kind code of ref document: A1