WO2020241860A1 - 正浸透膜及び正浸透膜モジュールとその製造方法 - Google Patents

正浸透膜及び正浸透膜モジュールとその製造方法 Download PDF

Info

Publication number
WO2020241860A1
WO2020241860A1 PCT/JP2020/021437 JP2020021437W WO2020241860A1 WO 2020241860 A1 WO2020241860 A1 WO 2020241860A1 JP 2020021437 W JP2020021437 W JP 2020021437W WO 2020241860 A1 WO2020241860 A1 WO 2020241860A1
Authority
WO
WIPO (PCT)
Prior art keywords
forward osmosis
osmosis membrane
solution
active layer
hollow fiber
Prior art date
Application number
PCT/JP2020/021437
Other languages
English (en)
French (fr)
Inventor
大輔 堀田
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to US17/614,682 priority Critical patent/US20220226778A1/en
Priority to EP20813249.8A priority patent/EP3978102A4/en
Priority to JP2021521892A priority patent/JP7214858B2/ja
Priority to CA3142200A priority patent/CA3142200C/en
Priority to CN202080039655.3A priority patent/CN113905807A/zh
Priority to AU2020283173A priority patent/AU2020283173B2/en
Publication of WO2020241860A1 publication Critical patent/WO2020241860A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/005Osmotic agents; Draw solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0088Physical treatment with compounds, e.g. swelling, coating or impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a forward osmosis membrane for separating a solvent from a target liquid mixture and concentrating the subject, a forward osmosis membrane module containing the same, and a method for producing the same. More specifically, the present invention realizes an extremely excellent reduction in the amount of salt backdiffusion, and has a water permeability of a predetermined value or higher, so that a forward osmosis membrane particularly suitable for high-concentration concentration of a raw material solution, and a forward osmosis membrane thereof.
  • the present invention relates to a forward osmosis membrane module including and a method for manufacturing the same.
  • a forward osmosis method is known as a method for concentrating a raw material liquid.
  • the forward osmosis method is a method of moving a solvent from a raw material solution to an inductive solution by adjoining a raw material solution and an inducing solution having a higher osmotic pressure than the raw material solution via a forward osmosis membrane.
  • the driving force of the forward osmosis method is the osmotic pressure difference between the raw material solution and the inductive solution. Therefore, unlike the distillation method or the reverse osmosis method, which are existing concentration techniques, it is expected that the raw material liquid can be concentrated without requiring heating or high pressure and without losing valuable components in the raw material liquid.
  • the forward osmosis method is similar to the reverse osmosis method in that a semipermeable membrane is used to allow the solvent to permeate preferentially over the solute.
  • the solvent is permeated from the dilute solution (raw material solution) side to the concentrated solution (induction solution) side by using the osmotic pressure difference, and in this respect, the concentrated solution side is opposed to the osmotic pressure difference.
  • the reverse osmosis method in which water is permeated from the concentrated solution side to the dilute solution side by pressurizing.
  • Non-Patent Document 1 even if a reverse osmosis membrane designed to exhibit a high water permeability under pressure is applied to the forward osmosis method as it is, it is not always suitable for the forward osmosis method. It doesn't become a thing.
  • Membranes suitable for the forward osmosis method are designed so that the amount of solvent permeated from the raw material solution to the inductive solution (water permeability) is large and the diffusion of the components in the inductive solution into the raw material solution (salt reverse diffusion) is small. Will be done. However, in general, it is not easy to realize high permeability and low salt backdiffusion, and there is an antinomy that if one of them is improved, one of them will be sacrificed.
  • Patent Document 1 establishes a method of forming a separation active layer on the inner surface of the hollow fiber membrane of a pre-assembled hollow fiber membrane module by an interfacial polymerization method to form a uniform separation active layer. By doing so, a forward osmotic membrane having a high water permeability and a low backdiffusion amount is obtained. Further, in Patent Documents 2 and 3, by forming a separation active layer on the surface of a support film having a structure having a high porosity, the diffusivity of the solute inside the support film is increased, and the positive water permeability has a suitable amount. Obtaining a permeable membrane.
  • Non-Patent Document 2 various forward osmotic membranes are comparatively evaluated, and among them, the result that the forward osmotic membrane having a separation active layer on the inner surface of the hollow fiber has a high water permeability is described.
  • Patent Document 4 proposes a method for improving the organic matter removal rate by treating the composite reverse osmosis membrane with hot water.
  • Patent Documents 5 and 6 propose a method of increasing both organic matter removability and water permeability by treating a composite reverse osmosis membrane with hot water in which a trialkylamine or the like is dissolved.
  • No. 7 a method of treating the membrane with hypochlorite after hot water treatment is proposed.
  • Patent Document 8 proposes a reverse osmosis membrane having high performance at a low pressure by a method of subjecting a semipermeable membrane produced by devising a solution to a dryer at 100 ° C. or higher.
  • Patent Document 1 and Non-Patent Document 2 are not yet sufficient in reducing the amount of salt backdiffusion, and there is room for improvement of the forward osmosis membrane itself. Further, the methods described in Patent Documents 2 and 3 have a drawback that the amount of water permeation is high, but the amount of salt backdiffusion is also high.
  • a plurality of components are often mixed in the raw material liquid to be concentrated, and the solute is often present at a high concentration in both of them via the forward osmosis membrane.
  • the preferable performance as a forward osmosis membrane is a high water permeation amount. It is considered that there is a certain amount of water permeation and a low amount of salt backdiffusion.
  • the development of forward osmosis membranes often emphasizes high water permeability, and in this respect, there is much room for improvement in forward osmosis membranes.
  • Patent Document 4 has a problem that the water permeability of the treated membrane is significantly reduced. Further, in the methods described in Patent Documents 5 to 7, the treated film is not washed, and elution of the film residue becomes a problem in actual use. Further, regarding the method described in Patent Document 8, the semipermeable membrane is generally hydrophilic, and when it becomes dry, the flexibility or strength of the semipermeable membrane is lost, and it takes time to recover. , A hydrophilic agent is required.
  • the above method was developed in accordance with a flat membrane-like reverse osmosis membrane, and it is difficult to obtain high performance even if the reverse osmosis membrane produced by the above method is used for a forward osmosis treatment. .. Further, in any of the above methods, since the separation active layer of the membrane is treated in an exposed state, the separation active layer is easily physically damaged, which is necessary in many cases where the membrane is actually used. It also becomes a problem in modularization.
  • an object of one aspect of the present invention is when testing the performance when water is used as the raw material solution and sodium chloride aqueous solution is used as the induction solution, which is one of the performance indexes of a general forward osmosis membrane.
  • a forward osmosis membrane that achieves extremely excellent reduction of salt backdiffusion and has a predetermined amount of water permeation, it is close to the liquid property used in the actual concentration operation, that is, the osmotic pressure.
  • concentration of the raw material solution having the above it is practical because the concentration of the inducing solution is suppressed even if it is used multiple times, and the raw material solution having an osmotic pressure is concentrated multiple times.
  • the present inventor does not aim for high water permeation, which has been a guideline for the development of many conventional forward osmotic membranes, but pursues low salt backdiffusion at the expense of a certain amount of water permeation, and is suitable for both performances.
  • a practical forward osmosis membrane has been developed by a development guideline that has never existed before, focusing on the possibility that the range setting affects the behavior of the actual concentration operation and the durability of the forward osmosis membrane. That is, an example of the embodiment of the present invention is as shown below.
  • ⁇ Aspect 1 A forward osmosis membrane in which a separation active layer of a polymer polymer is provided on the surface of a microporous support membrane.
  • the forward osmosis membrane has a salt backdiffusion amount R1 of 0.65 g / (m 2 ⁇ hr) or less and a water permeation amount F1 into the induction solution of 3.5 kg / (m 2 ⁇ hr) or more. ..
  • ⁇ Aspect 2 The forward osmosis membrane according to the above aspect 1, wherein the amount of salt backdiffusion R1 in the raw material liquid is 0.45 g / (m 2 ⁇ hr) or less.
  • ⁇ Aspect 3 The forward osmosis membrane according to the above aspect 1 or 2, wherein the amount of salt reverse diffusion R1 into the raw material liquid is 0.30 g / (m 2 ⁇ hr) or less.
  • ⁇ Aspect 4 >> The forward osmosis membrane according to any one of the above aspects 1 to 3, wherein the water permeation amount F1 into the induction solution is 5.0 kg / (m 2 ⁇ hr) or more.
  • ⁇ Aspect 5 The forward osmosis membrane according to any one of the above aspects 1 to 4, wherein the water permeation amount F1 into the induction solution is 6.5 kg / (m 2 ⁇ hr) or more.
  • ⁇ Aspect 6 The forward osmosis membrane according to any one of the above aspects 1 to 5, wherein the amount of salt backdiffusion R1 in the raw material liquid is 0.01 g / (m 2 ⁇ hr) or more.
  • ⁇ Aspect 7 >> The forward osmosis membrane according to any one of the above aspects 1 to 6, wherein the water permeation amount F1 into the induction solution is 50 kg / (m 2 ⁇ hr) or less.
  • the microporous support film is selected from the group consisting of polyethersulfone, polysulfone, polyketone, polyetheretherketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, polyimine, polyimide, polybenzoxazole, polybenzoimidazole, and polyamide.
  • ⁇ Aspect 9 The forward osmosis membrane according to the above aspect 8, wherein the microporous support membrane is a membrane containing at least one selected from the group consisting of polyethersulfone, polysulfone, polyketone, and polybenzimidazole as a main component.
  • ⁇ Aspect 10 The forward osmosis membrane according to the ninth aspect, wherein the microporous support membrane is a membrane containing at least one selected from the group consisting of polyethersulfone and polysulfone as a main component.
  • ⁇ Aspect 11 The forward osmosis membrane according to any one of the above aspects 8 to 10, wherein the water permeation amount F1 into the induction solution is 5.0 kg / (m 2 ⁇ hr) or more.
  • ⁇ Aspect 12 The forward osmosis membrane according to any one of the above aspects 8 to 11, wherein the amount of salt reverse diffusion R1 into the raw material liquid is 0.45 g / (m 2 ⁇ hr) or less.
  • ⁇ Aspect 13 Polycondensation formation of the polymer polymer with one or more first monomers selected from the group consisting of polyfunctional amines and one or more second monomers selected from the group consisting of polyfunctional acid halides.
  • ⁇ Aspect 14 The forward osmosis membrane according to aspect 13, wherein the polymer polymer is polyamide.
  • ⁇ Aspect 15 >> The forward osmosis membrane according to any one of the above aspects 1 to 14, wherein the forward osmosis membrane is a hollow yarn.
  • ⁇ Aspect 16 >> The forward osmosis membrane according to the above aspect 15, wherein the separation active layer is present on the inner surface of the microporous support membrane.
  • ⁇ Aspect 17 ⁇ A forward osmosis membrane module incorporating the forward osmosis membrane according to any one of the above aspects 1 to 16.
  • ⁇ Aspect 18 The forward osmosis membrane module according to the above aspect 17, wherein the forward osmosis membrane is a hollow fiber, and the forward osmosis membrane module has a hollow fiber yarn bundle composed of a plurality of the hollow fibers.
  • ⁇ Aspect 19 In the scanning electron microscope image obtained by photographing the cross section of the separation active layer in the thickness direction, the coefficient of variation of the average thickness of the separation active layer in the radial direction and the length direction of the hollow fiber bundle is 0 to 60%.
  • ⁇ Aspect 20 The method for manufacturing a forward osmosis membrane module according to the above aspect 18 or 19.
  • a fluid having a temperature of 55 ° C. or higher is flowed and wet at least on the inner surface side of the hollow fiber.
  • Heat treatment process provided in A method for manufacturing a forward osmosis membrane module, including.
  • ⁇ Aspect 21 The method for producing a forward osmosis membrane module according to the above aspect 20, wherein the heat treatment step is carried out by continuously applying hot water of 70 ° C. or higher and 95 ° C. or lower to at least the inner surface side of the hollow fiber.
  • ⁇ Aspect 22 >> The method for producing a forward osmosis membrane module according to the above aspect 20, wherein the heat treatment step is performed by steam at 100 ° C. or higher and 150 ° C. or lower.
  • the forward osmotic membrane according to one aspect of the present invention has extremely low salt backdiffusion and has a water permeation amount equal to or higher than a predetermined value, so that it is possible to concentrate with suppressed diffusion of the inducing solution even if it is used a plurality of times. It may have both practicality and durability that can maintain the membrane performance within a predetermined range even if the raw material solution having an osmotic pressure is concentrated a plurality of times.
  • the present embodiment can be suitably used for concentrating a liquid food or pharmaceutical solution, for example.
  • the object to be concentrated can be concentrated at a high magnification without heating, and further, the outflow or inflow of the solute is highly suppressed, and the deterioration of the components or the contamination of foreign substances is caused. Prevented, non-heated high concentration concentration becomes possible.
  • the forward osmosis membrane of the present embodiment has a separation active layer composed of a semipermeable membrane that permeates only a specific substance, and the separation active layer is the surface of a microporous support membrane, more specifically, the inner surface or the outer surface. It is composed of a microporous support membrane that physically supports it.
  • the water permeation amount F1 and the salt reverse diffusion amount R1 of the forward osmosis membrane in the present embodiment purified water is used as a raw material solution, a 3.5 mass% sodium chloride aqueous solution is used as an induction solution, and each solution is at 25 ° C. Below, it is evaluated by performing a forward osmosis treatment. Further, the salt reverse diffusion amount R2, the water permeation amount F2, and the salt permeability R2 / F2 calculated by dividing R2 by F2 in the forward osmosis membrane in the present embodiment are the raw material liquid (for example, the raw material liquid containing a solute).
  • water permeation depends on whether the raw material liquid is located on the separation active layer side or the support membrane side.
  • the amount F may be significantly different.
  • the raw material liquid in an actual concentrated environment, can be placed on the separation active layer side where the risk of film contamination is lower and the evaluation can be performed. Generally, in this case, the amount of water permeation is often lower than that when the raw material liquid is arranged on the support film side.
  • the amount of reverse salt diffusion R of the forward osmotic membrane (which can be R1 or R2, and therefore R1 and R2 are collectively referred to as R) is intended to be concentrated toward the separation active layer side with the forward osmotic membrane in between. It means the amount of solute that moves from the inducing solution to the raw material solution when the inducing solution having a higher osmotic pressure is placed on the support membrane side.
  • the salt backdiffusion amount R is defined by the following formula (1).
  • R G / (M ⁇ H) ⁇ ⁇ ⁇ Equation (1)
  • G is the amount of solute permeated (g)
  • M is the effective surface area of the forward osmosis membrane (m 2 )
  • H is the time (hr).
  • the separation active layer is basically arranged on the surface of the support membrane, and if there is a concept of front and back, it is preferable to arrange it on either one, but it may exist on both sides.
  • the separation active layer may have a symmetrical structure or an asymmetric structure with respect to the microporous support membrane.
  • the separation active layers on both sides may be continuous or discontinuous via the microporous support membrane. Absent.
  • the separation active layer side in the present disclosure means the layer side in the entire forward osmosis membrane which is considered to better prevent the solute of the inductive solution.
  • the evaluation method on the side that better blocks the solute of the inducing solution for example, purified water as a raw material solution on one side and a 3.5 mass% sodium chloride aqueous solution as an inducing solution on the other side via a forward osmosis membrane.
  • the salt back-diffusion amount R1 in the raw material liquid is evaluated and the two evaluation systems are compared between the case of the arrangement and the case of reversing the arrangement of these solutions, the evaluation system in which R1 becomes smaller
  • the raw material liquid side in the above can be the side that better blocks the solute of the inducing solution (separation active layer side).
  • the salt back-diffusion amount R1 (salt back-diffusion) of the forward osmosis membrane of the present embodiment is extremely low, and it is preferable that it is as low as possible. If the amount of salt backdiffusion is too large, the solute in the inducible solution is mixed in the raw material solution, or the solute in the raw material solution is mixed in the inductive solution, the purity of the raw material solution concentrate is lowered, and the component balance is lost. Problems such as contamination and a decrease in the amount of components in the inductive solution over time occur.
  • salt despreading amount R1 of the forward osmosis membrane of the present embodiment is 0.65g / (m 2 ⁇ hr) or less in one embodiment, preferably 0.45 g / (m 2 ⁇ hr) or less, more preferably 0.30 g / (m 2 ⁇ hr) or less.
  • the salt backdiffusion amount R1 of the forward osmosis membrane of the present embodiment may be 0.01 g / (m 2 ⁇ hr) or more.
  • the water permeation amount F of the forward osmosis membrane (which can be F1 or F2, and therefore F1 and F2 are collectively referred to as F) is a raw material to be concentrated on the separation active layer side with the forward osmosis membrane sandwiched between them. It means the amount of water that moves from the raw material solution to the induction solution when the solution is flowed and an induction solution having a higher osmotic pressure is arranged on the support membrane side.
  • the water permeability F of the forward osmosis membrane is defined by the following formula (2).
  • F L / (M ⁇ H) ⁇ ⁇ ⁇ Equation (2)
  • L is the amount of permeated water (kg)
  • M is the effective surface area of the forward osmosis membrane (m 2 )
  • H is the time (hr).
  • the water permeability F1 is preferably 5.0 kg / (m 2 ⁇ hr) or more, more preferably 6.0 kg / (m 2 ⁇ hr) or more, and particularly preferably 6.5 kg / /. It is (m 2 ⁇ hr) or more.
  • the water permeation amount F1 is less than 3.5 kg / (m 2 ⁇ hr) as a result of using the reverse osmosis membrane as the forward osmosis membrane, the water permeation amount F2 is remarkably low and relative.
  • the effect of the salt reverse osmosis amount R2 is large, and the salt permeability R2 / F2 is increased, so that a practical forward osmosis membrane cannot be obtained.
  • the water permeability F1 is preferably 50 kg / (m 2 ⁇ hr) or less.
  • the salt permeability R1 / F1 obtained by dividing the salt reverse diffusion amount R1 of the present embodiment by the water permeation amount F1 is an index showing the selectivity of solvent permeation and salt permeation, and the lower the value, the more difficult it is for the salt to permeate. , It is preferable because it is easy for the solvent to permeate.
  • a conventional general forward osmosis membrane when the amount of salt backdiffusion becomes low, the amount of water permeation often becomes extremely low, and as a result, the value of R1 / F1 often becomes large.
  • the value of R1 / F1 is 0.08 or less from the viewpoint of being practical from the viewpoint of concentrating the raw material liquid and achieving highly efficient solvent transfer. It is preferably 0.06 or less, more preferably 0.04 or less, and particularly preferably 0.03 or less.
  • the value of R1 / F1 is ideally 0, but from the viewpoint of ease of manufacturing a forward osmosis membrane, it may be, for example, 0.0001 or more.
  • the forward osmosis membrane of the present embodiment has, for example, an osmotic pressure because the water permeation amount F1 is 3.5 kg / (m 2 x hr) or more and R1 is 0.65 g / (m 2 x hr) or less at the initial stage.
  • F1 water permeation amount
  • R1 0.65 g / (m 2 x hr) or less at the initial stage.
  • the forward osmosis membrane of the present embodiment can maintain the membrane performance within a desired range even if it is used a plurality of times, and has high durability. Can have sex.
  • a substance such as an induced solute is carried in the separation active layer because the initial water permeability F1 and the salt reverse diffusion amount R1 are properly balanced. Since it is difficult for the separation active layer to increase the osmotic pressure, it is suppressed that water exceeding the amount of water originally possessed by the separation active layer suddenly invades the inside of the separation active layer.
  • the salt is supported in the separation active layer for a long period of time, for example, by washing away. It is considered to be suppressed over. From the above, it is considered that the forward osmosis membrane of the present embodiment can have not only practicality but also durability. It should be noted that this embodiment is not bound by the above considerations.
  • the salt permeable R2 / F2 obtained by dividing the salt reverse diffusion amount R2 of the present embodiment by the water permeation amount F2 is an index showing selectivity closer to the actual concentrated environment in that the raw material liquid has an osmotic pressure. Yes, the lower the value, the more difficult it is for the salt to permeate and the easier it is for the solvent to permeate, which is preferable. Although the reason is not clear, the salt permeability often decreases when solutes are present on both sides of the forward osmosis membrane, probably due to the influence of ion exchange or the like.
  • the salt reverse diffusion amount R1 exceeds 1.2 g / (m 2 ⁇ hr), which is a value conventionally considered to be sufficiently low, the salt reverse diffusion amount R2 is remarkably high. While increasing, the amount of water permeation F2 hardly increases, and as a result, R2 / F2 tends to increase.
  • the values of R2, F2, and R2 / F2 can be in the range exemplified as the values of R1, F1, and R1 / F1, respectively.
  • the inducing solution is a solution that exhibits a higher osmotic pressure than the raw material solution containing the substance to be separated or concentrated and has a function of moving the solvent from the raw material solution through the forward osmosis membrane.
  • This inductive solution exhibits high osmotic pressure by containing the inductive solute in a high concentration.
  • the inductive solute include alkali metal salts, alkaline earth metal salts, ammonium salts, sugars, monoalcohols, glycols, water-soluble polymers and the like.
  • alkali metal salt for example, sodium chloride, potassium chloride, sodium sulfate, sodium thiosulfate, sodium sulfite and the like
  • alkaline earth metal salts for example, magnesium chloride, calcium chloride, magnesium sulfate, etc.
  • ammonium salt for example, ammonium chloride, ammonium sulfate, ammonium carbonate, etc.
  • sugars for example, in addition to general sugars such as sucrose, fructose and glucose, special sugars such as oligosaccharides and rare sugars are used
  • sugars for example, in addition to general sugars such as sucrose, fructose and glucose, special sugars such as oligosaccharides and rare sugars are used
  • sugars for example, in addition to general sugars such as sucrose, fructose and glucose, special sugars such as oligosaccharides and rare sugars are used
  • monoalcohol for example, methanol, ethanol, 1-propanol, 2-
  • the microporous support membrane (sometimes referred to simply as a support membrane in the present disclosure) in the present embodiment is for supporting a separation active layer of a polymer polymer (typically, a polymer polymer thin film). It is preferably a membrane, which itself exhibits substantially no separation performance with respect to the object to be separated.
  • a polymer polymer typically, a polymer polymer thin film
  • the microporous support film any one including a known microporous support film can be used.
  • the microporous support film of the present embodiment preferably has micropores having a pore size of 0.001 ⁇ m or more and 0.1 ⁇ m or less, more preferably 0.005 ⁇ m or more and 0.05 ⁇ m or less on its surface.
  • the structure other than the surface of the microporous support membrane is preferably as sparse as possible as long as the strength is maintained in order to reduce the permeation resistance of the permeating fluid.
  • the sparse structure of this portion is preferably, for example, a reticular, finger-like void, or a mixed structure thereof.
  • the microporous support membrane is particularly preferably a hollow yarn because it can obtain a large surface area per module of the forward osmosis membrane module.
  • the water permeability of the support membrane which is represented by the amount of purified water that permeates the predetermined membrane area in a predetermined time, is preferably 100 kg / (m). It is 2 ⁇ hr) / 100 kPa or more, more preferably 200 kg / (m 2 ⁇ hr) / 100 kPa or more. If the water permeability of the support membrane is too low, the water permeability F of the resulting forward osmosis membrane module tends to be low.
  • the amount of water permeation of the support film is preferably as large as possible within a range that does not impair the mechanical strength of the support film.
  • water permeability of the microporous support membrane in the present embodiment is preferably 50,000kg / (m 2 ⁇ hr) / 100kPa or less, more preferably 10,000kg / (m 2 ⁇ hr) / 100kPa or less a guide It becomes.
  • any material that can be formed on the microporous support film can be used. However, in producing the forward osmosis membrane in the present embodiment, it is necessary that it is not chemically damaged by the monomer solution or the like used. Further, in the present embodiment, those that can be molded into microporous hollow fibers are preferable. Therefore, from the viewpoint of chemical resistance, film forming property, durability, etc., as the material of the microporous support film, for example, polyethersulfone, polysulfone, polyketone, polyetheretherketone, polyphenylene ether, polyvinylidene fluoride, polyacrylonitrile, etc.
  • the "main component” means a component having the largest mass ratio in the whole, and in one embodiment, a component having a mass ratio of more than 50% by mass in the whole.
  • the diameter of the hollow fiber is not particularly limited, but the outer diameter is 100 ⁇ m to 3 in consideration of film forming stability, ease of handling, film area when made into a module, and the like. Those having an inner diameter in the range of 30 ⁇ m to 2,500 ⁇ m are preferable, and those having an outer diameter of 200 ⁇ m to 1,500 ⁇ m and an inner diameter in the range of 50 ⁇ m to 1,000 ⁇ m are more preferable.
  • Such a microporous support film for example, a microporous hollow fiber support film is manufactured by a known dry-wet film forming method, melt film forming method, wet film forming method, or the like using a material selected from the above materials. can do.
  • the forward osmosis membrane of this embodiment can be used as a membrane module (forward osmosis membrane module) having a plurality of membranes.
  • the shape of the membrane module is not particularly limited, but in general, a compartment in which the liquid contacts only one surface side of the membrane and a compartment in which the liquid contacts only the other surface side of the membrane are adhesive resins for fixing the membrane to the module housing. Exists isolated by. Taking the hollow fiber membrane as an example, there are a compartment in which the liquid is in contact only with the inner surface side of the membrane and a compartment in which the liquid is in contact only with the outer surface side of the membrane.
  • the size of the module housing is not particularly specified, but for example, a cylindrical housing having a diameter of 0.5 inch to 20 inches and a length of 4 cm to 10 m can be used. Further, the module can be made by using an adhesive such as urethane-based or epoxy-based as the adhesive resin.
  • a tubular body is filled with a yarn bundle composed of a plurality of hollow fibers 4, and both ends of the hollow fiber membrane bundle are joined by adhesive fixing portions 5 and 6. It has a structure fixed to a cylinder.
  • the tubular body has outer conduits 2 and 3 on its sides and is sealed by headers 7 and 8.
  • the adhesive fixing portions 5 and 6 are solidified so as not to block the holes of the hollow fibers.
  • the headers 7 and 8 have inner conduits 9 and 10 that communicate with the inside (hollow portion) of the hollow fiber 4 and do not communicate with the outside, respectively. With these conduits, the liquid can be introduced into or taken out from the inside of the hollow fiber 4.
  • the outer conduits 2 and 3 communicate with the outside of the hollow fiber 4 and not with the inside, respectively.
  • the hollow fiber membrane module 1 has a structure in which the liquid flowing inside and the liquid flowing outside are in contact with each other only through the hollow fiber 4 (forward osmosis membrane).
  • the effective surface area of the membrane means a region where the raw material solution and the inductive solution exist via the forward osmosis membrane (that is, the raw material solution or the inductive solution in the forward osmosis membrane comes into contact with each other during the forward osmosis treatment. Area of part).
  • a is the inner surface area of the hollow fiber membrane (m 2 )
  • b the length of the hollow fiber excluding the adhesive portion (m)
  • c is the inner diameter of the hollow fiber (m)
  • n is the number of hollow fibers.
  • the thickness of the polymer polymer thin film is preferably as thin as possible without pinholes. However, in order to maintain mechanical strength and chemical resistance, it is desirable to have an appropriate thickness. Therefore, in consideration of film formation stability, water permeability, etc., the thickness of the polymer polymer thin film is preferably 0.1 ⁇ m to 3 ⁇ m, more preferably 0.2 ⁇ m to 2 ⁇ m.
  • the coefficient of variation which is the variation in the average thickness of the separated active layer, is within a specific range.
  • the hollow fiber membrane module which is a preferable example of the forward osmosis membrane module
  • the coefficient of variation is a value obtained by dividing the standard deviation of the average thickness value of each measurement point by the average value between the measurement points of the average thickness, and is expressed as a percentage (%).
  • the coefficient of variation of the average thickness of the separated active layer is preferably 0 to 0 in each of the radial direction and the length direction of the hollow fiber bundle from the viewpoint that partial functional defects can be further eliminated in the production. It is 60%, more preferably 0 to 50%, still more preferably 0 to 40%, and most preferably 0 to 30%.
  • the coefficient of variation is obtained by the following procedure. Hollow fibers are sampled one by one from the center of the module in the radial direction, the position at 50% of the radius, and the outermost peripheral portion, and each of these hollow fibers is divided into three equal parts in the length direction. , The thickness of the separation active layer is measured at n numbers of 1 or more (the n numbers of each point are the same) at each of the measurement points of the nine samples, and the number average value of the nine points is calculated.
  • the thickness at each measurement point is obtained as an average thickness in a measurement range having a length of about 5 to 100 ⁇ m.
  • the length of this measurement range is preferably 5 to 50 ⁇ m, more preferably 5 to 20 ⁇ m, and most preferably 13 ⁇ m.
  • the separation active layer in the hollow fiber membrane module of the present embodiment preferably has a fine uneven shape on its surface, as will be described later. Therefore, when evaluating the thickness of the separation active layer, it is appropriate to evaluate by the average thickness of the measurement range at each measurement point.
  • the coefficient of variation of the average thickness at each measurement point from the outermost peripheral portion to the central portion in the radial direction of the hollow fiber membrane module and the coefficient of variation from one end to the other end in the length direction of the module are , Each is preferably 0 to 60%, more preferably 0 to 50%, still more preferably 0 to 40%, and most preferably 0 to 30%.
  • the preferable separation active layer in the hollow fiber membrane module of the present embodiment has a small variation when the average thickness measured at a plurality of measurement points is compared.
  • the length direction of the measurement range in the evaluation of the average thickness may be the length direction of the hollow fiber, the circumferential direction of the hollow fiber, or the length direction of the hollow fiber. It may be in an oblique direction. Further, the directions of the lengths of the measurement ranges in the plurality of scanning electron microscope images used for calculating the average value between the measurement points may be the same direction or different directions from each other.
  • the present inventors infer the mechanism by which the surface of the separation active layer in the hollow fiber membrane module of the present embodiment has a fine uneven shape as follows.
  • the separation active layer of the present embodiment is preferably formed by interfacial polymerization.
  • interfacial polymerization when the liquid film of the first monomer solution formed on the surface of the hollow yarn comes into contact with the second monomer solution, it is considered that the two do not incompatible and the polymerization proceeds at the interface to form a polymerized layer. Be done. As a result, it is considered that the formed separation active layer has a shape with many fine irregularities on the surface.
  • the separation active layer is formed by a method other than interfacial polymerization, the separation active layer having a shape with many surface fine irregularities is not formed.
  • the separation active layer of the polymer polymer in the present embodiment is a membrane having substantially separation performance, which preferentially allows a solvent to pass through and blocks solutes.
  • a separation active layer for example, polyamide, polyvinyl alcohol / polypiperazine amide, sulfonated polyether sulfone, polypiperazine amide, and polyimide are preferably used.
  • polyamide is particularly preferably used in terms of ease of forming a defect-free thin film on a microporous support film.
  • the forward osmosis membrane of the present embodiment is a hollow fiber, and is preferably on the inner surface of the hollow fiber in order to prevent the separation active layer from being physically damaged.
  • the polymer polymer is polycondensed with one or more first monomers selected from the group consisting of polyfunctional amines and one or more second monomers selected from the group consisting of polyfunctional acid halides. It is preferably a product. More specifically, for example, the above-mentioned polyamide obtained by an interfacial polycondensation reaction between a polyfunctional amine and a polyfunctional acid halide can be mentioned.
  • the separation performance when these polymer polymers are used as the separation active layer refers to the performance of separating the solvent in the liquid mixture and the solute such as ions dissolved therein.
  • polyfunctional amine examples include a polyfunctional aromatic amine, a polyfunctional aliphatic amine, a monomer having a plurality of reactive amino groups, and prepolymers thereof.
  • the polyfunctional aromatic amine is an aromatic amino compound having two or more amino groups in one molecule, and more specifically, for example, m-phenylenediamine, p-phenylenediamine, 3,3'. -Diaminodiphenylmethane, 4,4'-diaminodiphenylamine, 3,3'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenylamine, 3,5-diaminobenzoic acid, 4,4'-diamino Diphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 3,4-diaminodiphenyl sulfone, 1,3,5-triaminobenzene, 1,5-diaminonaphthalene and the like can be mentioned, and these alone or a mixture thereof can be used. be able to.
  • the polyfunctional aliphatic amine is an aliphatic amino compound having two or more amino groups in one molecule, and more specifically, for example, for example.
  • Primary amines with a cyclohexane ring such as 1,3,5-triaminocyclohexane
  • Secondary amines with a piperazine ring such as piperazine, 2-methylpiperazine, ethylpiperazine, 2,5-dimethylpiperazine
  • Secondary amines with a piperidine ring such as 1,3-bis (4-piperidyl) methane, 1,3-bis (4-piperidyl) propane, and 4,4'-b
  • Examples of the monomer having a plurality of reactive amino groups include polyethyleneimine, amine-modified polyepichlorohydrin, and amination polystyrene.
  • the prepolymer for example, a prepolymer consisting of one or more selected from piperazine, 4- (aminomethyl) piperidine, ethylenediamine, and 1,2-diamino-2-methylpropane is preferably used.
  • polyfunctional halide examples include a polyfunctional aromatic acid halide and a polyfunctional aliphatic acid halide. These may be bifunctional or higher so that they can react with polyfunctional amines to form polymers.
  • the polyfunctional aromatic acid halide is an aromatic acid halide compound having two or more acid halide groups in one molecule.
  • Disulfonic acid halide and the like can be mentioned, and these alone or a mixture thereof can be used.
  • particularly trimesic acid chloride alone, a mixture of trimesic acid chloride and isophthalic acid chloride, or a mixture of trimesic acid chloride and terephthalic acid chloride is preferably used.
  • the polyfunctional aliphatic acid halide is an aliphatic acid halide compound having two or more acid halide groups in one molecule.
  • alicyclic polyfunctional acid halide compounds such as, for example, cyclobutanedicarboxylic acid halide, cyclopentanedicarboxylic acid halide, cyclopentanetricarboxylic acid halide, cyclopentanetetracarboxylic acid halide, cyclohexanedicarboxylic acid halide, cyclohexanetricarboxylic acid halide.
  • One of the first monomer and the second monomer will be contained in the first solution, and the other will be contained in the second solution. Which monomer may be contained in either solution, but it is not preferable that both monomers are contained in one solution.
  • the solvent of the first solution and the solvent of the second solution may be those that dissolve the monomers contained in each solution, form a liquid-liquid interface when the two solutions come into contact with each other, and do not damage the microporous support membrane.
  • a solvent for example, the solvent of the first solution is water, alcohol or the like alone or a mixture, and the solvent of the second solution is n-hexane, cyclohexane, n-heptane, n-octane, n-nonane, n. -Alone or a mixture of hydrocarbon solvents such as decane can be mentioned.
  • the polymerization condensation reaction proceeds, and a thin film of a polymer polymer is obtained.
  • the first monomer as the monomer contained in the first solution
  • the second monomer as the monomer contained in the second solution.
  • concentrations of these reactive compounds contained in the first solution and the second solution vary depending on the type of monomer, the partition coefficient with respect to the solvent, and the like, and are not particularly limited, and are appropriately set by those skilled in the art.
  • the interfacial polymerization reaction when an aqueous m-phenylenediamine solution is used as the first solution and the n-hexane solution of trimesic acid chloride is used as the second solution is as follows;
  • the concentration of m-phenylenediamine is preferably 0.1 to 10% by mass, more preferably 0.5 to 5% by mass.
  • the concentration of trimesic acid chloride is preferably 0.01 to 10% by mass, more preferably 0.1 to 5% by mass. If the concentration of these solutions is too low, the formation of a thin film by interfacial polymerization is incomplete and defects are likely to occur, resulting in deterioration of separation performance. On the contrary, if it is too high, the thin film to be formed becomes too thick, which may cause a decrease in the water permeability and an increase in the amount of residual unreacted material in the film, which may adversely affect the film performance.
  • an alkali as an acid scavenger can be added to the first solution or the second solution.
  • a surfactant for improving the wettability with the microporous support film, a catalyst for promoting the reaction, a salt as a film-forming improver, and the like may be added as needed. ..
  • Examples of acid trapping agents include caustic alkalis such as sodium hydroxide; sodium phosphates such as trisodium phosphate; sodium carbonates such as sodium carbonate; tertiary amines such as trimethylamine, triethylamine and triethylenediamine. ..
  • Examples of the surfactant include sodium lauryl sulfate, sodium laurylbenzene sulfonate, and the like.
  • catalysts include, for example, dimethylformamide.
  • Examples of the film-forming improver include a mixture of a trialkylamine such as triethylamine and an organic acid such as camphorsulfonic acid. These can be contained in the first solution or the second solution in advance.
  • the present embodiment it is possible to obtain physical durability and solvent resistance and reduce the amount of salt backdiffusion by probably adjusting the higher-order structure of the polymer polymer thin film and increasing the crosslink density. Therefore, it is particularly preferable to promote (curing) the cross-linking reaction by heat treatment or the like after forming the thin film. More specifically, by applying a heat treatment to the forward osmosis membrane by an appropriate method, the entire separation active layer can be heated uniformly and in a relatively short time, and the forward osmosis with reduced partial functional defects. A film can be formed.
  • the microporous support membrane is a hollow yarn, and after providing a separation active layer on the inner surface of the support membrane, a heat treatment step in a wet state is performed. ..
  • the method for manufacturing a forward osmosis membrane module is a manufacturing method in which the microporous support membrane is a hollow fiber and a separation active layer is provided on the inner surface of the support membrane.
  • a method of measuring the amount of the separated active layer portion in a scanning electron microscope image obtained by photographing a cross section in the thickness direction (more specifically, a method of measuring the mass of a microscope image output by the method described in [Example] of the present disclosure. ),
  • the coefficient of variation of the average thickness of the separation active layer in the radial direction and the length direction of the hollow fiber bundle is 0 to 60%.
  • the method for producing a forward osmosis membrane module is that after the separation active layer is provided, at least the separation active layer forming side of the support membrane (for example, when the separation active layer is provided on the inner surface of the support membrane, at least A heat treatment step is performed in which a fluid (for example, liquid or gas) having a temperature of 55 ° C. or higher is applied to the inner surface side of the hollow fiber in a fluid state and a wet state.
  • a fluid for example, liquid or gas
  • permeation means a process in which the separation active layer and the microporous support membrane come into contact with the fluid by providing a fluid to the forward osmosis membrane.
  • permeation method for example, in the case of a hollow fiber forward osmosis membrane, by providing a fluid on the inside or outside of the hollow fiber or on both sides thereof, the front side, the back side and the inside of the separation active layer, and the microporous support membrane can be provided.
  • a method of bringing a fluid into contact with the pores can be mentioned.
  • the heat treatment in the "heat treatment step” of the present embodiment means a treatment at a temperature of at least 55 ° C. or higher.
  • the "flowing state” of the present embodiment is a state in which the substance itself is moving in a solid, liquid, or gas.
  • the heat treatment step in the present embodiment is more effective when the separation active layer of the forward osmosis membrane has a uniform thickness.
  • the uniform thickness refers to a state in which the coefficient of variation of the average thickness of the separated active layer is 0 to 60%.
  • the coefficient of variation is more preferably 0 to 50%, still more preferably 0 to 40%, and most preferably 0 to 30%.
  • a method of applying hot water at 60 ° C. to 100 ° C. to the forward osmosis membrane after forming the polymer polymer thin film is preferable.
  • a method in which the forward osmosis membrane is a hollow fiber and hot water at 70 ° C. to 95 ° C. is applied to the polymer polymer thin film forming side, which is the inner surface side of the hollow fiber, that is, micropores.
  • a flow of hot water at 70 ° C. to 95 ° C. (more specifically) with respect to at least the inner surface side of the hollow fiber of the forward osmosis membrane provided with the separation active layer of the polymer polymer on the inner surface of the hollow fiber support membrane.
  • the method of continuing permeation is preferably used because it promotes the cross-linking reaction of the polymer polymer thin film well and has high heat transfer efficiency.
  • heat is uniformly transferred to the separation active layer and residual monomers in the support membrane flow as compared with the method of immersing the separation active layer in hot water. This is particularly preferable because it makes it difficult for unnecessary reactions to occur.
  • the water flow time of hot water is preferably 5 minutes to 2 hours. When it is 5 minutes or more, the cross-linking reaction and the like proceed well. Further, if it exceeds 2 hours, the effect at the corresponding temperature reaches equilibrium, so 2 hours or less is preferable.
  • a method of applying high temperature water vapor to the forward osmosis membrane is also preferably used.
  • High-temperature steam refers to water in a gaseous state at 100 ° C. or higher, especially under high-pressure conditions.
  • High-temperature steam can be generated in a pressure cooker such as an autoclave generally used for high-pressure steam sterilization.
  • a pressure cooker such as an autoclave generally used for high-pressure steam sterilization.
  • the method of supplying steam at ° C. promotes the cross-linking reaction of the polymer polymer thin film well, and the support membrane or the polymer polymer thin film is not significantly damaged. It is preferably used because the reverse salt diffusion is extremely low.
  • the time for applying the forward osmosis membrane to the water vapor at the set temperature is preferably 1 minute to 2 hours. If it is 1 minute or more, the cross-linking reaction or the like proceeds well. Further, if it exceeds 2 hours, the effect at the corresponding temperature reaches equilibrium, so 2 hours or less is preferable.
  • At least one of the first monomer and the second monomer contains a reactive compound having three or more reactive groups, and the three-dimensional polymer polymer thin film formed thereby is subjected to the above-mentioned wet state.
  • the heat treatment is applied, the above effects are more prominent, and as a result, the strength and durability of the forward osmotic membrane are improved, and salt backdiffusion is reduced, which is particularly preferable.
  • the purified water referred to in the present disclosure refers to water having an electric conductivity of 100 ⁇ S / cm or less and an organic substance concentration of 10 mass ppm or less, and can be produced by a distillation method, an ion exchange method, a reverse osmosis method, or the like.
  • Example 1 [Manufacturing of microporous support membrane] Polyether sulfone (PES; manufactured by BASF, trade name Ultrason) and polyether sulfone with a hydroxy terminal are dissolved in N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) to obtain a polymer concentration. A 18.5% by mass hollow yarn spinning stock solution was prepared. At this time, the ratio of the polyether sulfone to the polyether sulfone whose terminal was hydroxyated was 55:45.
  • PES Polyether sulfone
  • N-methyl-2-pyrrolidone manufactured by Wako Pure Chemical Industries, Ltd.
  • a wet hollow fiber spinning machine equipped with a double spun was filled with the above stock solution and extruded into a coagulation tank filled with water to form hollow fibers by phase separation.
  • the obtained hollow fiber was wound on a winder.
  • the outer diameter of the obtained hollow fiber was 1.0 mm, and the inner diameter was 0.70 mm.
  • the water permeability was 2,392 kg / (m 2 x hr) / 100 kPa.
  • This hollow fiber was used as a microporous hollow fiber support film.
  • n-hexane solution (second solution) containing 0.17% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, and then hot water at 70 ° C. is flowed inside the hollow fiber at a flow rate of 1.5 L / min for 30 minutes, and then water at 20 ° C. for 30 minutes.
  • a forward osmosis membrane module was obtained.
  • a 100 L tank containing 60 L of purified water was connected to the inner conduit (inside the hollow fiber) of the obtained forward osmosis membrane module by a pipe, and the purified water was circulated by a pump (raw material liquid).
  • the tank was equipped with a conductivity meter to measure the transfer of salt to purified water.
  • a 100 L tank containing 60 L of a 3.5 mass% sodium chloride aqueous solution was connected to the outer conduit (outside the hollow thread side) with a pipe, and the sodium chloride aqueous solution was circulated by a pump (induction solution).
  • the inner and outer tanks were placed on the balance, respectively, and the amount of water movement was measured.
  • the flow rate of purified water was 2.2 L / min and the flow rate of the aqueous sodium chloride solution was 8.8 L / min at the same time, and the amount of water and salt transferred after 60 minutes was measured.
  • the induction solution to be diluted was set to maintain the initial concentration by adding the induction solution having a saturated concentration little by little during the measurement, and the measurement was carried out at 25 ° C. These were performed at least 5 times, and the water permeation amount F1 and the salt reverse diffusion amount R1 of the forward osmosis membrane were calculated by the formulas (1) and (2) using the average values thereof.
  • R G / (M ⁇ H) ⁇ ⁇ ⁇ Equation (1)
  • G is the amount of solute permeated from the induction solution side to the raw material solution side (g)
  • M is the effective surface area (m 2 ) of the forward osmosis membrane
  • H is the time (hr).
  • F L / (M ⁇ H) ⁇ ⁇ ⁇ Equation (2)
  • L is the amount of water (kg) permeated from the raw material solution side to the induction solution side
  • M is the effective surface area (m 2 ) of the forward osmosis membrane
  • H is the time (hr).
  • the flow rate of the aqueous sodium chloride solution was set to 2.2 L / min and the flow rate of the aqueous magnesium chloride solution was set to 8.8 L / min at the same time, and the amount of movement of water and each salt after 60 minutes was measured.
  • the induction solution to be diluted was set to maintain the initial concentration by adding the induction solution having a saturated concentration little by little during the measurement, and the measurement was carried out at 25 ° C.
  • ICP-MS Inductively coupled plasma-mass analysis
  • the forward osmosis membrane modules obtained in each Example and Comparative Example were disassembled, and one hollow fiber was sampled from each of three locations: the center in the radial direction of the module, the position at 50% of the radius, and the outermost periphery. ..
  • Each hollow fiber was divided into three equal parts in the length direction to obtain nine samples.
  • Each of these hollow fiber samples was frozen and split to prepare a hollow fiber cross-section sample.
  • the sample was prepared by freezing and splitting as follows.
  • the hollow fiber is immersed in ethanol (manufactured by Wako Pure Chemical Industries, Ltd.), and gelatin capsule No.
  • the microscopic image was printed on paper with a printer, the separated active layer portion was cut out, and the mass was measured with a precision balance. This mass was converted into the thickness ( ⁇ m) of the separation active layer by a calibration curve prepared in advance. Then, the coefficient of variation was calculated by using the average value of the nine samples as the average thickness of the separated active layer. The results are shown in Table 1.
  • Magnesium chloride was added to a 10 mass% sucrose aqueous solution and diluted so that the Mg 2+ ion concentration in the solution was 40 mass ppm to prepare a simulated sap (raw material solution).
  • a 1000 L tank containing 300 L of this raw material liquid was connected to the inner conduit of the forward osmosis membrane module obtained by the same manufacturing method with a pipe, and the simulated sap was circulated by a pump.
  • a 1000 L tank containing 500 L of a 20 mass% magnesium chloride aqueous solution was connected to the outer conduit by a pipe, and the magnesium chloride aqueous solution (induction solution) was circulated by a pump.
  • the inner and outer tanks were graduated in advance so that the amount of internal liquid could be calculated from the liquid level, and the amount of water movement was measured from the transition of the liquid level in the raw material liquid tank. Calculated from the amount of water transferred from the raw material solution to the induction solution, stop the operation when the concentration progresses about 5 times (when the raw material solution reaches 60 L), and measure the amount of water and each salt transferred. did.
  • the induction solution to be diluted was set to maintain the initial concentration by adding the induction solution having a saturated concentration little by little during the measurement, and the measurement was carried out at 25 ° C.
  • the amount of salt transfer was measured by inductively coupled plasma mass spectrometry (ICP-MS), manufactured by Thermo Fisher Scientific. Measurements were made using the format "iCAP Q”.
  • AA When the Mg 2+ ion concentration in the concentrated raw material liquid is less than 500 mass ppm A: When the Mg 2+ ion concentration in the concentrated raw material liquid is 500 mass ppm or more and less than 1500 mass ppm B: After concentration When the Mg 2+ ion concentration in the raw material liquid of is 1500 mass ppm or more and less than 2500 mass ppm C: When the Mg 2+ ion concentration in the raw material liquid after concentration is 2500 mass ppm or more In addition, ideal concentration proceeds. However, if the inducing solution does not diffuse into the raw material solution, the Mg 2+ ion concentration will be 200 mass ppm.
  • Example 2 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.13% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, then hot water at 85 ° C. is flowed inside the hollow fiber for 30 minutes, and the mixture is further washed with water at 20 ° C. for 30 minutes or more to perform forward osmosis.
  • a membrane module was obtained. The results are shown in Table 1.
  • Example 3 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.15% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, then hot water at 95 ° C. is flowed inside the hollow fiber for 30 minutes, and the mixture is further washed with water at 20 ° C. for 30 minutes or more to perform forward osmosis.
  • a membrane module was obtained. The results are shown in Table 1.
  • Example 4 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.20% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • excess n-hexane solution is removed by flowing nitrogen gas, then hot water at 70 ° C. is flowed inside the hollow fiber for 30 minutes, and then the module is placed in an autoclave (ES-315 manufactured by Tomy Seiko). , 100 ° C. high temperature steam was applied for 20 minutes. Further, it was washed with water at 20 ° C. for 30 minutes or more to obtain a forward osmosis membrane module.
  • Table 1 The results are shown in Table 1.
  • Example 5 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.13% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution was removed by flowing nitrogen gas, and then the module was placed in an autoclave (ES-315 manufactured by Tomy Seiko) and subjected to high temperature steam at 121 ° C. for 20 minutes. Further, it was washed with water at 20 ° C. for 30 minutes or more to obtain a forward osmosis membrane module.
  • Table 1 The results are shown in Table 1.
  • Example 6 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.20% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • excess n-hexane solution is removed by flowing nitrogen gas, then hot water at 70 ° C. is flowed inside the hollow fiber for 30 minutes, and then the module is placed in an autoclave (ES-315 manufactured by Tomy Seiko). , 132 ° C. high temperature steam was applied for 20 minutes. Further, it was washed with water at 20 ° C. for 30 minutes or more to obtain a forward osmosis membrane module.
  • Table 1 The results are shown in Table 1.
  • Example 7 The evaluation was carried out under the same conditions as in Example 4 except that the microporous support membrane was a polyketone hollow fiber.
  • the polyketone hollow fiber membrane module was prepared as follows. A polyketone having an extreme viscosity of 3.0 dl / g, in which ethylene and carbon monoxide are completely alternately copolymerized, is added to a 63 mass% resorcin aqueous solution at a polymer concentration of 17 mass%, and the mixture is stirred and dissolved at 80 ° C. for 2 hours to defoam. By doing so, a uniform and transparent undiluted solution was obtained. A wet hollow fiber spinning machine equipped with a double spinner was filled with the above stock solution at 50 ° C.
  • the obtained hollow fiber was wound on a winder.
  • the outer diameter of the obtained hollow fiber was 0.6 mm, and the inner diameter was 0.35 mm.
  • the obtained 3500 microporous hollow fiber support membranes were filled in a cylindrical plastic housing having a diameter of 5 cm and a length of 50 cm to prepare a support membrane module as shown in FIG. 1 having an effective inner surface area of 1.65 m 2 . .. The results are shown in Table 1.
  • Example 8 The evaluation was carried out under the same conditions as in Example 4 except that the microporous support membrane was a polybenzimidazole hollow fiber.
  • the polybenzimidazole hollow fiber membrane module was prepared as follows. Polybenzimidazole (PBI; manufactured by Performance Products) was dissolved in DMAc (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.4% by mass of LiCl to prepare a hollow yarn spinning stock solution having a polymer concentration of 18% by mass. A wet hollow fiber spinning machine equipped with a double spinner was filled with the above stock solution and extruded into a coagulation tank filled with water to form hollow fibers by phase separation. The obtained hollow fiber was wound on a winder.
  • PBI Polybenzimidazole
  • DMAc manufactured by Wako Pure Chemical Industries, Ltd.
  • LiCl LiCl
  • the outer diameter of the obtained hollow fiber was 0.5 mm, and the inner diameter was 0.35 mm.
  • This hollow fiber was used as a support film.
  • the obtained 3500 microporous hollow fiber support membranes were filled in a cylindrical plastic housing having a diameter of 5 cm and a length of 50 cm to prepare a support membrane module as shown in FIG. 1 having an effective inner surface area of 1.65 m 2 . .. The results are shown in Table 1.
  • Example 9 The evaluation was carried out under the same conditions as in Example 4 except that the microporous support membrane was a polysulfone hollow fiber.
  • the polysulfone hollow fiber membrane module was prepared as follows. Polysulfone (P-3500 manufactured by Amoco Co., Ltd.) was dissolved in N-methyl-2-pyrrolidone (manufactured by Wako Pure Chemical Industries, Ltd.) so as to have a content of 19% by mass to prepare a hollow yarn spinning stock solution. A wet hollow fiber spinning machine equipped with a double spinner was filled with the above stock solution and extruded into a coagulation tank filled with water to form hollow fibers by phase separation. The obtained hollow fiber was wound on a winder.
  • the outer diameter of the obtained hollow fiber was 1.0 mm, and the inner diameter was 0.70 mm.
  • This hollow fiber was used as a microporous hollow fiber support film.
  • the obtained 1750 microporous hollow fiber support membranes were filled in a cylindrical plastic housing having a diameter of 5 cm and a length of 50 cm to prepare a support membrane module as shown in FIG. 1 having an effective inner surface area of 1.65 m 2 . .. The results are shown in Table 1.
  • Example 10 In the measurement of salt permeability R2 / F2 of the forward osmosis membrane module, except that the raw material solution 2 in the table was a 10% by mass sodium chloride aqueous solution and the induction solution 2 in the table was a 20% by mass magnesium chloride aqueous solution. The evaluation was carried out under the same conditions as in Example 4. The results are shown in Table 1.
  • Example 11 In the measurement of salt permeability R2 / F2 of the forward osmosis membrane module, except that the raw material solution 2 in the table was a 15% by mass potassium chloride aqueous solution and the induction solution 2 in the table was a 35% by mass magnesium chloride aqueous solution. The evaluation was carried out under the same conditions as in Example 4. The results are shown in Table 1.
  • Example 12 In the measurement of salt permeability R2 / F2 of the forward osmosis membrane module, the raw material solution 2 in the table was a 15% by mass sucrose (sucrose) aqueous solution, and the induction solution 2 in the table was a 15% by mass magnesium chloride aqueous solution. Except for the above, the evaluation was carried out under the same conditions as in Example 4. The results are shown in Table 1.
  • Example 13 In the measurement of the salt permeability R2 / F2 of the forward osmosis membrane module, the raw material solution 2 in the table was a 15% by mass sucrose (sucrose) aqueous solution, and the induction solution 2 in the table was a 15% by mass sodium chloride aqueous solution. Except for the above, the evaluation was carried out under the same conditions as in Example 4. The results are shown in Table 1.
  • Example 14 In the measurement of salt permeability R2 / F2 of the forward osmosis membrane module, the same as in Example 4 except that the raw material solution 2 in the table was purified water and the induction solution 2 in the table was a 35% by mass magnesium chloride aqueous solution. Evaluation was carried out under the conditions. The results are shown in Table 1.
  • Example 1 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.13% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution was removed by flowing nitrogen gas, and the mixture was washed with water at 20 ° C. for 30 minutes or more to obtain a forward osmosis membrane module.
  • Table 1 The results are shown in Table 1.
  • Example 2 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.20% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • excess n-hexane solution is removed by flowing nitrogen gas, and dry nitrogen having a dew point of ⁇ 55 ° C. heated to 50 ° C. is flowed in the module for 30 minutes, and then water at 20 ° C. is used for 30 minutes or more. By washing with water, a forward osmosis membrane module was obtained. The results are shown in Table 1.
  • Example 3 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.15% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • excess n-hexane solution is removed by flowing nitrogen gas, and dry nitrogen having a dew point of ⁇ 55 ° C. heated to 80 ° C. is flowed in the module for 2 hours, and then water at 20 ° C. is used for 30 minutes or more. By washing with water, a forward osmosis membrane module was obtained. The results are shown in Table 1.
  • Example 4 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.14% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • excess n-hexane solution is removed by flowing nitrogen gas, and dry nitrogen having a dew point of ⁇ 55 ° C. heated to 100 ° C. is flowed in the module for 30 minutes, and then water at 20 ° C. is used for 30 minutes or more. By washing with water, a forward osmosis membrane module was obtained. The results are shown in Table 1.
  • Example 5 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.15% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, then hot water at 50 ° C. is flowed inside the hollow fiber for 30 minutes, and the mixture is further washed with water at 20 ° C. for 30 minutes or more to perform forward osmosis.
  • a membrane module was obtained. The results are shown in Table 1.
  • Example 6 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 5 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 1 hour to make a surplus. The first solution was removed.
  • n-hexane solution (second solution) containing 0.20% by mass of 1,3,5-trimesic acid chloride is passed through the solution for 3 minutes at a flow rate of 1.75 L / min to obtain an interfacial polymerization method.
  • the separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, then hot water at 85 ° C. is flowed inside the hollow fiber for 30 minutes, and the mixture is further washed with water at 20 ° C. for 30 minutes or more to perform forward osmosis.
  • a membrane module was obtained. The results are shown in Table 1.
  • Example 7 The evaluation was carried out under the same conditions as in Example 1 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.15% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 40 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 5 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 100 L / min for 10 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.15% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 3 minutes at a flow rate of 1.75 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, and then the hollow fiber membrane module is immersed in hot water at 95 ° C. for 30 minutes and further washed with water at 20 ° C. for 30 minutes or more.
  • a permeable membrane module was obtained. The results are shown in Table 1.
  • Comparative Example 11 In the measurement of salt permeability R2 / F2 of the forward osmosis membrane module, it is the same as Comparative Example 1 except that the raw material solution 2 in the table is purified water and the induction solution 2 in the table is a 35% by mass magnesium chloride aqueous solution. Evaluation was carried out under the conditions. The results are shown in Table 1.
  • a 1.0 m 2 membrane module was prepared using a flat membrane cell and evaluated in the same manner as in Comparative Example 8. At this time, the raw material solution was provided on the separation active layer side and the induction solution was provided on the support membrane side, and the treatment was carried out by the forward osmosis method. The results are shown in Table 1. Since Comparative Example 12 is a flat film, the column of coefficient of variation regarding the average thickness of the hollow fiber is represented as “ ⁇ ” (not evaluated) in the table.
  • the hollow fibers were bundled to form a membrane module, and the flow rate was set so that the pressure applied to the inside and outside of the hollow fibers was the same as that of Example 1 with reference to Example 1, and the other evaluations were performed under the same conditions.
  • the raw material solution was provided on the dense layer side located on the outer peripheral portion of the hollow fiber, and the induction solution was provided on the inside of the hollow fiber, thereby treating by the forward osmosis method. Since Comparative Example 13 is an asymmetric film composed of a single substance and not a composite film, the column of coefficient of variation regarding the average thickness of the hollow fiber is represented as “ ⁇ ” (not evaluated) in the table.
  • Example 15 The evaluation was carried out under the same conditions as in Example 5 except that the microporous support membrane was a polysulfone hollow fiber.
  • the polysulfone hollow fiber membrane module was produced in the same manner as in Example 9.
  • Example 16 The evaluation was carried out under the same conditions as in Example 6 except that the microporous support membrane was a polysulfone hollow fiber.
  • the polysulfone hollow fiber membrane module was produced in the same manner as in Example 9.
  • Example 17 The evaluation was carried out under the same conditions as in Example 9 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.5% by mass of m-phenylenediamine and 0.10% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 30 minutes. After that, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG with the inside of the hollow fiber wet with the first solution, and then air is flowed at a flow rate of 70 L / min for 3 minutes to obtain excess. The first solution was removed.
  • n-hexane solution (second solution) containing 0.18% by mass of 1,3,5-trimesic acid chloride was passed through the solution for 10 minutes at a flow rate of 1.5 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, and then hot water at 85 ° C. is flowed inside the hollow fiber for 30 minutes, and then the module is placed in an autoclave (ES-315 manufactured by Tomy Seiko). , 125 ° C. high temperature steam was applied for 60 minutes. Further, it was washed with water at 20 ° C. for 30 minutes or more to obtain a forward osmosis membrane module.
  • Table 1 The results are shown in Table 1.
  • Example 18 The evaluation was carried out under the same conditions as in Example 9 except that the separation active layer was coated as follows.
  • An aqueous solution (first solution) containing 2.0% by mass of m-phenylenediamine and 0.17% by mass of sodium lauryl sulfate was passed through the inner surface side of the hollow fiber of the support membrane module for 20 minutes. Then, the liquid is drained, the outer part of the support membrane module is held under reduced pressure at 90 kPaG in a state where the inside of the hollow fiber is wet with the first solution, and then air is flowed at a flow rate of 110 L / min for 2 minutes. The first solution was removed.
  • n-hexane solution (second solution) containing 0.21% by mass of 1,3,5-trimesic acid chloride was passed through for 2 minutes at a flow rate of 1.9 L / min by an interfacial polymerization method.
  • a separation active layer was applied on the inner surface of the hollow fiber.
  • the excess n-hexane solution is removed by flowing nitrogen gas, and then hot water at 85 ° C. is flowed inside and outside the hollow fiber for 30 minutes, and then the module is placed in an autoclave (ES-315 manufactured by Tomy Seiko). And the mixture was subjected to high temperature steam at 121 ° C. for 20 minutes. Further, it was washed with water at 20 ° C. for 24 hours or more to obtain a forward osmosis membrane module.
  • Table 1 The results are shown in Table 1.
  • the forward osmosis membrane module of the present embodiment has a plurality of normal osmosis membrane modules in the concentration of a raw material solution having a liquid property close to that used in an actual concentration operation, such as simulated sap, by keeping the initial F1 and R1 within a predetermined range. It was highly practical because it could be concentrated with suppressed diffusion of the induction solution even after repeated use.
  • the forward osmosis membrane module can maintain the membrane performance within a desired range even if it is used a plurality of times, which is high. It was durable. Further, as one of the methods for producing such a forward osmosis membrane, it is particularly effective to bring a wet and high temperature liquid or gas into contact with each other in a fluid state.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

従来と比較して極めて優れた塩逆拡散の低減を実現し、かつ、所定の透水量を有する正浸透膜を開発することによって、実際の濃縮運転で用いられる液性に近い原料液の濃縮において、複数回使用しても誘導溶液の拡散が抑えられた濃縮が可能であるために実用的であり、かつ、浸透圧を有する原料液の濃縮を複数回行っても膜性能を所定の範囲内に維持可能な耐久性を有する、正浸透膜及び正浸透膜モジュールとその製造方法を提供する。一態様において、微細孔性支持膜の表面に高分子重合体の分離活性層を設けた正浸透膜であって、正浸透膜を介し、分離活性層側に原料液として精製水を、支持膜側に誘導溶液として3.5質量%の塩化ナトリウム水溶液を配置した場合に、原料液への塩逆拡散量R1が0.65g/(m2×hr)以下であり、かつ、誘導溶液中への透水量F1が3.5kg/(m2×hr)以上である、正浸透膜が提供される。

Description

正浸透膜及び正浸透膜モジュールとその製造方法
 本発明は、対象となる液状混合物から溶媒を分離し、対象を濃縮するための正浸透膜、及びこれを含む正浸透膜モジュールとその製造方法に関する。より詳しくは、本発明は、極めて優れた塩逆拡散量の低減を実現し、かつ、所定以上の透水性能を有することで、特に原料液の高濃度濃縮に適した正浸透膜、及びこれを含む正浸透膜モジュールとその製造方法に関する。
 原料液の濃縮方法として、正浸透法が知られている。
 正浸透法は、原料液と、原料液よりも高い浸透圧を有する誘導溶液とを、正浸透膜を介して隣接させることにより、原料液から誘導溶液へ溶媒を移動させる方法である。正浸透法の駆動力は、原料液と誘導溶液の浸透圧差である。そのため、既存の濃縮技術である蒸留法又は逆浸透法と異なり、加熱又は高圧を必要とせず、原料液中の有価成分を損失することなく原料液を濃縮できると期待されている。
 正浸透法は、半透膜を用いて溶質よりも溶媒を優先的に透過させる点で、逆浸透法と類似する。しかし、正浸透法は、浸透圧差を利用して溶媒を希薄溶液(原料液)側から濃厚溶液(誘導溶液)側に透過させており、この点で、浸透圧差に対抗して濃厚溶液側を加圧することにより、水を濃厚溶液側から希薄溶液側に透過させる逆浸透法とは異なる。そのため、例えば非特許文献1に記載されるように、加圧下で高い透水量を発揮するように設計された逆浸透膜を、そのまま正浸透法に適用しても、必ずしも正浸透法に適したものとはならない。
 正浸透法に適した膜は、原料液から誘導溶液への溶媒の透過量(透水量)が大きく、かつ、誘導溶液中成分の原料液への拡散(塩逆拡散)が小さくなるように設計される。しかし、一般に高い透水量と低い塩逆拡散の実現は容易ではなく、どちらかの性能を高めればどちらかが犠牲になるという二律背反性があった。
 このような課題に対し、特許文献1では、事前に組み立てた中空糸膜モジュールの中空糸膜内表面に、界面重合法によって分離活性層を形成する手法を確立し、均一な分離活性層を形成することで、高い透水量を有し、かつ、低い逆拡散量を持つ正浸透膜を得ている。
 また、特許文献2および3では、空隙率の高い構造を有する支持膜の表面上に、分離活性層を形成することで、支持膜内部の溶質の拡散性を上げ、好適な透水量を有する正浸透膜を得ている。
 また、非特許文献2では、様々な正浸透膜が比較評価されており、中でも中空糸の内表面に分離活性層を有する正浸透膜が高い透水量を有する結果が記載されている。
 半透膜の分離性能を高める方法として、特許文献4には複合逆浸透膜を熱水処理することによって有機物除去率を向上させる方法が提案されている。
 また、特許文献5および6には、複合逆浸透膜に対し、トリアルキルアミン等を溶解させた熱水で処理することで、有機物除去性と透水量をともに高くする方法が提案され、特許文献7では熱水処理後に次亜塩素酸塩で膜を処理する方法が提案されている。
 また、特許文献8では溶液を工夫して生成させた半透膜を100℃以上の乾燥機に供す方法により低圧で高い性能を有する逆浸透膜が提案されている。
国際公開第2016/027869号 米国特許出願公開第2013/0313185号明細書 特開2016-155078号公報 特公平07-114941号公報 特許第3665692号公報 特許第3862184号公報 国際公開第99/22836号 特許第3181134号公報
N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman and M. Elimelech, "High Performance Thin-Film Composite Forward Osmosis Membrane", Environ. Sci. Technol., 44, 3812-3818 (2010) S. Chou, L. Shi, R. Wang, C. Y. Tang, C. Qiu and A. G. Fane, "Characteristics and potential applications of a novel forward osmosis hollow fiber membrane", Desalination, 261, 365-372(2010)
 しかしながら、特許文献1および非特許文献2に記載された方法では、塩逆拡散量の低減が未だ十分とは言えず、正浸透膜自体の改良の余地がある。
 また、特許文献2および3に記載された方法では、透水量は高くなるものの、塩逆拡散量も高くなるという欠点がある。実際の濃縮処理を考えた場合、濃縮対象となる原料液中に複数の成分が混在することが多く、正浸透膜を介した両方に、溶質が高い濃度で存在する場合が多い。特に、原料液の高濃度濃縮においては、溶質濃度が非常に高い原料液から溶媒を移動させつつも、塩逆拡散を小さくする必要があり、この場合正浸透膜として好ましい性能は、高い透水量よりも、ある程度の透水量と低い塩逆拡散量だと考えられる。しかし、上記の文献に見られるように、正浸透膜の開発は高い透水性が重視される場合が多く、この点で正浸透膜には多くの改良の余地が残されている。
 特許文献4に記載された方法では、処理を行った膜は透水量が著しく低下するという問題がある。また、特許文献5~7に記載された方法では、処理後の膜は洗浄されず、実使用時には膜残留物の溶出が問題となる。また、特許文献8に記載された方法に関し、一般に半透膜は親水性であり、乾燥状態となった場合には半透膜が有する柔軟性又は強度が失われ、回復には時間をかけるか、親水化剤が必要となる。
 さらに、上記の方法は、平膜状の逆浸透膜に合わせて開発されたものであり、上記の方法で作製した逆浸透膜を正浸透処理に用いても高い性能を出すことは困難である。また、上記のいずれの方法も、膜の分離活性層が露出した状態で処理することから、分離活性層が物理的に損傷しやすく、これは膜を実際に使用する多くの場合に必要となるモジュール化においても問題となる。
 したがって、本発明の一態様の目的は、一般的な正浸透膜の性能指標の1つである、原料液に水を、誘導溶液に塩化ナトリウム水溶液をそれぞれ用いた場合の性能を試験したときに、従来と比較して極めて優れた塩逆拡散の低減を実現し、かつ、所定の透水量を有する正浸透膜を開発することによって、実際の濃縮運転で用いられる液性に近い、すなわち浸透圧を有する、原料液の濃縮において、複数回使用しても誘導溶液の拡散が抑えられた濃縮が可能であるために実用的であり、かつ、浸透圧を有する原料液の濃縮を複数回行っても膜性能を所定の範囲内に維持可能な耐久性を有する、正浸透膜及び正浸透膜モジュールとその製造方法を提供することである。
 本発明者は、従来の多くの正浸透膜の開発指針であった高い透水量を目指すのではなく、ある程度の透水量を犠牲にしても低い塩逆拡散を追究し、かつ両性能の適切な範囲設定が実際の濃縮運転の挙動及び正浸透膜の耐久性に影響する可能性に着目するという、従来なかった開発指針によって、実用的な正浸透膜を開発するに至った。
 すなわち、本発明を実施する形態の一例は以下に示すとおりである。
≪態様1≫
 微細孔性支持膜の表面に高分子重合体の分離活性層を設けた正浸透膜であって、
 前記正浸透膜を介し、前記分離活性層側に原料液として精製水を、前記微細孔性支持膜側に誘導溶液として3.5質量%の塩化ナトリウム水溶液を配置した場合に、前記原料液への塩逆拡散量R1が0.65g/(m2×hr)以下であり、かつ、前記誘導溶液中への透水量F1が3.5kg/(m2×hr)以上である、正浸透膜。
≪態様2≫
 前記原料液への塩逆拡散量R1が0.45g/(m2×hr)以下である、上記態様1に記載の正浸透膜。
≪態様3≫
 前記原料液への塩逆拡散量R1が0.30g/(m2×hr)以下である、上記態様1または2に記載の正浸透膜。
≪態様4≫
 前記誘導溶液中への透水量F1が5.0kg/(m2×hr)以上である、上記態様1~3のいずれかに記載の正浸透膜。
≪態様5≫
 前記誘導溶液中への透水量F1が6.5kg/(m2×hr)以上である、上記態様1~4のいずれかに記載の正浸透膜。
≪態様6≫
 前記原料液への塩逆拡散量R1が0.01g/(m2×hr)以上である、上記態様1~5のいずれかに記載の正浸透膜。
≪態様7≫
 前記誘導溶液中への透水量F1が50kg/(m2×hr)以下である、上記態様1~6のいずれかに記載の正浸透膜。
≪態様8≫
 前記微細孔性支持膜が、ポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、及びポリアミドから成る群から選ばれる少なくとも1種を主成分とする膜を含む、上記態様1~7のいずれかに記載の正浸透膜。
≪態様9≫
 前記微細孔性支持膜が、ポリエーテルスルホン、ポリスルホン、ポリケトン、及びポリベンゾイミダゾールから成る群から選ばれる少なくとも1種を主成分とする膜である、上記態様8に記載の正浸透膜。
≪態様10≫
 前記微細孔性支持膜が、ポリエーテルスルホン及びポリスルホンから成る群から選ばれる少なくとも1種を主成分とする膜である、上記態様9に記載の正浸透膜。
≪態様11≫
 前記誘導溶液中への透水量F1が5.0kg/(m2×hr)以上である、上記態様8~10のいずれかに記載の正浸透膜。
≪態様12≫
 前記原料液への塩逆拡散量R1が0.45g/(m2×hr)以下である、上記態様8~11のいずれかに記載の正浸透膜。
≪態様13≫
 前記高分子重合体が、多官能アミンから成る群から選択される1種以上の第1モノマーと、多官能酸ハライドから成る群から選択される1種以上の第2モノマーと、の重縮合生成物である、上記態様1~12のいずれかに記載の正浸透膜。
≪態様14≫
 前記高分子重合体がポリアミドである、上記態様13に記載の正浸透膜。
≪態様15≫
 前記正浸透膜が中空糸である、上記態様1~14のいずれかに記載の正浸透膜。
≪態様16≫
 前記分離活性層が、前記微細孔性支持膜の内表面に存在する、上記態様15に記載の正浸透膜。
≪態様17≫
 上記態様1~16のいずれかに記載の正浸透膜を組み込んだ、正浸透膜モジュール。
≪態様18≫
 前記正浸透膜が中空糸であり、前記正浸透膜モジュールが、複数の前記中空糸で構成される中空糸糸束を有する、上記態様17に記載の正浸透膜モジュール。
≪態様19≫
 前記分離活性層の厚み方向の断面を撮影した走査型電子顕微鏡画像において、前記中空糸糸束の半径方向および長さ方向における分離活性層の平均厚みの変動係数が0~60%である、上記態様18に記載の正浸透膜モジュール。
≪態様20≫
 上記態様18または19に記載の正浸透膜モジュールの製造方法であって、
 微細孔性支持膜の内表面に分離活性層を設ける分離活性層形成工程、および
 前記分離活性層形成工程の後に、少なくとも中空糸の内表面側に、55℃以上の流体を流動状態かつ湿潤状態で供する加熱処理工程、
を含む、正浸透膜モジュールの製造方法。
≪態様21≫
 前記加熱処理工程が、少なくとも前記中空糸の内表面側に、70℃以上、95℃以下の熱水を継続的に供することよって行われる、上記態様20に記載の正浸透膜モジュールの製造方法。
≪態様22≫
 前記加熱処理工程が、100℃以上、150℃以下の水蒸気によって行われる、上記態様20に記載の正浸透膜モジュールの製造方法。
 本発明の一態様に係る正浸透膜は、塩逆拡散が極めて低く、かつ所定以上の透水量を有することで、複数回使用しても誘導溶液の拡散が抑えられた濃縮が可能であるという実用性と、浸透圧を有する原料液の濃縮を複数回行っても膜性能を所定の範囲内に維持可能な耐久性を兼ね備えたものであり得る。
正浸透膜モジュールの一態様の断面模式図である。
 以下、本発明の実施形態(以下、「本実施形態」と称する)を、非限定的な例として、詳細に説明する。
 本実施形態は、例えば、液状食品又は医薬品溶液の濃縮に好適に利用できる。本実施形態の正浸透膜を用いれば、濃縮対象物を加熱することなく高倍率で濃縮することができ、さらに、溶質の流出又は流入を高度に抑制しつつ、成分の劣化又は異物の混入を防いだ、非加熱高濃度濃縮が可能となる。また、本実施形態は、例えば、脱水等の用途に加え、海水淡水化、汽水淡水化、シェールガス等のガス田、若しくは油田から排出される随伴水の処理、肥料溶液の濃縮、又は所望の濃縮物を誘導溶液として用いた希釈用途等にも好適に利用可能である。
 本実施形態の正浸透膜は、特定の物質のみを透過する半透膜で構成された分離活性層と、分離活性層を微細孔性支持膜の表面、より具体的には内表面または外表面に物理的に支持する微細孔性支持膜から構成される。
 本実施形態における正浸透膜の透水量F1、および塩逆拡散量R1は、原料液として精製水を用い、誘導溶液として3.5質量%の塩化ナトリウム水溶液を用い、各溶液が25℃の条件下で、正浸透処理を行うことで評価される。
 また、本実施形態における正浸透膜の塩逆拡散量R2、透水量F2、および、R2をF2で除することによって算出される塩透過性R2/F2は、原料液(例えば溶質を含む原料液(例えば、20質量%の塩化ナトリウム水溶液))と、原料液よりも高浸透圧を有する誘導溶液(例えば、35質量%の塩化マグネシウム水溶液)を用い、各溶液が25℃の条件下で、正浸透処理を行うことで評価される。
 これらの評価はいずれも5回行い、その平均値で評価することができる。
 また、支持膜と、当該支持膜の片面側に配置された分離活性層とを有する正浸透膜を用いる場合、原料液が、分離活性層側と支持膜側のどちらに位置するかによって、透水量Fが著しく異なる場合がある。本実施形態においては、実際の濃縮環境において、膜の汚染リスクがより少ない、分離活性層側に原料液を配置して評価することができる。一般にこの場合、支持膜側に原料液を配置したときと比較して、透水量は低下することが多い。
 正浸透膜の塩逆拡散量R(これは、R1またはR2であり得、したがってR1およびR2を総称してRと表記する)は、正浸透膜を挟んで、分離活性層側に濃縮しようとする原料液を流し、支持膜側にこれより高浸透圧を有する誘導溶液を配置した時に、誘導溶液から原料液に移動する溶質の量を意味している。塩逆拡散量Rは、以下の式(1)により定義される。
    R = G/(M×H)・・・式(1)
 ここで、Gは透過した溶質の量(g)であり、Mは正浸透膜の有効表面積(m2)であり、そして、Hは時間(hr)である。
 分離活性層は基本的に支持膜の表面に配置し、裏表の概念がある場合はそのどちらか一方に配置することが好ましいが、両面に存在しても構わない。分離活性層は、微細孔性支持膜に対して、対称構造であっても、非対称構造であってもよい。また、分離活性層が支持膜の両面に存在している場合には、両側の分離活性層が、微細孔性支持膜を介して連続的であっても構わないし、不連続であっても構わない。支持膜の両面に分離活性層を配置する場合、本開示における分離活性層側とは、正浸透膜全体の中で、誘導溶液の溶質をより良く阻止すると考えられる層側を意味する。誘導溶液の溶質をより良く阻止する側の評価法としては、例えば、正浸透膜を介し、片側に原料液として精製水を、もう一方側に誘導溶液として3.5質量%の塩化ナトリウム水溶液を配置した場合と、これらの溶液の配置を逆にした場合とで、原料液への上記塩逆拡散量R1を評価し、これら2つの評価系を比較したときに、R1がより小さくなる評価系における、原料液側を、誘導溶液の溶質をより良く阻止する側(分離活性層側)とすることができる。
 本実施形態の正浸透膜の塩逆拡散量R1(塩逆拡散)は極めて低く、これはできる限り低いほど好ましい。塩逆拡散量が大き過ぎると、原料液へ誘導溶液中の溶質が混入する、又は誘導溶液へ原料液中の溶質が混入する、原料液濃縮物の純度が下がり成分バランスが崩れる、誘導溶液が汚染される、誘導溶液中の成分が経時的に少なくなる、等の問題が生じる。
 また、理由は定かではないが、塩逆拡散量R1が、従来十分に低いとされていた値である1.2g/(m2×hr)でさえ、それを超える場合、塩逆拡散量R2が著しく増加し、結果として塩透過性R2/F2が大きくなる傾向が見られた。これらの問題を回避する観点から、本実施形態の正浸透膜の塩逆拡散量R1は、一態様において0.65g/(m2×hr)以下であり、好ましくは0.45g/(m2×hr)以下であり、さらに好ましくは0.30g/(m2×hr)以下である。
 なお、本実施形態の正浸透膜の塩逆拡散量R1は、0.01g/(m2×hr)以上でよい。
 正浸透膜の透水量F(これは、F1またはF2であり得、したがってF1およびF2を総称してFと表記する)は、正浸透膜を挟んで、分離活性層側に濃縮しようとする原料液を流し、支持膜側にこれより高浸透圧を有する誘導溶液を配置した時に、原料液から誘導溶液に移動する水の量を意味している。正浸透膜の透水量Fは、以下の式(2)により定義される。
   F = L/(M×H)・・・式(2)
 ここで、Lは透過した水の量(kg)であり、Mは正浸透膜の有効表面積(m2)であり、そして、Hは時間(hr)である。
 本実施形態の正浸透膜の透水量F1(透水性または透水性能)は高いほど好ましいが、原料液の濃縮の観点から実用的であり、かつ、高効率な溶媒の移動を達成する観点から、一態様において3.5kg/(m2×hr)以上である。同様の観点から、透水量F1は、好ましくは5.0kg/(m2×hr)以上であり、より好ましくは6.0kg/(m2×hr)以上であり、特に好ましくは6.5kg/(m2×hr)以上である。理由は定かではないが、例えば、逆浸透膜を正浸透膜として用いた場合の結果として、透水量F1が3.5kg/(m2×hr)未満の場合、透水量F2が著しく低く、相対的に塩逆拡散量R2の影響が大きく表れて塩透過性R2/F2が大きくなり、実用的な正浸透膜とはならない。一方、透水量が特に大きい場合は、塩逆拡散も大きくなる場合が多いため、透水量F1は50kg/(m2×hr)以下であることが好ましい。
 本実施形態の塩逆拡散量R1を、透水量F1で除した塩透過性R1/F1は、溶媒の透過と塩の透過の選択性を表す指標であり、低ければ低いほど塩を透過しづらく、溶媒を透過させやすいために、好ましい。しかし、従来の一般的な正浸透膜では、塩逆拡散量が低くなると、透水量は著しく低くなる場合が多く、結果としてR1/F1の値は大きくなることが多い。原料液の濃縮の観点から実用的であり、かつ、高効率な溶媒の移動を達成する観点から、本実施形態の正浸透膜においては、R1/F1の値は0.08以下であることが好ましく、より好ましくは0.06以下であり、さらに好ましくは0.04以下であり、特に好ましくは0.03以下である。R1/F1の値は、理想的には0であるが、正浸透膜の製造容易性の観点から、例えば、0.0001以上であってよい。
 本実施形態の正浸透膜は、初期において、透水量F1が3.5kg/(m2×hr)以上、かつR1が0.65g/(m2×hr)以下であることにより、例えば浸透圧を有する原料液の濃縮において、正浸透膜を複数回使用しても誘導溶液の拡散が抑えられた濃縮が可能であることから、高い実用性を有する。
 さらに、初期と濃縮運転後とでの膜性能R1/F1の比較から、本実施形態の正浸透膜は複数回用いても膜性能を所望の範囲内に維持することが可能であり、高い耐久性を有し得る。
 理由は定かではないが、本実施形態の正浸透膜においては、初期の透水量F1と塩逆拡散量R1とのバランスが適切であるために、分離活性層内に誘導溶質などの物質が担持されにくく、分離活性層内の浸透圧が上昇しにくいため、分離活性層が元々有している水分量を超える水などが、分離活性層内部に急激に侵入することが抑制されており、結果として分離活性層の高次構造が破壊されないためであると考えられる。分離活性層の分子構造、並びに、水素結合及び芳香環同士の相互作用に代表される高次構造は、水及び塩の透過性に強く影響すると考えられる。高次構造が一度破壊されると、誘導溶質などの物質が分離活性層内部により侵入して担持されやすくなると考えられる。このような侵入は、分離活性層内の浸透圧を上昇させることで、当該分離活性層の連鎖的な破壊を引き起こしうる。その結果、正浸透膜の性能は一定の値まで低下すると考えられる。
 本実施形態では、透水量F1が所定の値以上であり、かつ、塩の透過性指標である塩逆拡散量R1が低いために、分離活性層内の塩の担持が、例えば洗い流し等によって長期にわたって抑制されていると考えられる。以上により、本実施形態の正浸透膜は、実用性だけでなく、耐久性も併せ持つことができると考えられる。なお、本実施形態は上記の考察に束縛されるものではない。
 本実施形態の塩逆拡散量R2を、透水量F2で除した塩透過性R2/F2は、原料液が浸透圧を有するという点で、より実際の濃縮環境下に近い選択性を表す指標であり、低ければ低いほど塩を透過しづらく、溶媒を透過させやすいために、好ましい。理由は定かではないが、おそらくイオン交換などの影響によって、正浸透膜の両側に溶質が存在する場合、塩透過性が低下する場合が多い。特に、上記のように、塩逆拡散量R1が、従来十分に低いとされていた値である1.2g/(m2×hr)でさえ、それを超える場合、塩逆拡散量R2が著しく増加する一方で、透水量F2はほとんど増加せず、結果としてR2/F2が大きくなる傾向がある。本実施形態の正浸透膜の使用においては、R2、F2、およびR2/F2の値が、それぞれ、R1、F1、およびR1/F1の値として例示した範囲の値であり得る。
 誘導溶液とは、分離または濃縮対象物質が含まれている原料液と比較して、高い浸透圧を示し、正浸透膜を介して原料液から溶媒を移動させる機能を有する溶液である。
 この誘導溶液は、誘導溶質を高濃度に含有することで、高い浸透圧を発現する。
 誘導溶質としては、例えば、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、糖、モノアルコール、グリコール、水溶性重合体等が挙げられる。これらの具体例としては、
 アルカリ金属塩として、例えば、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、チオ硫酸ナトリウム、亜硫酸ナトリウム等を;
 アルカリ土類金属塩として、例えば、塩化マグネシウム、塩化カルシウム、硫酸マグネシウム等を;
 アンモニウム塩として、例えば、塩化アンモニウム、硫酸アンモニウム、炭酸アンモニウム等を;
 糖として、例えば、ショ糖、果糖、ブドウ糖等の一般的な糖類の他、オリゴ糖、希少糖等の特殊な糖類等を;
 モノアルコールとして、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等を;
 グリコールとして、例えば、エチレングルコール、プロピレングリコール等を;
 水溶性重合体として、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等、及びエチレンオキシドとプロピレンオキシドとの共重合体等を、
 それぞれ挙げることができる。
 本実施形態における微細孔性支持膜(本開示で、単に支持膜ということもある。)とは、高分子重合体(典型的には高分子重合体薄膜)の分離活性層を支持するための膜であり、これ自体は分離対象物に対して実質的に分離性能を示さないことが好ましい。この微細孔性支持膜としては、公知の微細孔性支持膜を包含するどのようなものでも使用できる。本実施形態における微細孔性支持膜は、その表面に、孔径が好ましくは0.001μm以上0.1μm以下、より好ましくは0.005μm以上0.05μm以下の微細孔を有することが好ましい。一方、微細孔性支持膜の表面以外の構造については、透過する流体の透過抵抗を小さくするために、強度を保っていれば、できるだけ疎な構造であることが好ましい。この部分の疎な構造は、例えば網状、指状ボイドまたはそれらの混合構造のいずれかであることが好ましい。
 この微細孔性支持膜は、正浸透膜モジュールのモジュール当たりの表面積を大きく獲得できることから、中空糸であることが特に好ましい。
 本実施形態における微細孔性支持膜に対して所定圧力をかけた時に、所定時間に所定膜面積を透過する精製水の量で表される、支持膜の透水量は、好ましくは100kg/(m2×hr)/100kPa以上、より好ましくは200kg/(m2×hr)/100kPa以上である。支持膜の透水量が低すぎると、結果として得られる正浸透膜モジュールの透水量Fも低いものとなり易い。支持膜の透水量は、支持膜の機械的強度を損ねない範囲で大きいほど好ましい。一般的には透水量が高くなると、機械的強度は小さくなる。そのため、本実施形態における微細孔性支持膜の透水量は、好ましくは50,000kg/(m2×hr)/100kPa以下、より好ましくは10,000kg/(m2×hr)/100kPa以下が目安となる。
 微細孔性支持膜の素材としては、微細孔性支持膜に形成できるものであればどのようなものでも使用できる。ただし、本実施形態における正浸透膜を製造するにあたり、使用されるモノマー溶液などによって化学的に損傷を受けないことが必要である。また、本実施形態においては、微細孔性中空糸に成型可能なものが好ましい。従って、耐薬品性、製膜性、耐久性などの観点から、微細孔性支持膜の素材としては、例えばポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、及びポリアミドから選ばれる少なくとも1種を主成分とするものが好ましく、より好ましくはポリエーテルスルホン、ポリスルホン、ポリケトン、及びポリベンゾイミダゾールから選ばれる少なくとも1種を主成分とするものであり、さらに好ましくはポリスルホンおよびポリエーテルスルホンから選ばれる少なくとも1種を主成分とするものであり、さらに好ましくはポリエーテルスルホンである。なお上記「主成分」とは、全体に占める質量比率が最も多い成分を意味し、一態様においては、全体に占める比率が50質量%超である成分である。
 微細孔性支持膜が中空糸である場合、中空糸径は特に限定されないが、製膜安定性、ハンドリングのし易さ、モジュールにした時の膜面積などを考慮すると、外径が100μm~3,000μmであって内径が30μm~2,500μmの範囲のものが好ましく、外径が200μm~1,500μmであって内径が50μm~1,000μmの範囲のものがより好ましい。
 このような微細孔性支持膜、例えば微細孔性中空糸支持膜は、上記素材から選択される材料を用いて、公知の乾湿式製膜法、溶融製膜法、湿式製膜法などにより製造することができる。
 本実施形態の正浸透膜は、複数の膜を有する膜モジュール(正浸透膜モジュール)として使用することができる。膜モジュールの形状は特に制限されないが、一般に、膜の一方の表面側とだけ液が接する区画と、膜のもう一方の表面側とだけ液が接する区画が、モジュールハウジングに膜を固定する接着樹脂により隔離されて存在する。中空糸膜を例にとれば、膜の内表面側とだけ液が接する区画と、膜の外表面側とだけ液が接する区画が、隔離されて存在する。モジュールハウジングの大きさは特に規定されないが、例えば、直径0.5インチ~20インチで、長さが4cm~10mの円筒状ハウジングなどを用いることができる。また、接着樹脂として例えばウレタン系、エポキシ系などの接着剤を用いてモジュールとすることができる。
 図1に示す中空糸膜モジュール1(正浸透膜モジュール)は、筒状体に中空糸4の複数から成る糸束を充填し、その中空糸糸束の両端を接着剤固定部5,6で筒に固定した構造を有している。筒状体は、その側面に外側導管2,3を有し、ヘッダー7,8により、密閉されている。ここで接着剤固定部5,6は、それぞれ、中空糸の孔を閉塞しないように固化されている。ヘッダー7,8は、それぞれ、中空糸4の内側(中空部)に連通し、外側には連通しない内側導管9,10を有する。これらの導管により、中空糸4の内側に、液を導入し、または液を取り出すことができる。外側導管2,3は、それぞれ、中空糸4の外側に連通し、内側には連通していない。
 この中空糸膜モジュール1は、内側を流れる液体と外側を流れる液体とは、中空糸4(正浸透膜)を介してのみ接する構造になっている。
 本実施形態において、膜の有効表面積とは、正浸透処理時に、原料液と誘導溶液が正浸透膜を介して存在する領域(すなわち、正浸透膜のうち原料液または誘導溶液が接することになる部分の面積)を表す。
 例えば、中空糸であれば、モジュール内の接着部を除く中空糸の長さ、内径、および本数から、膜の有効表面積(中空糸膜の内表面積)は、以下の数式(3)によって定義される。
 a = c×π×b×n・・・(3)
 ここでaは中空糸膜の内表面積(m2)、bは接着部を除いた中空糸の長さ(m)、cは中空糸の内径(m)、nは中空糸の本数である。
 高分子重合体薄膜の厚みは、ピンホールがなければ薄いほど好ましい。しかし、機械的強度および耐薬品性を維持するためには、適当な厚みを有することが望ましい。従って、製膜安定性、透水量などを考慮すると、高分子重合体薄膜の厚みは、0.1μm~3μmが好ましく、より好ましくは0.2μm~2μmである。
 本実施形態においては、分離活性層の平均厚みのばらつきである変動係数が特定範囲であることが好ましい。以下に、正浸透膜モジュールの好ましい例である中空糸膜モジュールにおいて、中空糸のモジュール内の各箇所における分離活性層の平均厚みのばらつきを変動係数で表す場合について説明する。本開示で、変動係数とは、各測定箇所の平均厚みの値の標準偏差を、当該平均厚みの測定箇所間の平均値で除した値であり、百分率(%)で示される。
 一態様において、分離活性層の厚み方向の断面を撮影した走査型電子顕微鏡画像から求められる(より詳細には、本開示の[実施例]記載の方法により顕微鏡画像出力物の質量を測定する方法により求められる)、分離活性層の平均厚みの変動係数は、製造において部分的な機能欠陥をより排除できるという観点から、中空糸糸束の半径方向および長さ方向の各々において、好ましくは0~60%、より好ましくは0~50%、さらに好ましくは0~40%、最も好ましくは0~30%である。
 変動係数は、より具体的には下記の手順で求める。モジュールの半径方向の中心、半径の50%の位置、および最外周部の3箇所から、中空糸をそれぞれ1本ずつサンプリングし、これらの各中空糸を長さ方向に3等分して得られる、9つのサンプルの測定箇所それぞれにつき、n数1以上(各箇所のn数は同一にする)で分離活性層の厚みを測定し、9か所の数平均値を算出する。
 ここで、各測定箇所における厚みは、長さ5~100μm程度の測定範囲における平均厚みとして得る。この測定範囲の長さは、好ましくは5~50μmであり、より好ましくは5~20μmであり、最も好ましくは13μmである。本実施形態の中空糸膜モジュールにおける分離活性層は、後述するように、好ましくはその表面に微細な凹凸形状を有する。従って、該分離活性層の厚みを評価する際には、各測定箇所において上記測定範囲の平均厚みによって評価することが適切である。
 また、各測定箇所での平均厚みの、中空糸膜モジュールの半径方向の最外周部から中心部にわたる変動係数と、当該モジュールの長さ方向の一方の末端からもう一方の末端にわたる変動係数とは、それぞれ、好ましくは0~60%、より好ましくは0~50%、さらに好ましくは0~40%、最も好ましくは0~30%である。
 上記のように、本実施形態の中空糸膜モジュールにおける好ましい分離活性層は、複数の測定箇所において測定された平均厚みを比較した時に、そのばらつきが小さいものである。平均厚みの評価における上記測定範囲の長さの方向は、中空糸の長さ方向であってもよいし、中空糸の円周方向であってもよいし、中空糸の長さ方向に対して斜めの方向であってもよい。また、測定箇所間の平均値の算出に用いる、複数の走査型電子顕微鏡画像における測定範囲の長さの方向は、互いに同一方向であっても異なる方向であってもよい。
 本実施形態の中空糸膜モジュールにおける分離活性層の表面が微細凹凸形状となる機構につき、本発明者らは以下のように推察している。ただし本実施形態は、以下の理論に拘束されるものではない。
 本実施形態の分離活性層は、好ましくは界面重合によって形成される。界面重合においては、中空糸表面に形成された第1モノマー溶液の液膜が、第2モノマー溶液と接触した際、両者が相溶せずに界面において重合が進行して重合層を形成すると考えられる。その結果、形成された分離活性層は、表面に微細凹凸の多い形状となるものと考えられる。分離活性層の形成を界面重合以外の手法によると、表面微細凹凸の多い形状の分離活性層は形成されない。
 また、本実施形態における好ましい正浸透膜の製造方法として、後述する加熱処理による架橋反応の促進が挙げられる。この加熱処理の効果が全体にわたって均一になされるためには、分離活性層の平均厚み変動係数が上記のように小さいことが好ましい。
 本実施形態における高分子重合体の分離活性層は、優先的に溶媒を通し、溶質を阻止する、実質的に分離性能を有する膜である。このような分離活性層として、例えば、ポリアミド、ポリビニルアルコール/ポリピペラジンアミド、スルホン化ポリエーテルスルホン、ポリピペラジンアミド、及びポリイミドが好適に用いられる。
 本実施形態においては特に、ポリアミドが、微細孔性支持膜に対する無欠陥薄膜形成の容易さの点で好適に使用される。また、より好ましくは、本実施形態の正浸透膜は中空糸であり、かつ、分離活性層が物理的に損傷することを防ぐため、中空糸の内表面上にあることが好ましい。
 さらに、高分子重合体が、多官能アミンから成る群から選択される1種以上の第1モノマーと、多官能酸ハライドから成る群より選択される1種以上の第2モノマーと、の重縮合生成物であることが好ましい。より具体的には、例えば多官能アミンと多官能酸ハライドとの界面重縮合反応により得られる、上記のようなポリアミドが挙げられる。分離活性層としてこれらの高分子重合体を用いる場合の分離性能とは、液状混合物中の溶媒と、それに溶解しているイオンなどの溶質とを分離する性能を指す。
 多官能アミンとしては、多官能性芳香族アミン、多官能性脂肪族アミン、複数の反応性アミノ基を有するモノマーなど、およびこれらのプレポリマーを挙げることができる。
 多官能性芳香族アミンとは、一分子中に2個以上のアミノ基を有する芳香族アミノ化合物であり、さらに具体的には、例えば、m-フェニレンジアミン、p-フェニレンジアミン、3,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルアミン、3,5-ジアミノ安息香酸、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、3,4-ジアミノジフェニルスルホン、1,3,5-トリアミノベンゼン、1,5-ジアミノナフタレンなどを挙げることができ、これらの単独または混合物を用いることができる。本実施形態においては、特にm-フェニレンジアミンおよびp-フェニレンジアミンから選ばれる1種以上が好適に用いられる。
 多官能性脂肪族アミンとは、一分子中に2個以上のアミノ基を有する脂肪族アミノ化合物であり、さらに具体的には、例えば、
1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン、4,4’-ビス(パラアミノシクロヘキシル)メタン、1,3-ビス-(アミノメチル)シクロヘキサン、2,4-ビス-(アミノメチル)シクロヘキサン、1,3,5-トリアミノシクロヘキサンなどの、シクロヘキサン環を持つ第1級アミン;
ピペラジン、2-メチルピペラジン、エチルピペラジン、2,5-ジメチルピペラジンなどの、ピペラジン環を持つ第2級アミン;
1,3-ビス(4-ピペリジル)メタン、1,3-ビス(4-ピペリジル)プロパン、4,4’-ビピペリジンなどの、ピペリジン環を持つ第2級アミン;
4-(アミノメチル)ピペリジンなどの、第1級および第2級の両方のアミノ基を持つアミンなどの他;
エチレンジアミン、プロピレンジアミン、1,2-プロパンジアミン、1,2-ジアミノ-2-メチルプロパン、2,2’-ジメチル-1,3-プロパンジアミン、トリス(2-アミノエチル)アミン、N,N’-ジメチルエチレンジアミン、N,N’-ジメチルプロパンジアミンなど、
を挙げることができ、これらの単独または混合物を用いることが可能である。これら多官能性脂肪族アミンと、上記した多官能性芳香族アミンとの混合物も用いることができる。
 複数の反応性アミノ基を有するモノマーとしては、例えばポリエチレンイミン、アミン変性ポリエピクロロヒドリン、アミノ化ポリスチレンなどを挙げることができる。プレポリマーとしては、例えばピペラジン、4-(アミノメチル)ピペリジン、エチレンジアミン、および1,2-ジアミノ-2-メチルプロパンから選ばれる1種以上からなるプレポリマーが好適に用いられる。
 多官能ハライドとしては、例えば、多官能性芳香族酸ハライド、多官能性脂肪族酸ハライドなどを挙げることができる。これらは、多官能性アミンと反応して重合体を形成し得るように、2官能以上であればよい。
 多官能性芳香族酸ハライドとは、一分子中に2個以上の酸ハライド基を有する芳香族酸ハライド化合物である。具体的には、例えばトリメシン酸ハライド、トリメリット酸ハライド、イソフタル酸ハライド、テレフタル酸ハライド、ピロメリット酸ハライド、ベンゾフェノンテトラカルボン酸ハライド、ビフェニルジカルボン酸ハライド、ナフタレンジカルボン酸ハライド、ピリジンジカルボン酸ハライド、ベンゼンジスルホン酸ハライドなどを挙げることができ、これらの単独または混合物を用いることができる。本実施形態においては、特にトリメシン酸クロリド単独、またはトリメシン酸クロリドとイソフタル酸クロリドとの混合物、もしくはトリメシン酸クロリドとテレフタル酸クロリドとの混合物が好ましく用いられる。
 多官能性脂肪族酸ハライドとは、一分子中に2個以上の酸ハライド基を有する脂肪族酸ハライド化合物である。具体的には、例えばシクロブタンジカルボン酸ハライド、シクロペンタンジカルボン酸ハライド、シクロペンタントリカルボン酸ハライド、シクロペンタンテトラカルボン酸ハライド、シクロヘキサンジカルボン酸ハライド、シクロヘキサントリカルボン酸ハライドなどの脂環式多官能性酸ハライド化合物などの他;
プロパントリカルボン酸ハライド、ブタントリカルボン酸ハライド、ペンタントリカルボン酸ハライド、こはく酸ハライド、グルタル酸ハライドなどを挙げることができる。これらは、単独または混合物として用いることが可能であり、これら多官能性脂肪族酸ハライドと、上記した多官能性芳香族酸ハライドとの混合物を用いることもできる。
 上記のような第1モノマーおよび第2モノマーは、それぞれ、これらを適当な溶媒に溶解した溶液として重合に供される。
 本実施形態における、好ましい高分子重合体薄膜の精製方法としては、例えば、微細孔性支持膜が先に接触するモノマーを含有する第1溶液と、第1溶液が接触した後の支持膜と接触し、第1溶液中のモノマーと反応して高分子重合体を形成するモノマーを含有する第2溶液を2段階で通液させる方法が挙げられる。第1モノマーおよび第2モノマーのうちの片方が第1溶液に含有され、他方が第2溶液に含有されることになる。どちらのモノマーがどちらの溶液に含有されていてもよいが、片方の溶液に両モノマーが含有されている態様は好ましくない。
 これら第1溶液の溶媒および第2溶液の溶媒としては、それぞれが含有するモノマーを溶解し、両溶液が接した場合に液-液界面を形成し、微細孔性支持膜を損傷しないものであれば特に限定されない。このような溶媒として例えば、第1溶液の溶媒としては水、アルコール等の単独または混合物が、第2溶液の溶媒としてはn-ヘキサン、シクロヘキサン、n-ヘプタン、n-オクタン、n-ノナン、n-デカンなどの炭化水素系溶剤の単独または混合物を挙げることができる。上記のような溶媒を選択することにより、第1溶液と第2溶液とが非混和となり、重合縮合反応(界面重合反応)が進行し、高分子重合体の薄膜が得られる。第1溶液に含有されるモノマーとしては第1モノマーを選択することが、第2容液に含有されるモノマーとしては第2モノマーを選択することが、それぞれ好ましい。第1溶液および第2溶液中に含まれる、これら反応性化合物の濃度は、モノマーの種類、溶媒に対する分配係数などにより異なり、特に限定されるものではなく、当業者により適宜に設定される。
 例えば、m-フェニレンジアミン水溶液を第1溶液とし、トリメシン酸クロリドのn-ヘキサン溶液を第2溶液として用いた場合の、界面重合反応を例に示すと、以下のとおりである;
 m-フェニレンジアミンの濃度は0.1~10質量%が好ましく、0.5~5質量%がより好ましい。トリメシン酸クロリドの濃度は、0.01~10質量%が好ましく、0.1~5質量%がより好ましい。これらの溶液の濃度が低すぎると、界面重合による薄膜の形成が不完全で欠点が生じ易くなり、分離性能の低下を招く。逆に高すぎると、形成される薄膜が厚くなりすぎて、透水量の低下を来たすことの他、膜中の残留未反応物量が増加して膜性能へ悪影響を及ぼす可能性がある。
 界面重合反応の進行中に酸が発生する場合には、上記第1溶液中または上記第2溶液中に、酸捕捉剤としてのアルカリを添加することもできる。また、微細孔性支持膜との濡れ性を向上させるなどのための界面活性剤、反応を促進するための触媒、製膜性向上剤としての塩などを、必要に応じて添加してもよい。
 酸捕捉剤の例としては、例えば水酸化ナトリウムなどのカ性アルカリ;リン酸三ナトリウムなどのリン酸ソーダ;炭酸ナトリウムなどの炭酸ソーダ;トリメチルアミン、トリエチルアミン、トリエチレンジアミンなどの3級アミンなどが挙げられる。界面活性剤の例としては、例えばラウリル硫酸ナトリウム、ラウリルベンゼンスルホン酸ナトリウムなどが挙げられる。触媒の例としては、例えばジメチルホルムアミドなどが挙げられる。製膜性向上剤の例としては、例えばトリエチルアミンのようなトリアルキルアミンとカンファースルホン酸のような有機酸の混合物があげられる。これらは予め上記第1溶液中または第2溶液中に含ませることが可能である。
 また、本実施形態においては、おそらく高分子重合体薄膜の高次構造を整え、かつ、架橋密度が高まることで、物理的耐久性と耐溶剤性が獲得され、かつ塩逆拡散量を低減できることから、薄膜形成後に加熱処理などによる架橋反応の促進(キュアリング)を行うことが、特に好ましい。より詳しくは、正浸透膜に対し、適切な方法で加熱処理を施すことによって、分離活性層の全体を均一にかつ比較的短時間で加熱でき、部分的な機能的欠陥が低減された正浸透膜を形成できる。
 本実施形態の正浸透膜モジュールの製造方法では、微細孔性支持膜が中空糸であり、その支持膜の内表面に分離活性層を設けた後に、湿潤状態における加熱処理工程を経ることが好ましい。
 より具体的には、一態様に係る正浸透膜モジュールの製造方法は、微細孔性支持膜が中空糸であり、支持膜の内表面に分離活性層を設ける製造方法であり、分離活性層の厚み方向の断面を撮影した走査型電子顕微鏡画像における分離活性層部分の量を測定する方法(より詳細には、本開示の[実施例]記載の方法により顕微鏡画像出力物の質量を測定する方法)により算出された、中空糸糸束の半径方向および長さ方向における分離活性層の平均厚みの変動係数が0~60%である。一態様において、正浸透膜モジュールの製造方法は、分離活性層を設けた後に、少なくとも支持膜の分離活性層形成側(例えば、支持膜の内表面に分離活性層を設けた場合には、少なくとも中空糸の内表面側)に、55℃以上の流体(例えば液体又は気体)を流動状態かつ湿潤状態で供する加熱処理工程を経る。
 加熱処理方法として、例えば熱源を通して昇温させた湿潤な気体(例えば、水分を含む窒素もしくは空気)の透過、または熱水の透過、および水蒸気の透過または曝露が挙げられる。ここで、透過とは、正浸透膜に対して流体を供することで、分離活性層および微細孔性支持膜が流体と接触する処理を意味する。好ましい透過の手法として、例えば、中空糸状の正浸透膜の場合、中空糸の内側または外側またはその両側に流体を供することで、分離活性層の表側および裏側および内部、ならびに微細孔性支持膜の細孔内に流体を接触させる方法が挙げられる。
 ここで、本実施形態の「加熱処理工程」における加熱処理とは、少なくとも55℃以上の温度による処理をいう。また、本実施形態の「流動状態」とは、固体、液体、又は気体における、物質そのものが移動している状態である。
 本実施形態における加熱処理工程は、正浸透膜の分離活性層が均一な厚みを有する場合により有効である。均一な厚みとは、前記分離活性層の平均厚みの変動係数が0~60%である状態を指す。上記変動係数は、より好ましくは0~50%、さらに好ましくは0~40%、最も好ましくは0~30%である。
 本実施形態においては、60℃~100℃の熱水を高分子重合体薄膜形成後の正浸透膜に供する方法が好ましい。このうち、特に、正浸透膜が中空糸であって、かつ、70℃~95℃の熱水を、中空糸の内表面側である高分子重合体薄膜形成側に供する方法、すなわち、微細孔性中空糸支持膜の内表面に高分子重合体の分離活性層を設けた正浸透膜の少なくとも中空糸の内表面側に対し、70℃~95℃の熱水のフロー(より具体的には透過)を継続する方法が、高分子重合体薄膜の架橋反応などをよく促進させ、かつ熱の伝達効率が高い点で好適に用いられる。熱水のフロー(例えば透過)を継続する場合、熱水中に分離活性層を浸漬する方法に比べて、分離活性層に均一に熱が伝達され、また、支持膜内の残留モノマーなどが流れることで、不必要な反応が起りにくくなるために、特に好ましい。熱水の通水時間は、5分~2時間であることが好ましい。5分以上である場合、架橋反応などが良好に進行する。また2時間を超えると該当温度における効果が平衡に達することから、2時間以下が好ましい。
 本実施形態の他の例においては、高温の水蒸気を正浸透膜に供する方法も好適に用いられる。高温の水蒸気とは、特に高圧条件下において100℃以上である気体状態の水を指す。高温の水蒸気は、一般に高圧蒸気滅菌で用いられるオートクレーブのような圧力釜中などで発生させることができる。正浸透膜の高分子重合体の架橋反応の促進においては、例えば、微細孔性中空糸支持膜の内表面に高分子重合体薄膜の分離活性層を設けた正浸透膜に対し100℃~170℃の水蒸気を供する方法、特に100℃~150℃の水蒸気を供する方法が、高分子重合体薄膜の架橋反応などをよく促進させ、かつ、支持膜又は高分子重合体薄膜が著しく損傷されず、塩逆拡散が極めて低くなる点で、好適に用いられる。設定した温度の水蒸気に正浸透膜を供する時間は、1分~2時間であることが好ましい。1分以上である場合架橋反応などが良好に進行する。また2時間を超えると該当温度における効果が平衡に達することから、2時間以下が好ましい。
 また、第1モノマーと第2モノマーのうちの少なくとも一方が、3つ以上の反応性基を持つ反応性化合物を含み、これにより形成される3次元高分子重合体薄膜に、上記の湿潤状態における加熱処理を適用する場合、上記の効果がより顕著に表れ、結果として、正浸透膜の強度と耐久性が向上し、および塩逆拡散が低減されるため特に好ましい。
 本開示でいう精製水とは、電気電導度が100μS/cm以下、有機物濃度が10質量ppm以下であるものをいい、蒸溜法、イオン交換法、逆浸透法などで製造することができる。
 以下、実施例に基づいて本発明を具体的に説明するが、本発明は実施例によって限定されるものではない。
[実施例1]
[微細孔性支持膜の製造]
 ポリエーテルスルホン(PES;BASF社製、商品名Ultrason)と、末端がヒドロキシ化されたポリエーテルスルホンを、N-メチル-2-ピロリドン(和光純薬(株)製)に溶解して、ポリマー濃度18.5質量%の中空糸紡糸原液を調製した。このとき、ポリエーテルスルホンと、末端がヒドロキシ化されたポリエーテルスルホンの比率は55:45とした。二重紡口を装備した湿式中空糸紡糸機に上記原液を充填し、水を満たした凝固槽に押し出し、相分離により中空糸を形成した。得られた中空糸は巻き取り機に巻き取った。得られた中空糸の外径は1.0mm、内径は0.70mmであった。透水性能は2,392kg/(m2×hr)/100kPaであった。この中空糸を微細孔性中空糸支持膜として用いた。
[支持膜モジュールの作製]
 微細孔性中空糸支持膜1750本を、5cm径、50cm長の円筒型プラスチックハウジングに充填し、有効膜内表面積1.65m2の、図1に示すような支持膜モジュールを作製した。
[分離活性層の塗工]
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.17質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に1.5L/分の流速で70℃の熱水を30分間流し、さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。
[正浸透膜モジュールの透水性能F1、及び塩逆拡散量R1の測定]
 得られた正浸透膜モジュールの内側導管(中空糸内部側)に、精製水60Lを入れた100Lのタンクを配管でつなぎ、ポンプで精製水を循環させた(原料液)。タンクに電導度計を装備し、精製水への塩の移動を測定した。他方、外側導管(中空糸外部側)には、3.5質量%の塩化ナトリウム水溶液60Lを入れた100Lのタンクを配管でつなぎ、ポンプで塩化ナトリウム水溶液を循環させた(誘導溶液)。内側と外側のタンクを、それぞれ、天秤の上に設置し、水の移動量を測定した。精製水の流量を2.2L/分、塩化ナトリウム水溶液の流量を8.8L/分として同時に運転し、60分後の水と塩の移動量を、それぞれ測定した。希釈される誘導溶液には、測定中に、飽和濃度の誘導溶液を少量ずつ添加することで、初期濃度を保つように設定し、測定は25℃で行った。これらを少なくとも5回行い、それらの平均値を用いて、式(1)と(2)により、正浸透膜の透水量F1と塩逆拡散量R1を算出した。
    R = G/(M×H)・・・式(1)
 ここで、Gは誘導溶液側から原料液側に透過した溶質の量(g)であり、Mは正浸透膜の有効表面積(m2)であり、そして、Hは時間(hr)である。
    F = L/(M×H)・・・式(2)
 ここで、Lは原料液側から誘導溶液側に透過した水の量(kg)であり、Mは正浸透膜の有効表面積(m2)であり、そして、Hは時間(hr)である。
結果を表1に示す。
[正浸透膜モジュールの塩透過性R2/F2の測定]
 得られた正浸透膜モジュールの内側導管に、20質量%の塩化ナトリウム水溶液60Lを入れた100Lのタンクを配管でつなぎ、ポンプで塩化ナトリウム水溶液を循環させた(表中、原料液2)。他方、外側導管には、35質量%の塩化マグネシウム水溶液60Lを入れた100Lのタンクを配管でつなぎ、ポンプで塩化マグネシウム水溶液を循環させた(表中、誘導溶液2)。内側と外側のタンクを、それぞれ、天秤の上に設置し、水の移動量を測定した。塩化ナトリウム水溶液の流量を2.2L/分、塩化マグネシウム水溶液の流量を8.8L/分として同時に運転し、60分後の水と各塩の移動量を、それぞれ測定した。希釈される誘導溶液には、測定中に、飽和濃度の誘導溶液を少量ずつ添加することで、初期濃度を保つように設定し、測定は25℃で行った。塩の移動量の算出のために、カチオン(誘導溶液の溶質である塩化マグネシウムに由来するMg2+イオン)の量を、Thermo Fishier Scientific社製の誘導結合プラズマ-質量分析(ICP-MS)装置、形式「iCAP Q」を用いて測定した。これらを少なくとも5回行い、それらの平均値を用いて、式(1)と(2)により、正浸透膜の透水量F2と塩逆拡散量R2を算出し、R2をF2で除すことで、塩透過性R2/F2を算出した。結果を表1に示す。
[分離活性層の走査型電子顕微鏡観察、平均厚み、および変動係数の測定]
 各実施例および比較例で得られた正浸透膜モジュールを分解し、モジュールの半径方向の中心、半径の50%の位置、および最外周部の3箇所から、中空糸をそれぞれ1本ずつサンプリングした。各中空糸を長さ方向に3等分し、9つのサンプルを得た。これらの中空糸サンプルのそれぞれを凍結割断して、中空糸断面サンプルを作製した。
 ここで、凍結割断によるサンプル作製は以下のようにして行った。
 中空糸を、エタノール(和光純薬(株)製)に浸漬し、エタノールと一緒にゼラチンカプセルNo.00(和光純薬(株)製)に封入した後、液化窒素に5分間浸漬して凍結した。凍結したカプセルごと、中空糸を鑿および金槌を用いて割断した。そして、得られた割断物を凍結乾燥することにより、走査型電子顕微鏡観察用の中空糸断面サンプルを得た。上記断面サンプルのそれぞれについて、走査型電子顕微鏡観察を行った。該走査型電子顕微観察は、日立製作所製、形式S-4800を使用し、加速電圧1.0kV、WD5mm基準±0.7mm、およびエミッション電流設定10±1μAの条件で行った。顕微鏡像をプリンターで用紙に印刷して分離活性層部分を切り取り、その質量を精密天秤で測定した。この質量を、予め作成しておいた検量線により、分離活性層の厚み(μm)に換算した。そして、9つのサンプルの平均値を分離活性層の平均厚みとし、変動係数を算出した。結果を表1に示す。
[模擬樹液の濃縮]
 10質量%のスクロース水溶液に塩化マグネシウムを加え、液中のMg2+イオン濃度が40質量ppmとなるように希釈して模擬樹液(原料液)を作製した。同様の製法で得られた正浸透膜モジュールの内側導管に、この原料液300Lを入れた1000Lのタンクを配管でつなぎ、ポンプで模擬樹液を循環させた。他方、外側導管には、20質量%の塩化マグネシウム水溶液500Lを入れた1000Lのタンクを配管でつなぎ、ポンプで塩化マグネシウム水溶液(誘導溶液)を循環させた。内側と外側のタンクにあらかじめ液面から内液量が計算できるように目盛を振り、原料液タンクの液面の推移から水の移動量を測定した。原料液から誘導溶液への水の移動量から計算して、約5倍濃縮が進行した時(原料液が60Lになった時点)に運転を止め、水と各塩の移動量を、それぞれ測定した。希釈される誘導溶液には、測定中に、飽和濃度の誘導溶液を少量ずつ添加することで、初期濃度を保つように設定し、測定は25℃で行った。塩の移動量の算出のために、カチオン(誘導溶液の溶質である塩化マグネシウムに由来するMg2+イオン)の量を、Thermo Fishier Scientific社製の誘導結合プラズマ-質量分析(ICP-MS)、形式「iCAP Q」を用いて測定した。
[模擬樹液濃縮後のMg濃度評価:実用性]
 模擬樹液の濃縮後、得られた正浸透膜モジュールを水で5時間以上洗浄し、再び同様の方法で模擬樹液の濃縮を行い、模擬樹液の5倍濃縮を5回繰り返した。
 実用性の目安として、模擬樹液を5回濃縮後、誘導溶液から原料液中に拡散したMg2+イオン濃度を以下の基準AA~Cで評価した。結果を表1に示す。
  AA:濃縮後の原料液中のMg2+イオン濃度が500質量ppm未満の場合
  A :濃縮後の原料液中のMg2+イオン濃度が500質量ppm以上1500質量ppm未満の場合
  B :濃縮後の原料液中のMg2+イオン濃度が1500質量ppm以上2500質量ppm未満の場合
  C :濃縮後の原料液中のMg2+イオン濃度が2500質量ppm以上の場合
 なお、理想的な濃縮が進行し、誘導溶液が原料液中へ拡散しない場合、Mg2+イオン濃度は200質量ppmとなる。
[模擬樹液濃縮20回後のR1/F1評価:耐久性]
 模擬樹液の濃縮後、得られた正浸透膜モジュールを水で5時間以上洗浄し、再び同様の方法で模擬樹液の濃縮を行い、模擬樹液の5倍濃縮を20回繰り返した。耐久性の目安として、20回目の濃縮後、正浸透膜モジュールを水で洗浄した後に、再び実施例1と同様の方法でR1/F1を算出し、以下の基準A~Cで評価した。結果を表1に示す。
  A :R1/F1が0.15以下の場合
  B :R1/F1が0.15を超え、0.25以下の場合
  C :R1/F1が0.25を超えた場合
[実施例2]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.13質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に85℃の熱水を30分間流し、さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[実施例3]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.15質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に95℃の熱水を30分間流し、さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[実施例4]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.20質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に70℃の熱水を30分間流し、その後、モジュールをオートクレーブ(トミー精工製 ES-315)中に入れ、100℃の高温水蒸気を20分間供した。さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[実施例5]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.13質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後、モジュールをオートクレーブ(トミー精工製 ES-315)中に入れ、121℃の高温水蒸気を20分間供した。さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[実施例6]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.20質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に70℃の熱水を30分間流し、その後、モジュールをオートクレーブ(トミー精工製 ES-315)中に入れ、132℃の高温水蒸気を20分間供した。さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[実施例7]
 微細孔性支持膜をポリケトン中空糸とした以外は、実施例4と同一条件で評価を実施した。ポリケトン中空糸膜モジュールは以下のように作製した。
 エチレンと一酸化炭素とが完全交互共重合した極限粘度3.0dl/gのポリケトンを、ポリマー濃度17質量%で63質量%レゾルシン水溶液に添加し、80℃で2時間攪拌溶解し、脱泡を行うことで均一透明な原液を得た。
 二重紡口を装備した湿式中空糸紡糸機に上記の原液を50℃で充填し、40質量%のメタノール水溶液を満たした凝固槽中に押し出し、相分離により中空糸を形成した。得られた中空糸は、巻き取り機に巻き取った。得られた中空糸の外径は0.6mm、内径は0.35mmであった。得られた微細孔性中空糸支持膜3500本を、5cm径、50cm長の円筒型プラスチックハウジングに充填し、有効膜内表面積1.65m2の、図1に示すような支持膜モジュールを作製した。結果を表1に示す。
[実施例8]
 微細孔性支持膜をポリベンゾイミダゾール中空糸とした以外は、実施例4と同一条件で評価を実施した。ポリベンゾイミダゾール中空糸膜モジュールは以下のように作製した。
 ポリベンゾイミダゾール(PBI;Performance Products社製)をDMAc(和光純薬(株)製)と1.4質量%のLiClに溶解して、ポリマー濃度18質量%の中空糸紡糸原液を調製した。二重紡口を装備した湿式中空糸紡糸機に上記の原液を充填し、水を満たした凝固槽中に押し出し、相分離により中空糸を形成した。得られた中空糸は、巻き取り機に巻き取った。得られた中空糸の外径は0.5mm、内径は0.35mmであった。この中空糸を支持膜として用いた。得られた微細孔性中空糸支持膜3500本を、5cm径、50cm長の円筒型プラスチックハウジングに充填し、有効膜内表面積1.65m2の、図1に示すような支持膜モジュールを作製した。結果を表1に示す。
[実施例9]
 微細孔性支持膜をポリスルホン中空糸とした以外は、実施例4と同一条件で評価を実施した。ポリスルホン中空糸膜モジュールは以下のように作製した。
 ポリスルホン(アモコ社製 P-3500)を、19質量%となるようにN-メチル-2-ピロリドン(和光純薬(株)製)に溶解して、中空糸紡糸原液を調製した。二重紡口を装備した湿式中空糸紡糸機に上記原液を充填し、水を満たした凝固槽に押し出し、相分離により中空糸を形成した。得られた中空糸は巻き取り機に巻き取った。得られた中空糸の外径は1.0mm、内径は0.70mmであった。この中空糸を微細孔性中空糸支持膜として用いた。得られた微細孔性中空糸支持膜1750本を、5cm径、50cm長の円筒型プラスチックハウジングに充填し、有効膜内表面積1.65m2の、図1に示すような支持膜モジュールを作製した。結果を表1に示す。
[実施例10]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を10質量%の塩化ナトリウム水溶液とし、表中の誘導溶液2を20質量%の塩化マグネシウム水溶液とした以外は、実施例4と同一条件で評価を実施した。結果を表1に示す。
[実施例11]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を15質量%の塩化カリウム水溶液とし、表中の誘導溶液2を35質量%の塩化マグネシウム水溶液とした以外は、実施例4と同一条件で評価を実施した。結果を表1に示す。
[実施例12]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を15質量%のスクロース(ショ糖)水溶液とし、表中の誘導溶液2を15質量%の塩化マグネシウム水溶液とした以外は、実施例4と同一条件で評価を実施した。結果を表1に示す。
[実施例13]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を15質量%のスクロース(ショ糖)水溶液とし、表中の誘導溶液2を15質量%の塩化ナトリウム水溶液とした以外は、実施例4と同一条件で評価を実施した。結果を表1に示す。
[実施例14]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を精製水とし、表中の誘導溶液2を35質量%の塩化マグネシウム水溶液とした以外は、実施例4と同一条件で評価を実施した。結果を表1に示す。
[比較例1]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.13質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[比較例2]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.20質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、さらにモジュール内に、50℃に昇温した露点-55℃の乾燥窒素を30分間流し、その後20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[比較例3]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.15質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、さらにモジュール内に、80℃に昇温した露点-55℃の乾燥窒素を2時間流し、その後20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[比較例4]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.14質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、さらにモジュール内に、100℃に昇温した露点-55℃の乾燥窒素を30分間流し、その後20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[比較例5]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.15質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に50℃の熱水を30分間流し、さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[比較例6]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を5kPaGで減圧保持し、その後エアーを100L/分の流量で1時間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリドの0.20質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に85℃の熱水を30分間流し、さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[比較例7]
 分離活性層の塗工を以下のように行った以外は、実施例1と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.15質量%を含む水溶液(第1溶液)を40分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を5kPaGで減圧保持し、その後エアーを100L/分の流量で10分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.15質量%を含有するn-ヘキサン溶液(第2溶液)を3分間、1.75L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸膜モジュールを95℃の熱水に30分間浸漬させ、さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[比較例8]
 m-フェニレンジアミン2.2質量%、ラウリル硫酸ナトリウム0.10質量%、トリエチルアミン2.2質量%、カンファ-スルホン酸4.4質量%を含む水溶液をポリスルホン多孔質体と不織布からなる、平膜状の支持膜に接触させた。その後、余分な溶液を除去した。この支持膜の表面に1,3,5-トリメシン酸クロリド0.19質量%を含有するn-ヘキサン溶液を3分間接触させた。その後120℃の乾燥機内で5分間保持することで、支持膜上に分離活性層を形成させ、複合逆浸透膜を得た。さらに、この複合逆浸透膜を85℃の熱水に30分間浸漬させた。平膜セルを用いて1.6m2の逆浸透膜モジュールを作製した。実施例1を参考に、流量は線速が実施例1と同一になるように設定して、その他は同一条件で評価した。この時、分離活性層側に原料液を、支持膜側に誘導溶液を供することで、正浸透法によって処理した。結果を表1に示す。
 比較例8は平膜のため、中空糸の平均厚みに関する変動係数の欄が、表中「-」(評価なし)と表されている。
[比較例9]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を15質量%のスクロース(ショ糖)水溶液とし、表中の誘導溶液2を15質量%の塩化マグネシウム水溶液とした以外は、比較例4と同一条件で評価を実施した。結果を表1に示す。
[比較例10]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を15質量%のスクロース(ショ糖)水溶液とし、表中の誘導溶液2を15質量%の塩化ナトリウム水溶液とした以外は、比較例1と同一条件で評価を実施した。結果を表1に示す。
[比較例11]
 正浸透膜モジュールの塩透過性R2/F2の測定において、表中の原料液2を精製水とし、表中の誘導溶液2を35質量%の塩化マグネシウム水溶液とした以外は、比較例1と同一条件で評価を実施した。結果を表1に示す。
[比較例12]
 m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.10質量%を含む水溶液をアセチル化セルロースエーテル多孔質体と不織布からなる、平膜状の支持膜に接触させた。その後、余分な溶液を除去した。この支持膜の表面に1,3,5-トリメシン酸クロリド0.20質量%を含有するn-ヘキサン溶液を3分間接触させた。その後120℃の乾燥機内で5分間保持することで、支持膜上に分離活性層を形成させ、複合膜を得た。平膜セルを用いて1.0m2の膜モジュールを作製し、比較例8と同様の方法で評価した。この時、分離活性層側に原料液を、支持膜側に誘導溶液を供することで、正浸透法によって処理した。結果を表1に示す。
 比較例12は平膜のため、中空糸の平均厚みに関する変動係数の欄が、表中「-」(評価なし)と表されている。
[比較例13]
 三酢酸セルロース、N-メチル-2-ピロリドン、エチレングリコール、安息香酸を均一に溶解して中空糸紡糸原液を調製した。三分割ノズルを装備した紡糸機に上記原液を充填し、N-メチル-2-ピロリドンを含有した水槽に押し出し、相分離により中空糸を形成した。得られた中空糸は巻き取り機に巻き取った。得られた中空糸の外径は0.15mm、内径は0.07mmであった。中空糸を束ねて膜モジュールとし、実施例1を参考に、流量は中空糸内外にかかる圧力が実施例1と同一になるように設定して、その他は同一条件で評価した。この時、中空糸外周部に位置している緻密層側に原料液を、中空糸内側に誘導溶液を供することで、正浸透法によって処理した。
 比較例13は単一の物質からなる非対称膜であり、複合膜ではないため、中空糸の平均厚みに関する変動係数の欄が、表中「-」(評価なし)と表されている。
[実施例15]
 微細孔性支持膜をポリスルホン中空糸とした以外は、実施例5と同一条件で評価を実施した。ポリスルホン中空糸膜モジュールは実施例9と同様の方法で作製した。
[実施例16]
 微細孔性支持膜をポリスルホン中空糸とした以外は、実施例6と同一条件で評価を実施した。ポリスルホン中空糸膜モジュールは実施例9と同様の方法で作製した。
[実施例17]
 分離活性層の塗工を以下のように行った以外は、実施例9と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.5質量%、ラウリル硫酸ナトリウム0.10質量%を含む水溶液(第1溶液)を30分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを70L/分の流量で3分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.18質量%を含有するn-ヘキサン溶液(第2溶液)を10分間、1.5L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側に85℃の熱水を30分間流し、その後、モジュールをオートクレーブ(トミー精工製 ES-315)中に入れ、125℃の高温水蒸気を60分間供した。さらに20℃の水で30分以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
[実施例18]
 分離活性層の塗工を以下のように行った以外は、実施例9と同一条件で評価を実施した。
 上記支持膜モジュールの中空糸内表面側に、m-フェニレンジアミン2.0質量%、ラウリル硫酸ナトリウム0.17質量%を含む水溶液(第1溶液)を20分通液した。その後、液を抜き、中空糸の内側が第1溶液で濡れた状態で、支持膜モジュールの外側部を90kPaGで減圧保持し、その後エアーを110L/分の流量で2分間流すことによって、余剰な第1溶液を除去した。その後、1,3,5-トリメシン酸クロリド0.21質量%を含有するn-ヘキサン溶液(第2溶液)を2分間、1.9L/分の流速で通液することで、界面重合法により、中空糸の内表面上に分離活性層を塗工した。その後、窒素ガスを流すことで余剰なn-ヘキサン溶液を除去し、その後中空糸の内側及び外側に85℃の熱水を30分間流し、その後、モジュールをオートクレーブ(トミー精工製 ES-315)中に入れ、121℃の高温水蒸気を20分間供した。さらに20℃の水で24時間以上水洗することで、正浸透膜モジュールを得た。結果を表1に示す。
 いずれの正浸透膜モジュールも、模擬樹液を複数回濃縮した後の膜性能R1/F1は、初期のR1/F1から変化した。一方、本実施形態の正浸透膜モジュールは初期のF1とR1を所定の範囲内にすることによって、模擬樹液のような、実際の濃縮運転で用いられる液性に近い原料液の濃縮において、複数回使用しても誘導溶液の拡散が抑えられた濃縮が可能であることから、高い実用性を有した。
 さらに、濃縮運転した後の膜性能R1/F1の比較から、本発明の一態様に係る正浸透膜モジュールは複数回用いても膜性能を所望の範囲内に維持することが可能であり、高い耐久性を有した。
 また、そのような正浸透膜の製法の1つとして、湿潤状態かつ高温の液体または気体を流動状態で接触させることが特に有効であった。
Figure JPOXMLDOC01-appb-T000001
1  中空糸膜モジュール
2  外側導管
3  外側導管
4  中空糸
5  接着剤固定部
6  接着剤固定部
7  ヘッダー
8  ヘッダー
9  内側導管
10 内側導管

Claims (22)

  1.  微細孔性支持膜の表面に高分子重合体の分離活性層を設けた正浸透膜であって、
     前記正浸透膜を介し、前記分離活性層側に原料液として精製水を、前記微細孔性支持膜側に誘導溶液として3.5質量%の塩化ナトリウム水溶液を配置した場合に、前記原料液への塩逆拡散量R1が0.65g/(m2×hr)以下であり、かつ、前記誘導溶液中への透水量F1が3.5kg/(m2×hr)以上である、正浸透膜。
  2.  前記原料液への塩逆拡散量R1が0.45g/(m2×hr)以下である、請求項1に記載の正浸透膜。
  3.  前記原料液への塩逆拡散量R1が0.30g/(m2×hr)以下である、請求項1または2に記載の正浸透膜。
  4.  前記誘導溶液中への透水量F1が5.0kg/(m2×hr)以上である、請求項1~3のいずれか一項に記載の正浸透膜。
  5.  前記誘導溶液中への透水量F1が6.5kg/(m2×hr)以上である、請求項1~4のいずれか一項に記載の正浸透膜。
  6.  前記原料液への塩逆拡散量R1が0.01g/(m2×hr)以上である、請求項1~5のいずれか一項に記載の正浸透膜。
  7.  前記誘導溶液中への透水量F1が50kg/(m2×hr)以下である、請求項1~6のいずれか一項に記載の正浸透膜。
  8.  前記微細孔性支持膜が、ポリエーテルスルホン、ポリスルホン、ポリケトン、ポリエーテルエーテルケトン、ポリフェニレンエーテル、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリイミン、ポリイミド、ポリベンゾオキサゾール、ポリベンゾイミダゾール、及びポリアミドから成る群から選ばれる少なくとも1種を主成分とする膜を含む、請求項1~7のいずれか一項に記載の正浸透膜。
  9.  前記微細孔性支持膜が、ポリエーテルスルホン、ポリスルホン、ポリケトン、及びポリベンゾイミダゾールから成る群から選ばれる少なくとも1種を主成分とする膜である、請求項8に記載の正浸透膜。
  10.  前記微細孔性支持膜が、ポリエーテルスルホン及びポリスルホンから成る群から選ばれる少なくとも1種を主成分とする膜である、請求項9に記載の正浸透膜。
  11.  前記誘導溶液中への透水量F1が5.0kg/(m2×hr)以上である、請求項8~10のいずれか一項に記載の正浸透膜。
  12.  前記原料液への塩逆拡散量R1が0.45g/(m2×hr)以下である、請求項8~11のいずれか一項に記載の正浸透膜。
  13.  前記高分子重合体が、多官能アミンから成る群から選択される1種以上の第1モノマーと、多官能酸ハライドから成る群から選択される1種以上の第2モノマーと、の重縮合生成物である、請求項1~12のいずれか一項に記載の正浸透膜。
  14.  前記高分子重合体がポリアミドである、請求項13に記載の正浸透膜。
  15.  前記正浸透膜が中空糸である、請求項1~14のいずれか一項に記載の正浸透膜。
  16.  前記分離活性層が、前記微細孔性支持膜の内表面に存在する、請求項15に記載の正浸透膜。
  17.  請求項1~16のいずれか一項に記載の正浸透膜を組み込んだ、正浸透膜モジュール。
  18.  前記正浸透膜が中空糸であり、前記正浸透膜モジュールが、複数の前記中空糸で構成される中空糸糸束を有する、請求項17に記載の正浸透膜モジュール。
  19.  前記分離活性層の厚み方向の断面を撮影した走査型電子顕微鏡画像において、前記中空糸糸束の半径方向および長さ方向における分離活性層の平均厚みの変動係数が0~60%である、請求項18に記載の正浸透膜モジュール。
  20.  請求項18または19に記載の正浸透膜モジュールの製造方法であって、
     微細孔性支持膜の内表面に分離活性層を設ける分離活性層形成工程、および
     前記分離活性層形成工程の後に、少なくとも中空糸の内表面側に、55℃以上の流体を流動状態かつ湿潤状態で供する加熱処理工程、
    を含む、正浸透膜モジュールの製造方法。
  21.  前記加熱処理工程が、少なくとも前記中空糸の内表面側に、70℃以上、95℃以下の熱水を継続的に供することよって行われる、請求項20に記載の正浸透膜モジュールの製造方法。
  22.  前記加熱処理工程が、100℃以上、150℃以下の水蒸気によって行われる、請求項20に記載の正浸透膜モジュールの製造方法。
PCT/JP2020/021437 2019-05-31 2020-05-29 正浸透膜及び正浸透膜モジュールとその製造方法 WO2020241860A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/614,682 US20220226778A1 (en) 2019-05-31 2020-05-29 Forward Osmosis Membrane, Forward Osmosis Membrane Module, and Manufacturing Method Thereof
EP20813249.8A EP3978102A4 (en) 2019-05-31 2020-05-29 FORWARD OSMOSIS MEMBRANE, FORWARD OSMOSIS MEMBRANE MODULE AND METHOD FOR MANUFACTURING THEREOF
JP2021521892A JP7214858B2 (ja) 2019-05-31 2020-05-29 正浸透膜及び正浸透膜モジュールとその製造方法
CA3142200A CA3142200C (en) 2019-05-31 2020-05-29 Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof
CN202080039655.3A CN113905807A (zh) 2019-05-31 2020-05-29 正渗透膜和正渗透膜组件及其制造方法
AU2020283173A AU2020283173B2 (en) 2019-05-31 2020-05-29 Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102652 2019-05-31
JP2019-102652 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241860A1 true WO2020241860A1 (ja) 2020-12-03

Family

ID=73552213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021437 WO2020241860A1 (ja) 2019-05-31 2020-05-29 正浸透膜及び正浸透膜モジュールとその製造方法

Country Status (7)

Country Link
US (1) US20220226778A1 (ja)
EP (1) EP3978102A4 (ja)
JP (1) JP7214858B2 (ja)
CN (1) CN113905807A (ja)
AU (1) AU2020283173B2 (ja)
CA (1) CA3142200C (ja)
WO (1) WO2020241860A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114307646A (zh) * 2021-12-31 2022-04-12 北京建筑大学 一种益于驱动剂渗透的高水通量复合正渗透膜的制备方法
WO2023276642A1 (ja) 2021-06-28 2023-01-05 旭化成株式会社 正浸透膜モジュール、及びその製造方法
WO2023277033A1 (ja) * 2021-06-28 2023-01-05 旭化成株式会社 正浸透膜及びその製造方法
WO2023276483A1 (ja) * 2021-06-28 2023-01-05 旭化成株式会社 正浸透膜、及びそれを含む正浸透膜モジュール
CN116392972A (zh) * 2023-06-06 2023-07-07 华电水务装备(天津)有限公司 一种应用于应急水处理的正渗透膜、制备方法及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115253731B (zh) * 2022-07-28 2023-08-22 健帆生物科技集团股份有限公司 一种中空纤维膜及其制备方法和应用
CN115400600B (zh) * 2022-08-24 2023-08-04 健帆生物科技集团股份有限公司 一种中空纤维复合膜及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114941B2 (ja) 1987-05-20 1995-12-13 東レ株式会社 半透性複合膜の製造方法
JP3181134B2 (ja) 1993-04-13 2001-07-03 日東電工株式会社 低圧高透過性複合逆浸透膜の製造方法
JP3665692B2 (ja) 1996-12-05 2005-06-29 日東電工株式会社 乾燥複合逆浸透膜の製造方法
JP3862184B2 (ja) 1996-12-05 2006-12-27 日東電工株式会社 複合逆浸透膜の製造方法
CN102773024A (zh) * 2012-05-07 2012-11-14 苏州信望膜技术有限公司 一种中空纤维式正渗透膜的制备方法
WO2013118859A1 (ja) * 2012-02-09 2013-08-15 東洋紡株式会社 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法
JP2013198893A (ja) * 2012-02-24 2013-10-03 Toyobo Co Ltd 中空糸型半透膜及びその製造方法及びモジュール
US20130313185A1 (en) 2010-12-13 2013-11-28 Tai-Shung Chung Forward osmosis membrane and method of manufacture
WO2016027869A1 (ja) * 2014-08-21 2016-02-25 旭化成株式会社 複合中空糸膜モジュールおよびその製造方法
JP2016155078A (ja) 2015-02-24 2016-09-01 旭化成株式会社 正浸透処理システム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102665882B (zh) * 2010-04-30 2016-02-03 熊津化学有限公司 用于海水脱盐的正渗透膜及其制备方法
KR101391653B1 (ko) * 2011-12-30 2014-05-07 도레이케미칼 주식회사 중공사형 정삼투막 및 그의 제조방법
KR101358526B1 (ko) * 2012-06-30 2014-02-06 웅진케미칼 주식회사 중공사형 정삼투막 및 그 제조방법
KR101453791B1 (ko) * 2012-11-23 2014-10-23 도레이케미칼 주식회사 중공사형 정삼투막 및 그 제조방법
KR102039807B1 (ko) * 2014-08-13 2019-11-01 아사히 가세이 가부시키가이샤 정삼투막 및 정삼투 처리 시스템
WO2020241865A1 (ja) * 2019-05-31 2020-12-03 旭化成株式会社 原料液濃縮システム
CN112245691A (zh) * 2019-07-22 2021-01-22 巴克斯特医疗保健股份有限公司 从原水制备透析液的方法和系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07114941B2 (ja) 1987-05-20 1995-12-13 東レ株式会社 半透性複合膜の製造方法
JP3181134B2 (ja) 1993-04-13 2001-07-03 日東電工株式会社 低圧高透過性複合逆浸透膜の製造方法
JP3665692B2 (ja) 1996-12-05 2005-06-29 日東電工株式会社 乾燥複合逆浸透膜の製造方法
JP3862184B2 (ja) 1996-12-05 2006-12-27 日東電工株式会社 複合逆浸透膜の製造方法
US20130313185A1 (en) 2010-12-13 2013-11-28 Tai-Shung Chung Forward osmosis membrane and method of manufacture
WO2013118859A1 (ja) * 2012-02-09 2013-08-15 東洋紡株式会社 中空糸型半透膜及びその製造方法及びモジュール及び水処理方法
JP2013198893A (ja) * 2012-02-24 2013-10-03 Toyobo Co Ltd 中空糸型半透膜及びその製造方法及びモジュール
CN102773024A (zh) * 2012-05-07 2012-11-14 苏州信望膜技术有限公司 一种中空纤维式正渗透膜的制备方法
WO2016027869A1 (ja) * 2014-08-21 2016-02-25 旭化成株式会社 複合中空糸膜モジュールおよびその製造方法
JP2016155078A (ja) 2015-02-24 2016-09-01 旭化成株式会社 正浸透処理システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
N. Y. YIPA. TIRAFERRIW. A. PHILLIPJ. D. SCHIFFMANM. ELIMELECH: "High Performance Thin-Film Composite Forward Osmosis Membrane", ENVIRON. SCI. TECHNOL., vol. 44, 2010, pages 3812 - 3818
S. CHOUL. SHIR. WANGC. Y. TANGC. QIUA. G. FANE: "Characteristics and Potential Applications of a Novel Forward Osmosis Hollow Fiber Membrane", DESALINATION, vol. 261, 2010, pages 365 - 372

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023276642A1 (ja) 2021-06-28 2023-01-05 旭化成株式会社 正浸透膜モジュール、及びその製造方法
WO2023277033A1 (ja) * 2021-06-28 2023-01-05 旭化成株式会社 正浸透膜及びその製造方法
WO2023276483A1 (ja) * 2021-06-28 2023-01-05 旭化成株式会社 正浸透膜、及びそれを含む正浸透膜モジュール
CN114307646A (zh) * 2021-12-31 2022-04-12 北京建筑大学 一种益于驱动剂渗透的高水通量复合正渗透膜的制备方法
CN116392972A (zh) * 2023-06-06 2023-07-07 华电水务装备(天津)有限公司 一种应用于应急水处理的正渗透膜、制备方法及应用
CN116392972B (zh) * 2023-06-06 2023-08-08 华电水务装备(天津)有限公司 一种应用于应急水处理的正渗透膜、制备方法及应用

Also Published As

Publication number Publication date
CN113905807A (zh) 2022-01-07
JP7214858B2 (ja) 2023-01-30
AU2020283173A1 (en) 2022-01-20
CA3142200A1 (en) 2020-12-03
US20220226778A1 (en) 2022-07-21
CA3142200C (en) 2023-09-26
EP3978102A1 (en) 2022-04-06
EP3978102A4 (en) 2022-08-17
JPWO2020241860A1 (ja) 2021-11-25
AU2020283173B2 (en) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2020241860A1 (ja) 正浸透膜及び正浸透膜モジュールとその製造方法
JP6320537B2 (ja) 正浸透膜および正浸透処理システム
AU2015304316B2 (en) Composite hollow fiber membrane module and manufacturing method therefor
US20160158707A1 (en) Novel membranes
US20180272286A1 (en) Process for making membranes
US20200246761A1 (en) Nanofiltration composite membranes comprising self-assembled supramolecular separation layer
KR20140082532A (ko) 복합막 모듈의 제조방법
EP3349887A1 (en) Process for making membranes using lactam ide based solvents
KR102497473B1 (ko) 복합 반투막
US20210178327A1 (en) Forward Osmosis Membrane and Membrane Module Including Same
Khulbe et al. Synthetic membranes for membrane processes
WO2023276642A1 (ja) 正浸透膜モジュール、及びその製造方法
KR102266896B1 (ko) 중공사형 정삼투 분리막 및 이의 제조방법
KR102270472B1 (ko) 분리막, 수처리 모듈, 분리막의 제조 방법 및 분리막의 활성층 개질용 조성물
WO2023276614A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
WO2023276483A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
WO2022004738A1 (ja) 複合中空糸膜モジュールおよびその製造方法
KR20160006154A (ko) 복합막 모듈의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813249

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521892

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3142200

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020813249

Country of ref document: EP

Effective date: 20220103

ENP Entry into the national phase

Ref document number: 2020283173

Country of ref document: AU

Date of ref document: 20200529

Kind code of ref document: A