WO2020241842A1 - 透明導電フィルムの製造方法 - Google Patents

透明導電フィルムの製造方法 Download PDF

Info

Publication number
WO2020241842A1
WO2020241842A1 PCT/JP2020/021401 JP2020021401W WO2020241842A1 WO 2020241842 A1 WO2020241842 A1 WO 2020241842A1 JP 2020021401 W JP2020021401 W JP 2020021401W WO 2020241842 A1 WO2020241842 A1 WO 2020241842A1
Authority
WO
WIPO (PCT)
Prior art keywords
bar
transparent conductive
coating
conductive film
manufactured
Prior art date
Application number
PCT/JP2020/021401
Other languages
English (en)
French (fr)
Inventor
山木 繁
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to US17/614,977 priority Critical patent/US11535047B2/en
Priority to KR1020217011980A priority patent/KR102387063B1/ko
Priority to CN202080005802.5A priority patent/CN112930575B/zh
Priority to JP2021501355A priority patent/JP6855647B1/ja
Publication of WO2020241842A1 publication Critical patent/WO2020241842A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/006Patterns of chemical products used for a specific purpose, e.g. pesticides, perfumes, adhesive patterns; use of microencapsulated material; Printing on smoking articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0036Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports

Definitions

  • the present invention relates to a method for producing a transparent conductive film. More specifically, the present invention relates to a method for producing a transparent conductive film containing metal nanowires by a bar coating method.
  • Transparent conductive films include liquid crystal displays (LCDs), plasma display panels (PDPs), organic electroluminescent displays, transparent electrodes for solar cells (PV) and touch panels (TP), antistatic (ESD) films, and It is used in various fields such as electromagnetic wave shielding (EMI) films.
  • LCDs liquid crystal displays
  • PDPs plasma display panels
  • TP touch panels
  • ESD antistatic films
  • ITO indium tin oxide
  • touch panels have also been adopted in smartphones, car navigation systems, vending machines, etc.
  • touch panels are also required to be foldable.
  • a foldable transparent conductive film that is, a transparent conductive film having excellent bending resistance is indispensable. Therefore, the development of metal nanowire films as next-generation transparent conductive films is in progress.
  • Patent Document 1 discloses a method for producing a transparent conductive film using a slot die coater having a slot die as a coating step of silver nanowire ink. Further, in order to solve the in-plane resistance anisotropy, the shear rate (printing speed / spacing between the tip of the slot die head and the film) is specified. However, the printing speed is limited by the capacity of the manufacturing equipment (especially the drying equipment).
  • Patent Document 2 also shows a slot die coater as a coating process of silver nanowire ink. It is disclosed that in order to solve the in-plane resistance anisotropy, it is effective to blow air toward the substrate from a direction different from the printing direction in the drying step. However, new equipment that blows air from different directions is required.
  • Patent Document 3 shows gravure printing as a coating process of silver nanowire ink. However, no description or suggestion has been made regarding the solution of in-plane resistance anisotropy.
  • the problem is that the resistance value in the printing direction ( RMD ) and the resistance value in the direction perpendicular to the printing direction ( RTD ) are different, that is, anisotropy occurs. Is.
  • An object of the present invention is to provide a transparent conductive film having good in-plane resistance value anisotropy in addition to good optical characteristics and electrical characteristics.
  • the present invention includes the following embodiments.
  • a preparation step of preparing a coating liquid containing the metal nanowire and the binder resin and the coating liquid on one main surface of a transparent base material a method of printing a bar coat method using a grooved bar having a pitch (P) to depth (H) ratio P / H of 5 to 30 in the coating step, which includes a coating step of coating.
  • a transparent conductive film having a small in-plane resistance value anisotropy is provided by printing a coating liquid containing metal nanowires and a binder resin by a bar coating method. it can.
  • embodiments for carrying out the present invention (hereinafter referred to as embodiments) will be described.
  • the method for producing a transparent conductive film according to the embodiment includes a preparation step of preparing a coating liquid containing metal nanowires and a binder resin, and a coating step of applying the coating liquid to one main surface of a transparent base material (transparent film).
  • a bar coating method using a grooved bar having a pitch (P) to depth (H) ratio P / H of 5 to 30 is used.
  • a protective film which will be described later, may be formed on the transparent conductive film produced by the method for producing the transparent conductive film.
  • the transparent substrate may be colored, but the total light transmittance (transparency to visible light) is preferably high, and the total light transmittance is preferably 80% or more.
  • a resin film such as polyester (polyethylene terephthalate [PET], polyethylene naphthalate [PEN], etc.), polycarbonate, acrylic resin (polymethylmethacrylate [PMMA], etc.), cycloolefin polymer and the like can be preferably used.
  • these transparent substrates may be provided with a single layer having functions such as easy adhesion, optical adjustment (anti-glare, anti-reflection, etc.), hard coat, etc., as long as the optical properties, electrical properties, and bending resistance are not impaired.
  • a plurality of layers may be provided, and these layers may be provided on one side or both sides.
  • these resin films polyethylene terephthalate and cycloolefin polymers are preferably used from the viewpoints of excellent light transmission (transparency), flexibility, mechanical properties and the like.
  • the polyethylene terephthalate Cosmo Shine (registered trademark, manufactured by Toyobo Co., Ltd.) can be used.
  • cycloolefin polymer examples include norbornene hydride ring-opening metathesis polymerized cycloolefin polymer (ZEONOR (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ZEONEX (registered trademark, manufactured by Nippon Zeon Co., Ltd.), ARTON (registered trademark, manufactured by JSR Co., Ltd.). , Etc.), norbornene / ethylene-added copolymerized cycloolefin polymer (APEL (registered trademark, manufactured by Mitsui Kagaku Co., Ltd.), TOPAS (registered trademark, manufactured by Polyplastics Co., Ltd.)) can be used.
  • ZEONOR registered trademark, manufactured by Nippon Zeon Co., Ltd.
  • ZEONEX registered trademark, manufactured by Nippon Zeon Co., Ltd.
  • ARTON registered trademark, manufactured by JSR Co., Ltd.
  • Etc. norbornene / ethylene-added
  • the thickness of the transparent base material varies depending on the application, but it is preferable to use a transparent base material having a thickness of 10 to 200 ⁇ m.
  • the term "transparent" means that the total light transmittance is 70% or more.
  • metal nanowires can be preferably used as the conductive material constituting the conductive layer formed on the transparent base material.
  • the metal nanowire is a metal having a diameter on the order of nanometers, and is a conductive material having a wire-like shape.
  • metal nanotubes which are conductive materials having a porous or non-porous tubular shape, may be used together with (mixed with) the metal nanowires or instead of the metal nanowires.
  • both “wire-like” and “tube-like” are linear, but the former is intended to have a hollow center and the latter to be hollow in the center.
  • the properties may be flexible or rigid.
  • metal nanowires in a narrow sense The former is referred to as “metal nanowires in a narrow sense” and the latter is referred to as “metal nanotubes in a narrow sense”.
  • metal nanowires are used in the meaning of including metal nanowires in a narrow sense and metal nanotubes in a narrow sense.
  • Metal nanowires in a narrow sense and metal nanotubes in a narrow sense may be used alone or in combination.
  • the "conductive layer” is a thin film having a thickness of 20 to 200 nm containing the metal nanowires and a binder resin described later, and is not necessarily limited to a uniform thickness.
  • metal nanowires As a method for producing metal nanowires, a known production method can be used. For example, silver nanowires can be synthesized by reducing silver nitrate in the presence of polyvinylpyrrolidone using the Poly-ol method (see Chem. Matter., 2002, 14, 4736). Gold nanowires can also be similarly synthesized by reducing chloroauric acid hydrate in the presence of polyvinylpyrrolidone (see J. Am. Chem. Soc., 2007, 129, 1733). The techniques for large-scale synthesis and purification of silver nanowires and gold nanowires are described in detail in International Publication No. 2008/073143 and International Publication No. 2008/046058.
  • Gold nanotubes having a porous structure can be synthesized by reducing a gold chloride solution using silver nanowires as a template.
  • the silver nanowires used in the template dissolve in the solution by a redox reaction with chloroauric acid, and as a result, gold nanotubes having a porous structure are formed (JAm. Chem. Soc., 2004, 126, 3892). See -3901).
  • the average diameter (average diameter) of the metal nanowires is preferably 1 to 500 nm, more preferably 5 to 200 nm, further preferably 5 to 100 nm, and particularly preferably 10 to 50 nm.
  • the average length (average length) of the major axis of the metal nanowire is preferably 1 to 100 ⁇ m, more preferably 1 to 80 ⁇ m, further preferably 2 to 70 ⁇ m, and particularly preferably 5 to 50 ⁇ m.
  • the average diameter and the average length of the major axis satisfy the above range, and the average aspect ratio is preferably larger than 5, more preferably 10 or more, and more than 100. It is more preferable, and it is particularly preferable that it is 200 or more.
  • the aspect ratio is a value obtained by a / b when the average diameter of the metal nanowire is approximated to b and the average length of the major axis is approximated to a.
  • a and b can be measured using a scanning electron microscope (SEM) and an optical microscope. Specifically, for b (average diameter), the diameter of 100 arbitrarily selected silver nanowires was measured using a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.), and the arithmetic average value was used. Can be sought.
  • the shape measurement laser microscope VK-X200 manufactured by Keyence Co., Ltd. was used to calculate a (average length), and the lengths of 100 arbitrarily selected silver nanowires were measured, and the arithmetic mean value thereof was measured. Can be obtained as.
  • such a metal nanowire As the material of such a metal nanowire, at least one selected from the group consisting of gold, silver, platinum, copper, nickel, iron, cobalt, zinc, ruthenium, rhodium, palladium, cadmium, osmium, and iridium, and metals thereof. Examples include alloys that combine the above.
  • Optimal embodiments include silver nanowires.
  • the conductive layer contains metal nanowires and a binder resin.
  • the binder resin can be applied without limitation as long as it has transparency, but when a metal nanowire using the polyol method is used as the conductive material, from the viewpoint of compatibility with the manufacturing solvent (polyol). , It is preferable to use a binder resin that is soluble in alcohol or water. As used herein, "soluble in alcohol or water” means that 0.1 g or more of the binder resin is dissolved in 1 L of alcohol or water.
  • water-soluble cellulosic resins such as poly-N-vinylpyrrolidone, methylcellulose, hydroxyethylcellulose, and carboxymethylcellulose, butyral resin, and poly-N-vinylacetamide (PNVA (registered trademark)) can be used.
  • the above resins may be used alone or in combination of two or more. When two or more kinds are combined, a simple mixture may be used, or a copolymer may be used.
  • Poly-N-vinylacetamide is a homopolymer of N-vinylacetamide (NVA), but a copolymer containing 70 mol% or more of N-vinylacetamide (NVA) can also be used.
  • Examples of the monomer copolymerizable with NVA include N-vinylformamide, N-vinylpyrrolidone, acrylic acid, methacrylic acid, sodium acrylate, sodium methacrylate, acrylamide, acrylonitrile and the like.
  • the sheet resistance of the obtained transparent conductive pattern increases, the adhesion between the silver nanowires and the substrate tends to decrease, and the heat resistance (thermal decomposition start temperature) also decreases.
  • the monomer unit derived from N-vinylacetamide is preferably contained in the polymer in an amount of 70 mol% or more, more preferably 80 mol% or more, and further preferably 90 mol% or more.
  • Polymers (homomopolymers and copolymers) containing N-vinylacetamide as a monomer unit preferably have a weight average molecular weight of 30,000 to 4 million, more preferably 100,000 to 3 million. It is more preferably 300,000 to 1,500,000.
  • the absolute molecular weight is measured by the following method.
  • the binder resin was dissolved in the following eluent and allowed to stand for 20 hours.
  • the concentration of the binder resin in this solution is 0.05% by mass.
  • the conductive layer is formed by printing a conductive ink (metal nanowire ink) containing the metal nanowires, a binder resin and a solvent as a coating liquid on at least one main surface of a transparent base material, and drying and removing the solvent. ..
  • a conductive ink metal nanowire ink
  • the solvent is not particularly limited as long as the metal nanowires exhibit good dispersibility and the binder resin dissolves in the solvent.
  • a solvent for producing the same from the viewpoint of compatibility with (polyol), alcohol, water or a mixed solvent of alcohol and water is preferable.
  • the alcohol is a saturated monohydric alcohol (methanol, ethanol, normal propanol and isopropanol) having 1 to 3 carbon atoms represented by C n H 2n + 1 OH (n is an integer of 1 to 3) [hereinafter, simply "carbon”. Notated as “saturated monohydric alcohol with 1 to 3 atoms"]. It is preferable to contain 40% by mass or more of saturated monohydric alcohol having 1 to 3 carbon atoms in the total alcohol. It is convenient in the process to use a saturated monohydric alcohol having 1 to 3 carbon atoms because it can be easily dried.
  • an alcohol other than the saturated monohydric alcohol having 1 to 3 carbon atoms represented by C n H 2n + 1 OH (n is an integer of 1 to 3) can also be used in combination.
  • Alcohols other than saturated monohydric alcohols having 1 to 3 carbon atoms represented by C n H 2n + 1 OH (n is an integer of 1 to 3) that can be used in combination include ethylene glycol, propylene glycol, ethylene glycol monomethyl ether, and ethylene.
  • Glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether and the like can be mentioned.
  • the drying rate can be adjusted by using these in combination with the saturated monohydric alcohol having 1 to 3 carbon atoms represented by the above C n H 2n + 1 OH (n is an integer of 1 to 3).
  • the total alcohol content in the mixed solvent is preferably 5 to 90% by mass. If the content of alcohol in the mixed solvent is less than 5% by mass or more than 90% by mass, a striped pattern (coating spot) may occur when coating is performed, which may be inappropriate.
  • the conductive ink can be produced by stirring and mixing the binder resin, metal nanowires, and solvent with a rotation / revolution stirrer or the like.
  • the content of the binder resin contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
  • the content of the metal nanowires contained in the conductive ink is preferably in the range of 0.01 to 1.0% by mass.
  • the content of the solvent contained in the conductive ink is preferably in the range of 98.0 to 99.98% by mass.
  • a conductive ink having a viscosity of 1 to 50 mPa ⁇ s can be obtained, and this is printed on the main surface of the transparent base material, and the solvent is dried and removed to form a conductive layer having a film thickness of 20 to 200 nm. can get.
  • the more preferable viscosity of the conductive ink is 1 to 20 mPa ⁇ s, and the more preferable viscosity is 1 to 10 mPa ⁇ s.
  • the viscosity is a value measured at 25 ° C. with a digital viscometer DV-E (spindle: SC4-18) manufactured by Brookfield.
  • the transparent conductive film manufacturing method examples include printing methods such as a bar coat printing method, a gravure printing method, an inkjet method, and a slit coating method.
  • the bar coat printing method has good coatability of low-viscosity ink and is excellent in forming a thin film.
  • the bar coat printing method can print low-viscosity ink containing inorganic or metal particles without clogging.
  • the method for producing a transparent conductive film of the present embodiment includes a step of applying the conductive ink to at least one side (one main surface) of a transparent base material by a bar coating method and drying it.
  • the coating is preferably carried out in the range of 20 to 30 ° C. in an air atmosphere. Drying after coating is preferably carried out in the range of 60 to 100 ° C. for 1 to 10 minutes in an air atmosphere.
  • the bar coater in the above bar coat printing method is not particularly limited, and can be appropriately selected according to the purpose. Bars used for bar coaters include Meyer bars (or wire bars) with wires wrapped around them and wireless bars that do not wind wires and cut bars to form grooves, but wireless bars are preferable for the reasons described below. is there.
  • the speed V (mm / sec) (hereinafter referred to as “coating speed”) of applying the conductive ink to at least one surface (one main surface) of the transparent base material by the bar coating method is the relative moving speed of the bar with respect to the transparent base material. That is, it means the moving speed of the bar with respect to the transparent base material at the time of coating or the transport speed of the transparent base material with respect to the bar.
  • V (mm / sec) is preferably 2000 ⁇ V ⁇ 50. When V ⁇ 50, it is preferable for producing a transparent conductive film having good productivity and low in-plane resistance anisotropy of the conductive layer.
  • V in-plane resistance value anisotropy
  • a more preferred upper limit of V (mm / sec) is 1000, a more preferred upper limit is 700, and a particularly preferred upper limit is 500.
  • the more preferable lower limit value of V is 100, and the more preferable lower limit value is 350.
  • the smaller the value of the friction coefficient of the material constituting the bar surface the more the conductive layer having less in-plane resistance anisotropy is formed without coating unevenness (including blurring).
  • the lower limit of V (mm / sec) that can be produced tends to be small.
  • the preferable range of V (mm / sec) is 2000 ⁇ V ⁇ 50, and the more preferable range is 1000 ⁇ V ⁇ 100.
  • a more preferable range is 500 ⁇ V ⁇ 100.
  • the preferable range of V (mm / sec) is 2000 ⁇ V ⁇ 350, and the more preferable range is 1000 ⁇ V ⁇ 350.
  • a more preferable range is 700 ⁇ V ⁇ 350, and a particularly preferable range is 500 ⁇ V ⁇ 350.
  • FIG. 1 (a), (b), and (c) show schematic views for explaining the shape of the groove formed in the bar used for the bar coater.
  • FIG. 1 (a) is an example of a wireless bar
  • FIG. 1 (b) is an example of a Meyer bar (or wire bar).
  • FIG. 1C is an example of the groove shape of a commercially available wireless bar.
  • P is the pitch of the groove
  • H is the depth of the groove
  • A is the cross-sectional area of the pocket formed by the groove.
  • P and H can be adjusted arbitrarily.
  • P is fixed to D and H is fixed to D / 2 because a wire having a diameter D is wound around the bar.
  • the surface of the conductive layer is compared with the case where the Meyer bar is used.
  • the resistance value anisotropy inside can be reduced.
  • P and H can be set arbitrarily.
  • the coating speed V (mm / sec) is set by using a bar having a P / H value of 9 to 30 and a friction coefficient of the material constituting the bar surface described later in the range of 0.05 to 0.40. It is applied in the range of 2000 ⁇ V ⁇ 50, or the P / H value is 9 to 30, and the friction coefficient of the material constituting the bar surface described later is in the range of 0.05 to 0.45.
  • the coating speed V (mm / sec) When the coating speed V (mm / sec) is applied in the range of 2000 ⁇ V ⁇ 350 using a bar, it becomes an index of the in-plane resistance anisotropy of the conductive layer described later ( RTD ) / ( RMD ). Can be 1.3 or less, which is preferable.
  • a more preferable range of P / H is 9.2 to 25, more preferably 9.5 to 20, and particularly preferably 10 to 15.
  • the shape of the groove of the wireless bar if the ratio (P / H) of the pitch (P) to the depth (H) is 5 to 30, various shapes can be used. For example, as shown in FIG. 1 (c), S-shape (smooth curved shape), K-shape (slightly flat shape at the bottom), and W-shape (slightly flat shape at the top and bottom) can be mentioned. , Both are commercially available.
  • the in-plane resistance anisotropy ( RTD ) / ( RMD ) of the conductive layer formed on the transparent substrate by the bar coat printing method is preferably 0.7 to 1.3, preferably 0.8 to 1. .2 is more preferable, and 0.9 to 1.1 is further preferable.
  • ( RMD ) is the resistance value of the conductive layer in the coating direction (printing direction) of the conductive ink
  • ( RTD ) is the resistance value in the direction perpendicular to the coating direction (printing direction) of the conductive ink. This is the resistance value of the conductive layer.
  • the present inventor has found that the material of the surface of the wireless bar used in contact with the transparent base material affects the anisotropy of the in-plane resistance value of the conductive layer formed by bar coat printing. That is, the anisotropy of the in-plane resistance value is obtained by performing bar coat printing using a wireless bar having a surface made of a material having a friction coefficient of 0.05 to 0.40, which is obtained by a measurement method described later.
  • the present inventor has found that a conductive layer having a smaller (resistance value anisotropy) can be obtained.
  • the coefficient of friction is more preferably 0.05 to 0.30, and even more preferably 0.05 to 0.20.
  • a wireless bar made of a material having the above-mentioned coefficient of friction can be used, but the range of the above-mentioned friction coefficient can be obtained by applying various surface treatments to the surface of the wireless bar made of a commonly used material (SUS, etc.). Can be adjusted to.
  • hard chrome plating has a coefficient of friction of 0.7
  • electroless nickel plating has a coefficient of friction of 0.3
  • electroless nickel teflon plating has a coefficient of friction of 0.25
  • diamond-like carbon treatment has a coefficient of friction of 0.15.
  • the surface-treated SUS304 has a coefficient of friction of 0.45. The coefficient of friction is all catalog values, and surface-treated wireless bars are commercially available.
  • the coefficient of friction is measured by a ball-on-disk friction and wear tester according to JIS R1613.
  • the material of the ball is SUS304, and a substrate having a surface treatment of the same material as the wireless bar or a material equivalent to the above wireless bar is used as the disc.
  • the frictional force generated by the rotation of the disc is measured by a sensor and divided by the applied load to calculate the friction coefficient.
  • the in-plane resistance anisotropy on the transparent substrate is smaller than that when the Meyer bar (or wire bar) is used by the bar coat printing method using the wireless bar having the specific groove shape, preferably ( A conductive layer having an R TD ) / (R MD ) of 0.7 to 1.3 can be formed.
  • the value of (R TD ) / (R MD ) is more preferably 0.8 to 1.2, and even more preferably 0.9 to 1.1.
  • a protective film for protecting the conductive layer is preferably provided on the surface of the conductive layer of the transparent conductive film, and a cured film of a curable resin composition is preferable.
  • the curable resin composition preferably contains (A) a polyurethane containing a carboxy group, (B) an epoxy compound, (C) a curing accelerator, and (D) a solvent.
  • the curable resin composition is formed on the conductive layer by printing, coating, or the like, and cured to form a protective film. Curing of the curable resin composition can be performed by heating and drying the thermosetting resin composition.
  • the weight average molecular weight of the polyurethane (A) containing the carboxy group is preferably 1,000 to 100,000, more preferably 2,000 to 70,000, and 3,000 to 50, It is more preferably 000.
  • the molecular weight is a polystyrene-equivalent value measured by gel permeation chromatography (hereinafter referred to as GPC). If the molecular weight is less than 1,000, the elongation, flexibility, and strength of the coating film after printing may be impaired, and if it exceeds 100,000, the solubility of polyurethane in the solvent becomes low and the polyurethane dissolves. However, the viscosity becomes too high, which may increase restrictions on use.
  • the measurement conditions of GPC are as follows.
  • Device name HPLC unit HSS-2000 manufactured by JASCO Corporation
  • Detector RI-2031Plus manufactured by JASCO Corporation Temperature: 40.0 ° C
  • Sample amount Sample loop 100 ⁇ L
  • Sample concentration Prepared to about 0.1% by mass
  • the acid value of the polyurethane (A) containing a carboxy group is preferably 10 to 140 mg-KOH / g, and more preferably 15 to 130 mg-KOH / g.
  • the acid value is 10 mg-KOH / g or more, both curability and solvent resistance are good.
  • it is 140 mg-KOH / g or less, the solubility of the urethane resin in a solvent is good, and it is easy to adjust the viscosity to a desired value.
  • problems such as warpage of the base film due to the cured product becoming too hard are less likely to occur.
  • the acid value of the resin is a value measured by the following method.
  • Acid value (mg-KOH / g) [B ⁇ f ⁇ 5.611] / S B: Amount of 0.1N potassium hydroxide-ethanol solution used (mL) f: Factor S of 0.1N potassium hydroxide-ethanol solution: Sample collection amount (g)
  • the polyurethane (A) containing a carboxy group is more specifically a polyurethane synthesized using (a1) a polyisocyanate compound, (a2) a polyol compound, and (a3) a dihydroxy compound having a carboxy group as a monomer. is there. From the viewpoint of weather resistance and light resistance, it is desirable that (a1), (a2), and (a3) do not contain a functional group having conjugation such as an aromatic compound.
  • each monomer will be described in more detail.
  • polyisocyanate compound As the polyisocyanate compound, diisocyanate having two isocyanato groups per molecule is usually used. Examples of the polyisocyanate compound include aliphatic polyisocyanates and alicyclic polyisocyanates, and one of these compounds can be used alone or in combination of two or more. (A) A small amount of polyisocyanate having 3 or more isocyanato groups can be used as long as the polyurethane containing the carboxy group does not gel.
  • aliphatic polyisocyanate examples include 1,3-trimethylene diisocyanate, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,9-nonamethylene diisocyanate, and 1,10-decamethylene diisocyanate, 2 , 2,4-trimethylhexamethylene diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, lysine diisocyanate, 2,2'-diethyleterdiisocyanate, dimerate diisocyanate and the like.
  • Examples of the alicyclic polyisocyanate include 1,4-cyclohexanediisocyanate, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis (isocyanatomethyl) cyclohexane, and 3-isocyanatomethyl-3,5. , 5-trimethylcyclohexylisocyanate (IPDI, isophorone diisocyanate), bis- (4-isocyanatocyclohexyl) methane (hydrogenated MDI), hydrogenated (1,3- or 1,4-) xylylene diisocyanate, norbornandiisocyanate, etc. Can be mentioned.
  • (A1) As the polyisocyanate compound, it is formed from the polyurethane resin according to the embodiment by using an alicyclic compound having 6 to 30 carbon atoms other than carbon atoms in the isocyanato group (-NCO group).
  • the protective film is particularly highly reliable at high temperature and high humidity, and is suitable for members of electronic device parts.
  • 1,4-cyclohexanediisocyanate 1,4-cyclohexanediisocyanate, isophorone diisocyanate, bis- (4-isocyanatocyclohexyl) methane, 1,3-bis (isocyanatomethyl) cyclohexane, 1,4-bis ( Isocyanatomethyl) cyclohexane is preferred.
  • the (a1) polyisocyanate compound As described above, from the viewpoint of weather resistance and light resistance, it is preferable to use a compound having no aromatic ring as the (a1) polyisocyanate compound. Therefore, when an aromatic polyisocyanate or an aromatic aliphatic polyisocyanate is used as needed, it is 50 mol% or less based on the total amount (100 mol%) of the (a1) polyisocyanate compound in the (a1) polyisocyanate compound. It may be contained in an amount of preferably 30 mol% or less, more preferably 10 mol% or less.
  • the number average molecular weight of (a2) polyol compound (a2) polyol compound is usually 250 to 50,000. Yes, preferably 400 to 10,000, more preferably 500 to 5,000.
  • This molecular weight is a polystyrene-equivalent value measured by GPC under the above-mentioned conditions.
  • the polyol compound (a2) is preferably a diol having a hydroxy group at both ends.
  • polyvalent values derived from C18 (18 carbon atoms) unsaturated fatty acids made from polycarbonate polyols, polyether polyols, polyester polyols, polylactone polyols, hydroxylated polysilicones at both ends, and vegetable fats and oils and their polymers.
  • It is a polyol compound having 18 to 72 carbon atoms obtained by hydrogenating a carboxylic acid and converting the carboxylic acid into a hydroxyl group.
  • polycarbonate polyol is preferable in consideration of the balance between water resistance as a protective film, insulation reliability, and adhesion to a base material.
  • the polycarbonate polyol can be obtained by reacting a diol having 3 to 18 carbon atoms with a carbonic acid ester or phosgene, and is represented by, for example, the following structural formula (1).
  • R 3 is a residue obtained by removing the hydroxyl group from the corresponding diol (HO-R 3- OH) and is an alkylene group having 3 to 18 carbon atoms, and n 3 is a positive integer, preferably a positive integer. Is 2 to 50.
  • the polycarbonate polyol represented by the formula (1) is 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, or 3-methyl-1.
  • 5-Pentanediol, 1,8-octanediol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,9-nonanediol, 2-methyl-1,8-octanediol, 1,10 -It can be produced by using decamethylene glycol, 1,2-tetradecanediol or the like as a raw material.
  • the above-mentioned polycarbonate polyol may be a polycarbonate polyol (copolymerized polycarbonate polyol) having a plurality of types of alkylene groups in its skeleton.
  • the use of a copolymerized polycarbonate polyol is often advantageous from the viewpoint of preventing crystallization of the polyurethane (A) containing a carboxy group. Further, considering the solubility in a solvent, it is preferable to use a polycarbonate polyol having a branched skeleton and a hydroxyl group at the end of the branched chain in combination.
  • (A3) Dihydroxy compound containing a carboxy group (a3)
  • the dihydroxy compound containing a carboxy group has a molecular weight of 200 or less having two of a hydroxy group and a hydroxyalkyl group having 1 or 2 carbon atoms.
  • a carboxylic acid or an aminocarboxylic acid is preferable because the cross-linking point can be controlled. Specific examples thereof include 2,2-dimethylolpropionic acid, 2,2-dimethyrolbutanoic acid, N, N-bishydroxyethylglycine, N, N-bishydroxyethylalanine, and the like. 2,2-Dimethylolpropionic acid and 2,2-dimethylolbutanoic acid are particularly preferable because of their solubility.
  • These (a3) carboxy group-containing dihydroxy compounds can be used alone or in combination of two or more.
  • the polyurethane containing the (A) carboxy group described above can be synthesized only from the above three components ((a1), (a2) and (a3)). Further, it can also be synthesized by reacting (a4) a monohydroxy compound and / or (a5) a monoisocyanate compound. From the viewpoint of light resistance, it is preferable to use a compound that does not contain an aromatic ring or a carbon-carbon double bond in the molecule.
  • the polyurethane containing the carboxy group (A) can be obtained from the polyisocyanate compound (a1) described above in the presence or absence of a known urethanization catalyst such as dibutyltin dilaurylate, using an appropriate organic solvent. It can be synthesized by reacting a2) a polyol compound and (a3) a dihydroxy compound having a carboxy group, but it is preferable to react without a catalyst without considering the final contamination of tin and the like.
  • a known urethanization catalyst such as dibutyltin dilaurylate
  • the organic solvent is not particularly limited as long as it has low reactivity with the isocyanate compound, but does not contain a basic functional group such as amine and has a boiling point of 50 ° C. or higher, preferably 80 ° C. or higher, more preferably 100 ° C. or higher. Certain solvents are preferred. Examples of such a solvent include toluene, xylene, ethylbenzene, nitrobenzene, cyclohexane, isophorone, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, and the like.
  • Examples thereof include n-butyl, isoamyl acetate, ethyl lactate, acetone, methyl ethyl ketone, cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, ⁇ -butyrolactone, and dimethylsulfoxide.
  • propylene glycol monomethyl ether acetate is particularly preferable.
  • Propylene glycol monoethyl ether acetate, dipropylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, ⁇ -butyrolactone and the like are preferable.
  • the order in which the raw materials are charged is not particularly limited, but usually, (a2) a polyol compound and (a3) a dihydroxy compound having a carboxy group are charged first, dissolved or dispersed in a solvent, and then 20 to 150 ° C.
  • the polyisocyanate compound (a1) is added dropwise at 60 to 120 ° C., and then reacted at 30 to 160 ° C., more preferably 50 to 130 ° C.
  • the molar ratio of raw materials charged is adjusted according to the molecular weight and acid value of the target polyurethane.
  • the molar ratio of these charges is as follows: (a1) isocyanato group of polyisocyanate compound: ((a2) hydroxyl group of polyol compound + hydroxyl group of dihydroxy compound having (a3) carboxy group) is 0.5 to 1. It is .5: 1, preferably 0.8 to 1.2: 1, more preferably 0.95 to 1.05: 1.
  • the hydroxyl group of the (a2) polyol compound the hydroxyl group of the dihydroxy compound having the (a3) carboxy group is 1: 0.1 to 30, preferably 1: 0.3 to 10.
  • Examples of the (B) epoxy compound include bisphenol A type epoxy compound, hydrogenated bisphenol A type epoxy resin, bisphenol F type epoxy resin, novolac type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, and N-glycidyl type.
  • Epoxy resin bisphenol A novolak type epoxy resin, chelate type epoxy resin, glioxal type epoxy resin, amino group containing epoxy resin, rubber modified epoxy resin, dicyclopentadiene phenolic type epoxy resin, silicone modified epoxy resin, ⁇ -caprolactone modified epoxy
  • examples thereof include epoxy compounds having two or more epoxy groups in one molecule, such as a resin, an aliphatic epoxy resin containing a glycidyl group, and an alicyclic epoxy resin containing a glycidyl group.
  • an epoxy compound having three or more epoxy groups in one molecule can be used more preferably.
  • examples of such epoxy compounds include EHPE (registered trademark) 3150 (manufactured by Daicel Corporation), jER (registered trademark) 604 (manufactured by Mitsubishi Chemical Industries, Ltd.), and EPICLON (registered trademark) EXA-4700 (manufactured by DIC Corporation).
  • EPICLON registered trademark
  • HP-7200 manufactured by DIC Corporation
  • pentaerythritol tetraglycidyl ether pentaerythritol triglycidyl ether
  • TEPIC registered trademark
  • -S manufactured by Nissan Chemical Industries, Ltd.
  • the epoxy compound (B) may have an aromatic ring in the molecule, and in that case, the mass of (B) is 20% by mass or less with respect to the total mass of (A) and (B). preferable.
  • the compounding ratio of the polyurethane containing the (A) carboxy group to the (B) epoxy compound is 0.5 to 1.5, which is the equivalent ratio of the carboxy group in the polyurethane to the epoxy group of the (B) epoxy compound. It is preferably 0.7 to 1.3, more preferably 0.9 to 1.1.
  • Examples of the (C) curing accelerator include phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokuko Chemical Industries, Ltd.) and Curesol (registered trademark) (imidazole epoxy resin curing agent: manufactured by Shikoku Kasei Kogyo Co., Ltd.). , 2-Phenyl-4-methyl-5-hydroxymethylimidazole, U-CAT (registered trademark) SA series (DBU salt: manufactured by San-Apro Co., Ltd.), Irgacure (registered trademark) 184 and the like.
  • phosphine compounds such as triphenylphosphine and tributylphosphine (manufactured by Hokuko Chemical Industries, Ltd.) and Curesol (registered trademark) (imidazole epoxy resin curing agent: manufactured by Shikoku Kasei Kogyo Co., Ltd.).
  • a curing aid may be used in combination.
  • the curing aid include polyfunctional thiol compounds and oxetane compounds.
  • the polyfunctional thiol compound include pentaerythritol tetrakis (3-mercaptopropionate), tris-[(3-mercaptopropionyloxy) -ethyl] -isocyanurate, trimethylolpropane tris (3-mercaptopropionate), and Karenz. (Registered trademark) MT series (manufactured by Showa Denko KK) and the like.
  • oxetane compound examples include Aron Oxetane (registered trademark) series (manufactured by Toagosei Co., Ltd.), ETERNCOLL (registered trademark) OXBP and OXMA (manufactured by Ube Industries, Ltd.).
  • Aron Oxetane registered trademark
  • ETERNCOLL registered trademark
  • OXBP registered trademark
  • OXMA manufactured by Ube Industries, Ltd.
  • the curable resin composition preferably contains the solvent (D) in an amount of 95.0% by mass or more and 99.9% by mass or less, more preferably 96% by mass or more and 99.7% by mass or less, and 97% by mass or more. It is more preferable to contain 99.5% by mass or less.
  • the solvent (D) the solvent used for synthesizing the polyurethane (A) containing a carboxy group can be used as it is, or another solvent may be used to adjust the solubility and printability of the polyurethane resin. You can also. When another solvent is used, the reaction solvent may be distilled off before and after the addition of the new solvent to replace the solvent.
  • the boiling point of the solvent is preferably 80 ° C. to 300 ° C., more preferably 80 ° C. to 250 ° C. When the boiling point is less than 80 ° C., it tends to dry during printing and unevenness is likely to occur. If the boiling point is higher than 300 ° C., it is not suitable for industrial production because it requires a long heat treatment at a high temperature during drying and curing.
  • Examples of such a solvent include propylene glycol monomethyl ether acetate (boiling point 146 ° C.), ⁇ -butyrolactone (boiling point 204 ° C.), diethylene glycol monoethyl ether acetate (boiling point 218 ° C.), tripropylene glycol dimethyl ether (boiling point 243 ° C.), and the like.
  • Solvents used for polyurethane synthesis ether-based solvents such as propylene glycol dimethyl ether (boiling point 97 ° C.), diethylene glycol dimethyl ether (boiling point 162 ° C.), isopropyl alcohol (boiling point 82 ° C.), t-butyl alcohol (boiling point 82 ° C.), 1 -Hexanol (boiling point 157 ° C), propylene glycol monomethyl ether (boiling point 120 ° C), diethylene glycol monomethyl ether (boiling point 194 ° C), diethylene glycol monoethyl ether (boiling point 196 ° C), diethylene glycol monobutyl ether (boiling point 230 ° C), triethylene glycol (boiling point 230 ° C)
  • a solvent containing a hydroxyl point such as ethyl lactate (boiling point 147 ° C
  • solvents may be used alone or in combination of two or more. When two or more types are mixed, aggregation and precipitation occur in consideration of the solubility of the polyurethane resin, epoxy resin, etc. used in addition to the solvent used for the synthesis of (A) carboxy group-containing polyurethane. It is preferable to use a solvent having a hydroxy group and a boiling point of more than 100 ° C. or a solvent having a boiling point of 100 ° C. or lower from the viewpoint of drying property of the ink.
  • the curable resin composition contains the above-mentioned (A) carboxy group-containing polyurethane, (B) epoxy compound, (C) curing accelerator, (D) solvent, and (D) solvent content. It can be produced by blending so as to be 95.0% by mass or more and 99.9% by mass or less and stirring so as to be uniform.
  • the solid content concentration in such a curable resin composition varies depending on the desired film thickness and printing method, but is preferably 0.1 to 10% by mass, preferably 0.5% by mass to 5% by mass. Is more preferable.
  • the solid content concentration is in the range of 0.1 to 10% by mass, there is no problem that the film thickness becomes too thick when applied on the conductive layer, so that electrical contact from silver paste or the like cannot be obtained.
  • a protective film having a film thickness of 50 to 500 nm having sufficient weather resistance and light resistance can be obtained.
  • the protective film (the solid content in the protective film ink, (A) polyurethane containing a carboxy group, (B) epoxy compound, and (C) curing residue in the curing accelerator)
  • the proportion of the aromatic ring-containing compound defined by the following formula is preferably suppressed to 15% by mass or less.
  • (C) curing residue in the curing accelerator means that all or part of the (C) curing accelerator disappears (decomposes, volatilizes, etc.) depending on the curing conditions, so it is protected under the curing conditions. It means (C) a curing accelerator remaining in the film.
  • aromatic ring-containing compound means a compound having at least one aromatic ring in the molecule.
  • a curable resin composition is applied onto the film), the solvent is dried and removed, and then the curable resin is cured to form a protective film.
  • a conductive ink containing silver nanowires, a binder resin and a solvent was prepared, and then coated on one main surface of a transparent base material using a bar coater and dried to form a conductive layer. Subsequently, after producing a protective film ink, it was applied on the conductive layer and dried to form a protective film, and a transparent conductive film was produced.
  • the coating direction of the conductive ink on the surface of the transparent substrate is defined as MD
  • the direction perpendicular to the coating direction is defined as TD
  • a test piece is prepared, the resistance value between two points described later is measured, and the in-plane resistance of the conductive layer is measured. The resistance value anisotropy was examined.
  • Example 1 ⁇ Making silver nanowires> Polyvinylpyrrolidone K-90 (manufactured by Nippon Shokubai Co., Ltd.) (0.98 g), AgNO 3 (1.04 g) and FeCl 3 (0.8 mg) were dissolved in ethylene glycol (250 mL) at 150 ° C. for 1 hour. It reacted by heating.
  • the obtained crude silver nanowire dispersion was dispersed in 2000 mL of methanol, and a small desktop tester (manufactured by Nippon Gaishi Co., Ltd., using ceramic membrane filter Sepilt, membrane area 0.24 m 2 , pore diameter 2.0 ⁇ m, dimensions ⁇ 30 mm ⁇ 250 mm, filtration It was poured into a differential pressure of 0.01 MPa), and cross-flow filtration was performed at a circulation flow velocity of 12 L / min and a dispersion temperature of 25 ° C. to remove impurities to obtain silver nanowires (average diameter: 26 nm, average length: 20 ⁇ m). ..
  • a field emission scanning electron microscope JSM-7000F (manufactured by JEOL Ltd.) was used to measure the diameters of 100 arbitrarily selected silver nanowires, and the arithmetic average thereof was measured. The value was calculated. Further, in order to calculate the average length of the obtained silver nanowires, a shape measurement laser microscope VK-X200 (manufactured by Keyence Co., Ltd.) was used to measure the length of 100 arbitrarily selected silver nanowires, and the arithmetic was performed. The average value was calculated. As the methanol, ethylene glycol, AgNO 3 , and FeCl 3 , reagents manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. were used.
  • Table 1 shows the concentration and viscosity of silver nanowires contained in the obtained silver nanowire ink.
  • the obtained silver concentration was measured by an AA280Z Atomic Absorption Spectrophotometer manufactured by Varian.
  • the viscosity was measured at 25 ° C. with a Brookfield digital viscometer DV-E (spindle: SC4-18).
  • conductive layer (silver nanowire layer)> A4 as a transparent substrate subjected to plasma processing (gas used: nitrogen, transport speed: 50 mm / sec, processing time: 6 sec, set voltage: 400 V) using a plasma processing device (AP-T03 manufactured by Sekisui Chemical Industry Co., Ltd.) TQC automatic film applicator standard (manufactured by Cortec Co., Ltd.) and wireless bar OSP-CN on a cycloolefin polymer (COP) film ZF14 (manufactured by Nippon Zeon Co., Ltd., glass transition temperature 136 ° C.
  • plasma processing device API-T03 manufactured by Sekisui Chemical Industry Co., Ltd.
  • TQC automatic film applicator standard manufactured by Cortec Co., Ltd.
  • wireless bar OSP-CN on a cycloolefin polymer (COP) film ZF14 (manufactured by Nippon Zeon Co., Ltd., glass transition temperature 136 ° C.
  • ⁇ Film thickness measurement> The film thickness of the conductive layer (silver nanowire layer) was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry. The measurement points were changed, and the average value measured at three points was used as the film thickness. A spectrum from 450 nm to 800 nm was used for the analysis. According to this measurement system, the film thickness (Tc) of the silver nanowire layer formed on the transparent substrate can be directly measured. The measurement results are shown in Table 1.
  • the temperature of the reaction solution was lowered to 70 ° C., and by dropping funnel, Death Module (registered trademark) -W (bis- (4-isocyanatocyclohexyl) methane), manufactured by Sumika Covestro Urethane Co., Ltd., 59.69 g as polyisocyanate. Was added dropwise over 30 minutes.
  • the temperature was raised to 120 ° C., the reaction was carried out at 120 ° C. for 6 hours, and after confirming by IR that the isocyanate was almost eliminated, 0.5 g of isobutanol was added, and the reaction was further carried out at 120 ° C. for 6 hours. went.
  • the weight average molecular weight of the obtained carboxy group-containing polyurethane determined by GPC was 32,300, and the acid value of the resin solution was 35.8 mgKOH / g.
  • Implementation curable resin composition 1 10.0 g of the (A) carboxy group-containing polyurethane solution (carboxy group-containing polyurethane content: 45% by mass) obtained in Example 1 above was weighed in a plastic container, and 1-hexanol was used as the (D) solvent. 85.3 g and 85.2 g of ethyl acetate were added, and the mixture was stirred with a mix rotor VMR-5R (manufactured by AS ONE Corporation) for 12 hours at room temperature and in an air atmosphere (rotation speed 100 rpm).
  • VMR-5R manufactured by AS ONE Corporation
  • the proportion of the curing accelerator, which is an aromatic ring-containing compound, in the solid content of the implementing curable resin composition 1 (the protective film formed by the implementing curable resin composition 1) is 5.7% by mass.
  • the protective film ink 1 was applied as follows by TQC automatic film applicator standard (manufactured by Cortec Co., Ltd.) on the silver nanowire layer formed on the transparent substrate (coating speed 500 mm / sec). It was applied using a wireless bar OSP-CN-05M at room temperature and in an air atmosphere so that the wet film thickness was 5 ⁇ m. Then, it was dried with hot air in an air atmosphere at 80 ° C. for 1 minute in an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) to form a protective film (thickness 80 nm). This was used as the transparent conductive film of Example 1.
  • the film thickness of the protective film was measured using a film thickness measuring system F20-UV (manufactured by Filmometrics Co., Ltd.) based on the optical interferometry as well as the film thickness of the silver nanowire layer described above. The measurement points were changed, and the average value measured at three points was used as the film thickness. A spectrum from 450 nm to 800 nm was used for the analysis. According to this measurement system, the total film thickness (T c + T p ) of the film thickness (T c ) of the silver nanowire layer formed on the transparent substrate and the film thickness (T p ) of the protective film formed on the film thickness (T c ). ) Can be directly measured, and the film thickness (T p ) of the protective film can be obtained by subtracting the film thickness (T c ) of the silver nanowire layer alone measured earlier from this measured value.
  • F20-UV manufactured by Filmometrics Co., Ltd.
  • the test piece was prepared by cutting out a sample having a size of 20 mm ⁇ 50 mm from the above-mentioned transparent conductive film of A4 size and forming a terminal portion with silver paste on a protective film so that the distance between terminals was 40 mm.
  • For the silver paste use conductive paste DW-420L-2A (manufactured by Toyobo Co., Ltd.), apply it by hand to about 2 mm square, and then use an incubator HISPEC HS350 (manufactured by Kusumoto Kasei Co., Ltd.) at 80 ° C for 30 minutes.
  • the terminal part was formed by drying with hot air in an air atmosphere.
  • the resistance value between the terminals was measured. Since the protective film is thin (silver nanowires project from the surface of the protective film), the silver paste and the conductive layer are conductive. In order to electrically connect the transparent conductive pattern using the silver nanowire and the conductive paste pattern, a part of the silver nanowire (the end point of the wire or the part where the wires intersect and rise in the height direction) is overcoated. It needs to be exposed from the layer surface, and the more exposed parts there are, the easier it is to electrically connect the transparent conductive pattern and the conductive paste pattern using silver nanowires.
  • the thickness of the overcoat layer is, for example, 500 nm or less, preferably 200 nm, although it cannot be said unconditionally because it is affected by the shape (diameter / length) of the silver nanowires and the number of silver nanowires coated on the base material.
  • the thickness of the overcoat layer is as thin as 80 nm, so that the silver paste and the conductive layer are conductive.
  • the overcoat layer can be removed by using a known etching technique to expose the silver nanowires.
  • FIG. 2A samples S1 and S2 in which the coating direction (printing direction) is indicated by an arrow and the longitudinal direction is the coating direction and the direction perpendicular to the coating direction are cut out.
  • the resistance value between the silver paste terminals formed by the above method was measured by using a digital multimeter PC5000a (manufactured by Sanwa Electric Instrument Co., Ltd.).
  • the resistance value of the sample S1 coated and cut out as described above was taken as ( RMD ), and the resistance value of the sample S2 was taken as ( RTD ), and the ratio of the resistance values ( RTD ) / ( RMD ) was measured.
  • the in-plane resistance anisotropy was evaluated by calculation.
  • Example 2 The study was conducted under the same conditions as in Example 1 except that a silver nanowire ink having a silver concentration of 0.25% by mass was used. The results are shown in Table 1.
  • Example 3 The study was conducted under the same conditions as in Example 1 except that a silver nanowire ink having an average diameter of 25 nm and an average length of 17 ⁇ m was used. The results are shown in Table 1.
  • Example 4 The study was conducted under the same conditions as in Example 1 except that a silver nanowire ink having an average diameter of 24 nm and an average length of 12 ⁇ m was used. The results are shown in Table 1.
  • Example 5 The study was conducted under the same conditions as in Example 1 except that the wireless bar OSP-CN-10M (manufactured by Cortec Co., Ltd., bar groove shape S type / P: 200 ⁇ m, H: 21 ⁇ m, P / H: 9.5) was used. .. The results are shown in Table 1.
  • the wireless bar OSP-CN-10M manufactured by Cortec Co., Ltd., bar groove shape S type / P: 200 ⁇ m, H: 21 ⁇ m, P / H: 9.5
  • Example 6 The study was conducted under the same conditions as in Example 5 except that a silver nanowire ink having a silver concentration of 0.25% by mass was used. The results are shown in Table 1.
  • Example 7 The study was conducted under the same conditions as in Example 1 except that the wireless bar OSP-CN-15L (manufactured by Cortec Co., Ltd., bar groove shape S type / P: 500 ⁇ m, H: 27 ⁇ m, P / H: 18.5) was used. .. The results are shown in Table 1.
  • Example 8 The study was conducted under the same conditions as in Example 1 except that the wireless bar OSP-CN-18L (manufactured by Cortec Co., Ltd., bar groove shape S type / P: 500 ⁇ m, H: 33 ⁇ m, P / H: 15.1) was used. .. The results are shown in Table 1.
  • Example 9 The study was conducted under the same conditions as in Example 1 except that PVP (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., K-90) was used instead of PNVA as the binder resin for the silver nanowire ink. The results are shown in Table 1.
  • PVP manufactured by Fuji Film Wako Pure Chemical Industries, Ltd., K-90
  • Example 10 The study was conducted under the same conditions as in Example 1 except that PET (untreated surface of Toyobo Cosmoshine A4100) was used as the transparent substrate. The results are shown in Table 1.
  • Example 11 The study was conducted under the same conditions as in Example 1 except that PC (untreated surface of FS2000H manufactured by Mitsubishi Gas Chemical Company, Inc.) was used as the transparent base material. The results are shown in Table 1.
  • Example 12 The study was conducted under the same conditions as in Example 1 except that the coating speed V of the silver nanowire ink was set to 350 mm / sec. The results are shown in Table 1.
  • Example 13 The study was conducted under the same conditions as in Example 1 except that the wireless bar WP0.4H23K (manufactured by OSG System Products Co., Ltd., bar groove shape K / P: 400 ⁇ m, H: 23 ⁇ m, P / H: 17.4) was used. .. The results are shown in Table 1.
  • Example 14 The study was conducted under the same conditions as in Example 1 except that the wireless bar WP0.4H38W (manufactured by OSG System Products Co., Ltd., bar groove shape W type / P: 400 ⁇ m, H: 38 ⁇ m, P / H: 10.5) was used. .. The results are shown in Table 1.
  • Example 15 The study was conducted under the same conditions as in Example 2 except that the wireless bar OSP-CN-22M (manufactured by Cortec Co., Ltd., bar groove shape S type / P: 250 ⁇ m, H: 49 ⁇ m, P / H: 5.1) was used. .. The results are shown in Table 1.
  • Example 16 The study was conducted under the same conditions as in Example 1 except that the wireless bar OSP-CN-17M (manufactured by Cortec Co., Ltd., bar groove shape S type / P: 250 ⁇ m, H: 35 ⁇ m, P / H: 5.7) was used. .. The results are shown in Table 1.
  • Example 17 The study was conducted under the same conditions as in Example 5 except that the coating speed V of the silver nanowire ink was set to 100 mm / sec. The results are shown in Table 1.
  • Example 18 The study was conducted under the same conditions as in Example 1 except that the coating speed V of the silver nanowire ink was set to 300 mm / sec. The results are shown in Table 1.
  • Example 19 The study was conducted under the same conditions as in Example 4 except that the coating speed V of the silver nanowire ink was set to 100 mm / sec. The results are shown in Table 1.
  • the coating speed is increased, the flow of the silver nanowire ink itself becomes faster, which induces a phenomenon in which the silver nanowire ink tends to flow in the lateral direction, and it is considered that the direction of the metal nanowires can be made uniform as described above. Therefore, by adopting printing conditions that satisfy both of these, it is possible to produce a transparent conductive film having almost no in-plane resistance anisotropy.
  • the sheet resistance value can be adjusted by the groove shape of the bar without changing the silver nanowire concentration.
  • the pitch (P) / depth (H) of the bar shape is less than 9, or the coating speed is less than 350 mm / sec, the in-plane resistance value anisotropy (( RTD ) / ( RMD )) becomes large. It exceeded 1.3. In each case, the lateral flow of silver nanowire ink was induced, but it was considered that the flow was rather small. That is, only when the pitch (P) / depth (H) of the bar shape is 9 or more or the coating speed is high, the direction of the metal nanowires can be made uniform, although the flow of the silver nanowire ink in the lateral direction is induced. It seems that there was no power.
  • Example 20 Wireless bar OSP-CN-22L (manufactured by Cortec Co., Ltd., bar groove shape S type / pitch (P): 500 ⁇ m, depth (H): 42 ⁇ m, P) different from the bar used in Example 1 only in the surface material.
  • the study was conducted under the same conditions as in Example 1 except that / H: 11.9 and bar surface: diamond-like carbon (coefficient of friction: 0.15) were used. The results are shown in Table 2.
  • Example 21 The study was conducted under the same conditions as in Example 20 except that the coating speed V of the silver nanowire ink was set to 300 mm / sec. The results are shown in Table 2.
  • Example 22 The study was conducted under the same conditions as in Example 20 except that the coating speed V of the silver nanowire ink was set to 100 mm / sec. The results are shown in Table 2.
  • Example 23 The study was conducted under the same conditions as in Example 20 except that PET (untreated surface of Cosmoshine (registered trademark) A4100 manufactured by Toyobo Co., Ltd.) was used as the transparent base material. The results are shown in Table 2.
  • Example 24 Wireless bar OSP-CN-22L (manufactured by Cortec Co., Ltd., bar groove shape S type / pitch (P): 500 ⁇ m, depth (H): 42 ⁇ m, P / H: 11.9, bar surface: SUS304 (coefficient of friction) : 0.45)) was examined under the same conditions as in Example 20 except that it was used. The results are shown in Table 2.
  • Example 25 Wireless bar OSP-CN-22L (manufactured by Cortec Co., Ltd., bar groove shape S type / pitch (P): 500 ⁇ m, depth (H): 42 ⁇ m, P / H: 11.9, bar surface: hard chrome plating ( The study was conducted under the same conditions as in Example 20 except that the friction coefficient: 0.70)) was used. The results are shown in Table 2.
  • the pitch (P) / depth (H) [P / H] of the groove of the bar is 5 or more, preferably 9 or more, regardless of the material (friction coefficient) of the bar surface and the coating speed V. It can be seen that in all of Examples 20 to 25, the in-plane resistance anisotropy of the conductive layer is smaller than that in the case of using a normal Mayer bar (or wire bar) (Comparative Example 2). .. Further, in Examples 20 to 23 using a wireless bar having a bar groove shape, pitch (P) / depth (H) [P / H] of 9 or more, and a bar surface friction coefficient of 0.15 (R).
  • the friction coefficient of the bar surface is 0.40 even if the pitch (P) / depth (H) of the groove shape of the bar is 9 or more. than example 24 (coefficient of friction of the bar surface 0.45), in example 25 (coefficient of friction of the bar surface 0.70), the resistance value in-plane anisotropy ((R TD) / (R MD) ) Exceeded 1.3. It is considered that the lateral flow of the silver nanowire ink was induced but slightly small.
  • the in-plane resistance anisotropy (( RTD ) / ( RMD )) was 1.78, which was extremely high.
  • the transparent conductive film having a small in-plane resistance anisotropy is produced by the method for producing a transparent conductive film of the present invention using bar coat printing on a bar in which grooves formed on the bar surface are adjusted to a specific shape. Can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pest Control & Pesticides (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

【課題】良好な光学特性、電気特性に加えて面内の抵抗値異方性がほとんど無い透明導電フィルムを提供する。 【解決手段】金属ナノワイヤおよびバインダー樹脂を含む導電層を備える透明導電フィルムの製造方法において、前記金属ナノワイヤおよびバインダー樹脂を含む塗布液を調製する調製工程と、透明基材の一主面に前記塗布液を塗布する塗布工程と、を含み、前記塗布工程において、ピッチ(P)と深さ(H)の比率P/Hが5~30である溝が形成されたバーによるバーコート方式の印刷方法を用いることを特徴とする。

Description

透明導電フィルムの製造方法
 本発明は、透明導電フィルムの製造方法に関する。さらに詳しくは、バーコート方式の印刷方法による金属ナノワイヤを含む透明導電フィルムの製造方法に関する。
 透明導電膜(透明導電フィルム)は、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、有機エレクトロルミネッセンス型ディスプレイ、太陽電池(PV)およびタッチパネル(TP)の透明電極、帯電防止(ESD)フィルムならびに電磁波遮蔽(EMI)フィルム等の種々の分野で使用されている。これらの透明導電膜としては、従来、ITO(酸化インジウム錫)を用いたものが使われている。
 近年、スマートフォンやカーナビゲーションシステム、自動販売機などにもタッチパネルが採用されている。特に、折り曲げ可能なスマートフォンが注目を集めていることから、タッチパネルも折り曲げ可能なものが求められている。
 折り曲げ可能なタッチパネルを実現するためには、折り曲げ可能な透明導電膜、すなわち耐屈曲性に優れた透明導電膜が必要不可欠である。そのため次世代透明導電膜として、金属ナノワイヤフィルムの開発が進んでいる。
 特許文献1には銀ナノワイヤインクの塗布工程としてスロットダイを有するスロットダイコーターを用いる透明導電フィルムの製造方法が示されている。また面内の抵抗値異方性を解決するために、せん断速度(印刷速度/スロットダイヘッド先端とフィルムとの間隔)が特定されている。しかしながら印刷速度は製造設備(特に乾燥設備)の能力によって制限される。
 特許文献2にも銀ナノワイヤインクの塗布工程としてスロットダイコーターが示されている。面内の抵抗値異方性の解決には、乾燥工程で印刷方向と異なる方向から基材へ向かって送風することが有効であることを開示している。しかしながら異なる方向から送風する設備が新たに必要となる。
 特許文献3では銀ナノワイヤインクの塗布工程としてグラビア印刷が示されている。しかし、面内の抵抗値異方性の解決については記載も示唆もされていない。
特開2011-090879号公報 WO2013/121556号パンフレット 特表2014-507746号公報
 金属ナノワイヤインクを用いた透明導電フィルムの作製では、印刷方向の抵抗値(RMD)と印刷方向に対して垂直の方向の抵抗値(RTD)が異なる、つまり異方性が生じることが課題である。
 本発明は、良好な光学特性、電気特性に加えて面内の抵抗値異方性が小さい透明導電フィルムを提供することを目的とする。
 本発明は以下の実施態様を含む。
 [1]金属ナノワイヤおよびバインダー樹脂を含む導電層を備える透明導電フィルムの製造方法において、前記金属ナノワイヤおよびバインダー樹脂を含む塗布液を調製する調製工程と、透明基材の一主面に前記塗布液を塗布する塗布工程と、を含み、前記塗布工程において、ピッチ(P)と深さ(H)の比率P/Hが5~30である溝が形成されたバーによるバーコート方式の印刷方法を用いることを特徴とする透明導電フィルムの製造方法。
 [2]前記バー表面を構成する材質の摩擦係数が0.05~0.45であることを特徴とする[1]に記載の透明導電フィルムの製造方法。
 [3]前記塗布液を前記透明基材の一主面に塗布する際のバーに対する前記透明基材の相対移動速度(塗布速度)をV(mm/sec)としたとき2000≧V≧350であることを特徴とする[2]に記載の透明導電フィルムの製造方法。
 [4]前記バー表面を構成する材質の摩擦係数が0.05~0.40であることを特徴とする[1]に記載の透明導電フィルムの製造方法。
 [5]前記塗布液を前記透明基材の一主面に塗布する際のバーに対する前記透明基材の相対移動速度(塗布速度)をV(mm/sec)としたとき2000≧V≧50であることを特徴とする[4]に記載の透明導電フィルムの製造方法。
 [6]前記バーに形成された溝のピッチ(P)と深さ(H)の比率P/Hが9~30であることを特徴とする[1]~[5]のいずれか一に記載の透明導電フィルムの製造方法。
 [7]前記金属ナノワイヤの平均長さが1~100μm、平均直径が1~500nmであることを特徴とする[1]~[6]のいずれか一に記載の透明導電フィルムの製造方法。
 [8]前記塗布液の粘度範囲が1~50mPa・sであることを特徴とする[1]~[7]のいずれか一に記載の透明導電フィルムの製造方法。
 本発明の透明導電フィルムの製造方法によれば、金属ナノワイヤおよびバインダー樹脂を含む塗布液をバーコート方式の印刷方法で印刷することにより、面内の抵抗値異方性が小さい透明導電フィルムを提供できる。
バーコーターに使用されるバーに形成された溝の形状を説明するための概略図である。 抵抗値の測定方法の説明図である。
 以下、本発明を実施するための形態(以下、実施形態という)を説明する。
 実施形態にかかる透明導電フィルムの製造方法は、金属ナノワイヤおよびバインダー樹脂を含む塗布液を調製する調製工程と、透明基材(透明フィルム)の一主面に上記塗布液を塗布する塗布工程と、を含み、上記塗布工程において、ピッチ(P)と深さ(H)の比率P/Hが5~30である溝が形成されたバーによるバーコート方式の印刷方法を用いることを特徴とする。上記透明導電フィルムの製造方法により、透明基材上に形成された、金属ナノワイヤおよびバインダー樹脂を含む導電層を備える透明導電フィルムを製造できる。
 なお、上記透明導電フィルムの製造方法により製造した透明導電フィルムには、後述する保護膜を形成してもよい。
<透明基材>
 上記透明基材は着色していてもよいが、全光線透過率(可視光に対する透明性)は高い方が好ましく、全光線透過率が80%以上であることが好ましい。例えば、ポリエステル(ポリエチレンテレフタレート[PET]、ポリエチレンナフタレート[PEN]等)、ポリカーボネート、アクリル樹脂(ポリメチルメタクリレート[PMMA]等)、シクロオレフィンポリマー等の樹脂フィルムを好適に使用することができる。また、これら透明基材には光学特性、電気的特性や耐屈曲性を損なわない範囲で、易接着、光学調整(アンチグレア、アンチリフレクションなど)、ハードコートなどの機能を有する層を、単一または複数備えていてもよく、これらの層は片面または両面に備えていてもよい。これらの樹脂フィルムの中でも、優れた光透過性(透明性)や柔軟性、機械的特性などの点からポリエチレンテレフタレート、シクロオレフィンポリマーを用いることが好ましい。ポリエチレンテレフタレートとしては、コスモシャイン(登録商標、東洋紡株式会社製)を用いることができる。シクロオレフィンポリマーとしては、ノルボルネンの水素化開環メタセシス重合型シクロオレフィンポリマー(ZEONOR(登録商標、日本ゼオン社製)、ZEONEX(登録商標、日本ゼオン株式会社製)、ARTON(登録商標、JSR株式会社製)等)やノルボルネン/エチレン付加共重合型シクロオレフィンポリマー(APEL(登録商標、三井化学株式会社製)、TOPAS(登録商標、ポリプラスチックス株式会社製))を用いることができる。具体的には、コスモシャインA4100、A4160や、ZEONOR ZF-14、ZF-16、ARTON RX4500、RH4900、R5000が挙げられる。透明基材の厚みは用途により異なるが、10~200μmのものを用いることが好ましい。本明細書において「透明」とは、全光線透過率が70%以上であることを意味する。
<金属ナノワイヤ>
 透明基材上に形成される導電層を構成する導電性材料としては、金属ナノワイヤを好適に使用することができる。金属ナノワイヤは、径がナノメーターオーダーのサイズである金属であり、ワイヤ状の形状を有する導電性材料である。なお、本実施形態では、金属ナノワイヤとともに(混合して)、または金属ナノワイヤに代えて、ポーラスあるいはノンポーラスのチューブ状の形状を有する導電性材料である金属ナノチューブを使用してもよい。本明細書において、「ワイヤ状」と「チューブ状」はいずれも線状であるが、前者は中央が中空ではないもの、後者は中央が中空であるものを意図する。性状は、柔軟であってもよく、剛直であってもよい。前者を「狭義の金属ナノワイヤ」、後者を「狭義の金属ナノチューブ」と呼び、以下、本願明細書において、「金属ナノワイヤ」は狭義の金属ナノワイヤと狭義の金属ナノチューブとを包括する意味で用いる。狭義の金属ナノワイヤ、狭義の金属ナノチューブは、単独で用いてもよく、混合して用いてもよい。
 本明細書において「導電層」とは、上記金属ナノワイヤと後述のバインダー樹脂を含む厚みが20~200nmの薄膜状のものであり、厚みが必ずしも均一であるものに限定されない。
 金属ナノワイヤの製造方法としては、公知の製造方法を用いることができる。例えば銀ナノワイヤは、ポリオール(Poly-ol)法を用いて、ポリビニルピロリドン存在下で硝酸銀を還元することによって合成することができる(Chem.Mater.,2002,14,4736参照)。金ナノワイヤも同様に、ポリビニルピロリドン存在下で塩化金酸水和物を還元することによって合成することができる(J.Am.Chem.Soc.,2007,129,1733参照)。銀ナノワイヤおよび金ナノワイヤの大規模な合成および精製の技術に関しては国際公開第2008/073143号パンフレットと国際公開第2008/046058号パンフレットに詳細な記述がある。ポーラス構造を有する金ナノチューブは、銀ナノワイヤを鋳型にして、塩化金酸溶液を還元することにより合成することができる。ここで、鋳型に用いた銀ナノワイヤは塩化金酸との酸化還元反応により溶液中に溶け出し、結果としてポーラス構造を有する金ナノチューブができる(J.Am.Chem.Soc.,2004,126,3892-3901参照)。
 金属ナノワイヤの径の太さの平均(平均直径)は、1~500nmが好ましく、5~200nmがより好ましく、5~100nmがさらに好ましく、10~50nmが特に好ましい。また、金属ナノワイヤの長軸の長さの平均(平均長さ)は、1~100μmが好ましく、1~80μmがより好ましく、2~70μmがさらに好ましく、5~50μmが特に好ましい。金属ナノワイヤは、径の太さの平均および長軸の長さの平均が上記範囲を満たすとともに、アスペクト比の平均が5より大きいことが好ましく、10以上であることがより好ましく、100以上であることがさらに好ましく、200以上であることが特に好ましい。ここで、アスペクト比は、金属ナノワイヤの平均直径をb、長軸の平均長さをaと近似した場合、a/bで求められる値である。a及びbは、走査型電子顕微鏡(SEM)及び光学顕微鏡を用いて測定できる。具体的には、b(平均直径)は電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤの直径を測定し、その算術平均値として求めることができる。また、a(平均長さ)の算出には、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤの長さを測定し、その算術平均値として求めることができる。
 このような金属ナノワイヤの材料としては、金、銀、白金、銅、ニッケル、鉄、コバルト、亜鉛、ルテニウム、ロジウム、パラジウム、カドミウム、オスミウム、イリジウムからなる群から選ばれる少なくとも1種及びこれらの金属を組み合わせた合金等が挙げられる。低い表面抵抗かつ高い全光線透過率を有する塗膜を得るためには、金、銀及び銅のいずれかを少なくとも1種含むことが好ましい。これらの金属は導電性が高いため、一定の表面抵抗を得る際に、面に占める金属の密度を減らすことができるので、高い全光線透過率を実現できる。これらの金属の中でも、金または銀の少なくとも1種を含むことがより好ましい。最適な態様としては、銀のナノワイヤが挙げられる。
 上記導電層は、金属ナノワイヤとバインダー樹脂を含む。バインダー樹脂としては、透明性を有するものであれば制限なく適用できるが、導電性材料としてポリオール法を用いた金属ナノワイヤを使用する場合は、その製造用溶媒(ポリオール)との相溶性の観点から、アルコールまたは水に可溶なバインダー樹脂を使用することが好ましい。本明細書において「アルコールまたは水に可溶」とは、アルコールまたは水1Lに対してバインダー樹脂が0.1g以上溶解することを意味する。具体的には、ポリ-N-ビニルピロリドン、メチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロースといった水溶性セルロース系樹脂、ブチラール樹脂、ポリ-N-ビニルアセトアミド(PNVA(登録商標))を用いることができる。上記樹脂は単独で使用してもよいし、2種以上組み合わせて使用してもよい。2種以上を組み合わせる場合は、単純な混合でも良いし、共重合体を用いてもよい。ポリ-N-ビニルアセトアミドは、N-ビニルアセトアミド(NVA)のホモポリマーであるが、N-ビニルアセトアミド(NVA)が70モル%以上である共重合体を使用することもできる。NVAと共重合できるモノマーとしては、例えばN-ビニルホルムアミド、N-ビニルピロリドン、アクリル酸、メタクリル酸、アクリル酸ナトリウム、メタクリル酸ナトリウム、アクリルアミド、アクリロニトリル等が挙げられる。共重合成分の含有量が多くなると、得られる透明導電パターンのシート抵抗が高くなり、銀ナノワイヤと基板との密着性が低下する傾向があり、また、耐熱性(熱分解開始温度)も低下する傾向があるので、N-ビニルアセトアミド由来のモノマー単位は、重合体中に70モル%以上含むことが好ましく、80モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。N-ビニルアセトアミドをモノマー単位として含む重合体(ホモポリマーおよび共重合体)は絶対分子量による重量平均分子量が3万~400万であることが好ましく、10万~300万であることがより好ましく、30万~150万であることがさらに好ましい。絶対分子量は以下の方法により測定したものである。
<分子量測定>
 下記溶離液にバインダー樹脂を溶解させ、20時間静置した。この溶液におけるバインダー樹脂の濃度は0.05質量%である。
 これを0.45μmメンブレンフィルターにて濾過し、濾液をGPC-MALSにて測定を実施し、絶対分子量基準の重量平均分子量を算出した。
GPC:昭和電工株式会社製Shodex(登録商標)SYSTEM21
カラム:東ソー株式会社製TSKgel(登録商標)G6000PW
カラム温度:40℃
溶離液:0.1mol/L NaHPO水溶液+0.1mol/L NaHPO水溶液
流速:0.64mL/min
試料注入量:100μL
MALS検出器:ワイアットテクノロジーコーポレーション、DAWN(登録商標) DSP
レーザー波長:633nm
多角度フィット法:Berry法
 上記導電層は、上記金属ナノワイヤ、バインダー樹脂および溶媒を含む導電性インク(金属ナノワイヤインク)を塗布液として透明基材の少なくとも一方の主面上に印刷し、溶媒を乾燥除去することによって形成する。
 溶媒としては、金属ナノワイヤが良好な分散性を示し、かつバインダー樹脂が溶解する溶媒であれば特に限定されないが、導電性材料としてポリオール法で合成した金属ナノワイヤを用いる場合には、その製造用溶媒(ポリオール)との相溶性の観点から、アルコール、水あるいはアルコールと水との混合溶媒が好ましい。前述の通りバインダー樹脂もアルコール、水あるいはアルコールと水との混合溶媒に可溶なバインダー樹脂を用いることが好ましい。バインダー樹脂の乾燥速度を容易に制御する事が出来る点でアルコールと水との混合溶媒を用いることがより好ましい。アルコールとしては、C2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコール(メタノール、エタノール、ノルマルプロパノールおよびイソプロパノール)[以下、単に「炭素原子数が1~3の飽和一価アルコール」と表記]を少なくとも1種含む。炭素原子数が1~3の飽和一価アルコールを全アルコール中40質量%以上含むことが好ましい。炭素原子数が1~3の飽和一価アルコールを用いると乾燥が容易となるため工程上都合が良い。
 アルコールとして、C2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコール以外のアルコールを併用することもできる。併用できるC2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコール以外のアルコールとしては、エチレングリコール、プロピレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等が挙げられる。これらを上記C2n+1OH(nは1~3の整数)で表される炭素原子数が1~3の飽和一価アルコールと併用する事で乾燥速度を調整する事が出来る。また、混合溶媒における全アルコールの含有率は、5~90質量%であることが好適である。混合溶媒におけるアルコールの含有率が5質量%未満、又は90質量%超であるとコーテイングした際に縞模様(塗布斑)が発生し不適切であることがある。
 上記導電性インクは、上記バインダー樹脂、金属ナノワイヤおよび溶媒を自転公転攪拌機等で攪拌して混合することにより製造することができる。導電性インク中に含有されるバインダー樹脂の含有量は0.01から1.0質量%の範囲であることが好ましい。導電性インク中に含有される金属ナノワイヤの含有量は0.01から1.0質量%の範囲であることが好ましい。導電性インク中に含有される溶媒の含有量は98.0から99.98質量%の範囲であることが好ましい。上記組成とすることにより1~50mPa・sの粘度の導電性インクが得られ、これを透明基材の主面上に印刷し、溶媒を乾燥除去することによって膜厚20~200nmの導電層が得られる。導電性インクのより好ましい粘度は1~20mPa・sであり、さらに好ましい粘度は1~10mPa・sである。粘度は25℃でブルックフィールド社製デジタル粘度計DV-E(スピンドル:SC4-18)により測定した値である。
 透明導電フィルムの製造方法(印刷方法)には、バーコート印刷法、グラビア印刷法、インクジェット法、スリットコート法などの印刷法が挙げられる。その中でバーコート印刷法は低粘度のインクの塗布性が良好で、且つ、薄膜の形成に優れている。また、インクジェット法と異なり、バーコート印刷法は無機や金属粒子などを含有した低粘度インクも目詰まりなく印刷できる。
 本実施形態の透明導電フィルムの製造方法は透明基材の少なくとも片面(一主面)に上記導電性インクをバーコート法で塗布、乾燥する工程を含む。塗布は20~30℃の範囲で大気雰囲気下で行うことが好ましい。塗布後の乾燥は60~100℃の範囲で大気雰囲気下で1~10分間行うことが好ましい。上記バーコート印刷法でのバーコーターとしては特に制限はなく、目的に応じて適宜選択する事が出来る。バーコーターに使用されるバーはワイヤーを巻き付けたマイヤーバー(またはワイヤーバー)とワイヤを巻き付けず、バーを切削加工して溝を形成するワイヤレスバーがあるが、後述する理由によりワイヤレスバーが好適である。上記導電性インクを透明基材の少なくとも片面(一主面)にバーコート法で塗布する速度V(mm/sec)(以下、「塗布速度」という)は、バーの透明基材に対する相対移動速度、すなわち、塗布時における透明基材に対するバーの移動速度またはバーに対する透明基材の搬送速度を意味する。V(mm/sec)は2000≧V≧50であることが好ましい。V≧50であると、生産性良く導電層の面内の抵抗値異方性が小さい透明導電フィルムを製造する上で好ましい。また、2000≧Vであれば、塗布斑(かすれ等を含む)なく面内の抵抗値異方性が小さい導電層を形成できる。V(mm/sec)のより好ましい上限値は1000、さらに好ましい上限値は700、特に好ましい上限値は500である。また、Vのより好ましい下限値は100、さらに好ましい下限値は350である。なお、後述する実施例で示すように、バー表面を構成する材質の摩擦係数の数値が小さい方が、塗布斑(かすれ等を含む)なく面内の抵抗値異方性が小さい導電層を形成できるV(mm/sec)の下限値が小さい傾向がある。すなわち、バー表面を構成する材質の摩擦係数が0.05~0.40の範囲では、V(mm/sec)の好ましい範囲は2000≧V≧50であり、より好ましい範囲は1000≧V≧100であり、さらに好ましい範囲は500≧V≧100である。バー表面を構成する材質の摩擦係数が0.40超0.70以下では、V(mm/sec)の好ましい範囲は2000≧V≧350であり、より好ましい範囲は1000≧V≧350であり、さらに好ましい範囲は700≧V≧350であり、特に好ましい範囲は500≧V≧350である。
 図1(a)、(b)、(c)には、バーコーターに使用されるバーに形成された溝の形状を説明するための概略図が示される。図1(a)がワイヤレスバーの例であり、図1(b)がマイヤーバー(またはワイヤーバー)の例である。また、図1(c)は、市販されているワイヤレスバーの溝の形状の例である。
 図1(a)、(b)において、Pが溝のピッチであり、Hが溝の深さであり、Aが溝により形成されるポケットの断面積である。図1(a)に示されるワイヤレスバーでは、溝を切削加工により形成するので、P及びHを任意に調整できる。一方、図1(b)に示されるマイヤーバーでは、直径Dのワイヤーをバーに巻き付けて作製するためPはDに、HはD/2に固定される。
 後述する実施例で示すように、上記バーの溝のピッチ(P)と深さ(H)の比率(P/H)を5~30とすると、マイヤーバーを用いる場合に比べて導電層の面内の抵抗値異方性を低減できる。ワイヤレスバーでは、P及びHを任意に設定できる。P/Hの値が9~30であり、かつ、後述するバー表面を構成する材質の摩擦係数が0.05~0.40の範囲であるバーを用いて塗布速度V(mm/sec)が2000≧V≧50の範囲で塗布する、あるいは、P/Hの値が9~30であり、かつ、後述するバー表面を構成する材質の摩擦係数が0.05~0.45の範囲であるバーを用いて塗布速度V(mm/sec)が2000≧V≧350の範囲で塗布すると、後述する導電層の面内の抵抗値異方性の指標となる(RTD)/(RMD)を1.3以下とすることができ好適である。P/Hのより好ましい範囲は9.2~25であり、9.5~20であることがさらに好ましく、10~15であることが特に好ましい。
 ワイヤレスバーの溝の形状は、上記ピッチ(P)と深さ(H)の比率(P/H)が5~30であれば、その形状は種々のものを使用できる。例えば、図1(c)に示されるように、S形(滑らかな曲線形状)、K形(下部がやや平坦な形状)、W形(上部と下部がやや平坦な形状)のものが挙げられ、いずれも市販されている。
 上記バーコート印刷法により透明基材上に形成された導電層の面内の抵抗値異方性(RTD)/(RMD)は0.7~1.3が好ましく、0.8~1.2がより好ましく、0.9~1.1が更に好ましい。ここで、(RMD)は、導電性インクの塗布方向(印刷方向)における導電層の抵抗値であり、(RTD)は、導電性インクの塗布方向(印刷方向)に対して垂直方向おける導電層の抵抗値である。
 本発明者は、使用するワイヤレスバーの透明基材と接する表面の材質がバーコート印刷により形成される導電層の面内の抵抗値の異方性に影響を及ぼすことを見出した。すなわち、後述する測定方法により求められる摩擦係数が0.05~0.40である材質で構成された表面を有するワイヤレスバーを用いてバーコート印刷することにより、面内の抵抗値の異方性(抵抗値異方性)がより小さい導電層が得られることを本発明者は見出した。上記摩擦係数の範囲のワイヤレスバーを用いることにより、印刷方向(縦方向)のみならず印刷方向と垂直の方向(横方向)にも導電性インクが適度に流れやすい現象が誘発されたと推定される。摩擦係数は0.05~0.30であるとより好ましく、0.05~0.20であるとさらに好ましい。上記摩擦係数を有する材質で製造されたワイヤレスバーを用いることもできるが、一般的に用いられる材質(SUS等)のワイヤレスバーの表面に対して種々の表面処理を施すことにより上記摩擦係数の範囲に調整することができる。例えば、硬質クロムメッキ処理は摩擦係数0.7、無電解ニッケルメッキ処理は摩擦係数0.3、無電解ニッケルテフロンメッキ処理は摩擦係数0.25、ダイヤモンドライクカーボン処理は摩擦係数0.15が挙げられ、表面処理していないSUS304は摩擦係数0.45である。摩擦係数はいずれもカタログ値であり、表面処理されたワイヤレスバーは市販されている。
 摩擦係数は、ボールオンディスク摩擦摩耗試験機によりJIS R1613に準じて測定する。ボールの材質はSUS304であり、ディスクとして上記ワイヤレスバーと同等の材質または同等の材質で表面処理された基板を用いる。ディスクが回転することにより発生する摩擦力をセンサーで計測し、負荷された荷重で除して摩擦係数を算出する。
 上記特定の溝形状を有するワイヤレスバーを用いたバーコート印刷法によりマイヤーバー(またはワイヤーバー)を用いた場合に比べて透明基材上に面内の抵抗値異方性が小さい、好ましくは(RTD)/(RMD)が0.7~1.3の導電層を形成できる。(RTD)/(RMD)の値は0.8~1.2がより好ましく、0.9~1.1が更に好ましい。
<保護膜>
 透明導電フィルムの導電層の表面には、導電層を保護するための保護膜を設けることが好ましく、硬化性樹脂組成物の硬化膜であることが好ましい。硬化性樹脂組成物としては、(A)カルボキシ基を含有するポリウレタンと、(B)エポキシ化合物と、(C)硬化促進剤と、(D)溶媒と、を含むものが好ましい。硬化性樹脂組成物を上記導電層上に印刷、塗布等により形成し、硬化させて保護膜を形成する。硬化性樹脂組成物の硬化は、熱硬化性樹脂組成物を加熱・乾燥させることにより行うことができる。
 上記(A)カルボキシ基を含有するポリウレタンは、その重量平均分子量が1,000~100,000であることが好ましく、2,000~70,000であることがより好ましく、3,000~50,000であると更に好ましい。ここで、分子量は、ゲルパーミエーションクロマトグラフィー(以下GPCと表記)で測定したポリスチレン換算の値である。分子量が1,000未満では、印刷後の塗膜の伸度、可撓性、並びに強度を損なうことがあり、100,000を超えると溶媒へのポリウレタンの溶解性が低くなる上に、溶解しても粘度が高くなりすぎるために、使用面で制約が大きくなることがある。
 本明細書においては、特に断りのない限り、GPCの測定条件は以下のとおりである。
装置名:日本分光株式会社製HPLCユニット HSS-2000
カラム:ShodexカラムLF-804
移動相:テトラヒドロフラン
流速 :1.0mL/min
検出器:日本分光株式会社製 RI-2031Plus
温度 :40.0℃
試料量:サンプルル-プ 100μL
試料濃度:約0.1質量%に調製
 (A)カルボキシ基を含有するポリウレタンの酸価は10~140mg-KOH/gであることが好ましく、15~130mg-KOH/gであると更に好ましい。酸価が10mg-KOH/g以上であれば、硬化性、耐溶剤性とも良好である。140mg-KOH/g以下であるとウレタン樹脂としての溶媒への溶解性が良好であり、所望の粘度に調整し易い。また、硬化物が硬くなりすぎることによる基材フィルムの反り等の問題を起こし難くなる。
 また、本明細書において、樹脂の酸価は以下の方法により測定した値である。
 100mL三角フラスコに試料約0.2gを精密天秤にて精秤し、これにエタノール/トルエン=1/2(質量比)の混合溶媒10mLを加えて溶解する。更に、この容器に指示薬としてフェノールフタレインエタノール溶液を1~3滴添加し、試料が均一になるまで十分に攪拌する。これを、0.1N水酸化カリウム-エタノール溶液で滴定し、指示薬の微紅色が30秒間続いたときを、中和の終点とする。その結果から下記の計算式を用いて得た値を、樹脂の酸価とする。
酸価(mg-KOH/g)=〔B×f×5.611〕/S
B:0.1N水酸化カリウム-エタノール溶液の使用量(mL)
f:0.1N水酸化カリウム-エタノール溶液のファクター
S:試料の採取量(g)
 (A)カルボキシ基を含有するポリウレタンは、より具体的には、(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、および(a3)カルボキシ基を有するジヒドロキシ化合物をモノマーとして用いて合成されるポリウレタンである。耐候性・耐光性の観点では(a1)、(a2)、(a3)はそれぞれ芳香族化合物などの共役性を有する官能基を含まないことが望ましい。以下、各モノマーについてより詳細に説明する。
(a1)ポリイソシアネート化合物
 (a1)ポリイソシアネート化合物としては、通常、1分子当たりのイソシアナト基が2個であるジイソシアネートが用いられる。ポリイソシアネート化合物としては、たとえば、脂肪族ポリイソシアネート、脂環式ポリイソシアネート等が挙げられ、これらの1種を単独でまたは2種以上を組み合わせて用いることができる。(A)カルボキシ基を含有するポリウレタンがゲル化をしない範囲で、イソシアナト基を3個以上有するポリイソシアネートも少量使用することができる。
 脂肪族ポリイソシアネートとしては、たとえば、1,3-トリメチレンジイソシアネート、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,9-ノナメチレンジイソシアネート、1,10-デカメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート、2,2’-ジエチルエ-テルジイソシアネート、ダイマー酸ジイソシアネート等が挙げられる。
 脂環式ポリイソシアネートとしては、たとえば、1,4-シクロヘキサンジイソシアネート、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサン、3-イソシアナトメチル-3,5,5-トリメチルシクロヘキシルイソシアネート(IPDI、イソホロンジイソシアネート)、ビス-(4-イソシアナトシクロヘキシル)メタン(水添MDI)、水素化(1,3-または1,4-)キシリレンジイソシアネート、ノルボルナンジイソシアネート等が挙げられる。
 (a1)ポリイソシアネート化合物として、イソシアナト基(-NCO基)中の炭素原子以外の炭素原子の数が6~30である脂環式化合物を用いることにより、実施の形態に係るポリウレタン樹脂から形成される保護膜は、特に高温高湿時の信頼性に高く、電子機器部品の部材に向いている。上記例示した脂環式ポリイソシアネートの中でも、1,4-シクロヘキサンジイソシアネート、イソホロンジイソシアネート、ビス-(4-イソシアナトシクロヘキシル)メタン、1,3-ビス(イソシアナトメチル)シクロヘキサン、1,4-ビス(イソシアナトメチル)シクロヘキサンが好ましい。
 上述の通り耐候性・耐光性の観点では(a1)ポリイソシアネート化合物としては芳香環を有さない化合物を用いる方が好ましい。そのため、必要に応じて芳香族ポリイソシアネート、芳香脂肪族ポリイソシアネートを用いる場合は、(a1)ポリイソシアネート化合物の中に、(a1)ポリイソシアネート化合物の総量(100mol%)に対して、50mol%以下、好ましくは30mol%以下、さらに好ましくは10mol%以下含まれていてもよい。
(a2)ポリオール化合物
 (a2)ポリオール化合物(ただし、(a2)ポリオール化合物には、後述する(a3)カルボキシ基を有するジヒドロキシ化合物は含まれない。)の数平均分子量は通常250~50,000であり、好ましくは400~10,000、より好ましくは500~5,000である。この分子量は前述した条件でGPCにより測定したポリスチレン換算の値である。
 (a2)ポリオール化合物は、両末端にヒドロキシ基を有するジオールが好ましい。たとえば、ポリカーボネートポリオール、ポリエ-テルポリオール、ポリエステルポリオール、ポリラクトンポリオール、両末端水酸基化ポリシリコーン、および植物系油脂を原料とするC18(炭素原子数18)不飽和脂肪酸およびその重合物由来の多価カルボン酸を水素添加しカルボン酸を水酸基に変換した炭素原子数が18~72であるポリオール化合物である。これらの中でも保護膜としての耐水性、絶縁信頼性、基材との密着性のバランスを考慮するとポリカーボネートポリオールが好ましい。
 上記ポリカーボネートポリオールは、炭素原子数3~18のジオールを原料として、炭酸エステルまたはホスゲンと反応させることにより得ることができ、たとえば、以下の構造式(1)で表される。
Figure JPOXMLDOC01-appb-C000001
 
 式(1)において、Rは対応するジオール(HO-R-OH)から水酸基を除いた残基であって炭素原子数3~18のアルキレン基であり、nは正の整数、好ましくは2~50である。
 式(1)で表されるポリカーボネートポリオールは、具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,8-オクタンジオール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,10-デカメチレングリコールまたは1,2-テトラデカンジオールなどを原料として用いることにより製造できる。
 上記ポリカーボネートポリオールは、その骨格中に複数種のアルキレン基を有するポリカーボネートポリオール(共重合ポリカーボネートポリオール)であってもよい。共重合ポリカーボネートポリオールの使用は、(A)カルボキシ基を含有するポリウレタンの結晶化防止の観点から有利な場合が多い。また、溶媒への溶解性を考慮すると、分岐骨格を有し、分岐鎖の末端に水酸基を有するポリカーボネートポリオールが併用されることが好ましい。
(a3)カルボキシ基を含有するジヒドロキシ化合物
 (a3)カルボキシ基を含有するジヒドロキシ化合物としては、ヒドロキシ基、炭素数が1または2のヒドロキシアルキル基から選択されるいずれかを2つ有する分子量が200以下のカルボン酸またはアミノカルボン酸であることが架橋点を制御できる点で好ましい。具体的には2,2-ジメチロ-ルプロピオン酸、2,2-ジメチロ-ルブタン酸、N,N-ビスヒドロキシエチルグリシン、N,N-ビスヒドロキシエチルアラニン等が挙げられ、この中でも、溶媒への溶解度から、2,2-ジメチロ-ルプロピオン酸、2,2-ジメチロ-ルブタン酸が特に好ましい。これらの(a3)カルボキシ基を含有するジヒドロキシ化合物は、1種単独でまたは2種以上を組み合わせて用いることができる。
 前述の(A)カルボキシ基を含有するポリウレタンは、上記の3成分((a1)、(a2)および(a3))のみから合成が可能である。なお、さらに(a4)モノヒドロキシ化合物および/または(a5)モノイソシアネート化合物を反応させて合成することもできる。耐光性の観点から分子内に芳香環や炭素-炭素二重結合を含まない化合物を用いることが好ましい。
 上記(A)カルボキシ基を含有するポリウレタンは、ジブチル錫ジラウリレートのような公知のウレタン化触媒の存在下または非存在下で、適切な有機溶媒を用いて、上記した(a1)ポリイソシアネート化合物、(a2)ポリオール化合物、(a3)カルボキシ基を有するジヒドロキシ化合物を反応させることにより合成ができるが、無触媒で反応させた方が、最終的にスズ等の混入を考慮する必要がなく好適である。
 上記有機溶媒は、イソシアネート化合物と反応性が低いものであれば特に限定されないがアミン等の塩基性官能基を含まず、沸点が50℃以上、好ましくは80℃以上、より好ましくは100℃以上である溶媒が好ましい。このような溶媒としては、たとえば、トルエン、キシレン、エチルベンゼン、ニトロベンゼン、シクロヘキサン、イソホロン、ジエチレングリコールジメチルエ-テル、エチレングリコールジエチルエ-テル、エチレングリコールモノメチルエ-テルアセテート、プロピレングリコールモノメチルエ-テルアセテート、プロピレングリコールモノエチルエ-テルアセテート、ジプロピレングリコールモノメチルエ-テルアセテート、ジエチレングリコールモノエチルエ-テルアセテート、メトキシプロピオン酸メチル、メトキシプロピオン酸エチル、エトキシプロピオン酸メチル、エトキシプロピオン酸エチル、酢酸エチル、酢酸n-ブチル、酢酸イソアミル、乳酸エチル、アセトン、メチルエチルケトン、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、γ-ブチロラクトン、ジメチルスルホキシド等を挙げることができる。
 なお、生成するポリウレタンの溶解性が低い有機溶媒は好ましくないこと、および電子材料用途においてポリウレタンを保護膜用インクの原料にすることを考えると、これらの中でも、特に、プロピレングリコールモノメチルエ-テルアセテート、プロピレングリコールモノエチルエ-テルアセテート、ジプロピレングリコールモノメチルエ-テルアセテート、ジエチレングリコールモノエチルエ-テルアセテート、γ-ブチロラクトン等が好ましい。
 原料の仕込みを行う順番については特に制約はないが、通常は(a2)ポリオール化合物および(a3)カルボキシ基を有するジヒドロキシ化合物を先に仕込み、溶媒に溶解または分散させた後、20~150℃、より好ましくは60~120℃で、(a1)ポリイソシアネート化合物を滴下しながら加え、その後、30~160℃、より好ましくは50~130℃でこれらを反応させる。
 原料の仕込みモル比は、目的とするポリウレタンの分子量および酸価に応じて調節する。
 具体的には、これらの仕込みモル比は、(a1)ポリイソシアネート化合物のイソシアナト基:((a2)ポリオール化合物の水酸基+(a3)カルボキシ基を有するジヒドロキシ化合物の水酸基)が、0.5~1.5:1、好ましくは0.8~1.2:1より好ましくは0.95~1.05:1である。
 また、(a2)ポリオール化合物の水酸基:(a3)カルボキシ基を有するジヒドロキシ化合物の水酸基が、1:0.1~30、好ましくは1:0.3~10である。
 上記(B)エポキシ化合物としては、ビスフェノールA型エポキシ化合物、水添ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、N-グリシジル型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、キレート型エポキシ樹脂、グリオキザール型エポキシ樹脂、アミノ基含有エポキシ樹脂、ゴム変性エポキシ樹脂、ジシクロペンタジエンフェノリック型エポキシ樹脂、シリコーン変性エポキシ樹脂、ε-カプロラクトン変性エポキシ樹脂、グリシジル基を含有した脂肪族型エポキシ樹脂、グリシジル基を含有した脂環式エポキシ樹脂などの一分子中に2個以上のエポキシ基を有するエポキシ化合物を挙げることができる。
 特に、一分子中に3個以上のエポキシ基を有するエポキシ化合物がより好適に使用できる。このようなエポキシ化合物としては、例えば、EHPE(登録商標)3150(株式会社ダイセル製)、jER(登録商標)604(三菱化学株式会社製)、EPICLON(登録商標)EXA-4700(DIC株式会社製)、EPICLON(登録商標)HP-7200(DIC株式会社製)、ペンタエリスリトールテトラグリシジルエーテル、ペンタエリスリトールトリグリシジルエーテル、TEPIC(登録商標)-S(日産化学株式会社製)などが挙げられる。
 上記(B)エポキシ化合物としては、分子内に芳香環を有していても良く、その場合、上記(A)と(B)の合計質量に対して(B)の質量は20質量%以下が好ましい。
 上記(B)エポキシ化合物に対する(A)カルボキシ基を含有するポリウレタンの配合割合は、(B)エポキシ化合物のエポキシ基に対するポリウレタン中のカルボキシ基の当量比で0.5~1.5であることが好ましく、0.7~1.3であることがより好ましく、0.9~1.1であることがさらに好ましい。
 上記(C)硬化促進剤としては、トリフェニルホスフィン、トリブチルホスフィンなどのホスフィン系化合物(北興化学工業株式会社製)、キュアゾール(登録商標)(イミダゾール系エポキシ樹脂硬化剤:四国化成工業株式会社製)、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、U-CAT(登録商標)SAシリーズ(DBU塩:サンアプロ株式会社製)、Irgacure(登録商標)184等が挙げられる。これらの使用量としては、使用量があまりに少ないと添加した効果が無く、使用量が多すぎると電気絶縁性が低下するので、(A)と(B)の合計質量に対して0.1~10質量%、より好ましくは0.5~6質量%、さらに好ましくは0.5~5質量%、特に好ましくは0.5~3質量%使用される。
 また、硬化助剤を併用してもよい。硬化助剤としては、多官能チオール化合物やオキセタン化合物などが挙げられる。多官能チオール化合物としては、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、トリス-[(3-メルカプトプロピオニルオキシ)-エチル]-イソシアヌレート、トリメチロールプロパントリス(3-メルカプトプロピオネート)、カレンズ(登録商標)MTシリーズ(昭和電工株式会社製)などが挙げられる。オキセタン化合物としては、アロンオキセタン(登録商標)シリーズ(東亜合成株式会社製)、ETERNACOLL(登録商標)OXBPやOXMA(宇部興産株式会社製)が挙げられる。これらの使用量としては、使用量があまりに少ないと添加した効果が無く、使用量が多すぎると硬化速度が速くなり過ぎ、ハンドリング性が低下するので、(B)の質量に対して0.1~10質量%であることが好ましく、より好ましくは0.5~6質量%使用される。
 上記硬化性樹脂組成物には(D)溶媒を95.0質量%以上99.9質量%以下含むことが好ましく、96質量%以上99.7質量%以下含むことがより好ましく、97質量%以上99.5質量%以下含むことがさらに好ましい。(D)溶媒としては、(A)カルボキシ基を含有するポリウレタンの合成に用いた溶媒をそのまま使用することもできるし、ポリウレタン樹脂の溶解性や印刷性を調整するために他の溶媒を用いることもできる。他の溶媒を用いる場合には、新たな溶媒を添加する前後に反応溶媒を留去し、溶媒を置換してもよい。ただし、操作の煩雑性やエネルギーコストを考えると(A)カルボキシ基を含有するポリウレタンの合成に用いた溶媒の少なくとも一部をそのまま用いることが好ましい。保護膜用組成物の安定性を考慮すると、溶媒の沸点は、80℃から300℃であることが好ましく、80℃から250℃であることがより好ましい。沸点が80℃未満である場合、印刷時に乾燥しやすく、ムラが出来やすい。沸点が300℃より高いと、乾燥、硬化時に高温で長時間の加熱処理を要するために、工業的な生産には向かなくなる。
 このような溶媒としては、プロピレングリコールモノメチルエ-テルアセテート(沸点146℃)、γ-ブチロラクトン(沸点204℃)、ジエチレングリコールモノエチルエーテルアセテート(沸点218℃)、トリプロピレングリコールジメチルエーテル(沸点243℃)等のポリウレタン合成に用いる溶媒や、プロピレングリコールジメチルエーテル(沸点97℃)、ジエチレングリコールジメチルエーテル(沸点162℃)などのエーテル系の溶媒、イソプロピルアルコール(沸点82℃)、t-ブチルアルコール(沸点82℃)、1-ヘキサノール(沸点157℃)、プロピレングリコールモノメチルエーテル(沸点120℃)、ジエチレングリコールモノメチルエーテル(沸点194℃)、ジエチレングリコールモノエチルエーテル(沸点196℃)、ジエチレングリコールモノブチルエーテル(沸点230℃)、トリエチレングリコール(沸点276℃)、乳酸エチル(沸点154℃)等の水酸基を含む溶媒、メチルエチルケトン(沸点80℃)、酢酸エチル(沸点77℃)を用いることができる。これらの溶媒は、1種単独でもよいし、2種類以上を混合して用いてもよい。2種類以上を混合する場合には、(A)カルボキシ基を含有するポリウレタンの合成に用いた溶媒に加えて、使用するポリウレタン樹脂、エポキシ樹脂などの溶解性を考慮し、凝集や沈殿などが起きない、ヒドロキシ基を有する沸点が100℃超である溶媒や、インクの乾燥性の観点から沸点が100℃以下の溶媒を併用することが好ましい。
 上記硬化性樹脂組成物は、上記(A)カルボキシ基を含有するポリウレタンと、(B)エポキシ化合物と、(C)硬化促進剤と、(D)溶媒とを、(D)溶媒の含有率が95.0質量%以上99.9質量%以下となるように配合し、均一になるように攪拌して製造することができる。
 このような硬化性樹脂組成物中の固形分濃度は所望する膜厚や印刷方法によっても異なるが、0.1~10質量%であることが好ましく、0.5質量%~5質量%であることがより好ましい。固形分濃度が0.1~10質量%の範囲であると、導電層上に塗布した場合に膜厚が厚くなり過ぎることによる銀ペースト等からの電気的なコンタクトがとれない不具合が発生せず、かつ十分な耐候性・耐光性を有する膜厚が50~500nmの保護膜が得られる。
 なお、耐光性の観点から、保護膜(保護膜インク中の固形分である(A)カルボキシ基を含有するポリウレタン、(B)エポキシ化合物および、(C)硬化促進剤における硬化残基)中に含有する下式で定義される芳香環含有化合物の割合は15質量%以下に抑えることが好ましい。ここでいう「(C)硬化促進剤における硬化残基」とは、硬化条件により(C)硬化促進剤の全てまたは一部が消失(分解、揮発など)するものがあるので、硬化条件で保護膜中に残留する(C)硬化促進剤を意味する。また、「芳香環含有化合物」とは、分子内に芳香環を少なくとも1つ有する化合物を意味する。
[(芳香環含有化合物使用量)/(保護膜の質量((A)カルボキシ基を含有するポリウレタン質量+(B)エポキシ化合物質量+(C)硬化促進剤における硬化残基)]×100(%)
 以上に述べた硬化性樹脂組成物を使用し、バーコート印刷法、グラビア印刷法、インクジェット法、スリットコート法などの印刷法により、金属ナノワイヤを含む導電層が形成された透明基材(透明導電フィルム)上に硬化性樹脂組成物を塗布し、溶媒を乾燥、除去後に硬化性樹脂を硬化して保護膜を形成する。
 以下、本発明の実施例を具体的に説明する。なお、以下の実施例は、本発明の理解を容易にするためのものであり、本発明はこれらの実施例に制限されるものではない。
<透明導電フィルムの評価方法の概要>
 銀ナノワイヤ、バインダー樹脂および溶媒を含む導電性インクを作製したのち、透明基材の一方の主面上にバーコーターを用いて塗布、乾燥して導電層を形成した。続いて保護膜インクを作製したのち、上記導電層の上に塗布、乾燥して保護膜を形成し、透明導電フィルムを作製した。このとき透明基材表面における導電性インクの塗布方向をMD、塗布方向に垂直な方向をTDと定め、試験片を作製し、後述する二点間抵抗値を計測し、導電層の面内の抵抗値異方性を検討した。
実施例1
<銀ナノワイヤの作製>
 ポリビニルピロリドンK-90(株式会社日本触媒社製)(0.98g)、AgNO(1.04g)及びFeCl(0.8mg)を、エチレングリコール(250mL)に溶解し、150℃で1時間加熱反応した。得られた銀ナノワイヤ粗分散液をメタノール2000mLに分散させ、卓上小型試験機(日本ガイシ株式会社製、セラミック膜フィルター セフィルト使用、膜面積0.24m、孔径2.0μm、寸法Φ30mm×250mm、ろ過差圧0.01MPa)に流し入れ、循環流速12L/min、分散液温度25℃にてクロスフロー濾過を実施し不純物を除去し、銀ナノワイヤ(平均直径:26nm、平均長さ:20μm)を得た。得られた銀ナノワイヤの平均直径の算出には、電界放出形走査電子顕微鏡JSM-7000F(日本電子株式会社製)を用い、任意に選択した100本の銀ナノワイヤの直径を測定し、その算術平均値を求めた。また、得られた銀ナノワイヤの平均長の算出には、形状測定レーザマイクロスコープVK-X200(キーエンス株式会社製)を用い、任意に選択した100本の銀ナノワイヤの長さを測定し、その算術平均値を求めた。また、上記メタノール、エチレングリコール、AgNO、FeClは富士フィルム和光純薬株式会社製試薬を用いた。
<導電性インク(銀ナノワイヤインク)作製>
 上記ポリオール法で合成した銀ナノワイヤの水/メタノール/エタノール混合溶媒の分散液11g(銀ナノワイヤ濃度0.62質量%、水/メタノール/エタノール=10:20:70[質量比])、水2.4g、メタノール3.6g(富士フィルム和光純薬株式会社製)、エタノール8.3g(富士フィルム和光純薬株式会社製)、プロピレングリコールモノメチルエーテル(PGME、富士フィルム和光純薬株式会社製)12.8g、プロピレングリコール1.2g(PG、旭硝子株式会社製)、PNVA(登録商標)水溶液(昭和電工株式会社製、固形分濃度10質量%、重量平均分子量90万)0.7gを混合し、ミックスローターVMR-5R(アズワン株式会社製)で1時間、室温、大気雰囲気下で撹拌(回転速度100rpm)して銀ナノワイヤインク40gを作製した。
 得られた銀ナノワイヤインクに含まれる銀ナノワイヤの濃度および粘度を表1に示した。得られた銀濃度は、バリアン社製AA280Zゼーマン原子吸光分光光度計により測定した。粘度は25℃でブルックフィールド社製デジタル粘度計DV-E(スピンドル:SC4-18)により測定した。
<導電層(銀ナノワイヤ層)の形成>
 プラズマ処理装置(積水化学工業株式会社製AP-T03)を用いてプラズマ処理(使用ガス:窒素、搬送速度:50mm/sec、処理時間:6sec、設定電圧:400V)した、透明基材としてのA4サイズのシクロオレフィンポリマー(COP)フィルムZF14(日本ゼオン株式会社製、ガラス転移温度136℃[カタログ値]、厚み100μm)上に、TQC自動フィルムアプリケータースタンダード(コーテック株式会社製)とワイヤレスバーOSP-CN-22L(コーテック株式会社製、バーの溝形状 S形/ピッチ(P):500μm、深さ(H):42μm、P/H:11.9、材質:SUS304)とを用いて銀ナノワイヤインクを透明基材(ZF14-013)の片面全面に室温、大気雰囲気下で塗布した(塗布速度V:500mm/sec)。その後、恒温器HISPEC HS350(楠本化成製)で80℃、1分間、大気雰囲気下で熱風乾燥し、銀ナノワイヤ層を形成した。
<膜厚測定>
 導電層(銀ナノワイヤ層)の膜厚は光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材上に形成された銀ナノワイヤ層の膜厚(Tc)が直接測定できる。測定結果を表1に示す。
<硬化性樹脂組成物作製>
(A)カルボキシ基を含有するポリウレタンの合成例
実施合成例1 硬化性樹脂組成物OC022に用いる元樹脂の合成
 攪拌装置、温度計、コンデンサーを備えた2L三口フラスコに、ポリオール化合物としてC-1015N(株式会社クラレ製、ポリカーボネートジオール、原料ジオールモル比:1,9-ノナンジオール:2-メチル-1,8-オクタンジオール=15:85、分子量964)42.32g、カルボキシ基を含有するジヒドロキシル化合物として2,2-ジメチロールブタン酸(日本化成株式会社製)27.32g、および溶媒としてジエチレングリコールモノエチルエーテルアセテート(株式会社ダイセル製)158gを仕込み、90℃で上記2,2-ジメチロールブタン酸を溶解させた。
 反応液の温度を70℃まで下げ、滴下ロートにより、ポリイソシアネートとしてデスモジュール(登録商標)-W(ビス-(4-イソシアナトシクロヘキシル)メタン)、住化コベストロウレタン株式会社製)59.69gを30分かけて滴下した。滴下終了後、120℃に昇温し、120℃で6時間反応を行い、ほぼイソシアネートが消失したことをIRによって確認した後、イソブタノールを0.5g加え、更に120℃にて6時間反応を行った。得られたカルボキシ基含有ポリウレタンのGPCにより求められた重量平均分子量は32300、その樹脂溶液の酸価は35.8mgKOH/gであった。
実施硬化性樹脂組成物1
 上記実施合成例1で得られた(A)カルボキシ基を含有するポリウレタンの溶液(カルボキシ基含有ポリウレタン含有率:45質量%)10.0gをポリ容器に量り取り、(D)溶媒として1-ヘキサノール85.3gと酢酸エチル85.2gを加え、ミックスローターVMR-5R(アズワン株式会社製)で12時間、室温、大気雰囲気下で撹拌(回転速度100rpm)した。均一であることを目視で確認したのち、(B)エポキシ化合物としてペンタエリスリトールテトラグリシジルエーテル(昭和電工株式会社製)0.63g、(C)硬化促進剤として、U-CAT(登録商標)5003(サンアプロ株式会社製)0.31gを加え、再度ミックスローターを用いて1時間撹拌し、実施硬化性樹脂組成物1(実施保護膜インク1)を得た。実施硬化性樹脂組成物1の固形分(実施硬化性樹脂組成物1により形成した保護膜)中の芳香環含有化合物である硬化促進剤の割合は5.7質量%である。
<保護膜の形成>
 上記透明基材上に形成した銀ナノワイヤ層の上に、TQC自動フィルムアプリケータースタンダード(コーテック株式会社製)により、以下のように実施保護膜インク1を塗布した(塗工速度500mm/sec)。ワイヤレスバーOSP-CN-05Mを用いてウェット膜厚が5μmになるように室温、大気雰囲気下で塗布した。その後、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、1分間、大気雰囲気下で熱風乾燥し、保護膜(膜厚80nm)を形成した。これを実施例1の透明導電フィルムとした。
<膜厚測定>
 保護膜の膜厚は、前述の銀ナノワイヤ層の膜厚同様光干渉法に基づく膜厚測定システムF20-UV(フィルメトリクス株式会社製)を用いて測定した。測定箇所を変え、3点測定した平均値を膜厚として用いた。解析には450nmから800nmのスペクトルを用いた。この測定システムによると、透明基材上に形成された銀ナノワイヤ層の膜厚(Tc)とその上に形成された保護膜の膜厚(T)との総膜厚(Tc+)が直接測定できるので、この測定値から先に測定した銀ナノワイヤ層単独の膜厚(Tc)を差し引くことにより保護膜の膜厚(T)が得られる。
<二点間抵抗値測定>
 試験片は、A4サイズの上記透明導電フィルムから20mm×50mmのサイズの試料を切り出し、端子間距離が40mmとなるように保護膜上に銀ペーストで端子部分を形成することにより作製した。銀ペーストは導電性ペーストDW-420L-2A(東洋紡株式会社製)を用い、これを手塗りで約2mm角に塗布したのち、恒温器HISPEC HS350(楠本化成株式会社製)で80℃、30分間、大気雰囲気下で熱風乾燥することで端子部分を形成した。その後、端子間の抵抗値を測定した。なお、保護膜の厚みが薄いため(銀ナノワイヤーが保護膜表面から突出しており)銀ペーストと導電層とは導通している。銀ナノワイヤを用いた透明導電パターンと導電ペーストパターンを電気的に接続するためには、銀ナノワイヤの一部(ワイヤの端点や、ワイヤ同士が交差し高さ方向に盛り上がっている部分)がオーバーコート層表面から露出している必要があり、露出している箇所が多いほど、銀ナノワイヤを用いた透明導電パターンと導電ペーストパターンとの電気的接続が容易となる。銀ナノワイヤの形状(径・長さ)や、基材上に塗布されている銀ナノワイヤの本数によっても影響を受けるため一概には言えないが、オーバーコート層の厚みが例えば500nm以下、好ましくは200nm以下、より好ましくは100nm以下と薄い場合、電気的接続を取るために十分な数の露出箇所が存在する。本実施例ではオーバーコート層の厚みは80nmと薄いため銀ペーストと導電層とは導通する。なお、オーバーコート層の厚みが電気的接続を取ることが困難な厚みの場合には、オーバーコート層を公知のエッチング技術を用いて除去し銀ナノワイヤを露出させることができる。
 図2(a)、(b)には、抵抗値の測定方法の説明図が示される。図2(a)において、塗布方向(印刷方向)が矢印で示されており、長手方向が塗布方向及びこれに対して垂直方向となる試料S1及びS2を切り出した。
 次に、図2(b)に示されるように、各試料S1、S2について、前述の方法で形成した銀ペースト端子間の抵抗値を、デジタルマルチメータPC5000a(三和電気計器株式会社製)を用いて上記の通り塗布切り出した試料S1の抵抗値を(RMD)として、試料S2の抵抗値を(RTD)として、それぞれ測定し、抵抗値の比(RTD)/(RMD)を算出することで面内の抵抗値異方性を評価した。
<シート抵抗測定>
 上記A4サイズの透明導電フィルムから3cm×3cmの試験片を切り出し、試験片の保護膜上の中心部に手動式非破壊抵抗測定器EC-80P(ナプソン株式会社製)の端子を置いて測定した。測定結果を表1にまとめて示す。
<全光線透過率、ヘイズ測定>
 上記3cm×3cmの試験片を用い、ヘーズメーターNDH2000(日本電色工業株式会社製)で測定した。測定結果を表1にまとめて示す。
実施例2
 銀濃度を0.25質量%の銀ナノワイヤインクを用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例3
 銀ナノワイヤ形状が平均直径25nm、平均長さ17μmの銀ナノワイヤインクを用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例4
 銀ナノワイヤ形状が平均直径24nm、平均長さ12μmの銀ナノワイヤインクを用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例5
 ワイヤレスバーOSP-CN-10M(コーテック株式会社製、バーの溝形状 S形/P:200μm、H:21μm、P/H:9.5)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例6
 銀濃度を0.25質量%の銀ナノワイヤインクを用いた以外は実施例5と同条件で検討した。その結果を表1に示す。
実施例7
 ワイヤレスバーOSP-CN-15L(コーテック株式会社製、バーの溝形状 S形/P:500μm、H:27μm、P/H:18.5)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例8
 ワイヤレスバーOSP-CN-18L(コーテック株式会社製、バーの溝形状 S形/P:500μm、H:33μm、P/H:15.1)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例9
 銀ナノワイヤインクのバインダー樹脂としてPNVAの代わりにPVP(富士フィルム和光純薬株式会社製、K-90)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例10
 透明基材にPET(東洋紡製コスモシャインA4100の未処理面)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例11
 透明基材にPC(三菱ガス化学株式会社製FS2000Hの未処理面)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例12
 銀ナノワイヤインクの塗布速度Vを350mm/secとした以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例13
 ワイヤレスバーWP0.4H23K(オーエスジーシステムプロダクツ株式会社製、バーの溝形状 K形/P:400μm、H:23μm、P/H:17.4)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例14
 ワイヤレスバーWP0.4H38W(オーエスジーシステムプロダクツ株式会社製、バーの溝形状 W形/P:400μm、H:38μm、P/H:10.5)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例15
 ワイヤレスバーOSP-CN-22M(コーテック株式会社製、バーの溝形状 S形/P:250μm、H:49μm、P/H:5.1)を用いた以外は実施例2と同条件で検討した。その結果を表1に示す。
実施例16
 ワイヤレスバーOSP-CN-17M(コーテック株式会社製、バーの溝形状 S形/P:250μm、H:35μm、P/H:5.7)を用いた以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例17
 銀ナノワイヤインクの塗布速度Vを100mm/secとした以外は実施例5と同条件で検討した。その結果を表1に示す。
実施例18
 銀ナノワイヤインクの塗布速度Vを300mm/secとした以外は実施例1と同条件で検討した。その結果を表1に示す。
実施例19
 銀ナノワイヤインクの塗布速度Vを100mm/secとした以外は実施例4と同条件で検討した。その結果を表1に示す。
比較例1
 ワイヤバー#8(ΦD=200μmのワイヤを使用)を用いた以外は実施例2と同条件で検討した。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 
 表1に示されるように、バーの溝形状、塗布速度Vに依らずそのピッチ(P)/深さ(H)[P/H]が5以上である実施例1~19は、いずれも通常のメイヤーバー(またはワイヤーバー)を用いる場合(比較例1)に比べて導電層の面内の抵抗値異方性((RTD)/(RMD))が小さくなっていることがわかる。また、バーの溝形状、ピッチ(P)/深さ(H)[P/H]が9以上で、塗布速度Vが350mm/sec以上であれば(RTD)/(RMD)が0.7~1.3の良好な結果となり、面内の抵抗値異方性がほとんどない透明導電フィルムが得られた。この理由として、バーの溝形状のピッチ(P)/深さ(H)[P/H]の値を一定以上にすると、横方向に銀ナノワイヤインクが流れやすい現象が誘発され、金属ナノワイヤの方向を印刷方向とこれに垂直な方向とで均一化できるためと考えられる。また、塗布速度を速くすると、銀ナノワイヤインク自体の流れが速くなり、そのため横方向に銀ナノワイヤインクが流れやすい現象が誘発され、上記同様に金属ナノワイヤの方向を均一化できていると考えられる。従って、これらを両方満たす印刷条件を採用すると、面内の抵抗値異方性がほとんどない透明導電フィルムを作製することが可能となる。
 さらに、バーの溝形状が異なっていてもピッチ(P)/深さ(H)[P/H]の比率が特定の範囲であれば、面内の抵抗値異方性がほとんどない透明導電フィルムが作製可能であった。また、銀ナノワイヤ濃度を変更することなく、バーの溝形状でシート抵抗値を調整する事が出来る。
 一方、バー形状のピッチ(P)/深さ(H)が9未満や、塗布速度が350mm/sec未満になると、面内の抵抗値異方性((RTD)/(RMD))が1.3を超えた。いずれも銀ナノワイヤインクの横方向への流れは誘発されるもののやや小さかったと考えられる。すなわち、バー形状のピッチ(P)/深さ(H)が9以上のみや塗布速度が速い場合のみでは、銀ナノワイヤインクの横方向への流れを誘発するものの金属ナノワイヤの方向を均一化できるほどの力が無かったと思われる。
 比較例1で使用したメイヤーバー(またはワイヤーバー)は、直径Dのワイヤーをバーに巻き付けて作製するため、ピッチ(P)/深さ(H)=D/(D/2)=2となり、ワイヤーの太さを変えても比率は一定となる。そのため面内の抵抗値異方性が大きく生じたと考えられる。
実施例20
 表面の材質のみが実施例1で用いたバーと異なるワイヤレスバーOSP-CN-22L(コーテック株式会社製、バーの溝形状 S形/ピッチ(P):500μm、深さ(H):42μm、P/H:11.9、バー表面:ダイヤモンドライクカーボン(摩擦係数:0.15))を用いた以外は実施例1と同条件で検討した。その結果を表2に示す。
実施例21
 銀ナノワイヤインクの塗布速度Vを300mm/secとした以外は実施例20と同条件で検討した。その結果を表2に示す。
実施例22
 銀ナノワイヤインクの塗布速度Vを100mm/secとした以外は実施例20と同条件で検討した。その結果を表2に示す。
実施例23
 透明基材にPET(東洋紡株式会社社製コスモシャイン(登録商標)A4100の未処理面)を用いた以外は実施例20と同条件で検討した。その結果を表2に示す。
実施例24
 ワイヤレスバーOSP-CN-22L(コーテック株式会社製、バーの溝形状 S形/ピッチ(P):500μm、深さ(H):42μm、P/H:11.9、バー表面:SUS304(摩擦係数:0.45))を用いた以外は実施例20と同条件で検討した。その結果を表2に示す。
実施例25
 ワイヤレスバーOSP-CN-22L(コーテック株式会社製、バーの溝形状 S形/ピッチ(P):500μm、深さ(H):42μm、P/H:11.9、バー表面:硬質クロムメッキ(摩擦係数:0.70))を用いた以外は実施例20と同条件で検討した。その結果を表2に示す。
比較例2
 ワイヤバー#8(ΦD=200μmのワイヤを使用、ワイヤ表面:SUS304(摩擦係数:0.45))を用いた以外は実施例20と同条件で検討した。その結果を表2に示す。使用したバーが実施例20とは異なるため、結果的に銀ナノワイヤ層の厚みが実施例20より薄くなった。
Figure JPOXMLDOC01-appb-T000003
 
 表2に示されるように、バー表面の材質(摩擦係数)、塗布速度Vに依らずバーの溝のピッチ(P)/深さ(H)[P/H]が5以上、好ましくは9以上である実施例20~25は、いずれも通常のメイヤーバー(またはワイヤーバー)を用いる場合(比較例2)に比べて導電層の面内の抵抗値異方性が小さくなっていることがわかる。また、バーの溝形状、ピッチ(P)/深さ(H)[P/H]が9以上で、バー表面の摩擦係数が0.15のワイヤレスバーを用いた実施例20~23では(RTD)/(RMD)が1.3以下の良好な結果となり、面内の抵抗値異方性が小さい透明導電フィルムが得られた。この理由として、バーの溝のピッチ(P)/深さ(H)[P/H]の値を9以上にすると、横方向(図2(a)において、印刷方向に対して垂直(TD)方向)に銀ナノワイヤインクが流れやすい現象が誘発され、金属ナノワイヤの印刷方向への配向を緩和して金属ナノワイヤの向きをランダムに近づけることができたためと考えられる。また、バー表面の摩擦係数が小さいと、横方向に銀ナノワイヤインクが流れやすい現象がさらに誘発され、金属ナノワイヤの向きを一層ランダムに近い状態にできていると考えられる。従って、これらを両方満たす印刷条件を採用すると、面内の抵抗値異方性がほとんどない透明導電フィルムを作製することが可能となる。
 一方、塗布速度Vが350mm/secより小さい(V:100mm/sec)と、バーの溝形状のピッチ(P)/深さ(H)が9以上でも、バー表面の摩擦係数が0.40を超える実施例24(バー表面の摩擦係数が0.45),実施例25(バー表面の摩擦係数が0.70)では、面内の抵抗値異方性((RTD)/(RMD))が1.3を超えた。銀ナノワイヤインクの横方向への流れは誘発されるもののやや小さかったと考えられる。また、バー表面の摩擦係数が0.45であり、かつ、ピッチ(P)/深さ(H)[P/H]が2に相当するメイヤーバー(またはワイヤーバー)を用いた比較例2は、面内の抵抗値異方性((RTD)/(RMD))が1.78と極めて高い結果となった。
 以上の通り、バー表面に形成される溝を特定の形状に調整したバーでのバーコート印刷を用いる本発明の透明導電フィルムの製造方法により、面内の抵抗値異方性が小さい透明導電フィルムを実現することができる。

Claims (8)

  1.  金属ナノワイヤおよびバインダー樹脂を含む導電層を備える透明導電フィルムの製造方法において、
     前記金属ナノワイヤおよびバインダー樹脂を含む塗布液を調製する調製工程と、
     透明基材の一主面に前記塗布液を塗布する塗布工程と、を含み、
     前記塗布工程において、ピッチ(P)と深さ(H)の比率P/Hが5~30である溝が形成されたバーによるバーコート方式の印刷方法を用いることを特徴とする透明導電フィルムの製造方法。
  2.  前記バー表面を構成する材質の摩擦係数が0.05~0.45であることを特徴とする請求項1に記載の透明導電フィルムの製造方法。
  3.  前記塗布液を前記透明基材の一主面に塗布する際のバーに対する前記透明基材の相対移動速度(塗布速度)をV(mm/sec)としたとき2000≧V≧350であることを特徴とする請求項2に記載の透明導電フィルムの製造方法。
  4.  前記バー表面を構成する材質の摩擦係数が0.05~0.40であることを特徴とする請求項1に記載の透明導電フィルムの製造方法。
  5.  前記塗布液を前記透明基材の一主面に塗布する際のバーに対する前記透明基材の相対移動速度(塗布速度)をV(mm/sec)としたとき2000≧V≧50であることを特徴とする請求項4に記載の透明導電フィルムの製造方法。
  6.  前記バーに形成された溝のピッチ(P)と深さ(H)の比率P/Hが9~30であることを特徴とする請求項1~5のいずれか一に記載の透明導電フィルムの製造方法。
  7.  前記金属ナノワイヤの平均長さが1~100μm、平均直径が1~500nmであることを特徴とする請求項1~6のいずれか一に記載の透明導電フィルムの製造方法。
  8.  前記塗布液の粘度範囲が1~50mPa・sであることを特徴とする請求項1~7のいずれか一に記載の透明導電フィルムの製造方法。
     
     
PCT/JP2020/021401 2019-05-31 2020-05-29 透明導電フィルムの製造方法 WO2020241842A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/614,977 US11535047B2 (en) 2019-05-31 2020-05-29 Method for producing transparent conducting film
KR1020217011980A KR102387063B1 (ko) 2019-05-31 2020-05-29 투명 도전 필름의 제조 방법
CN202080005802.5A CN112930575B (zh) 2019-05-31 2020-05-29 透明导电膜的制造方法
JP2021501355A JP6855647B1 (ja) 2019-05-31 2020-05-29 透明導電フィルムの製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019102654 2019-05-31
JP2019-102654 2019-05-31
JP2019202446 2019-11-07
JP2019-202446 2019-11-07

Publications (1)

Publication Number Publication Date
WO2020241842A1 true WO2020241842A1 (ja) 2020-12-03

Family

ID=73551914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021401 WO2020241842A1 (ja) 2019-05-31 2020-05-29 透明導電フィルムの製造方法

Country Status (6)

Country Link
US (1) US11535047B2 (ja)
JP (1) JP6855647B1 (ja)
KR (1) KR102387063B1 (ja)
CN (1) CN112930575B (ja)
TW (1) TWI745988B (ja)
WO (1) WO2020241842A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112930575B (zh) * 2019-05-31 2022-06-07 昭和电工株式会社 透明导电膜的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432161B2 (ja) * 1988-03-23 1992-05-28
WO2012005205A1 (ja) * 2010-07-05 2012-01-12 Dic株式会社 透明導電層付き基体及びその製造方法、並びにタッチパネル用透明導電膜積層体、タッチパネル
JP2015028874A (ja) * 2013-07-30 2015-02-12 デクセリアルズ株式会社 導電性積層体、及びその製造方法、情報入力装置、並びに表示装置
WO2018096977A1 (ja) * 2016-11-28 2018-05-31 昭和電工株式会社 導電性フィルム、及び導電性フィルムの製造方法
WO2019026829A1 (ja) * 2017-08-02 2019-02-07 昭和電工株式会社 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08260395A (ja) * 1995-03-29 1996-10-08 Honshu Paper Co Ltd ロッド型塗工装置を用いた顔料塗工紙及び板紙の製造方法
WO2004071654A1 (ja) 2003-02-14 2004-08-26 Bussan Nanotech Research Institute Inc. 単層カーボンナノチューブ製造用触媒金属微粒子形成方法
JP2006021468A (ja) * 2004-07-09 2006-01-26 Konica Minolta Medical & Graphic Inc 平版印刷用原版の製造方法、平版印刷用原版及びこれを用いた印刷方法
JP2010075814A (ja) * 2008-09-25 2010-04-08 Achilles Corp 繊維状粒子配向塗膜および繊維状粒子配向塗膜の塗工方法
JP2011090879A (ja) 2009-10-22 2011-05-06 Fujifilm Corp 透明導電体の製造方法
JP5452443B2 (ja) 2009-10-27 2014-03-26 パナソニック株式会社 導体パターン形成基材
US8763525B2 (en) 2010-12-15 2014-07-01 Carestream Health, Inc. Gravure printing of transparent conductive films containing networks of metal nanoparticles
KR20130003467A (ko) * 2011-06-30 2013-01-09 제일모직주식회사 탄소나노튜브를 이용한 투명 전도성 필름 및 그 제조방법
KR101940591B1 (ko) 2012-02-16 2019-01-21 오꾸라 고교 가부시키가이샤 투명 도전 기재의 제조 방법 및 투명 도전 기재
JP6563811B2 (ja) * 2013-08-22 2019-08-21 昭和電工株式会社 透明電極及びその製造方法
JP6353671B2 (ja) * 2014-03-14 2018-07-04 Dowaエレクトロニクス株式会社 銀ナノワイヤインクの製造方法および銀ナノワイヤインク並びに透明導電塗膜
JP2015217369A (ja) * 2014-05-20 2015-12-07 デクセリアルズ株式会社 塗工方法
JP5922852B1 (ja) 2015-01-16 2016-05-24 株式会社エフコンサルタント コーティング方法
CN106601337B (zh) 2016-11-10 2019-01-18 上海交通大学 一种银纳米线柔性透明导电薄膜及其制备方法
KR102056658B1 (ko) 2016-12-01 2019-12-18 쇼와 덴코 가부시키가이샤 투명 도전 기판 및 그 제조 방법
US10994303B2 (en) 2017-01-16 2021-05-04 Showa Denko K.K. Methods for producing transparent conductive film and transparent conductive pattern
CN107527675A (zh) * 2017-07-21 2017-12-29 华南师范大学 一种柔性的导电膜及其制备方法
CN112930575B (zh) 2019-05-31 2022-06-07 昭和电工株式会社 透明导电膜的制造方法
KR102265033B1 (ko) 2019-06-20 2021-06-15 쇼와 덴코 가부시키가이샤 투명 도전 필름 적층체 및 그 가공 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0432161B2 (ja) * 1988-03-23 1992-05-28
WO2012005205A1 (ja) * 2010-07-05 2012-01-12 Dic株式会社 透明導電層付き基体及びその製造方法、並びにタッチパネル用透明導電膜積層体、タッチパネル
JP2015028874A (ja) * 2013-07-30 2015-02-12 デクセリアルズ株式会社 導電性積層体、及びその製造方法、情報入力装置、並びに表示装置
WO2018096977A1 (ja) * 2016-11-28 2018-05-31 昭和電工株式会社 導電性フィルム、及び導電性フィルムの製造方法
WO2019026829A1 (ja) * 2017-08-02 2019-02-07 昭和電工株式会社 導電フィルムの製造方法、導電フィルム及び金属ナノワイヤインク

Also Published As

Publication number Publication date
US20220203738A1 (en) 2022-06-30
JPWO2020241842A1 (ja) 2021-09-13
CN112930575B (zh) 2022-06-07
KR20210049944A (ko) 2021-05-06
JP6855647B1 (ja) 2021-04-07
CN112930575A (zh) 2021-06-08
US11535047B2 (en) 2022-12-27
KR102387063B1 (ko) 2022-04-15
TWI745988B (zh) 2021-11-11
TW202113879A (zh) 2021-04-01

Similar Documents

Publication Publication Date Title
US11154902B2 (en) Transparent conductive substrate and method for producing same
WO2020255458A1 (ja) 透明導電フィルム積層体及びその加工方法
WO2020171022A1 (ja) 透明導電基体及びこれを含むタッチパネル
JP7061734B2 (ja) 透明導電フィルム積層体及びその加工方法
WO2020241842A1 (ja) 透明導電フィルムの製造方法
JP6855648B1 (ja) 透明導電フィルムの製造方法
WO2021131099A1 (ja) 透明導電フィルムの製造方法
JP6999071B1 (ja) 透明導電基体
JP2024067269A (ja) 透明導電フィルム積層体及びその製造方法並びに成形用透明導電フィルム積層体
WO2021060149A1 (ja) 透明ポリウレタン及びその製造方法並びに透明ポリウレタンを含む熱硬化性組成物及び透明導電フィルム
EP4269098A1 (en) Transparent electroconductive film laminate
JP2023095255A (ja) ヒータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814189

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501355

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217011980

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814189

Country of ref document: EP

Kind code of ref document: A1