WO2020241654A1 - 炭酸ガス、およびその他ガスの回収方法 - Google Patents
炭酸ガス、およびその他ガスの回収方法 Download PDFInfo
- Publication number
- WO2020241654A1 WO2020241654A1 PCT/JP2020/020803 JP2020020803W WO2020241654A1 WO 2020241654 A1 WO2020241654 A1 WO 2020241654A1 JP 2020020803 W JP2020020803 W JP 2020020803W WO 2020241654 A1 WO2020241654 A1 WO 2020241654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- carbon dioxide
- volume
- aqueous solution
- alkali
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/343—Heat recovery
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/86—Catalytic processes
- B01D53/8671—Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/96—Regeneration, reactivation or recycling of reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/04—Purification or separation of nitrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B21/00—Nitrogen; Compounds thereof
- C01B21/04—Purification or separation of nitrogen
- C01B21/0405—Purification or separation processes
- C01B21/0494—Combined chemical and physical processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/20—Reductants
- B01D2251/202—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/30—Alkali metal compounds
- B01D2251/304—Alkali metal compounds of sodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/30—Alkali metal compounds
- B01D2251/306—Alkali metal compounds of potassium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
- B01D2251/604—Hydroxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2251/00—Reactants
- B01D2251/60—Inorganic bases or salts
- B01D2251/606—Carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
- B01D2252/102—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/10—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/104—Oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/50—Carbon oxides
- B01D2257/504—Carbon dioxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0001—Separation or purification processing
- C01B2210/0003—Chemical processing
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0001—Separation or purification processing
- C01B2210/0003—Chemical processing
- C01B2210/0004—Chemical processing by oxidation
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2210/00—Purification or separation of specific gases
- C01B2210/0043—Impurity removed
- C01B2210/0045—Oxygen
Definitions
- the present invention relates to a novel method for separating and recovering carbon dioxide gas, nitrogen gas and oxygen gas from exhaust gas. Specifically, the present invention relates to a novel method for efficiently separating and recovering high-purity carbon dioxide gas and further high-purity nitrogen gas by using an inexpensive inorganic compound.
- the carbon dioxide gas contained in the exhaust gas can be safely, stably, and rationally concentrated, it can be reused as various carbon products and can be used for recovery and storage tanks, which have been attracting attention in recent years and are technically remarkable.
- various methods for reducing carbon dioxide gas contained in the gas discharged from various factories and power plants have been studied.
- Patent Document 2 In the method described in Patent Document 2, carbon dioxide gas is recovered in the form of potassium carbonate and potassium bicarbonate. Then, Patent Document 2 discloses that carbon dioxide gas is recovered from a solution in which carbon dioxide gas is recovered as potassium bicarbonate by a stripping method using water vapor, and potassium carbonate is further circulated and used. Patent Document 2 describes the recovery of carbon dioxide gas and hydrogen sulfide gas. However, in this method, since carbon dioxide gas is recovered by the steam stripping method, water is likely to be contained in the carbon dioxide gas, and there is room for improvement in that high-purity carbon dioxide gas is recovered.
- Patent Document 3 is a method of absorbing carbon dioxide gas in an aqueous solution of sodium hydroxide and sodium carbonate.
- Patent Document 3 shows from the step of preparing an aqueous sodium hydroxide solution, and for example, it is an essential invention to include a step of electrolyzing salt. Therefore, it was absolutely necessary to implement it in a large-scale factory, and there was room for improvement in terms of simplifying the process.
- an object of the present invention is to efficiently recover high-purity carbon dioxide gas from exhaust gas by utilizing an inorganic compound that is easy to control, safe and inexpensive, and to make the gas from which carbon dioxide gas is separated effective. To use. Further, the present invention provides a method for effectively utilizing the heat generated by those reactions when recovering, separating, purifying, etc. the gas as described above. The effective use of heat generated in each of these steps is not described in Patent Documents 2 and 3.
- the present inventors have diligently studied to solve the above problems. Then, a method for recovering carbon dioxide gas using an inorganic alkali was examined. Then, they have found that the process can be simplified by recovering high-purity carbon dioxide gas by using alkali carbonate as a starting material and then reusing the alkali carbonate again. Furthermore, according to this method, since carbon dioxide gas can be separated and recovered with alkali carbonate, it is found that the gas separated from the carbon dioxide gas can be industrially used depending on the exhaust gas to be treated, and the present invention is completed. It came to.
- a gas absorption step in which the exhaust gas is brought into contact with an aqueous solution containing alkali carbonate to react the carbon dioxide gas in the exhaust gas to form an aqueous solution containing alkali hydrogen carbonate.
- the present invention can also take the following aspects.
- the alkali carbonate is potassium carbonate
- the alkali hydrogen carbonate is potassium hydrogen carbonate.
- the aqueous solution containing alkali carbonate is an aqueous solution further containing amines.
- the amines are ammonia.
- the volume ratio of nitrogen gas to oxygen gas in the exhaust gas shall be 10/1 or more and 100/1 or less.
- the first purification that reduces the oxygen gas in the gas by reacting the gas containing nitrogen gas and oxygen gas obtained in the gas recovery step with hydrogen gas in the presence of a platinum-based catalyst.
- (8) Includes a second purification step in which the gas containing nitrogen gas and oxygen gas before the first purification step or the gas containing nitrogen gas and oxygen gas after the first purification step is brought into contact with the alkaline aqueous solution. ..
- the present invention most of the carbon dioxide gas can be removed from the exhaust gas by the alkali carbonate. Therefore, if the composition of the exhaust gas before the treatment is confirmed in advance, the composition of the gas obtained by separating the carbon dioxide gas from the exhaust gas can be predicted. Therefore, it becomes easy to effectively utilize the gas separated from the carbon dioxide gas.
- a gas containing a high concentration of nitrogen gas can be obtained. Then, by adopting the aspect (7), the heat generated by recovery or the like can be effectively utilized.
- high-purity carbon dioxide gas can be efficiently separated from exhaust gas by an inexpensive and safe method. That is, the exhaust gas can be treated easily and reasonably with an inexpensive material.
- the method of the present invention can carry out only the process of the present invention if the exhaust gas can be prepared, or can be incorporated into the circulation in a large-scale factory.
- the factories that emit exhaust gas are, for example, alkali carbonate manufacturing factories and / or factories that implement the ammonia soda method
- the carbon dioxide gas obtained in the carbon dioxide gas recovery process can be used as the raw material gas for these factories. ..
- the present invention is applied to these factories, carbon dioxide gas can not be released to the outside at all.
- carbon dioxide gas can be recovered more efficiently by using amines and alkali carbonate in combination.
- ammonia when used as the amines, it can be easily separated from carbon dioxide gas, for example, by simply contacting it with an aqueous solution (water).
- this ammonia can be easily obtained from, for example, a step of producing calcium chloride from calcium hydroxide and ammonium chloride in a factory that implements the ammonia soda method.
- the separated ammonia can be recycled, but it can also be used as a raw material for the ammonia soda method.
- the carbon dioxide gas obtained in the carbon dioxide gas recovery step is a high-purity carbon dioxide gas
- an organic compound raw material such as alcohol, a raw material for dry ice, a gas for digestive organs, etc.
- the industrial utility value is high.
- a high concentration carbon dioxide gas can be obtained, it becomes easy to obtain liquefied carbon dioxide gas.
- by first contacting the aqueous solution containing potassium carbonate with the exhaust gas containing carbon dioxide gas an aqueous solution having a higher concentration than other alkali carbonates can be obtained.
- the recovery (absorption) rate of carbon dioxide gas can be increased.
- high-purity gas containing oxygen gas and nitrogen gas can be recovered.
- potassium carbonate can be circulated and used.
- the composition of the exhaust gas to be treated in advance it is possible to effectively use the gas obtained by removing carbon dioxide gas from the exhaust gas.
- carbon dioxide gas can be efficiently separated and recovered. Therefore, for example, by treating the exhaust gas in which the volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas) is adjusted to 10/1 or more and 100/1 or less, the gas obtained in the gas recovery step is relative to oxygen gas. A gas having a volume ratio of nitrogen gas (nitrogen gas / oxygen gas) of 10/1 or more and 100/1 or less can be obtained.
- a gas containing nitrogen gas having a high concentration and high industrial utility value for example, a gas applicable to an inert gas, a gas that can be used as a raw material for ammonia, and the like.
- a gas containing nitrogen gas such as a gas applicable to an inert gas and a gas that can be used as a raw material for ammonia can be obtained by adjusting the volume ratio of nitrogen gas to oxygen gas of the exhaust gas to be treated.
- the obtained gas becomes a gas having a volume ratio of nitrogen gas to oxygen gas of 20/1 or more, and can be used as an explosion-proof gas. Is also available.
- a high concentration nitrogen gas can also be obtained.
- the first purification step described in detail below if the first purification step described in detail below is performed, a higher concentration of nitrogen gas can be obtained. Therefore, the obtained nitrogen gas can also be used as a raw material for nitrides, for example, ceramics such as silicon nitride, aluminum nitride, and boron nitride. Furthermore, since a high-concentration nitrogen gas can be obtained, it is easy to use liquefied nitrogen gas.
- the first purification step is performed as follows.
- the heat generated in the process can also be effectively used. That is, although the first purification step is an exothermic reaction, the obtained heat can be used for the decomposition of the hydrogen carbonate alkali in the decomposition step.
- the exhaust gas containing a relatively large amount of carbon dioxide is first brought into contact with an aqueous solution containing alkali carbonate (preferably water), temperature control is easy and carbon dioxide is absorbed in a stable state. Can be separated.
- an aqueous solution containing alkali carbonate preferably water
- the gas containing nitrogen gas and oxygen gas obtained before and after the first purification step contains carbon dioxide gas
- a gas having a further reduced carbon dioxide gas is obtained by contacting the gas with an alkaline aqueous solution. be able to.
- the gas containing nitrogen gas and oxygen gas recovered in the gas recovery step has a reduced amount of carbon dioxide as compared with the exhaust gas, and even if it is brought into contact with an alkaline aqueous solution, the reaction conditions can be easily controlled. ..
- the present invention is extremely industrial in that high-concentration gases (carbon dioxide and nitrogen gas) can be extracted from exhaust gas, which has been discarded and is said to be an environmentally destructive gas, and reused as a useful raw material. It is a new collection method with high utility value. According to the present invention, if the conditions are optimized, both high-concentration carbon dioxide gas and high-concentration nitrogen gas can be co-produced, which is extremely economically advantageous.
- high-concentration gases carbon dioxide and nitrogen gas
- the present invention is a method for separating and recovering carbon dioxide gas and a gas containing nitrogen gas and oxygen gas from an exhaust gas containing carbon dioxide gas, nitrogen gas and oxygen gas, respectively. Then, by bringing the exhaust gas into contact with an aqueous solution containing alkali carbonate, the carbon dioxide gas in the exhaust gas is reacted to obtain an aqueous solution containing alkali hydrogen carbonate.
- a gas recovery step of recovering a gas containing nitrogen gas and oxygen gas discharged from the gas absorption step Decomposition step of decomposing at least a part of the hydrogen carbonate alkali obtained in the gas absorption step into alkali carbonate and carbon dioxide gas
- the carbon dioxide gas recovery step of recovering the carbon dioxide gas after contacting the gas containing the carbon dioxide gas discharged in the decomposition step with the aqueous solution is included. How to do it. The following will be described step by step.
- the exhaust gas to be treated is not particularly limited as long as it contains carbon dioxide gas, nitrogen gas and oxygen gas.
- exhaust gas emitted from various factories for example, power plants, boilers, incinerators, cement factories, factories that use carbon dioxide as a raw material (factories that use the ammonia soda method, carbon dioxide and alkali hydroxides) (Factory of alkali carbonate by reaction with), exhaust gas emitted from factories with combustion reaction, etc.
- the gas discharged from the factory that uses oxygen gas in the air as the combustion support gas is in a state where nitrogen gas is concentrated as a result. Therefore, by treating such an exhaust gas, not only high-concentration carbon dioxide gas but also high-concentration nitrogen gas can be recovered.
- the exhaust gas preferably has a volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas) in the range of 10/1 to 100/1.
- the above notation indicates the volume ratio of nitrogen gas when the volume ratio of oxygen gas contained in the exhaust gas is 1.
- carbon dioxide gas can be highly separated. Therefore, if the exhaust gas is in the above range, a gas having a volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas) in the range of 10/1 to 100/1 can be obtained in the gas recovery step.
- the gas thus obtained has a high concentration of nitrogen gas. Therefore, the gas obtained in the gas recovery step can be used as a gas applicable to an inert gas, a gas that can be used as a raw material for ammonia, and the like. Further, although it becomes a balance with other impurity gases, the obtained gas can also be used as an explosion-proof gas by treating an exhaust gas having a higher proportion of nitrogen gas. For example, by treating an exhaust gas having a volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas) of 20/1 or more, the obtained gas has a volume ratio of nitrogen gas to oxygen gas of 20/1 or more. It can also be used for explosion-proof gas.
- the composition of the exhaust gas to be treated is out of the range of 10/1 to 100/1 in the volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas), the exhaust gas is satisfied so as to satisfy this range. It is preferable to provide an exhaust gas adjusting step in which another gas other than the above is mixed. As another gas, various gases emitted from the factory can be used.
- the exhaust gas is not particularly limited in the present invention. Therefore, even if the exhaust gas contains several volume% of carbon dioxide gas, the carbon dioxide gas can be treated efficiently.
- the gas preferably satisfies the following composition range. Specifically, assuming that the total of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, carbon dioxide gas is 3 to 49.9% by volume, nitrogen gas is 50 to 95% by volume, and oxygen gas is 0.1.
- the method of the present invention is more efficient in treating exhaust gas having a high concentration of carbon dioxide to some extent.
- the exhaust gas in the gas absorption step, the exhaust gas is brought into contact with an aqueous solution containing an alkali carbonate, and the carbon dioxide gas contained in the exhaust gas is reacted with the alkali carbonate. Then, it is a step of producing an alkali hydrogen carbonate and absorbing carbon dioxide gas.
- the reaction formula is as follows. The following equation is an example when the alkali is potassium. K 2 CO 3 + CO 2 + H 2 O ⁇ 2 KHCO 3
- the aqueous solution containing alkali carbonate and the exhaust gas are first brought into contact with each other in the gas absorption step.
- the exhaust gas has a relatively large proportion of carbon dioxide gas, but since it is first brought into contact with an aqueous solution containing alkali carbonate, temperature control and the like can be facilitated, and carbon dioxide gas can be removed at a relatively stable (constant) proportion.
- the amount of carbon dioxide gas absorbed and separated can be increased by bringing the aqueous solution of alkali hydroxide into contact with the exhaust gas.
- the reaction proceeds rapidly, and depending on the conditions and the like, heat is considerably generated.
- carbon dioxide gas is absorbed by the reaction and the alkali hydroxide becomes alkali carbonate, the amount of carbon dioxide gas absorbed suddenly decreases. Therefore, in the conventional technique of first reacting the exhaust gas with the aqueous solution of alkali hydroxide, it may be difficult to control the operation.
- the present invention as described above, since the exhaust gas is first brought into contact with the aqueous solution containing the alkali carbonate, the control becomes easier as compared with the prior art.
- the alkali carbonate used is not particularly limited, and a commercially available product can be used. Specific examples thereof include sodium carbonate and potassium carbonate. Above all, it is preferable to use potassium carbonate because it has high solubility in an aqueous solution and can efficiently separate and absorb carbon dioxide gas. When sodium carbonate is used, its solubility in water is low. Therefore, in order to absorb more carbon dioxide gas, it is preferable to provide a step of absorbing carbon dioxide gas in an aqueous solution of sodium hydroxide to produce sodium carbonate. On the other hand, even when potassium carbonate is used, it is possible to provide a step of producing potassium carbonate by absorbing carbon dioxide gas in the potassium hydroxide aqueous solution.
- potassium carbonate is about three times more soluble in water than sodium carbonate, it can separate and absorb carbon dioxide more effectively than sodium carbonate. Therefore, when potassium carbonate is used, it is possible to start from the step of bringing the potassium carbonate aqueous solution into contact with the exhaust gas.
- the filling tower may be filled with an aqueous solution containing an alkali carbonate, and the exhaust gas may be brought into contact with the aqueous solution.
- the method of contacting is a shelf tower filled with an aqueous solution, and a bubbling method in which exhaust gas is blown from the lower stage / interruption. Since the reaction rate is suppressed by the heat of absorption, it is an absorption tower including an external cooling device. Further, in the gas absorption step, when the reaction is carried out continuously, the alkali hydrogen carbonate can be extracted or the alkali carbonate can be added. Further, the concentration of alkali carbonate in the aqueous solution containing alkali carbonate in the gas absorption step is not particularly limited.
- an aqueous solution in which alkali carbonate has a concentration range of 10 to 65% by mass More specifically, in the case of sodium carbonate, it is preferable to use an aqueous solution having a concentration of sodium carbonate of 10 to 35% by mass.
- potassium carbonate it is preferable to use an aqueous solution having a concentration of potassium carbonate of 10 to 65% by mass.
- the aqueous solution can be heated in order to keep the concentration in the above range.
- Alkali hydroxide and / or alkali hydrogencarbonate may be unavoidably mixed in the aqueous solution containing alkali carbonate.
- Alkali hydroxide is a raw material for producing alkali carbonate, and may be originally contained in alkali carbonate.
- the alkali hydrogen carbonate may be mixed when the alkali carbonate obtained in the decomposition step described in detail below is circulated and used.
- neither alkali hydroxide nor alkali hydrogen carbonate adversely affect the gas absorption process. Therefore, especially when considering industrial circulation, in the decomposition process described in detail below, it is easier to utilize waste heat from factories, etc. by decomposing at a relatively low temperature, so the alkali hydrogen carbonate uses alkali carbonate. It may be contained in the said aqueous solution containing. Therefore, the aqueous solution containing alkali carbonate before absorbing the gas preferably contains alkali hydroxide and / or alkali hydrogencarbonate in the following range.
- the alkali hydroxide is preferably 10 parts by mass or less
- the alkali hydrogen carbonate is preferably 10 parts by mass or less, and further, with respect to 100 parts by mass of the alkali carbonate.
- the alkali hydroxide is preferably 3 parts by mass or less
- the alkali hydrogen carbonate is preferably 3 parts by mass or less.
- the lower limit is 0 parts by mass for both alkali hydroxide and alkali hydrogen carbonate.
- the aqueous solution containing alkali carbonate used in circulation has the following composition. You may.
- the aqueous solution preferably contains 0 parts by mass or more and 300 parts by mass or less of alkali hydrogen carbonate with respect to 100 parts by mass of alkali carbonate.
- the alkali hydrogen carbonate is 0 parts by mass.
- the aqueous solution contains 30 parts by mass or more of alkali hydrogen carbonate with respect to 100 parts by mass of alkali carbonate. It is preferably 240 parts by mass or less, more preferably 40 parts by mass or more and 220 parts by mass or less, and further preferably 50 parts by mass or more and 200 parts by mass or less.
- aqueous solution containing alkali carbonate supplied from the circulation step described in detail below is in the above range, it can be used as it is, or alkali carbonate and / or alkali hydrogencarbonate is added to the aqueous solution, if necessary. You can also do it.
- the optimum conditions for contacting the exhaust gas with the aqueous solution vary depending on the size of the device, the specifications of the device, the exhaust gas composition, the concentration of alkali carbonate, and the like. Therefore, carbon dioxide gas can sufficiently react with alkali carbonate.
- the temperature at which the alkaline carbonate aqueous solution and the exhaust gas are brought into contact with each other is not particularly limited, but is preferably in the range of 10 ° C. or higher and 70 ° C. or lower in order to sufficiently absorb carbon dioxide gas, and is 20 ° C. or higher and 60 ° C. The range of ° C. or lower is more preferable.
- the aqueous solution containing alkali carbonate used in this gas absorption step can contain amines.
- the amines include ammonia.
- Specific examples of amines include those used for absorption of known carbon dioxide gas such as alkanolamine, alkylamine, and ammonia. It is considered that when these amines are used in combination, the amines react with carbon dioxide gas and absorb carbon dioxide gas into the aqueous solution. Furthermore, it is considered that carbon dioxide gas reacts with water and easily becomes ions, and easily reacts with alkali carbonate. As a result, it is considered that carbon dioxide gas can be absorbed in a short time.
- ammonia among the above amines in consideration of separation from carbon dioxide gas, availability, and the like.
- ammonia when used, it is easy to obtain ammonia, and it is possible to secure a recovery destination for ammonia.
- ammonia when used, when the alkali carbonate becomes an alkali hydrogen carbonate (when absorbing gas), it may exist as ammonium carbonate and / or ammonium hydrogen carbonate, but these compounds are hydrogen carbonate.
- the alkali is decomposed, it is separated (decomposed) into carbon dioxide and ammonia, so there is no adverse effect.
- ammonia which is easy to remove and can be obtained, recovered, and reused as amines.
- the utility value of using ammonia is high, especially in factories that use the ammonia soda method.
- the amine When each amine is used, the amine can be added to an aqueous solution containing an alkali carbonate. Further, in the carbon dioxide gas recovery step described in detail below, amines are dissolved in water when contacted with water. Therefore, water containing these amines is circulated by mixing with the aqueous solution containing alkali carbonate. It can also be used. Further, in the gas recovery step described in detail below, when amines are recovered together with other gases, the gas treated in the gas absorption step can be brought into contact with water to incorporate the amines into the water. .. As a matter of course, water containing these amines can also be recycled. Even when amines are used, the temperature range is preferably 10 ° C. or higher and 70 ° C. or lower, and 20 ° C. or higher and 60 ° C. or lower in order to sufficiently absorb carbon dioxide gas. Is more preferable.
- the aqueous solution containing an alkali carbonate after absorbing the gas, preferably has the following constitution. That is, 45% by mass or more of the contained alkali carbonate is preferably alkali hydrogencarbonate, more preferably 60% by mass or more is alkali hydrogencarbonate, and further preferably 70% by mass or more is alkali hydrogencarbonate. ..
- the upper limit of the most preferable value of the ratio of alkali hydrogen carbonate is 100% by mass. However, in consideration of industrial operation and recovery, the upper limit value may be 99% by mass. Even if the alkali carbonate remains, it does not have an adverse effect. Further, even when amines are used, the ratio of alkali carbonate to alkali hydrogen carbonate is preferably in the above range.
- the amines are as amines (in the case of ammonia, as ammonia), amines carbonate (ammonium carbonate in the case of ammonia), and / or amines hydrogen carbonate (in the case of ammonia). , Ammonium hydrogen carbonate).
- the gas recovery step is to recover the gas treated in the gas absorption step, that is, the gas after being brought into contact with the aqueous solution containing alkali carbonate.
- the gas recovery step is not particularly limited, and ordinary recovery equipment may be used.
- the gas containing amines may be recovered in this gas recovery step.
- amines can be dissolved in water and separated by bringing the gas treated in the gas absorption step into contact with water. Water containing these amines can be recycled.
- ammonia it can be used as a raw material used in the ammonia soda method in addition to circulating use.
- the contact between the treated gas and water may be carried out under conditions under which the contained amines can be sufficiently removed.
- the gas obtained in this gas recovery process is a gas with reduced carbon dioxide gas. Then, as described above, by treating the exhaust gas in which the volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas) is in the range of 10/1 to 100/1, the volume ratio of nitrogen gas to oxygen gas (nitrogen) is treated. Gas / oxygen gas) can be obtained in the range of 10/1 to 100/1. Above all, it is preferable to prepare each component of the exhaust gas to be treated so that the volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas) is 20/1.
- the gas obtained in this gas recovery step depends on the composition of the gas to be treated, but according to the present invention, carbon dioxide gas can be efficiently reduced, so that a gas having the following composition can be obtained.
- carbon dioxide gas is 0 to 30% by volume
- nitrogen gas is 65 to 90% by volume
- oxygen gas is 0.1 to 10%. It is preferably by volume.
- the proportion of carbon dioxide in the gas obtained in the gas recovery process is lower than that of the exhaust gas before treatment.
- the gas obtained in this gas recovery step can also be circulated and used as exhaust gas in order to further reduce carbon dioxide gas.
- it can be circulated and used as an exhaust gas to be treated mixed with other exhaust gas.
- the gas containing nitrogen gas and oxygen gas obtained in the gas recovery step can be used for various purposes by adjusting the concentration of the exhaust gas to be treated.
- concentration of the exhaust gas to be treated in order to increase the purity of each component, particularly to increase the concentration of nitrogen gas and effectively utilize heat, it is preferable to carry out the following first purification step.
- the gas obtained in the gas recovery step can be recovered and used as it is, but in order to further reduce the oxygen gas contained in the gas, the following first purification step can be adopted.
- the gas recovered in the gas recovery step can be treated once, but the gas discharged in the gas absorption step can be treated as it is.
- the gas treated in the second purification step described in detail below can also be treated in this first purification step.
- gas recovered in the gas recovery step gas having the same composition as the gas discharged in the gas absorption step
- oxygen gas can be easily and safely reduced by the following method. .. That is, a high concentration nitrogen gas can be obtained by mixing the gas obtained in the gas recovery step with hydrogen and producing water from oxygen gas and hydrogen gas using a platinum catalyst. The obtained water can be used to reduce impurities contained in nitrogen gas.
- the hydrogen gas to be mixed may be appropriately determined according to the concentration of the oxygen gas of the recovered gas.
- the platinum catalyst to be used for example, those described in Japanese Patent No. 5389753, Japanese Patent No. 6430772, etc. can be used.
- This first purification step is an exothermic reaction. It has a high calorific value, although it depends on the amount of oxygen gas contained in the gas to be treated. In the reaction itself, it is preferable that the gas containing nitrogen gas and oxygen gas obtained in the gas recovery step and the hydrogen gas are brought into contact with each other in the presence of a platinum catalyst in a temperature range of 50 to 450 ° C. Therefore, in this first purification step, it is necessary to cool. By using the heat obtained during this cooling in the decomposition step described in detail below, the heat can be effectively used.
- this first purification step can also be carried out in multiple stages.
- the gas subjected to such oxygen gas reduction treatment can be used as it is as a high-concentration nitrogen gas. Further, the gas subjected to the oxygen gas reduction treatment can be mixed with other exhaust gas as the exhaust gas to be treated.
- the volume ratio of nitrogen gas to oxygen gas (nitrogen gas / oxygen gas) of this mixed exhaust gas can be adjusted in the range of 100/1 to 1000/1.
- the gas obtained by carrying out only this first purification step is 1 to 35% by volume of carbon dioxide gas and 65 to 65% by volume of nitrogen gas. It is preferably 99% by volume and 0 to 1% by volume of oxygen gas.
- the carbon dioxide gas is 0 to 1% by volume when the total of the carbon dioxide gas, the nitrogen gas and the oxygen gas is 100% by volume. It is preferable that the nitrogen gas is 99 to 100% by volume and the oxygen gas is 0 to 1% by volume.
- Such a high concentration nitrogen gas can be used as a raw material for ceramics such as nitrides in addition to the above-mentioned uses. Further, according to the present invention, since a high concentration nitrogen gas can be obtained, it can be easily liquefied, which is advantageous in physical distribution.
- nitrogen gas having a sufficiently high concentration can be recovered even by the above method.
- the first purification step may be any gas obtained in the gas recovery step (gas discharged in the gas absorption step), and the gas obtained by first carrying out the second purification step described in detail below. Can also be treated in the first purification step.
- a gas containing nitrogen gas and oxygen gas before the first purification step, or a nitrogen gas and oxygen gas after the first purification step are included. It is preferable to carry out a second purification step in which the gas (hereinafter, may be collectively referred to simply as “recovered gas”) is brought into contact with the alkaline aqueous solution. That is, it is preferable to bring the recovered gas into contact with an aqueous solution containing alkali hydroxide.
- the same method as the gas absorption step can be adopted as the contact method and the like.
- amines are used in advance. It may be a recovered gas removed with water, or may be a recovered gas containing amines. In order to further simplify the process, it is preferable to treat the recovered gas containing amines as it is.
- the alkali hydroxide is preferably sodium hydroxide and / or potassium hydroxide.
- the concentration of alkali hydroxide in the aqueous solution is preferably 10 to 48% by mass.
- the temperature at which the recovered gas is brought into contact with the aqueous solution containing alkali hydroxide is preferably in the temperature range of 10 ° C. to 70 ° C., and more preferably in the temperature range of 20 ° C. to 60 ° C.
- the recovered gas obtained by separating and removing carbon dioxide gas from the exhaust gas to some extent is brought into contact with an aqueous solution containing alkali hydroxide. That is, since the concentration of carbon dioxide gas is reduced, the reaction rate is high, and even a reaction between an aqueous solution of alkali hydroxide and carbon dioxide gas, which is an exothermic reaction, can be easily and safely controlled. It also differs from conventional technology in this respect.
- the alkali carbonate obtained by reacting with alkali hydroxide can be extracted from the product or circulated in the gas absorption step. Further, the alkali carbonate can be directly reacted with carbon dioxide gas and extracted as a product of alkali hydrogencarbonate, or can be treated by the decomposition step described in detail below. Furthermore, even when amines are contained, it can be recycled.
- the gas obtained in the second purification step depends on the composition of the gas to be treated, but according to the present invention, carbon dioxide gas can be efficiently reduced, so that the following composition can be obtained.
- the carbon dioxide gas is 0 when the total of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It is preferable that the content is ⁇ 1% by volume, the nitrogen gas is 99 to 100% by volume, and the oxygen gas is 0 to 1% by volume.
- nitrogen gas is preferably 90 to 99.5% by volume
- oxygen gas is preferably 0.5 to 10% by volume
- the ratio of carbon dioxide gas in the gas obtained in the recovered gas refining step is lower than that in the recovered gas obtained in the gas recovery step.
- the first purification step and the second purification step may be carried out only by either one. When both steps are carried out, either one may be carried out first. In order to obtain higher purity nitrogen gas, it is preferable to carry out both steps.
- the decomposition step is a step of decomposing at least a part of the alkali hydrogen carbonate obtained in the gas absorption step into alkali carbonate and carbon dioxide gas.
- the reaction formula when the alkali is potassium is as follows. 2KHCO 3 ⁇ K 2 CO 3 + CO 2 + H 2 O
- a solution (an aqueous solution containing alkali carbonate) obtained by recovering carbon dioxide gas from alkali hydrogen carbonate is used.
- carbon dioxide gas is recovered by heating with waste heat from a factory or the like, while the obtained alkali carbonate is supplied to a circulation process.
- the alkali hydrogen carbonate decomposed in the decomposition step is at least a part of the alkali hydrogen carbonate obtained in the gas absorption step.
- the entire amount of the alkali hydrogen carbonate is not decomposed and is subjected to the gas absorption step together with the alkali carbonate in the circulation step described in detail below, no adverse effect occurs.
- the amount of alkali hydrogen carbonate decomposed in this decomposition step is preferably 50% by mass or more, and further 70% by mass or more is decomposed with respect to the total alkali hydrogen carbonate produced in the gas absorption step. Is preferable. As described above, most preferably, 100% by mass of alkali hydrogen carbonate is decomposed.
- the hydrogen carbonate alkali that decomposes in the decomposition step can once take out the hydrogen carbonate alkali obtained in the gas absorption step as a solid and decompose the obtained solid hydrogen carbonate alkali.
- the apparatus used in the decomposition step can be reduced.
- a slurry state in which a part of the alkali hydrogen carbonate is dissolved and a part of the alkali is present as a solid can be decomposed.
- an aqueous solution containing an alkali hydrogen carbonate can be decomposed.
- a slurry or an aqueous solution is preferable in consideration of operability, recovery rate of carbon dioxide gas, and the like.
- the concentration of the alkali hydrogen carbonate is not particularly limited. Above all, in consideration of operability and the like, it is preferable to use a slurry or an aqueous solution in which the alkali hydrogen carbonate has a concentration range of 5 to 45% by mass. More specifically, in the case of sodium hydrogen carbonate, it is preferable to use a slurry or an aqueous solution having a concentration of sodium hydrogen carbonate in an amount of 5 to 25% by mass. When potassium hydrogen carbonate is used, it is preferable to use a slurry or an aqueous solution having a concentration of potassium hydrogen carbonate of 25 to 45% by mass. Above all, since potassium hydrogen carbonate has high solubility in water, even a slurry or an aqueous solution having a concentration of 25 to 55% by mass can be sufficiently treated.
- the aqueous solution to be decomposed is changed from an aqueous solution containing alkali carbonate to an aqueous solution containing alkali hydrogen carbonate in the gas recovery step. Therefore, it is preferable that 45% by mass or more of the alkali carbonate contained in the aqueous solution used in the gas recovery step is an alkali hydrogencarbonate, and more preferably 60% by mass or more is an alkali hydrogencarbonate, 70% by mass. It is more preferable that% or more is alkali hydrogen carbonate.
- the upper limit of the most preferable value of the ratio of alkali hydrogen carbonate is 100% by mass. However, in consideration of industrial operation and recovery, the upper limit value may be 99% by mass.
- the alkali carbonate Even if the alkali carbonate remains, it does not have an adverse effect. Further, even when amines are used, the above range is preferable. At this time, the amines may exist as amines carbonate and / or amines hydrogencarbonate as they are.
- alkali hydroxide and / or alkali carbonate may be mixed in the alkali hydrogen carbonate to be decomposed.
- Alkali hydroxide is derived from a raw material for producing alkali carbonate. As described above, the alkali carbonate remains without reacting with carbon dioxide in the gas absorption step. However, neither alkali hydroxide nor alkali carbonate has an adverse effect in the decomposition step. Therefore, in the decomposition step, these impurities contained in the alkali hydrogen carbonate are preferably 10 parts by mass or less of the alkali hydroxide with respect to 100 parts by mass of the alkali hydrogen carbonate, and further, the alkali hydroxide is 3 parts by mass. The following is preferable.
- the lower limit is 0 parts by mass of alkali hydroxide.
- the alkali carbonate is preferably 85 parts by mass or less, more preferably 45 parts by mass or less, and further preferably 30 parts by mass or less with respect to 100 parts by mass of alkali hydrogen carbonate.
- the lower limit is 0 parts by mass of alkali carbonate.
- the amount of alkali carbonate is 1 part by mass or more with respect to 100 parts by mass of alkali hydrogencarbonate.
- the alkali hydrogen carbonate to be decomposed may exist as amines carbonate and / or amine hydrogen carbonates as they are when amines are used.
- the solid when the hydrogen carbonate alkali is decomposed, in order to decompose the solid hydrogen carbonate alkali, the solid may be heated while being diffused and dispersed. Then, the temperature in the system may be set to the temperature at which the hydrogen carbonate alkali decomposes. Further, the temperature may be set so that the alkali carbonate is decomposed while stirring and heating the slurry.
- the temperature at which the alkali hydrogen carbonate is decomposed is preferably 50 to 200 ° C, more preferably 100 to 180 ° C, and further preferably 120 to 170 ° C. Within this temperature range, alkali hydrogen carbonate can be decomposed, and recovery of carbon dioxide gas and circulation use of alkali carbonate become easy. In this case, the temperature range is preferably 50 to 200 ° C., more preferably 100 to 180 ° C. under pressure, specifically, 0 to 9 kg / cm 2 G.
- the heat generated in the first purification step can be used. That is, the purification or intermediate gas in the first purification step is heated to a high temperature by the reaction heat, and the heat source is sent directly to the heat exchanger in the decomposition step to recover the alkali hydrogen carbonate as a heat source for decomposition.
- the aqueous solution obtained after decomposition is 100 parts by mass of alkali carbonate.
- the alkali hydroxide is preferably 10 parts by mass or less, and the alkali hydrogen carbonate is preferably 10 parts by mass or less.
- the alkali hydroxide is preferably 3 parts by mass or less, and the alkali hydrogen carbonate is preferably 3 parts by mass or less.
- the lower limit is 0 parts by mass for both alkali hydroxide and alkali hydrogen carbonate.
- this decomposition can be carried out without necessarily utilizing the heat of the first purification step. For example, if other factories are operating nearby, the heat from them can also be used. In order to make effective use of industrial operation, recovery, and factory waste heat, it is preferable to carry out decomposition at a relatively low temperature. In this case, it is preferable to decompose the alkali hydrogen carbonate in a temperature range of 50 ° C. or higher and lower than 120 ° C., more preferably in a temperature range of 70 ° C. or higher and lower than 120 ° C., and in a temperature range of 80 ° C. or higher and 110 ° C. or lower. It is preferable to disassemble.
- the alkali hydrogen carbonate and the alkali hydrogen carbonate form an aqueous solution in the following ratio after the decomposition. That is, the aqueous solution containing alkali carbonate that is circulated to the gas absorption step by the circulation step may have the following composition.
- the alkali hydrogen carbonate is preferably 0 parts by mass or more and less than 300 parts by mass, preferably 30 parts by mass or more and 240 parts by mass or less, and 40 parts by mass with respect to 100 parts by mass of alkali carbonate. It is more preferably 220 parts by mass or more, and further preferably 50 parts by mass or more and 200 parts by mass or less.
- amines when amines are used, they can be recovered because they are partially decomposed into amines and carbon dioxide gas in this decomposition step.
- the other conditions for decomposing the alkali hydrogen carbonate may be appropriately determined so that the alkali hydrogen carbonate can be decomposed. That is, according to the present invention, the gas obtained in this decomposition step is 98 to 100% by volume of carbon dioxide gas and 0 to 0 to 100% by volume of nitrogen gas, assuming that the total of carbon dioxide gas, nitrogen gas and oxygen gas is 100% by volume. It is preferably 1.5% by volume and 0 to 0.5% by volume of oxygen gas, and most preferably 100% by volume of carbon dioxide gas, 0% by volume of nitrogen gas and 0% by volume of oxygen gas.
- the circulation step is a step of circulating the alkali carbonate obtained in the decomposition step to the gas absorption step.
- the alkali carbonate circulated here may be in the state of a solid, a slurry, or an aqueous solution. In the case of solid, the device can be downsized. In the state of a slurry and an aqueous solution, it can be easily circulated.
- the alkali carbonate circulated to the gas absorption step may contain alkali hydroxide and / or alkali hydrogencarbonate in addition to the alkali carbonate.
- Alkali hydroxide is considered to be derived from a raw material that has existed from the beginning.
- Alkali hydrogen carbonate remains undecomposed in the decomposition step.
- the amines contained in the aqueous solution may be recycled as they are.
- the concentration and circulate the alkali carbonate so that the concentration of the alkali carbonate in the gas absorption step becomes constant.
- alkali carbonate can be added if necessary, and amines can be added if necessary.
- the carbon dioxide gas recovery step is a method of recovering the carbon dioxide gas obtained in the decomposition step. After contacting the gas containing the carbon dioxide gas discharged in the decomposition step with an aqueous solution, preferably water, the carbon dioxide gas is added. This is the process of collecting.
- the carbon dioxide gas discharged in the decomposition step is once brought into contact with the aqueous solution and then recovered.
- the aqueous solution is preferably water, and for example, industrial water generally used in factories can also be used.
- an aqueous solution containing an alkali carbonate is used in the gas absorption step. Therefore, when the alkali hydrogen carbonate is inevitably decomposed and the carbon dioxide gas is recovered, it may be recovered in a state containing water.
- carbon dioxide gas is recovered together with water.
- the gas component contained in the aqueous solution was recovered by the steam stripping method, but in this method, water is further contained in the gas.
- a dry carbon dioxide gas can be easily obtained by temporarily contacting the gas obtained in the decomposition step (a gas containing carbon dioxide gas as a main component) with water.
- the amines and the gas containing the carbon dioxide gas can be easily separated when the amines are used. That is, as compared with carbon dioxide gas and the like, amines are more easily dissolved in water and can be easily separated. Water containing separated amines can be recycled.
- the contact method between the gas containing carbon dioxide gas discharged in the decomposition step and the aqueous solution is not particularly limited.
- a dry carbon dioxide gas is obtained by directly mixing carbon dioxide gas containing saturated steam and cooling water and cooling the carbon dioxide gas.
- the temperature of the aqueous solution at the time of contact is not particularly limited, and is preferably 10 to 40 ° C. Further, as the contact condition, it is preferable to supply a gas containing carbon dioxide gas of about 1000 L / hour to 2000 L hours, more specifically about 1600 L / hour, per 1 L of the aqueous solution.
- the carbon dioxide gas obtained by such a method can have a water content of 10 parts by mass or less when the carbon dioxide gas is 100 parts by mass.
- the most suitable amount of water is 0 parts by mass.
- the gas obtained in the carbon dioxide gas recovery step has the same composition as that obtained in the decomposition step, and when the total of carbon dioxide gas, nitrogen gas and oxygen gas is 100% by volume, the carbon dioxide gas is 98 to 100. Volume%, nitrogen gas is preferably 0 to 1.5% by volume, oxygen gas is preferably 0 to 0.5% by volume, further, carbon dioxide gas is 100% by volume, nitrogen gas is 0% by volume, and oxygen gas is 0. Most preferably by volume
- high-purity carbon dioxide gas can be obtained.
- the obtained carbon dioxide gas can be used as a raw material for organic polymers and alcohols such as methanol and ethanol. It can also be used for dry ice and has high industrial utility value. Further, according to the present invention, since high-concentration carbon dioxide gas can be obtained, it can be easily liquefied, which is advantageous in physical distribution.
- carbon dioxide gas when the factory that emits exhaust gas has a means for manufacturing a product using carbon dioxide gas as a raw material, carbon dioxide gas is not emitted in one factory by circulating carbon dioxide gas as follows. You can also. That is, in the factory, for example, in a factory having a manufacturing means such as alkali carbonate / alkali hydrogen carbonate (sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate), or a manufacturing means using the ammonia soda method, carbon dioxide gas By using the carbon dioxide gas obtained from the recovery step as a raw material for the manufacturing means, it is possible to prevent the carbon dioxide gas from being discharged in one factory.
- a manufacturing means such as alkali carbonate / alkali hydrogen carbonate (sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate), or a manufacturing means using the ammonia soda method
- the exhaust gas may be exhaust gas emitted from the alkali carbonate / hydrogen carbonate alkali production means, the production means using the ammonia soda method, or the exhaust gas emitted from other production means in the factory. There may be.
- Example 1 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, 60 exhaust gas adjusted to a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas. It was supplied to an aqueous solution having a concentration of potassium carbonate of 60% by mass at a supply amount of 000 cm 3 / hour. At this time, the temperature (reaction temperature) of the potassium carbonate aqueous solution was 70 ° C., and the aqueous solution continued to be stirred. After supplying the exhaust gas for 1 hour, the obtained aqueous solution was transferred to a decomposition step (first purification step).
- Second purification step The gas obtained in the gas recovery step was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time, both are contacted mixed at 420 ° C. in the presence of a platinum catalyst It was.
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume.
- the reaction in the first purification step was an exothermic reaction, and an aqueous solution containing potassium hydrogencarbonate obtained in the gas absorption step was used as a cooling medium. Then, the decomposition step was carried out at the same time as cooling. The aqueous solution was circulated under pressure so that the temperature of the aqueous solution at the time of decomposition was also 150 ° C. When the obtained aqueous solution was confirmed, it was found that it was an aqueous solution of potassium carbonate. Further, the gases discharged in the decomposition step are 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 0.1% by volume.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass.
- the obtained gas has a high carbon dioxide gas concentration and can be efficiently used for producing sodium carbonate and sodium hydrogen carbonate.
- Example 2 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas adjusted to have a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas is 26. It was supplied to an aqueous solution having a concentration of potassium carbonate of 17.5% by mass at a supply amount of 000 cm 3 / hour. At this time, the temperature of the potassium carbonate aqueous solution was 25 ° C., and the aqueous solution continued to be stirred. After supplying the exhaust gas for 50 minutes, the obtained aqueous solution was transferred to a decomposition step (first purification step).
- Second purification step The gas obtained in the gas recovery step was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 10% by mass of potassium carbonate and 10% by mass of potassium hydrogen carbonate. Further, the gases discharged in the decomposition step are 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 0.1% by volume. The result was the same as that of Example 1.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass. The result was the same as that of Example 1.
- Example 3 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas adjusted to have a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas is 26. It was supplied to an aqueous solution of 10% by mass of potassium carbonate and 10% by mass of potassium hydrogen carbonate at a supply amount of 000 cm 3 / hour. At this time, the temperature of the aqueous solution was 25 ° C., and the aqueous solution continued to be stirred. After supplying the exhaust gas for 30 minutes, the obtained aqueous solution was transferred to the decomposition step.
- Second purification step The gas obtained in the gas recovery step was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 10% by mass of potassium carbonate and 10% by mass of potassium hydrogen carbonate. Further, the gases discharged in the decomposition step are 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 0.1% by volume. The result was the same as that of Example 1.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass. The result was the same as that of Example 1.
- Example 4 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas adjusted to have a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas is 26. It was supplied to an aqueous solution of 17.5% by mass of potassium carbonate and 0.2% by mass of ammonia (0.093 mol of ammonia with respect to 1 mol of potassium carbonate) at a supply amount of 000 cm 3 / hour. At this time, the temperature of the aqueous solution was 25 ° C., and the aqueous solution continued to be stirred. Exhaust gas was supplied for 40 minutes. The obtained aqueous solution was transferred to the decomposition step.
- the gas discharged in the gas recovery step was brought into contact with 2 liters of water.
- the obtained gas did not contain ammonia, and was 20.3% by volume of carbon dioxide gas, 79.0% by volume of nitrogen gas, and 0.7% by volume of oxygen gas.
- Second purification step The gas obtained by contact with water was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 10% by mass of potassium carbonate, 10% by mass of potassium hydrogen carbonate, and 0.1% by mass of ammonia. Further, the gas discharged in the decomposition step is 95.8% by volume of carbon dioxide gas, 3.6% by volume of ammonia, and nitrogen gas when the total amount of carbon dioxide gas, ammonia, nitrogen gas, and oxygen gas is 100% by volume. It was 0.5% by volume and 0.1% by volume of oxygen gas.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass. The result was the same as that of Example 1.
- Example 5 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas adjusted to have a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas is 26. An aqueous solution having a concentration of sodium carbonate of 14% by mass was supplied at a supply amount of 000 cm 3 / hour. At this time, the temperature of the aqueous sodium carbonate solution was 25 ° C., and the aqueous solution continued to be stirred. Exhaust gas was supplied for 70 minutes. The obtained aqueous solution was transferred to the decomposition step.
- Second purification step The gas obtained in the gas recovery step was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step (some solids seemed to be sodium hydrogen carbonate were present) was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 9% by mass of sodium carbonate and 7% by mass of sodium hydrogencarbonate. Further, the gases discharged in the decomposition step are 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 0.1% by volume. The result was the same as that of Example 1.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass. The result was the same as that of Example 1.
- Example 6 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas is adjusted to have a composition containing 8.0% by volume of carbon dioxide gas, 91.5% by volume of nitrogen gas, and 0.5% by volume of oxygen gas.
- the exhaust gas is adjusted to have a composition containing 8.0% by volume of carbon dioxide gas, 91.5% by volume of nitrogen gas, and 0.5% by volume of oxygen gas.
- the temperature of the potassium carbonate aqueous solution was 25 ° C., and the aqueous solution continued to be stirred.
- the obtained aqueous solution was transferred to a decomposition step (first purification step).
- Second purification step The gas obtained in the gas recovery step was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 10% by mass of potassium carbonate and 10% by mass of potassium hydrogen carbonate. Further, the gases discharged in the decomposition step are 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 0.1% by volume. The result was the same as that of Example 1.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass. The result was the same as that of Example 1.
- Example 7 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas adjusted to have a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas is 26. It was supplied to an aqueous solution of 17.5% by mass of potassium carbonate and 0.04% by mass of ammonia (0.019 mol of ammonia with respect to 1 mol of potassium carbonate) at a supply amount of 000 cm 3 / hour. At this time, the temperature of the aqueous solution was 25 ° C., and the aqueous solution continued to be stirred. Exhaust gas was supplied for 45 minutes. The obtained aqueous solution was transferred to the decomposition step.
- the gas discharged in the gas recovery step was brought into contact with 2 liters of water.
- the obtained gas did not contain ammonia, and was 23.5% by volume of carbon dioxide gas, 75.8% by volume of nitrogen gas, and 0.7% by volume of oxygen gas.
- Second purification step The gas obtained by contact with water was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 10% by mass of potassium carbonate, 10% by mass of potassium hydrogen carbonate, and 0.02% by mass of ammonia. Further, the gas discharged in the decomposition step is 98.4% by volume of carbon dioxide gas, 1.0% by volume of ammonia, and nitrogen gas when the total amount of carbon dioxide gas, ammonia, nitrogen gas, and oxygen gas is 100% by volume. It was 0.5% by volume and 0.1% by volume of oxygen gas.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass. The result was the same as that of Example 1.
- Example 8 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas adjusted to have a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas is 26. It was supplied to an aqueous solution of 17.5% by mass of potassium carbonate and 0.4% by mass of ammonia (0.185 mol of ammonia with respect to 1 mol of potassium carbonate) at a supply amount of 000 cm 3 / hour. At this time, the temperature of the aqueous solution was 25 ° C., and the aqueous solution continued to be stirred. Exhaust gas was supplied for 35 minutes. The obtained aqueous solution was transferred to the decomposition step.
- the gas discharged in the gas recovery step was brought into contact with 2 liters of water.
- the obtained gas did not contain ammonia, and was 15.6% by volume of carbon dioxide gas, 83.7% by volume of nitrogen gas, and 0.7% by volume of oxygen gas.
- Second purification step The gas obtained by contact with water was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 10% by mass of potassium carbonate, 10% by mass of potassium hydrogen carbonate, and 0.2% by mass of ammonia. Further, the gases discharged in the decomposition step are 90.4% by volume of carbon dioxide gas, 9.0% by volume of ammonia, and nitrogen gas when the total amount of carbon dioxide gas, ammonia, nitrogen gas, and oxygen gas is 100% by volume. It was 0.5% by volume and 0.1% by volume of oxygen gas.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass. The result was the same as that of Example 1.
- Example 9 Gas absorption process; When the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume, the exhaust gas adjusted to have a composition containing 42.5% by volume of carbon dioxide gas, 57% by volume of nitrogen gas, and 0.5% by volume of oxygen gas is 26. It was supplied to an aqueous solution of 17.5% by mass of potassium carbonate and 2.0% by mass of ammonia (0.927 mol of ammonia with respect to 1 mol of potassium carbonate) at a supply amount of 000 cm 3 / hour. At this time, the temperature of the aqueous solution was 25 ° C., and the aqueous solution continued to be stirred. Exhaust gas was supplied for 30 minutes. The obtained aqueous solution was transferred to the decomposition step.
- the gas discharged in the gas recovery step was brought into contact with 2 liters of water.
- the obtained gas did not contain ammonia, and was 8.5% by volume of carbon dioxide gas, 90.7% by volume of nitrogen gas, and 0.8% by volume of oxygen gas.
- Second purification step The gas obtained by contact with water was brought into contact with an aqueous solution containing 10% by mass of potassium hydroxide (the temperature of the aqueous solution was 40 ° C.) at a supply amount of 60,000 cm 3 / hour.
- the gas after contact was 0% by volume of carbon dioxide gas, 99.1% by volume of nitrogen gas, and 0.9% by volume of oxygen gas when the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas was 100% by volume. It was.
- the result was the same as that of Example 1.
- First purification step The supply amount of the resulting gas in the second purification step 60,000 cm 3 / time, and hydrogen gas were mixed at a feed rate of 4200cm 3 / time was contacted thereto at a temperature of 420 ° C. in the presence of a platinum catalyst ..
- the gases discharged from this first purification step are 0% by volume of carbon dioxide gas, 99.9% by volume of nitrogen gas, and 0 of oxygen gas, assuming that the total amount of carbon dioxide gas, nitrogen gas, and oxygen gas is 100% by volume. It was 1% by volume. The result was the same as that of Example 1.
- the aqueous solution obtained in the gas absorption step was heated to 100 ° C. under normal pressure. The aqueous solution continued to stir. When the obtained aqueous solution was confirmed, it was found that the aqueous solution was 10% by mass of potassium carbonate, 10% by mass of potassium hydrogen carbonate, and 1.0% by mass of ammonia. Further, the gases discharged in the decomposition step are 66.4% by volume of carbon dioxide gas, 33.2% by volume of ammonia, and nitrogen gas when the total amount of carbon dioxide gas, ammonia, nitrogen gas, and oxygen gas is 100% by volume. It was 0.3% by volume and 0.1% by volume of oxygen gas.
- Carbon dioxide recovery process The gas discharged in the decomposition step was brought into contact with water.
- the finally obtained gas is 99.4% by volume of carbon dioxide gas, 0.5% by volume of nitrogen gas, and 0. It was 1% by volume.
- the water content of this gas was 7.2 parts by mass when the mass of carbon dioxide gas was 100 parts by mass.
- Table 1 summarizes the results of Examples 2, 4 and 7 to 9 regarding the effect of blending ammonia.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Materials Engineering (AREA)
- Gas Separation By Absorption (AREA)
- Treating Waste Gases (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
排ガスと、炭酸アルカリを含む水溶液とを接触させることにより、該排ガス中の炭酸ガスを反応させて、炭酸水素アルカリを含む水溶液とするガス吸収工程、前記ガス吸収工程から排出された窒素ガスおよび酸素ガスを含むガスを回収するガス回収工程、前記ガス吸収工程で得られた炭酸水素アルカリを少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する分解工程、前記分解工程で得られた炭酸アルカリの少なくとも一部を前記ガス吸収工程へ循環する循環工程、並びに、前記分解工程で得られた炭酸ガスを回収するに際し、該分解工程で排出された炭酸ガスを含むガスと水溶液とを接触させた後、炭酸ガスを回収する炭酸ガス回収工程を含むことを特徴とする方法。
Description
本発明は、炭酸ガス、さらには窒素ガスや酸素ガスを、排ガスから分離回収する新規な方法に関する。具体的には、安価な無機化合物を利用して、高純度の炭酸ガス、さらには純度の高い窒素ガスを効率よく分離回収する新規な方法に関する。
これまで人類の生活を豊かにしてきた化石燃料であるが、このままでは炭酸ガスを代表とする温暖化ガスの過剰排出により、該燃料の使用は地球環境を破壊することは明白である。そのため、全人類の直面した最重要課題として世界のあらゆる地域において脱炭酸ガス(炭酸ガス量の低減化)が検討されている。そして、省エネルギーの推進、再生エネルギーの普及、炭酸ガス固定化など、様々な方面からこの難題は論じられている。特に、絶対的な量として多くの炭酸ガスが排出されている工場や発電所等から排出されるガスを処理する方法が、炭酸ガスの低減化には、必要となっている。当該排ガスに含まれる炭酸ガスを安全かつ安定的に、また合理的に濃縮出来れば様々な炭素製品としての再利用や近年注目され技術的にも目覚ましい回収・貯槽に役立てることが可能である。
以上のような問題があるなか、様々な工場、発電所から排出されるガスにおいて、それに含まれる炭酸ガスを低減させる方法が種々検討されている。
以上のような問題があるなか、様々な工場、発電所から排出されるガスにおいて、それに含まれる炭酸ガスを低減させる方法が種々検討されている。
具体的には、アルカノールアミン等のアミン類を吸収剤とする方法が知られている(例えば、特許文献1、2参照)。これらアミン類の多くは液体であり、また水にもよく溶ける。そのため、炭酸ガスを吸収するにおいて効果的である。
しかしながら、アミン類のみからなる吸収剤を使用した場合、臭気が発生するという問題がある。また、炭酸ガス回収時にアミン類の除去操作性が煩雑になるおそれがあり、安全・安心性の確保が困難という点でも改善の余地があった。さらに、安全性を高めるためには、密閉の防爆構造を必要とするが、この場合、不活性ガス等が必要となる場合があり、アミン類の種類によっては、炭酸ガスの回収効率を低下させるという問題があった。これら問題点を改善するためには、高い設備投資等が必要となり、加えて、使用するアミン類によっては、得られる炭酸ガス濃度に対して、安定性向上のため、およびその分離除去に、多くのエネルギーを消費する場合があり、経済性という点でも改善の余地があった。
しかしながら、アミン類のみからなる吸収剤を使用した場合、臭気が発生するという問題がある。また、炭酸ガス回収時にアミン類の除去操作性が煩雑になるおそれがあり、安全・安心性の確保が困難という点でも改善の余地があった。さらに、安全性を高めるためには、密閉の防爆構造を必要とするが、この場合、不活性ガス等が必要となる場合があり、アミン類の種類によっては、炭酸ガスの回収効率を低下させるという問題があった。これら問題点を改善するためには、高い設備投資等が必要となり、加えて、使用するアミン類によっては、得られる炭酸ガス濃度に対して、安定性向上のため、およびその分離除去に、多くのエネルギーを消費する場合があり、経済性という点でも改善の余地があった。
これに対して、無機化合物、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液と炭酸ガスを含む排ガスとを接触させることにより、炭酸塩・炭酸水素塩等を製造して、炭酸ガスを回収する方法も数多く提案されている(例えば、特許文献2、3参照)。
特許文献2に記載の方法は、炭酸ガスを、炭酸カリウム、重炭酸カリウムの形で回収している。そして、特許文献2には、重炭酸カリウムとして炭酸ガスを回収した溶液から、水蒸気を利用したストリッピング法により、炭酸ガスを回収し、さらに炭酸カリウムを循環使用することが示されている。特許文献2には、炭酸ガス、および硫化水素ガスの回収について記載されている。
しかしながら、この方法においては、水蒸気ストリッピング法により炭酸ガスを回収しているため、該炭酸ガスに水分が含まれ易く、高純度の炭酸ガスを回収するという点で改善の余地があった。
しかしながら、この方法においては、水蒸気ストリッピング法により炭酸ガスを回収しているため、該炭酸ガスに水分が含まれ易く、高純度の炭酸ガスを回収するという点で改善の余地があった。
また、特許文献3に記載の方法は、水酸化ナトリウム、および炭酸ナトリウムの水溶液に炭酸ガスを吸収させる方法である。
しかしながら、特許文献3には、水酸化ナトリウム水溶液を準備する工程から示されており、例えば、食塩の電解工程を含むことが必須の発明となっている。そのため、どうしても大規模工場での実施が必要となり、工程の簡略化という点で改善の余地があった。
しかしながら、特許文献3には、水酸化ナトリウム水溶液を準備する工程から示されており、例えば、食塩の電解工程を含むことが必須の発明となっている。そのため、どうしても大規模工場での実施が必要となり、工程の簡略化という点で改善の余地があった。
加えて、炭酸ガスの従来の回収方法においては、炭酸ガス以外のその他のガス成分の回収については記載されていない。すなわち、前記従来技術においては、排ガスから炭酸ガスを分離したガスの取扱いについては記載されていない。
近年、技術の多様化が進むとともに、排出物の低減・再利用化をより一層推し進める必要がある。そのため、炭酸ガスのみならず、それを分離したガスについても、その利用方法を検討することが必要となっている。
したがって、本発明の目的は、制御が容易であり、安全かつ安価な無機化合物を利用して、排ガスから、高純度の炭酸ガスを効率よく回収すること、および炭酸ガスが分離されたガスを有効利用することにある。
さらに、以上のようなガスの回収、分離、精製等を行うに際し、それらの反応等で生じる熱を有効活用する方法を提供する。このような各工程で生じる熱の有効利用については、特許文献2、3には記載されていない。
近年、技術の多様化が進むとともに、排出物の低減・再利用化をより一層推し進める必要がある。そのため、炭酸ガスのみならず、それを分離したガスについても、その利用方法を検討することが必要となっている。
したがって、本発明の目的は、制御が容易であり、安全かつ安価な無機化合物を利用して、排ガスから、高純度の炭酸ガスを効率よく回収すること、および炭酸ガスが分離されたガスを有効利用することにある。
さらに、以上のようなガスの回収、分離、精製等を行うに際し、それらの反応等で生じる熱を有効活用する方法を提供する。このような各工程で生じる熱の有効利用については、特許文献2、3には記載されていない。
本発明者等は、上記課題を解決するために鋭意検討した。そして、無機アルカリを用いた炭酸ガスの回収方法について検討した。そして、炭酸アルカリを出発物質とすることにより、高純度の炭酸ガスを回収した後、再度、炭酸アルカリを再利用することにより、工程を簡略できることを見出した。さらには、この方法によれば、炭酸ガスを炭酸アルカリで分離回収できるため、処理する排ガスによっては、該炭酸ガスを分離したガスも工業的に利用可能となることを見出し、本発明を完成するに至った。
また、このような利点に加えて、炭酸アルカリと、アミン類、特に好ましくはアンモニアとを組み合わせて使用した場合、炭酸ガスをより効率よく吸収することができ、さらには、炭酸ガスの高純度化も容易であり、かつアミン類の有効利用がし易いことを見出し、本発明を完成するに至った。
また、このような利点に加えて、炭酸アルカリと、アミン類、特に好ましくはアンモニアとを組み合わせて使用した場合、炭酸ガスをより効率よく吸収することができ、さらには、炭酸ガスの高純度化も容易であり、かつアミン類の有効利用がし易いことを見出し、本発明を完成するに至った。
すなわち、本発明によれば、
(1)炭酸ガス、窒素ガスおよび酸素ガスを含む排ガスから、炭酸ガス、並びに窒素ガスおよび酸素ガスを含むガスにそれぞれ分離して回収する方法であって、
該排ガスと、炭酸アルカリを含む水溶液とを接触させることにより、該排ガス中の炭酸ガスを反応させて、炭酸水素アルカリを含む水溶液とするガス吸収工程、
前記ガス吸収工程から排出された窒素ガスおよび酸素ガスを含むガスを回収するガス回収工程、
前記ガス吸収工程で得られた炭酸水素アルカリの少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する分解工程、
前記分解工程で得られた炭酸アルカリの少なくとも一部を前記ガス吸収工程へ循環する循環工程、並びに、
前記分解工程で得られた炭酸ガスを回収するに際し、該分解工程で排出された炭酸ガスを含むガスと水溶液とを接触させた後、炭酸ガスを回収する炭酸ガス回収工程、
を含むことを特徴とする方法である。
(1)炭酸ガス、窒素ガスおよび酸素ガスを含む排ガスから、炭酸ガス、並びに窒素ガスおよび酸素ガスを含むガスにそれぞれ分離して回収する方法であって、
該排ガスと、炭酸アルカリを含む水溶液とを接触させることにより、該排ガス中の炭酸ガスを反応させて、炭酸水素アルカリを含む水溶液とするガス吸収工程、
前記ガス吸収工程から排出された窒素ガスおよび酸素ガスを含むガスを回収するガス回収工程、
前記ガス吸収工程で得られた炭酸水素アルカリの少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する分解工程、
前記分解工程で得られた炭酸アルカリの少なくとも一部を前記ガス吸収工程へ循環する循環工程、並びに、
前記分解工程で得られた炭酸ガスを回収するに際し、該分解工程で排出された炭酸ガスを含むガスと水溶液とを接触させた後、炭酸ガスを回収する炭酸ガス回収工程、
を含むことを特徴とする方法である。
また、本発明は、以下の態様をとることもできる。
(2)前記炭酸アルカリが炭酸カリウムであり、前記炭酸水素アルカリが炭酸水素カリウムであること。
(3)前記ガス吸収工程において、炭酸アルカリを含む水溶液が、さらにアミン類を含む水溶液であること。
(4)前記アミン類が、アンモニアであること。
(5)前記ガス吸収工程へ供給する前の排ガスの組成を確認する工程をさらに含むこと。
(6)前記排ガスにおける酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1以上100/1以下とすること。
(7)さらに、前記ガス回収工程で得られた窒素ガスおよび酸素ガスを含むガスと、水素ガスとを、白金系触媒存在下で反応させて、該ガス中の酸素ガスを低減する第一精製工程を含み、前記分解工程において、該第一精製工程で生じた熱を用いて炭酸水素アルカリの少なくとも一部を炭酸アルカリおよび炭酸ガスに分解すること。
(8)第一精製工程を行う前の窒素ガスおよび酸素ガスを含むガス、又は第一精製工程後の窒素ガスおよび酸素ガスを含むガスと、アルカリ水溶液とを接触させる第二精製工程を含むこと。
(2)前記炭酸アルカリが炭酸カリウムであり、前記炭酸水素アルカリが炭酸水素カリウムであること。
(3)前記ガス吸収工程において、炭酸アルカリを含む水溶液が、さらにアミン類を含む水溶液であること。
(4)前記アミン類が、アンモニアであること。
(5)前記ガス吸収工程へ供給する前の排ガスの組成を確認する工程をさらに含むこと。
(6)前記排ガスにおける酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1以上100/1以下とすること。
(7)さらに、前記ガス回収工程で得られた窒素ガスおよび酸素ガスを含むガスと、水素ガスとを、白金系触媒存在下で反応させて、該ガス中の酸素ガスを低減する第一精製工程を含み、前記分解工程において、該第一精製工程で生じた熱を用いて炭酸水素アルカリの少なくとも一部を炭酸アルカリおよび炭酸ガスに分解すること。
(8)第一精製工程を行う前の窒素ガスおよび酸素ガスを含むガス、又は第一精製工程後の窒素ガスおよび酸素ガスを含むガスと、アルカリ水溶液とを接触させる第二精製工程を含むこと。
本発明に従えば、炭酸アルカリにより排ガスから大部分の炭酸ガスを除去できる。そのため、予め処理する前の排ガスの組成を確認しておけば、該排ガスから炭酸ガスを分離したガスの組成が予測できる。そのため、炭酸ガスを分離したガスの有効活用がし易くなる。特に、(6)、(7)、および(8)の態様とすることにより、高濃度の窒素ガスを含むガスを得ることができる。そして、(7)の態様とすることにより、回収等で生じる熱を有効活用することができる。
本発明によれば、安価で安全な方法で効率よく、排ガスから高純度の炭酸ガスを分離することができる。すなわち、無理なく、容易に、安価な材料で排ガスを処理することができる。なお、本発明の方法は、排ガスを準備できれば、本発明の工程のみを実施することもできるし、大規模工場での循環に組み入れることもできる。
排ガスを排出する工場が、例えば、炭酸アルカリの製造工場、および/又はアンモニアソーダ法を実施している工場であれば、炭酸ガス回収工程で得られる炭酸ガスは、これら工場の原料ガスとして使用できる。その結果、これら工場において本発明を適用すれば、炭酸ガスを外部に一切放出しないこともできる。
また、アミン類と炭酸アルカリとを併用して使用することにより、より効率よく、炭酸ガスを回収できる。特にアミン類としてアンモニアを使用した場合には、炭酸ガスとの分離が容易い、例えば、水溶液(水)と接触させるだけで、簡単に分離することができる。加えて、このアンモニアは、アンモニアソーダ法を実施している工場であれば、例えば、水酸化カルシウムと塩化アンモニウムとから塩化カルシウムを製造している工程から容易に得ることができる。一方、分離したアンモニアは、循環使用することもできるが、アンモニアソーダ法の原料としても、利用できる。
また、該炭酸ガス回収工程で得られる炭酸ガスは、高純度の炭酸ガスであるため、上記工場に供給できない場合には、アルコール等の有機化合物原料、ドライアイスの原料、および消化器用のガス等として、工業的な利用価値が高くなる。また、高濃度の炭酸ガスを得ることができるため、液化炭酸ガスとすることも容易となる。
加えて、本発明によれば、炭酸ガスが低減された窒素ガス・酸素ガスを含むガスを得ることができる。
中でも、炭酸カリウムを含む水溶液と、炭酸ガスを含む排ガスとを最初に接触させることにより、他の炭酸アルカリと比較して高濃度の水溶液とすることができる。その結果、炭酸ガスの回収(吸収)率を高めることができる。また、純度の高い、酸素ガス、および窒素ガスを含むガスを回収することができる。また、炭酸カリウムを循環使用することができる。
加えて、本発明によれば、炭酸ガスが低減された窒素ガス・酸素ガスを含むガスを得ることができる。
中でも、炭酸カリウムを含む水溶液と、炭酸ガスを含む排ガスとを最初に接触させることにより、他の炭酸アルカリと比較して高濃度の水溶液とすることができる。その結果、炭酸ガスの回収(吸収)率を高めることができる。また、純度の高い、酸素ガス、および窒素ガスを含むガスを回収することができる。また、炭酸カリウムを循環使用することができる。
さらに、処理する排ガスにおいて、予めその組成を調整することにより、本発明によれば、該排ガスから炭酸ガスを除いたガスの有効利用が可能となる。本発明によれば、効率よく炭酸ガスを分離回収できる。そのため、例えば、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)を10/1以上100/1以下に調整した排ガスを処理することにより、ガス回収工程で得られるガスは、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1以上100/1以下のガスを得られることとなる。その結果、高濃度の工業的に利用価値の高い、例えば、不活性ガスに適用できるガス、アンモニアの原料に使用できるガス、等の窒素ガスを含むガスを得ることができる。特に、処理する排ガスの酸素ガスに対する窒素ガスの体積比を例えば、不活性ガスに適用できるガス、アンモニアの原料に使用できるガス、等の窒素ガスを含むガスを得ることができる。特に、処理する排ガスの酸素ガスに対する窒素ガスの体積比を20/1以上とすることにより、得られるガスは、酸素ガスに対する窒素ガスの体積比が20/1以上のガスとなり、防爆用ガスとしても利用可能である。
本発明によれば、前記の通り、高濃度の窒素ガスを得ることもできる。特に、下記に詳述する第一精製工程を施せば、より高濃度の窒素ガスを得ることができる。そのため、得られる窒素ガスは、窒化物、例えば、窒化珪素、窒化アルミニウム、窒化ホウ素等のセラミックスの原料としても利用できる。さらには、高濃度の窒素ガスを得ることができるため、液化窒素ガスとすることも容易である。
また、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)を10/1~100/1の範囲に調整した排ガスを処理した場合、前記の通り、窒素ガスおよび酸素ガスを含むガスを得ることができる。ここで、この得られたガスと、水素ガスとを、白金系触媒存在下で反応させて、該ガス中の酸素ガスを低減する第一精製工程を行えば、以下のように、第一精製工程で発せられる熱をも有効活用できる。つまり、該第一精製工程は、発熱反応であるが、得られた熱を、前記分解工程の炭酸水素アルカリの分解に利用できる。
本発明によれば、比較的、炭酸ガスを多く含む排ガスを、先ずは炭酸アルカリを含む水溶液(好ましくは、水)と接触させるため、温度制御が容易で、安定した状態で炭酸ガスを吸収・分離することができる。
さらに、第一精製工程の前後で得られる、窒素ガスおよび酸素ガスを含むガスが炭酸ガスを含む場合には、アルカリ水溶液と該ガスを接触させることにより、より炭酸ガスが低減されたガスを得ることができる。そして、前記ガス回収工程で回収した窒素ガスおよび酸素ガスを含むガスは、排ガスと比較して、炭酸ガスが低減されており、アルカリ水溶液と接触させたとしても、反応条件の制御が容易となる。
本発明は、今まで廃棄されており、かつ環境破壊ガスと言われている排ガスから、高濃度ガス(炭酸ガス、および窒素ガス)を取り出し、有用な原料として再利用できるという点で、極めて工業的利用価値の高い新しい回収方法である。本発明によれば、条件を最適化すれば、高濃度の炭酸ガス、および高濃度の窒素ガスの両方を併産することができるため、極めて経済的に有利となる。
本発明は、炭酸ガス、窒素ガスおよび酸素ガスを含む排ガスから、炭酸ガス、並びに窒素ガスおよび酸素ガスを含むガスにそれぞれ分離して回収する方法である。そして
該排ガスと、炭酸アルカリを含む水溶液とを接触させることにより、該排ガス中の炭酸ガスを反応させて、炭酸水素アルカリを含む水溶液とするガス吸収工程、
前記ガス吸収工程から排出された窒素ガスおよび酸素ガスを含むガスを回収するガス回収工程、
前記ガス吸収工程で得られた炭酸水素アルカリの少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する分解工程
前記分解工程で得られた炭酸アルカリの少なくとも一部を前記ガス吸収工程へ循環する循環工程、並びに、
前記分解工程で得られた炭酸ガスを回収するに際し、該分解工程で排出された炭酸ガスを含むガスと水溶液とを接触させた後、炭酸ガスを回収する炭酸ガス回収工程
を含むことを特徴とする方法である。
以下、順を追って説明する。
該排ガスと、炭酸アルカリを含む水溶液とを接触させることにより、該排ガス中の炭酸ガスを反応させて、炭酸水素アルカリを含む水溶液とするガス吸収工程、
前記ガス吸収工程から排出された窒素ガスおよび酸素ガスを含むガスを回収するガス回収工程、
前記ガス吸収工程で得られた炭酸水素アルカリの少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する分解工程
前記分解工程で得られた炭酸アルカリの少なくとも一部を前記ガス吸収工程へ循環する循環工程、並びに、
前記分解工程で得られた炭酸ガスを回収するに際し、該分解工程で排出された炭酸ガスを含むガスと水溶液とを接触させた後、炭酸ガスを回収する炭酸ガス回収工程
を含むことを特徴とする方法である。
以下、順を追って説明する。
<処理の対象となる排ガス>
本発明において、処理の対象となる排ガスは、特に制限されるものではなく、炭酸ガス、窒素ガスおよび酸素ガスを含むものであればよい。具体的には、様々な工場から排出される排ガス、例えば、発電所、ボイラー、焼却炉、セメント工場、炭酸ガスを原料として使用する工場(アンモニアソーダ法を使用する工場、炭酸ガスと水酸化アルカリとの反応による炭酸アルカリの製造工場)、燃焼反応を伴う工場等から排出される排ガスが挙げられる。中でも、空気中の酸素ガスを支燃ガスとして用いる工場から排出されるガスは、結果として、窒素ガスが濃縮されている状況である。そのため、このような排ガスを処理することにより、高濃度の炭酸ガスだけでなく、高濃度の窒素ガスを回収することもできる。
本発明において、処理の対象となる排ガスは、特に制限されるものではなく、炭酸ガス、窒素ガスおよび酸素ガスを含むものであればよい。具体的には、様々な工場から排出される排ガス、例えば、発電所、ボイラー、焼却炉、セメント工場、炭酸ガスを原料として使用する工場(アンモニアソーダ法を使用する工場、炭酸ガスと水酸化アルカリとの反応による炭酸アルカリの製造工場)、燃焼反応を伴う工場等から排出される排ガスが挙げられる。中でも、空気中の酸素ガスを支燃ガスとして用いる工場から排出されるガスは、結果として、窒素ガスが濃縮されている状況である。そのため、このような排ガスを処理することにより、高濃度の炭酸ガスだけでなく、高濃度の窒素ガスを回収することもできる。
本発明おいて、前記排ガスは、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1~100/1の範囲にあることが好ましい。なお、上記表記は、排ガスに含まれる酸素ガスの体積割合を1とした時の窒素ガスの体積割合を示す。本発明によれば、先ず、高度に炭酸ガスのみを分離することができる。そのため、上記範囲の排ガスであれば、ガス回収工程において、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1~100/1の範囲にあるガスを得ることができる。
このように得られるガスは、窒素ガスの濃度が高いものとなる。そのため、ガス回収工程で得られたガスは、不活性ガスに適用できるガス、アンモニアの原料に使用できるガス等に利用できる。さらには、他の不純物ガスとの兼ね合いにもなるが、より窒素ガスの割合の高い排ガスを処理することにより、得られるガスを防爆用ガスとしても使用可能とできる。例えば、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が20/1以上の排ガスを処理することにより、得られるガスは、酸素ガスに対する窒素ガスの体積比が20/1以上となり、防爆ガスに使用することもできる。
そのため、前記排ガスは、下記に詳述するガス吸収工程にかける前に、該排ガスの組成を確認する工程を設けることが好ましい。そして、処理する排ガスの組成が、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1~100/1の範囲を外れる場合には、この範囲を満足するように、該排ガス以外の別のガスを混合する、排ガス調整工程を設けることが好ましい。別のガスは、工場で排出される様々なガスを用いることができる。
そのため、前記排ガスは、下記に詳述するガス吸収工程にかける前に、該排ガスの組成を確認する工程を設けることが好ましい。そして、処理する排ガスの組成が、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1~100/1の範囲を外れる場合には、この範囲を満足するように、該排ガス以外の別のガスを混合する、排ガス調整工程を設けることが好ましい。別のガスは、工場で排出される様々なガスを用いることができる。
以上の通り、本発明において、排ガスは、特に制限されるものではない。そのため、炭酸ガスが数体積%含まれる排ガスであっても、効率よく、炭酸ガスを処理できる。中でも、工場等から排出されるガスの一般性、下記に詳述するガス吸収工程の規模、炭酸アルカリの循環使用等を考慮すると、以下の組成範囲を満足するガスであることが好ましい。具体的には、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが3~49.9体積%、窒素ガスが50~95体積%、酸素ガスが0.1~10体積%であることが好ましく、炭酸ガスが3~45体積%、窒素ガスが50~87体積%、酸素ガスが0.1~10体積%であることがより好ましく、炭酸ガスが10~45体積%、窒素ガスが50~80体積%、酸素ガスが0.1~10体積%であることがさらに好ましい。本発明の方法は、ある程度、炭酸ガスの濃度が高い排ガスを処理する方が効率的である。
なお、前記排ガスには、炭素ガス、窒素ガス、および酸素ガス以外のガス(その他ガス)が不可避的に混入される可能性がある。この場合、その他ガスが下記に詳述する各工程で悪影響を及ぼさなければ、その他のガスを除去せずにそのまま処理することができる。何らかの悪影響を及ぼすのであれば、予めその他のガスを除去した後、処理することもできる。前記排ガスに含まれるその他のガスは、炭素ガス、窒素ガス、および酸素ガスの合計100体積部としたとき、その他のガスが10体積部以下、好ましくは5体積部以下であれば、そのまま処理することができる。その他のガスの最も好適な割合は、0体積部である。その他のガスとしては、一酸化炭素ガス等が挙げられる。
本発明においては、前記排ガスを下記に詳述するガス吸収工程で処理することにより、該排ガスから炭酸ガスを吸収する。次に、ガス吸収工程について説明する。
<ガス吸収工程>
本発明においては、前記排ガスを下記に詳述するガス吸収工程で処理することにより、該排ガスから炭酸ガスを吸収する。次に、ガス吸収工程について説明する。
<ガス吸収工程>
本発明において、ガス吸収工程は、前記排ガスと炭酸アルカリを含む水溶液とを接触させて、前記排ガスに含まれる炭酸ガスを炭酸アルカリと反応させる。そして、炭酸水素アルカリを製造して炭酸ガスを吸収する工程である。反応式で記載すると以下の通りである。次の式は、アルカリがカリウムである場合の例である。
K2CO3+CO2+H2O → 2KHCO3
K2CO3+CO2+H2O → 2KHCO3
本発明において、比較的、炭酸ガスを多く含む排ガスから炭酸ガスを分離・除去するために、該ガス吸収工程において、炭酸アルカリを含む水溶液と該排ガスとを最初に接触させる。該排ガスは、比較的、炭酸ガスの割合が多いが、炭酸アルカリを含む水溶液と最初に接触させるため、温度制御等が容易となり、比較的、安定(一定)の割合で炭酸ガスを除去できる。
従来技術のように、先ず、水酸化アルカリの水溶液と排ガスとを接触させる方が炭酸ガスを吸収・分離する量が多くできる。しかしながら、逆に、水酸化アルカリの水溶液を使用すると、反応が急激に進み、条件等にもよるが、かなり発熱してしまう。さらには、反応により、炭酸ガスが吸収されて、水酸化アルカリが炭酸アルカリになると、急に、炭酸ガスの吸収量が低減してしまう。そのため、最初に、排ガスと水酸化アルカリの水溶液とを反応させる従来技術では、運転の制御が難しくなる場合があった。
これに対して、本発明は、前記の通り、排ガスと最初に炭酸アルカリを含む水溶液を接触させるため、従来技術と比較して、制御が容易となる。
これに対して、本発明は、前記の通り、排ガスと最初に炭酸アルカリを含む水溶液を接触させるため、従来技術と比較して、制御が容易となる。
本発明において、使用する炭酸アルカリは、特に制限されるものではなく、市販の物を使用することができる。具体的には、炭酸ナトリウム、炭酸カリウムが挙げられる。中でも、水溶液中に溶解性が高く、効率よく炭酸ガスを分離・吸収できるという点で、炭酸カリウムを使用することが好ましい。炭酸ナトリウムを使用する場合、水に対する溶解度が低いため、炭酸ガスをより多く吸収するためには、水酸化ナトリウム水溶液に炭酸ガスを吸収させて炭酸ナトリウムを製造する工程を設けることが好ましい。一方、炭酸カリウムを使用する場合においても、水酸化カリウム水溶液に炭酸ガスを吸収させて炭酸カリウムを製造する工程を設けることもできる。ただし、炭酸カリウムは、炭酸ナトリウムの約3倍、水に対する溶解度が高いため、炭酸ナトリウムよりも効果的に炭酸ガスを分離・吸収できる。そのため、炭酸カリウムを使用した場合には、炭酸カリウム水溶液と前記排ガスとを接触させる工程から始めることが可能となる。
ガス吸収工程は、充填塔に炭酸アルカリを含む水溶液を充填しておき、そこに前記排ガスを該水溶液と接触させればよい。接触させる方法は、水溶液を充填した棚段塔であり、下段・中断より排ガス吹き込ませるバブリング方式である。吸収熱により反応速度が抑制される為、外冷却装置を含む吸収塔である。
また、ガス吸収工程において、連続式で反応を進める場合には、炭酸水素アルカリを抜き出すか、又は炭酸アルカリを追加することもできる。
さらに、ガス吸収工程における、炭酸アルカリを含む水溶液の炭酸アルカリの濃度は、特に制限されるものではない。中でも、操作性等を考慮すると、炭酸アルカリが10~65質量%の濃度範囲となる水溶液を使用することが好ましい。より具体的には、炭酸ナトリウムの場合には、炭酸ナトリウムが10~35質量%となる濃度の水溶液を使用することが好ましい。また、炭酸カリウムを使用した場合には、炭酸カリウムが10~65質量%となる濃度の水溶液を使用することが好ましい。当然のことながら、上記濃度範囲とするために、水溶液を加熱することもできる。
また、ガス吸収工程において、連続式で反応を進める場合には、炭酸水素アルカリを抜き出すか、又は炭酸アルカリを追加することもできる。
さらに、ガス吸収工程における、炭酸アルカリを含む水溶液の炭酸アルカリの濃度は、特に制限されるものではない。中でも、操作性等を考慮すると、炭酸アルカリが10~65質量%の濃度範囲となる水溶液を使用することが好ましい。より具体的には、炭酸ナトリウムの場合には、炭酸ナトリウムが10~35質量%となる濃度の水溶液を使用することが好ましい。また、炭酸カリウムを使用した場合には、炭酸カリウムが10~65質量%となる濃度の水溶液を使用することが好ましい。当然のことながら、上記濃度範囲とするために、水溶液を加熱することもできる。
なお、炭酸アルカリを含む水溶液には、水酸化アルカリおよび/又は炭酸水素アルカリが不可避的に混入される場合がある。水酸化アルカリは、炭酸アルカリを製造する際の原料であり、元来、炭酸アルカリに含まれる場合がある。一方、炭酸水素アルカリは、下記に詳述する分解工程で得られる炭酸アルカリを循環使用する際に、混入される場合がある。ただし、水酸化アルカリ、および炭酸水素アルカリとも、ガス吸収工程に悪影響は与えない。そのため、特に、工業的な循環を考慮した場合、下記に詳述する分解工程においては、比較的低い温度で分解する方が工場等の廃熱を利用し易いため、炭酸水素アルカリが炭酸アルカリを含む前記水溶液に含まれていてもよい。そのため、ガスを吸収させる前の炭酸アルカリを含む水溶液は、以下の範囲で水酸化アルカリおよび/又は炭酸水素アルカリを含むことが好ましい。
具体的には、ガスを吸収する前において、炭酸アルカリ100質量部に対して、水酸化アルカリは10質量部以下であることが好ましく、炭酸水素アルカリは10質量部以下であることが好ましく、さらには、水酸化アルカリは3質量部以下であることが好ましく、炭酸水素アルカリは3質量部以下であることが好ましい。下限値は、水酸化アルカリ、および炭酸水素アルカリ共に0質量部である。
ただし、下記に詳述するが、工場廃熱が利用し易く、150℃未満の比較的低温で分解工程を行う場合には、循環して使用する炭酸アルカリを含む水溶液は、以下の組成であってもよい。すなわち、該水溶液は、炭酸アルカリ100質量部に対して、炭酸水素アルカリを0質量部以上300質量部以下含有することが好ましい。当然、循環使用する前(最初の状態)は、炭酸水素アルカリが0質量部であることが好ましい。循環使用する場合、廃熱の有効活用、および循環使用時の効率(時間短縮等)を向上するためには、該水溶液は、炭酸アルカリ100質量部に対して、炭酸水素アルカリを30質量部以上240質量部以下とすることが好ましく、40質量部以上220質量部以下含有することがより好ましく、50質量部以上200質量部以下含有することがさらに好ましい。下記に詳述する循環工程から供給される炭酸アルカリを含む水溶液が上記範囲であればそのまま使用することもできるし、該水溶液に、必要に応じて、炭酸アルカリおよび/又は炭酸水素アルカリを追加することもできる。
ただし、下記に詳述するが、工場廃熱が利用し易く、150℃未満の比較的低温で分解工程を行う場合には、循環して使用する炭酸アルカリを含む水溶液は、以下の組成であってもよい。すなわち、該水溶液は、炭酸アルカリ100質量部に対して、炭酸水素アルカリを0質量部以上300質量部以下含有することが好ましい。当然、循環使用する前(最初の状態)は、炭酸水素アルカリが0質量部であることが好ましい。循環使用する場合、廃熱の有効活用、および循環使用時の効率(時間短縮等)を向上するためには、該水溶液は、炭酸アルカリ100質量部に対して、炭酸水素アルカリを30質量部以上240質量部以下とすることが好ましく、40質量部以上220質量部以下含有することがより好ましく、50質量部以上200質量部以下含有することがさらに好ましい。下記に詳述する循環工程から供給される炭酸アルカリを含む水溶液が上記範囲であればそのまま使用することもできるし、該水溶液に、必要に応じて、炭酸アルカリおよび/又は炭酸水素アルカリを追加することもできる。
本発明において、前記炭酸アルカリを含む水溶液と接触させる場合、前記排ガスと該水溶液とを接触させる条件は、装置の大きさ、装置の仕様、排ガス組成、および炭酸アルカリの濃度等によって最適条件が変るため、炭酸ガスが炭酸アルカリと十分に反応できる。
前記炭酸アルカリ水溶液と前記排ガスとを接触させる際の温度は、特に制限されるものではないが、炭酸ガスを十分に吸収させるためには10℃以上70℃以下の範囲が好ましく、20℃以上60℃以下の範囲がより好ましい。
前記炭酸アルカリを含む水溶液と接触させるその他の条件は、炭酸ガスが十分、分離・吸収できるように、適宜決定すればよい。
本発明においては、このガス吸収工程で使用する炭酸アルカリを含む水溶液には、アミン類を含むことができる。本発明において、このアミン類には、アンモニアが含まれる。具体的なアミン類は、アルカノールアミン、アルキルアミン、又はアンモニア等の公知の炭酸ガスの吸収に使用されるものが例示できる。これらアミン類を併用することにより、アミン類が炭酸ガスと反応して、水溶液に炭酸ガスを吸収するものと考えられる。さらには、炭酸ガスが水と反応し、イオンとなり易くなり、炭酸アルカリと反応し易くなるものと考えられる。その結果、短時間で炭酸ガスが吸収できるようになるものと考えられる。
これら効果を発揮するためには、上記のアミン類の中でも、炭酸ガスとの分離、入手のし易さ等も考慮すると、アンモニアを使用することが好ましい。特に、アンモニアソーダ法を利用する工場においては、アンモニアの入手も容易であり、また、アンモニアの回収先も確保できることになる。アンモニアを使用した場合には、炭酸アルカリが炭酸水素アルカリとなる際(ガスを吸収させる場合)、炭酸アンモニウム、および/又は炭酸水素アンモニウムとして存在している場合があるが、これら化合物は、炭酸水素アルカリを分解する際、炭酸ガスとアンモニアとに分離(分解)するため、悪影響を及ぼすことはない。
本発明において、アミン類を使用する場合には、効率よく炭酸ガスを吸収することができる。簡易的な操作で、かつその除去が容易なものとするためには、以下の範囲とすることが好ましい。すなわち、ガスを吸収する前において、炭酸アルカリを含む水溶液中に、炭酸アルカリ1モルに対して、アミン類を0.001モル以上1モル以下配合することが好ましく、0.005モル以上0.8モル以下配合することがより好ましく、0.01モル以上0.5モル以下配合することが好ましい。アミン類の濃度が高くなれば、炭酸ガスの吸収は早くなる傾向にある。一方、アミン類の濃度が高くなり過ぎると、後処理が煩雑となったり、臭気の問題が生じるおそれがある。そのため、アミン類は、除去が容易であり、入手も、回収も、再利用も可能であるアンモニアを使用することが好ましい。上記の通り、特に、アンモニアソーダ法を利用する工場においては、アンモニアを使用することの利用価値が高くなる。
アミン類を使用する場合には、その都度、アミン類を、炭酸アルカリを含む水溶液に配合することができる。また、下記に詳述する炭酸ガス回収工程において、水と接触させた際、アミン類が水に溶解するため、このアミン類を含む水を、炭酸アルカリを含む前記水溶液と混合することにより、循環使用することもできる。また、下記に詳述するガス回収工程において、アミン類がその他ガスとともに回収される場合には、ガス吸収工程で処理したガスを、水と接触させて、アミン類を水に取り込ませることもできる。当然のことながら、このアミン類を含む水も循環使用できる。
なお、アミン類を使用した場合であっても、炭酸ガスを十分に吸収させるためには10℃以上70℃以下の温度範囲とすることが好ましく、20℃以上60℃以下の温度範囲とすることがより好ましい。
なお、アミン類を使用した場合であっても、炭酸ガスを十分に吸収させるためには10℃以上70℃以下の温度範囲とすることが好ましく、20℃以上60℃以下の温度範囲とすることがより好ましい。
本発明において、ガスを吸収させた後には、炭酸アルカリを含む水溶液は、以下の構成となることが好ましい。すなわち、含まれる炭酸アルカリの45質量%以上が炭酸水素アルカリとなることが好ましく、60質量%以上が炭酸水素アルカリとなることがより好ましく、70質量%以上が炭酸水素アルカリとなることがさらに好ましい。炭酸水素アルカリとなる割合の最も好ましい値の上限は100質量%である。ただし、工業的な運転、回収を考慮すると、該上限値は、99質量%であってもよい。炭酸アルカリが残存していたとしても悪影響を与えることはない。また、アミン類を使用した場合であっても、炭酸アルカリが炭酸水素アルカリとなる割合は、上記範囲が好ましい。この際、アミン類は、アミン類のまま(アンモニアの場合には、アンモニアのまま)、炭酸アミン類(アンモニアの場合には、炭酸アンモニウム)、および/又は炭酸水素アミン類(アンモニアの場合には、炭酸水素アンモニウム)として存在すればよい。
<ガス回収工程>
本発明において、ガス回収工程とは、前記ガス吸収工程で処理されたガス、すなわち、炭酸アルカリを含む水溶液と接触させた後のガスを回収するものである。該ガス回収工程は、特に制限されるものではなく、通常の回収設備を使用すればよい。
なお、前記の通り、アミン類を使用した場合には、このガス回収工程にアミン類を含むガスが回収される場合がある。この場合には、前記ガス吸収工程で処理されたガスと水とを接触させることにより、アミン類を水に溶解させて分離することもできる。このアミン類を含む水は、循環使用することができる。中でも、アンモニアを使用した場合には、循環使用の他、アンモニアソーダ法で使用する原料にすることもできる。処理されたガスと水との接触は、含まれるアミン類が十分に除去できるような条件で実施すればよい。
本発明において、ガス回収工程とは、前記ガス吸収工程で処理されたガス、すなわち、炭酸アルカリを含む水溶液と接触させた後のガスを回収するものである。該ガス回収工程は、特に制限されるものではなく、通常の回収設備を使用すればよい。
なお、前記の通り、アミン類を使用した場合には、このガス回収工程にアミン類を含むガスが回収される場合がある。この場合には、前記ガス吸収工程で処理されたガスと水とを接触させることにより、アミン類を水に溶解させて分離することもできる。このアミン類を含む水は、循環使用することができる。中でも、アンモニアを使用した場合には、循環使用の他、アンモニアソーダ法で使用する原料にすることもできる。処理されたガスと水との接触は、含まれるアミン類が十分に除去できるような条件で実施すればよい。
このガス回収工程で得られるガスは、炭酸ガスが低減されたガスとなる。そして、前記の通り、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1~100/1の範囲にある排ガスを処理することにより、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1~100/1の範囲のガスを得ることができる。中でも、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)を20/1となるように、処理する排ガスの各成分を調製することが好ましい。
本発明において、このガス回収工程で得られるガスは、処理するガスの組成にもよるが、本発明によれば効率よく炭酸ガスを低減できるため、以下の組成のガスを得ることができる。具体的には、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが0~30体積%、窒素ガスが65~90体積%、酸素ガスが0.1~10体積%であることが好ましい。
当然のことながら、ガス回収工程で得られるガスは、炭酸ガスの割合が、処理前の排ガスよりも低下している。なお、このガス回収工程で得られたガスは、さらに炭酸ガスを低減するために、排ガスとして循環使用することもできる。また、他排ガスと混合した処理する排ガスとして循環使用できる。
前記ガス回収工程で得られる、窒素ガスおよび酸素ガスを含むガスは、処理する排ガスの濃度を調整してやることにより、様々な用途に使用できる。ただし、各成分の純度がより高くなる、特に、窒素ガスの濃度をより高くし、かつ熱を有効利用するためには、以下の第一精製工程を実施することが好ましい。
<第一精製工程>
前記ガス回収工程で得られるガスは、そのまま回収して利用できるが、該ガスに含まれる酸素ガスをより低減するために、以下のような第一精製工程を採用ができる。なお、当然のことであるが、この第一精製工程は、一旦、前記ガス回収工程で回収したガスを処理することもできるが、ガス吸収工程で排出されるガスをそのまま処理することもできる。また、ガス回収工程後、下記に詳述する第二精製工程で処理したガスを、この第一精製工程で処理することもできる。
前記ガス回収工程で得られるガスは、そのまま回収して利用できるが、該ガスに含まれる酸素ガスをより低減するために、以下のような第一精製工程を採用ができる。なお、当然のことであるが、この第一精製工程は、一旦、前記ガス回収工程で回収したガスを処理することもできるが、ガス吸収工程で排出されるガスをそのまま処理することもできる。また、ガス回収工程後、下記に詳述する第二精製工程で処理したガスを、この第一精製工程で処理することもできる。
なお、アミン類を使用した場合には、この第一精製工程を実施する前に、アミン類を処理するガスから除去しておくことが好ましい。
前記ガス回収工程で回収したガス(ガス吸収工程で排出されるガスと同じ組成のガス)は、不活性のガスとしても使用できるため、以下の方法で容易に、かつ安全に酸素ガスを低減できる。つまり、ガス回収工程で得られるガスと水素とを混合し、白金触媒を用いて酸素ガスと水素ガスから水を製造することにより、高濃度の窒素ガスを得ることもできる。この得られた水は、窒素ガスに含まれる不純物を低減するのに利用することができる。
混合する水素ガスは、前記回収されたガスの酸素ガスの濃度に応じて、適宜決定すればよい。用いる白金触媒は、例えば、特許5389753号公報、特許6430772号公報等に記載されたものを使用できる。
この第一精製工程は、発熱反応である。処理するガスに含まれる酸素ガスの量にもよるが、高い発熱量を有する。反応自体は、白金触媒存在下、ガス回収工程で得られた窒素ガスおよび酸素ガスを含むガスと、水素ガスとを50~450℃の温度となる範囲で接触させることが好ましい。そのため、この第一精製工程では、冷却する必要がある。この冷却する際に得られる熱を、下記に詳述する分解工程で使用することにより、熱の有効利用もできる。
その他の条件は、処理するガスに含まれる酸素ガスの量、白金触媒の活性維持という点を考慮し、適宜決定すればよい。そのため、この第一精製工程は、多段階で実施することもできる。
このような酸素ガス低減処理を施したガスは、そのまま高濃度の窒素ガスとして使用できる。さらには、酸素ガス低減処理を施した該ガスは、処理の対象となる排ガスとして、他排ガスと混合できる。そして、この混合した排ガスは、酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が100/1~1000/1の範囲に調整できる。
なお、この第一精製工程のみを実施して得られるガスは、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが1~35体積%、窒素ガスが65~99体積%、酸素ガスが0~1体積%であることが好ましい。
また、第二精製工程後のガスをこの第一精製工程で処理した場合には、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが0~1体積%、窒素ガスが99~100体積%、酸素ガスが0~1体積%であることが好ましい。
なお、この第一精製工程のみを実施して得られるガスは、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが1~35体積%、窒素ガスが65~99体積%、酸素ガスが0~1体積%であることが好ましい。
また、第二精製工程後のガスをこの第一精製工程で処理した場合には、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが0~1体積%、窒素ガスが99~100体積%、酸素ガスが0~1体積%であることが好ましい。
このような高濃度の窒素ガスは、前記の用途に加え、窒化物等のセラミックス原料としても利用可能である。また、本発明によれば、高濃度の窒素ガスを得ることができるため、容易に液化することができ、物流においても有利となる。
本発明においては、以上の方法であっても十分に濃度の高い、窒素ガスを回収できる。中でも、より炭酸ガスを除去したものを製造する場合には、ガス回収工程で得られた、窒素ガスおよび酸素ガスを含むガスを、以下の第二精製工程で処理することが好ましい。
なお、前記第一精製工程は、ガス回収工程で得られるガス(ガス吸収工程で排出されるガス)であればよく、下記に詳述する、第二精製工程を先に実施して得られるガスを前記第一精製工程で処理することもできる。
<第二精製工程>
本発明においては、より高度に炭酸ガスを除去するためには、前記第一精製工程を行う前の窒素ガスおよび酸素ガスを含むガス、又は前記第一精製工程後の窒素ガスおよび酸素ガスを含むガス(以下、まとめて単に「回収ガス」とする場合もある)と、アルカリ水溶液とを接触させる第二精製工程を実施することが好ましい。すなわち、該回収ガスを、水酸化アルカリを含む水溶液と接触させることが好ましい。接触させる方法等は、ガス吸収工程と同じ方法を採用できる。
本発明においては、より高度に炭酸ガスを除去するためには、前記第一精製工程を行う前の窒素ガスおよび酸素ガスを含むガス、又は前記第一精製工程後の窒素ガスおよび酸素ガスを含むガス(以下、まとめて単に「回収ガス」とする場合もある)と、アルカリ水溶液とを接触させる第二精製工程を実施することが好ましい。すなわち、該回収ガスを、水酸化アルカリを含む水溶液と接触させることが好ましい。接触させる方法等は、ガス吸収工程と同じ方法を採用できる。
なお、前記ガス回収工程においてアミン類を使用して、かつ、第一精製工程を行う前の窒素ガスおよび酸素ガスを含むガスをこの第二精製工程で処理する場合には、予め、アミン類を水により除去した回収ガスであってもよいし、アミン類を含む回収ガスであってもよい。工程をより簡略化するためには、アミン類を含む回収ガスをそのまま処理することが好ましい。
本発明においては、前記水酸化アルカリは、水酸化ナトリウム、及び/又は水酸化カリウムであることが好ましい。該水溶液の水酸化アルカリの濃度は、10~48質量%であることが好ましい。また、該回収ガスと水酸化アルカリを含む水溶液とを接触させる際の温度は、10℃~70℃の温度範囲とすることが好ましく、20℃~60℃の温度範囲とすることがより好ましい。
本発明においては、排ガスからある程度炭酸ガスを分離・除去した回収ガスを、水酸化アルカリを含む水溶液と接触させる。すなわち、炭酸ガスの濃度が低減されているため、反応速度が速く、発熱反応である、水酸化アルカリの水溶液と炭酸ガスとの反応であっても、容易に、安全に制御できる。従来の技術とは、この点においても相違している。
この第二精製工程において、水酸化アルカリと反応して得られる炭酸アルカリは、製品と抜き出すこともできし、ガス吸収工程に循環することもできる。また、炭酸アルカリをそのまま炭酸ガスと反応させて、炭酸水素アルカリの製品として抜き出すこともできるし、下記に詳述する分解工程で処理することもできる。さらに、アミン類を含む場合であっても、循環使用できる。
第二精製工程で得られるガスは、処理するガスの組成にもよるが、本発明によれば効率よく炭酸ガスを低減できるため、以下の組成のものを得ることができる。具体的には、第一精製工程後に得られる窒素ガスおよび酸素ガスを含むガスを処理した場合には、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが0~1体積%、窒素ガスが99~100体積%、酸素ガスが0~1体積%であることが好ましい。
また、第一精製工程を行う前のガス回収工程から得られるガスを第二精製工程で処理した場合には、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが0~1体積%、窒素ガスが90~99.5体積%、酸素ガスが0.5~10体積%であることが好ましい。
当然のことながら、回収ガス精製工程で得られるガスは、炭酸ガスの割合が、ガス回収工程で得られる回収ガスよりも低下している。
なお、前記第一精製工程で説明したが、第一精製工程、および第二精製工程は、何れか一方の実施だけであってもよい。また、両工程を実施する場合には、どちらを先に実施してもよい。より高純度な窒素ガスを得るためには、両工程を実施することが好ましい。
なお、前記第一精製工程で説明したが、第一精製工程、および第二精製工程は、何れか一方の実施だけであってもよい。また、両工程を実施する場合には、どちらを先に実施してもよい。より高純度な窒素ガスを得るためには、両工程を実施することが好ましい。
<分解工程>
次に、分解工程について説明する。
本発明において、分解工程とは、前記ガス吸収工程で得られた炭酸水素アルカリを少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する工程である。アルカリがカリウムである場合の反応式を示すと、以下の通りとなる。
2KHCO3 → K2CO3+ CO2 + H2O
次に、分解工程について説明する。
本発明において、分解工程とは、前記ガス吸収工程で得られた炭酸水素アルカリを少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する工程である。アルカリがカリウムである場合の反応式を示すと、以下の通りとなる。
2KHCO3 → K2CO3+ CO2 + H2O
この分解工程においては、炭酸水素アルカリから炭酸ガスを回収した溶液(炭酸アルカリを含む水溶液)とする。該分解には、工場等の廃熱で加熱して炭酸ガスを回収し、その一方で、得られた炭酸アルカリを循環工程に供給するものである。
本発明において、分解工程で分解する炭酸水素アルカリは、前記ガス吸収工程で得られた炭酸水素アルカリの少なくとも一部である。炭酸ガスを効率よく回収するためには、前記ガス吸収工程で得られた炭酸水素アルカリの全量を分解することが好ましい。ただし、仮に全量の炭酸水素アルカリが分解されずに、下記に詳述する循環工程で炭酸アルカリと共にガス吸収工程に供されたとしても、悪影響は生じない。そのため、この分解工程で分解する炭酸水素アルカリの量は、ガス吸収工程で製造した全炭酸水素アルカリに対して、50質量%以上が分解されることが好ましく、さらには70質量%以上が分解されることが好ましい。なお、前記の通り、最も好適には、100質量%の炭酸水素アルカリが分解されることである。
分解工程で分解する炭酸水素アルカリは、ガス吸収工程で得られた炭酸水素アルカリを一旦固体として取出し、得られた固体の炭酸水素アルカリを分解できる。固体の炭酸水素アルカリを分解する場合には、分解工程で使用する装置を縮小化できる。また、炭酸水素アルカリの一部が溶解し、一部が固体として存在するスラリー状態のものを分解できる。さらには、炭酸水素アルカリを含む水溶液のものを分解できる。中でも、操作性・炭酸ガスの回収率等を考慮すると、スラリー又は水溶液であることが好ましい。
炭酸水素アルカリがスラリー、又は水溶液の状態で分解される場合、炭酸水素アルカリの濃度は、特に制限されるものではない。中でも、操作性等を考慮すると、炭酸水素アルカリが5~45質量%の濃度範囲となるスラリー又は水溶液を使用することが好ましい。より具体的には、炭酸水素ナトリウムの場合には、炭酸水素ナトリウムが5~25質量%となる濃度のスラリー又は水溶液を使用することが好ましい。また、炭酸水素カリウムを使用した場合には、炭酸水素カリウムが25~45質量%となる濃度のスラリー又は水溶液を使用することが好ましい。中でも、炭酸水素カリウムは、水に対する溶解度が高いため、25~55質量%となる濃度のスラリー又は水溶液であっても、十分に処理できる。
本発明において、分解に供する水溶液は、前記のガス回収工程において、炭酸アルカリを含む水溶液から炭酸水素アルカリを含む水溶液となったものである。そのため、ガス回収工程で使用した水溶液に含まれる炭酸アルカリの45質量%以上が炭酸水素アルカリとなっているものが好ましく、60質量%以上が炭酸水素アルカリとなっているものがより好ましく、70質量%以上が炭酸水素アルカリとなっているものがさらに好ましい。炭酸水素アルカリとなる割合の最も好ましい値の上限は100質量%である。ただし、工業的な運転、回収を考慮すると、該上限値は、99質量%であってもよい。炭酸アルカリが残存していたとしても悪影響を与えることはない。また、アミン類を使用した場合であっても、上記範囲が好ましい。この際、アミン類は、アミン類のまま、炭酸アミン類および/又は炭酸水素アミン類として存在すればよい。
そのため、分解に供する炭酸水素アルカリには、水酸化アルカリおよび/又は炭酸アルカリが混入される場合がある。水酸化アルカリは、炭酸アルカリを製造する際の原料由来のものである。炭酸アルカリは、前記の通り、ガス吸収工程で炭酸ガスと反応せずに残ったものである。ただし、水酸化アルカリ、および炭酸アルカリとも、分解工程で悪影響は与えない。そのため、分解工程において、炭酸水素アルカリに含まれるこれら不純物は、炭酸水素アルカリ100質量部に対して、水酸化アルカリは10質量部以下であることが好ましく、さらには、水酸化アルカリは3質量部以下であることが好ましい。下限値は、水酸化アルカリ0質量部である。一方、炭酸水素アルカリ100質量部に対して、炭酸アルカリは85質量部以下であることが好ましく、45質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。下限値は、炭酸アルカリ0質量部である。ただし、工業的な運転、回収を考慮すると、炭酸水素アルカリ100質量部に対して、炭酸アルカリは1質量部以上であることが好ましい。さらに、分解に供する炭酸水素アルカリは、前記の通り、アミン類を使用した場合には、アミン類のまま、炭酸アミン類および/又は炭酸水素アミン類として存在してもよい。
本発明では、前記炭酸水素アルカリを分解する場合、固体の炭酸水素アルカリを分解するためには、固体を拡散・分散させながら、加熱してやればよい。そして、系内の温度を該炭酸水素アルカリが分解する温度とすればよい。また、スラリー状態ものを攪拌、加熱しながら該炭酸アルカリが分解する温度とすればよい。
炭酸水素アルカリを分解する温度は、50~200℃であることが好ましく、100~180℃がより好ましく、さらに120~170℃が好ましい。この温度範囲であれば、炭酸水素アルカリを分解することができ、炭酸ガスの回収、および炭酸アルカリの循環使用が容易となる。この場合、加圧下、具体的には、0~9Kg/cm2Gの加圧下で、50~200℃の温度範囲とすることが好ましく、100~180℃の温度とすることがより好ましい。
なお、この炭酸水素アルカリの分解に要する熱は、前記第一精製工程で発する熱を利用できる。すなわち、第一精製工程の精製あるいは中間ガスは反応熱よって高温化され、その熱源を直接分解工程の熱交換器に送り炭酸水素アルカリを分解する熱源として回収する。
<高温での分解>
中でも、130℃を超え200℃以下、好ましくは120℃以上180℃以下、さらに好ましくは120℃以上170℃以下の温度範囲で分解した場合には、分解後に得られる水溶液は、炭酸アルカリ100質量部に対して、水酸化アルカリは10質量部以下であることが好ましく、および炭酸水素アルカリは10質量部以下であることが好ましい。さらには、水酸化アルカリは3質量部以下であることが好ましく、および炭酸水素アルカリは3質量部以下であることが好ましい。下限値は、水酸化アルカリ、および炭酸水素アルカリ共に0質量部である。
中でも、130℃を超え200℃以下、好ましくは120℃以上180℃以下、さらに好ましくは120℃以上170℃以下の温度範囲で分解した場合には、分解後に得られる水溶液は、炭酸アルカリ100質量部に対して、水酸化アルカリは10質量部以下であることが好ましく、および炭酸水素アルカリは10質量部以下であることが好ましい。さらには、水酸化アルカリは3質量部以下であることが好ましく、および炭酸水素アルカリは3質量部以下であることが好ましい。下限値は、水酸化アルカリ、および炭酸水素アルカリ共に0質量部である。
<低温での分解>
当然のことながら、この分解は、必ずしも第一精製工程の熱を利用しなくても実施できる。例えば、他の工場等が近隣で稼働しているのであれば、そこからの熱も利用できる。工業的な運転、回収、および工場廃熱を有効利用するためには、比較的低温での分解を実施することが好ましい。この場合、50℃以上120℃未満の温度範囲で炭酸水素アルカリを分解することが好ましく、70℃以上120℃未満の温度範囲で分解することがより好ましく、80℃以上110℃以下の温度範囲で分解することが好ましい。このような比較的低温で炭酸水素アルカリの分解を行った場合には、分解後には、炭酸アルカリと炭酸水素アルカリとは以下の割合で存在する水溶液となることが好ましい。すなわち、循環工程により、ガス吸収工程へ循環される炭酸アルカリを含む水溶液は、以下の組成であってもよい。具体的には、炭酸アルカリ100質量部に対して、炭酸水素アルカリは、0質量部以上300質量部未満とすることが好ましく、30質量部以上240質量部以下とすることが好ましく、40質量部以上220質量部以下とすることがより好ましく、50質量部以上200質量部以下とすることがさらに好ましい。
また、アミン類を使用した場合には、この分解工程において、一部はアミン類と、炭酸ガスとに分解するため、回収することができる。
当然のことながら、この分解は、必ずしも第一精製工程の熱を利用しなくても実施できる。例えば、他の工場等が近隣で稼働しているのであれば、そこからの熱も利用できる。工業的な運転、回収、および工場廃熱を有効利用するためには、比較的低温での分解を実施することが好ましい。この場合、50℃以上120℃未満の温度範囲で炭酸水素アルカリを分解することが好ましく、70℃以上120℃未満の温度範囲で分解することがより好ましく、80℃以上110℃以下の温度範囲で分解することが好ましい。このような比較的低温で炭酸水素アルカリの分解を行った場合には、分解後には、炭酸アルカリと炭酸水素アルカリとは以下の割合で存在する水溶液となることが好ましい。すなわち、循環工程により、ガス吸収工程へ循環される炭酸アルカリを含む水溶液は、以下の組成であってもよい。具体的には、炭酸アルカリ100質量部に対して、炭酸水素アルカリは、0質量部以上300質量部未満とすることが好ましく、30質量部以上240質量部以下とすることが好ましく、40質量部以上220質量部以下とすることがより好ましく、50質量部以上200質量部以下とすることがさらに好ましい。
また、アミン類を使用した場合には、この分解工程において、一部はアミン類と、炭酸ガスとに分解するため、回収することができる。
本発明において、前記炭酸水素アルカリを分解させるその他の条件は、炭酸水素アルカリが分解できるように適宜決定すればよい。
すなわち、本発明によれば、この分解工程で得られるガスは、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが98~100体積%、窒素ガスが0~1.5体積%、酸素ガスが0~0.5体積%であることが好ましく、さらに、炭酸ガスが100体積%、窒素ガスが0体積%、酸素ガスが0体積%であること最も好ましい。
以上の分解工程を実施することにより、炭酸アルカリと炭酸ガスとを製造できる。
すなわち、本発明によれば、この分解工程で得られるガスは、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが98~100体積%、窒素ガスが0~1.5体積%、酸素ガスが0~0.5体積%であることが好ましく、さらに、炭酸ガスが100体積%、窒素ガスが0体積%、酸素ガスが0体積%であること最も好ましい。
以上の分解工程を実施することにより、炭酸アルカリと炭酸ガスとを製造できる。
<循環工程>
次に、得られた炭酸アルカリを循環使用する循環工程について説明する。
循環工程は、前記分解工程で得られた炭酸アルカリを、前記ガス吸収工程へ循環する工程である。
ここで循環する炭酸アルカリは、固体、スラリー、および水溶液の状態何れであってもよい。固体の場合、装置の縮小化が可能となる。スラリー、および水溶液の状態であれば、容易に循環することができる。
次に、得られた炭酸アルカリを循環使用する循環工程について説明する。
循環工程は、前記分解工程で得られた炭酸アルカリを、前記ガス吸収工程へ循環する工程である。
ここで循環する炭酸アルカリは、固体、スラリー、および水溶液の状態何れであってもよい。固体の場合、装置の縮小化が可能となる。スラリー、および水溶液の状態であれば、容易に循環することができる。
前記ガス吸収工程へ循環する炭酸アルカリは、炭酸アルカリ以外に、水酸化アルカリ、および/又は炭酸水素アルカリが含まれていてもよい。水酸化アルカリは、当初から存在する原料由来のものと考えられる。炭酸水素アルカリは、分解工程で分解されずに残ったものである。ただし、水酸化アルカリ、および炭酸水素アルカリとも、ガス吸収工程で悪影響は与えない。そのため、循環工程においては、前記分解工程において、高温で分解、低温で分解の項で説明した炭酸アルカリ、水酸化アルカリ、および炭酸水素アルカリをそれぞれ含む水溶液をガス吸収工程へ循環すればよい。アミン類を使用した場合には、水溶液に含まれるアミン類をそのまま循環使用すればよい。
循環工程からガス吸収工程に炭酸アルカリが循環されるに際し、ガス吸収工程における炭酸アルカリの濃度が一定となるように、その濃度を調整し循環させることが好ましい。この場合、必要に応じて、炭酸アルカリを追加することもできるし、必要に応じて、アミン類を追加することもできる。
<炭酸ガス回収工程>
次に、炭酸ガス回収工程について説明する。
炭酸ガス回収工程は、前記分解工程で得られた炭酸ガスを回収する方法であり、該分解工程で排出された炭酸ガスを含むガスと水溶液、好ましくは水とを接触させた後、炭酸ガスを回収する工程である。
次に、炭酸ガス回収工程について説明する。
炭酸ガス回収工程は、前記分解工程で得られた炭酸ガスを回収する方法であり、該分解工程で排出された炭酸ガスを含むガスと水溶液、好ましくは水とを接触させた後、炭酸ガスを回収する工程である。
分解工程において排出される炭酸ガスは、一度、水溶液と接触させた後、回収することが好ましい。特に、該水溶液は、水であることが好ましく、例えば、一般的に工場で使用する工業用水を用いることもできる。本発明においては、ガス吸収工程において、炭酸アルカリを含む水溶液を使用する。そのため、どうしても炭酸水素アルカリを分解して炭酸ガスを回収する際に、水を含む状態で回収されるが場合ある。特に、分解工程において、炭酸水素アルカリのスラリー又は水溶液を使用した場合には、水と一緒に炭酸ガスが回収させる。従来の方法においては、水蒸気ストリッピング法で該水溶液に含まれるガス成分を回収していたが、この方法ではより一層、ガス中に水分が含まれることになる。これに対して、分解工程で得られたガス(炭酸ガスを主成分とするガス)を一旦、水と接触させることにより、乾燥した炭酸ガスを容易に得ることができる。
加えて、この工程において、分解工程において排出される炭酸ガスと水溶液とを接触させることにより、アミン類を使用した場合において、容易に該アミン類と炭酸ガスを含むガスとを分離できる。すなわち、炭酸ガス等と比較して、アミン類は水に溶解し易いため、容易に分離できる。分離したアミン類を含む水は、循環使用することができる。
加えて、この工程において、分解工程において排出される炭酸ガスと水溶液とを接触させることにより、アミン類を使用した場合において、容易に該アミン類と炭酸ガスを含むガスとを分離できる。すなわち、炭酸ガス等と比較して、アミン類は水に溶解し易いため、容易に分離できる。分離したアミン類を含む水は、循環使用することができる。
分解工程で排出された炭酸ガスを含むガスと水溶液との接触方法は、特に制限されるものではない。具体的には、飽和水蒸気を含む炭酸ガスと冷却水を直接混合させ炭酸ガスを冷却することで乾燥した炭酸ガスを得る。接触時の水溶液の温度も、特に制限されるものではなく、10~40℃であることが好ましい。さらに、接触時の条件は、水溶液1L当たり、1000L/時間~2000L時間、より具体的には1600L/時間程度の炭酸ガスを含むガスを供給することが好ましい。
このような方法により得られた炭酸ガスは、条件を調整すれば、炭酸ガス100質量部としたとき、水分量が10質量部以下とすることができる。最も好適な水分量は0質量部である。
また、炭酸ガス回収工程で得られるガスは、分解工程で得られる組成のものと同じであり、炭酸ガス、窒素ガス、および酸素ガスの合計を100体積%とした場合、炭酸ガスが98~100体積%、窒素ガスが0~1.5体積%、酸素ガスが0~0.5体積%であることが好ましく、さらに、炭酸ガスが100体積%、窒素ガスが0体積%、酸素ガスが0体積%であること最も好ましい
本発明によれば、高純度の炭酸ガスを得ることができる。そして、得られた炭酸ガスは、有機高分子、メタノール・エタノール等のアルコール等の原料として使用できる。また、ドライアイス等にも使用することができ、工業的利用価値が高い。また、本発明によれば、高濃度の炭酸ガスを得ることができるため、容易に液化することができ、物流においても有利となる。
なお、本発明において、排ガスを排出する工場が、炭酸ガスを原料とする製品の製造手段を有する場合、以下のように炭酸ガスを循環使用することにより、一工場内で炭酸ガスを排出しないこともできる。つまり、該工場において、例えば、炭酸アルカリ・炭酸水素アルカリ(炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム)等の製造手段、又はアンモニアソーダ法を用いる製造手段を有する工場においては、炭酸ガス回収工程から得られる炭酸ガスを、該製造手段の原料として使用することにより、一工場内で炭酸ガスを排出しないようにすることもできる。なお、当然のことながら、該工場において、炭酸アルカリ・炭酸水素アルカリ製造手段、アンモニアソーダ法を利用する製造手段から排出される排ガスであってもよいし、その他の製造手段から排出される排ガスであってもよい。
次に、実施例を用いて本発明を詳細に説明するが、本発明は本実施例に限定されるものではない。以下の実施例及び比較例において、評価方法等は、以下のとおりである。
<実施例1>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを60,000cm3/時間の供給量で、炭酸カリウムの濃度が60質量%の水溶液に供給した。この時、炭酸カリウム水溶液の温度(反応温度)は70℃であり、該水溶液は攪拌を続けた。
1時間、排ガスを供給した後、得られた水溶液を分解工程(第一精製工程)へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを60,000cm3/時間の供給量で、炭酸カリウムの濃度が60質量%の水溶液に供給した。この時、炭酸カリウム水溶液の温度(反応温度)は70℃であり、該水溶液は攪拌を続けた。
1時間、排ガスを供給した後、得られた水溶液を分解工程(第一精製工程)へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス26体積%、窒素ガス73.4体積%、および酸素ガス0.6体積%であった。
前記ガス吸収工程において、炭酸カリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス26体積%、窒素ガス73.4体積%、および酸素ガス0.6体積%であった。
第二精製工程;
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触混合させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触混合させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。
分解工程;
第一精製工程の反応は発熱反応であり、冷却媒体として、前記ガス吸収工程で得られた炭酸水素カリウムを含む水溶液を使用した。そして、冷却を行うと同時に分解工程を実施した。分解時の該水溶液の温度も150℃となるように、加圧下で循環させた。
得られた水溶液を確認したところ、炭酸カリウムの水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
第一精製工程の反応は発熱反応であり、冷却媒体として、前記ガス吸収工程で得られた炭酸水素カリウムを含む水溶液を使用した。そして、冷却を行うと同時に分解工程を実施した。分解時の該水溶液の温度も150℃となるように、加圧下で循環させた。
得られた水溶液を確認したところ、炭酸カリウムの水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
循環工程;
分解工程で得られた炭酸カリウムの水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムの水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。
得られたガスは、炭酸ガス濃度が高く、炭酸ナトリウム、炭酸水素ナトリウムの製造に効率的に利用できる。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。
得られたガスは、炭酸ガス濃度が高く、炭酸ナトリウム、炭酸水素ナトリウムの製造に効率的に利用できる。
<実施例2>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウムの濃度が17.5質量%の水溶液に供給した。この時、炭酸カリウム水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
50分間、排ガスを供給した後、得られた水溶液を分解工程(第一精製工程)へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウムの濃度が17.5質量%の水溶液に供給した。この時、炭酸カリウム水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
50分間、排ガスを供給した後、得られた水溶液を分解工程(第一精製工程)へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス26体積%、窒素ガス73.4体積%、および酸素ガス0.6体積%であった。実施例1と同等の結果であった。
前記ガス吸収工程において、炭酸カリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス26体積%、窒素ガス73.4体積%、および酸素ガス0.6体積%であった。実施例1と同等の結果であった。
第二精製工程;
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
循環工程;
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
<実施例3>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
30分間、排ガスを供給した後、得られた水溶液を分解工程へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
30分間、排ガスを供給した後、得られた水溶液を分解工程へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウムを含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス26体積%、窒素ガス73.4体積%、および酸素ガス0.6体積%であった。実施例1と同等の結果であった。
前記ガス吸収工程において、炭酸カリウムを含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス26体積%、窒素ガス73.4体積%、および酸素ガス0.6体積%であった。実施例1と同等の結果であった。
第二精製工程;
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
循環工程;
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
<実施例4>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア0.2質量%(炭酸カリウム1モルに対してアンモニア0.093モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
40分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア0.2質量%(炭酸カリウム1モルに対してアンモニア0.093モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
40分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス20.3体積%、窒素ガス79.0体積%、および酸素ガス0.7体積%であった。また、アンモニアが若干含まれていた。
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス20.3体積%、窒素ガス79.0体積%、および酸素ガス0.7体積%であった。また、アンモニアが若干含まれていた。
水との接触;
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス20.3体積%、窒素ガス79.0体積%、および酸素ガス0.7体積%であった。
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス20.3体積%、窒素ガス79.0体積%、および酸素ガス0.7体積%であった。
第二精製工程;
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア0.1質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス95.8体積%、アンモニア3.6体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア0.1質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス95.8体積%、アンモニア3.6体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
循環工程;
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
<実施例5>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸ナトリウムの濃度が14質量%の水溶液に供給した。この時、炭酸ナトリウム水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
70分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸ナトリウムの濃度が14質量%の水溶液に供給した。この時、炭酸ナトリウム水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
70分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸ナトリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス31.6体積%、窒素ガス67.8体積%、および酸素ガス0.6体積%であった。
前記ガス吸収工程において、炭酸ナトリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス31.6体積%、窒素ガス67.8体積%、および酸素ガス0.6体積%であった。
第二精製工程;
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液(一部、炭酸水素ナトリウムと見られる固形分が存在した)を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸ナトリウム9質量%、炭酸水素ナトリウム7質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
ガス吸収工程で得られた水溶液(一部、炭酸水素ナトリウムと見られる固形分が存在した)を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸ナトリウム9質量%、炭酸水素ナトリウム7質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
循環工程;
分解工程で得られた炭酸ナトリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸ナトリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
<実施例6>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス8.0体積%、窒素ガス91.5体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを138,125cm3/時間の供給量で、炭酸カリウムの濃度が17.5質量%の水溶液に供給した。この時、炭酸カリウム水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
125分間、排ガスを供給した後、得られた水溶液を分解工程(第一精製工程)へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス8.0体積%、窒素ガス91.5体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを138,125cm3/時間の供給量で、炭酸カリウムの濃度が17.5質量%の水溶液に供給した。この時、炭酸カリウム水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
125分間、排ガスを供給した後、得られた水溶液を分解工程(第一精製工程)へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス6.4体積%、窒素ガス93.1体積%、および酸素ガス0.5体積%であった。
前記ガス吸収工程において、炭酸カリウム水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス6.4体積%、窒素ガス93.1体積%、および酸素ガス0.5体積%であった。
第二精製工程;
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記ガス回収工程で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
循環工程;
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
<実施例7>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア0.04質量%(炭酸カリウム1モルに対してアンモニア0.019モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
45分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア0.04質量%(炭酸カリウム1モルに対してアンモニア0.019モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
45分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス23.5体積%、窒素ガス75.8体積%、および酸素ガス0.7体積%であった。また、アンモニアが若干含まれていた。
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス23.5体積%、窒素ガス75.8体積%、および酸素ガス0.7体積%であった。また、アンモニアが若干含まれていた。
水との接触;
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス23.5体積%、窒素ガス75.8体積%、および酸素ガス0.7体積%であった。
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス23.5体積%、窒素ガス75.8体積%、および酸素ガス0.7体積%であった。
第二精製工程;
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア0.02質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス98.4体積%、アンモニア1.0体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア0.02質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス98.4体積%、アンモニア1.0体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
循環工程;
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
<実施例8>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア0.4質量%(炭酸カリウム1モルに対してアンモニア0.185モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
35分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア0.4質量%(炭酸カリウム1モルに対してアンモニア0.185モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
35分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス15.6体積%、窒素ガス83.7体積%、および酸素ガス0.7体積%であった。また、アンモニアが若干含まれていた。
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス15.6体積%、窒素ガス83.7体積%、および酸素ガス0.7体積%であった。また、アンモニアが若干含まれていた。
水との接触;
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス15.6体積%、窒素ガス83.7体積%、および酸素ガス0.7体積%であった。
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス15.6体積%、窒素ガス83.7体積%、および酸素ガス0.7体積%であった。
第二精製工程;
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア0.2質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス90.4体積%、アンモニア9.0体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア0.2質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス90.4体積%、アンモニア9.0体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。
循環工程;
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
<実施例9>
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア2.0質量%(炭酸カリウム1モルに対してアンモニア0.927モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
30分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス吸収工程;
炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス42.5体積%、窒素ガス57体積%および酸素ガス0.5体積%を含む組成に調整した排ガスを26,000cm3/時間の供給量で、炭酸カリウム17.5質量%、アンモニア2.0質量%(炭酸カリウム1モルに対してアンモニア0.927モル)の水溶液に供給した。この時、水溶液の温度は25℃であり、該水溶液は攪拌を続けた。
30分間、排ガスを供給した。得られた水溶液を分解工程へ移行させた。
ガス回収工程;
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス8.5体積%、窒素ガス90.7体積%、および酸素ガス0.8体積%であった。また、アンモニアが若干含まれていた。
前記ガス吸収工程において、炭酸カリウム水溶液を含む水溶液と接触した後に排出されたガスを回収したところ、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス8.5体積%、窒素ガス90.7体積%、および酸素ガス0.8体積%であった。また、アンモニアが若干含まれていた。
水との接触;
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス8.5体積%、窒素ガス90.7体積%、および酸素ガス0.8体積%であった。
前記ガス回収工程で排出されたガスを水2lと接触させた。得られたガスには、アンモニアが含まれておらず、炭酸ガス8.5体積%、窒素ガス90.7体積%、および酸素ガス0.8体積%であった。
第二精製工程;
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
前記水との接触で得られたガスを、水酸化カリウムが10質量%濃度の水溶液(該水溶液の温度は40℃とした)と、60,000cm3/時間の供給量で接触させた。
接触後のガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.1体積%、および酸素ガス0.9体積%であった。実施例1と同等の結果であった。
第一精製工程;
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
第二精製工程で得られたガスを60,000cm3/時間の供給量、および水素ガスを4200cm3/時間の供給量で混合し、白金触媒存在下で420℃の温度で両者を接触させた。この第一精製工程から排出されたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス0体積%、窒素ガス99.9体積%、および酸素ガス0.1体積%であった。実施例1と同等の結果であった。
分解工程;
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア1.0質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス66.4体積%、アンモニア33.2体積%、窒素ガス0.3体積%、および酸素ガス0.1体積%であった。
ガス吸収工程で得られた水溶液を常圧下で100℃に加熱した。該水溶液は攪拌を続けた。
得られた水溶液を確認したところ、炭酸カリウム10質量%、炭酸水素カリウム10質量%、アンモニア1.0質量%の水溶液となっていることが分かった。さらに、分解工程で排出されたガスは、炭酸ガス、アンモニア、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス66.4体積%、アンモニア33.2体積%、窒素ガス0.3体積%、および酸素ガス0.1体積%であった。
循環工程;
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
分解工程で得られた炭酸カリウムを含む水溶液を前記ガス吸収工程へ循環させた。
炭酸ガス回収工程;
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
なお、アンモニアを配合したことによる効果について、実施例2、実施例4、および実施例7~9の結果を表1にまとめた。
分解工程で排出されたガスを、水と接触させた。最終的に得られたガスは、炭酸ガス、窒素ガス、および酸素ガスの合計量を100体積%としたとき、炭酸ガス99.4体積%、窒素ガス0.5体積%、および酸素ガス0.1体積%であった。そして、このガスの水分量は、炭酸ガスの質量を100質量部としたとき、7.2質量部であった。実施例1と同等の結果であった。
なお、アンモニアを配合したことによる効果について、実施例2、実施例4、および実施例7~9の結果を表1にまとめた。
Claims (8)
- 炭酸ガス、窒素ガスおよび酸素ガスを含む排ガスから、炭酸ガス、並びに窒素ガスおよび酸素ガスを含むガスにそれぞれ分離して回収する方法であって、
該排ガスと、炭酸アルカリを含む水溶液とを接触させることにより、該排ガス中の炭酸ガスを反応させて、炭酸水素アルカリを含む水溶液とするガス吸収工程、
前記ガス吸収工程から排出された窒素ガスおよび酸素ガスを含むガスを回収するガス回収工程、
前記ガス吸収工程で得られた炭酸水素アルカリの少なくとも一部を、炭酸アルカリおよび炭酸ガスに分解する分解工程、
前記分解工程で得られた炭酸アルカリの少なくとも一部を前記ガス吸収工程へ循環する循環工程、並びに、
前記分解工程で得られた炭酸ガスを回収するに際し、該分解工程で排出された炭酸ガスを含むガスと水溶液とを接触させた後、炭酸ガスを回収する炭酸ガス回収工程、
を含むことを特徴とする方法。 - 前記炭酸アルカリが炭酸カリウムであり、前記炭酸水素アルカリが炭酸水素カリウムである、請求項1に記載の方法。
- 前記ガス吸収工程において、
炭酸アルカリを含む前記水溶液が、さらにアミン類を含む水溶液である、請求項1又は2に記載の方法。 - 前記アミン類が、アンモニアである、請求項3に記載の方法。
- 前記ガス吸収工程へ供給する前の排ガスの組成を確認する工程をさらに含む請求項1~4の何れかに記載の方法。
- 前記排ガスにおける酸素ガスに対する窒素ガスの体積比(窒素ガス/酸素ガス)が10/1以上100/1以下となる請求項1~5の何れかに記載の方法。
- さらに、前記ガス回収工程で得られた窒素ガスおよび酸素ガスを含むガスと、水素ガスとを、白金系触媒存在下で反応させて、該ガス中の酸素ガスを低減する第一精製工程を含み、
前記分解工程において、該第一精製工程で生じた熱を用いて炭酸水素アルカリの少なくとも一部を炭酸アルカリおよび炭酸ガスに分解する、請求項1~6の何れかに記載の方法。 - 第一精製工程を行う前の窒素ガスおよび酸素ガスを含むガス、又は第一精製工程後の窒素ガスおよび酸素ガスを含むガスと、アルカリ水溶液とを接触させる第二精製工程を含む請求項1~7の何れかに記載の方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020553663A JP6834066B1 (ja) | 2019-05-28 | 2020-05-26 | 炭酸ガス、およびその他ガスの回収方法 |
US17/613,877 US20220234000A1 (en) | 2019-05-28 | 2020-05-26 | Method for recovering carbon dioxide gas and other gases |
CN202080036916.6A CN113840803B (zh) | 2019-05-28 | 2020-05-26 | 二氧化碳气体及其它气体的回收方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-099712 | 2019-05-28 | ||
JP2019099712 | 2019-05-28 | ||
JP2020-037751 | 2020-03-05 | ||
JP2020037751 | 2020-03-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020241654A1 true WO2020241654A1 (ja) | 2020-12-03 |
Family
ID=73552240
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/020803 WO2020241654A1 (ja) | 2019-05-28 | 2020-05-26 | 炭酸ガス、およびその他ガスの回収方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220234000A1 (ja) |
JP (1) | JP6834066B1 (ja) |
CN (1) | CN113840803B (ja) |
TW (1) | TW202102296A (ja) |
WO (1) | WO2020241654A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115259154A (zh) * | 2022-07-13 | 2022-11-01 | 北京建筑材料科学研究总院有限公司 | 基于水泥生产线的二氧化碳捕集系统及方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003053134A (ja) * | 2001-08-21 | 2003-02-25 | Kansai Electric Power Co Inc:The | 脱硫脱炭酸方法 |
JP2006521928A (ja) * | 2003-04-04 | 2006-09-28 | ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム | ガス流から二酸化炭素を除去するためのポリアミン/アルカリ塩混合物 |
JP2010202426A (ja) * | 2009-02-27 | 2010-09-16 | Mitsubishi Heavy Ind Ltd | Co2回収装置及びその方法 |
JP2012166139A (ja) * | 2011-02-14 | 2012-09-06 | Babcock Hitachi Kk | Co2化学吸収システムの制御方法 |
JP2013544636A (ja) * | 2010-10-18 | 2013-12-19 | 武▲漢凱▼迪▲電▼力股▲分▼有限公司 | 活性炭酸ナトリウムによる排煙ガス中の二酸化炭素回収方法および装置 |
WO2014057567A1 (ja) * | 2012-10-11 | 2014-04-17 | 三菱重工業株式会社 | 排ガス処理システム及び方法 |
JP2015536237A (ja) * | 2012-11-15 | 2015-12-21 | エスアールアイ インターナショナルSRI International | アンモニアベース触媒による炭酸カリウム水溶液中でのco2吸収の速度向上 |
JP2016159239A (ja) * | 2015-03-02 | 2016-09-05 | 三菱日立パワーシステムズ株式会社 | 二酸化炭素の回収装置および回収方法 |
JP2016188161A (ja) * | 2015-03-30 | 2016-11-04 | 新日鉄住金エンジニアリング株式会社 | 二酸化炭素製造設備及び二酸化炭素製造方法 |
JP2018501947A (ja) * | 2014-11-21 | 2018-01-25 | ガス テクノロジー インスティテュート | 二酸化炭素回収のためのエネルギー効率のよい溶媒再生プロセス |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5991330B2 (ja) * | 2014-01-29 | 2016-09-14 | 信越半導体株式会社 | シリコン単結晶製造装置からのアルゴンガス回収精製方法及びアルゴンガス回収精製装置 |
JP6304089B2 (ja) * | 2015-03-24 | 2018-04-04 | 信越半導体株式会社 | アルゴンガスの精製方法及びアルゴンガスの回収精製装置 |
-
2020
- 2020-05-26 JP JP2020553663A patent/JP6834066B1/ja active Active
- 2020-05-26 US US17/613,877 patent/US20220234000A1/en active Pending
- 2020-05-26 CN CN202080036916.6A patent/CN113840803B/zh active Active
- 2020-05-26 WO PCT/JP2020/020803 patent/WO2020241654A1/ja active Application Filing
- 2020-05-28 TW TW109117757A patent/TW202102296A/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003053134A (ja) * | 2001-08-21 | 2003-02-25 | Kansai Electric Power Co Inc:The | 脱硫脱炭酸方法 |
JP2006521928A (ja) * | 2003-04-04 | 2006-09-28 | ボード オブ リージェンツ, ザ ユニバーシティ オブ テキサス システム | ガス流から二酸化炭素を除去するためのポリアミン/アルカリ塩混合物 |
JP2010202426A (ja) * | 2009-02-27 | 2010-09-16 | Mitsubishi Heavy Ind Ltd | Co2回収装置及びその方法 |
JP2013544636A (ja) * | 2010-10-18 | 2013-12-19 | 武▲漢凱▼迪▲電▼力股▲分▼有限公司 | 活性炭酸ナトリウムによる排煙ガス中の二酸化炭素回収方法および装置 |
JP2012166139A (ja) * | 2011-02-14 | 2012-09-06 | Babcock Hitachi Kk | Co2化学吸収システムの制御方法 |
WO2014057567A1 (ja) * | 2012-10-11 | 2014-04-17 | 三菱重工業株式会社 | 排ガス処理システム及び方法 |
JP2015536237A (ja) * | 2012-11-15 | 2015-12-21 | エスアールアイ インターナショナルSRI International | アンモニアベース触媒による炭酸カリウム水溶液中でのco2吸収の速度向上 |
JP2018501947A (ja) * | 2014-11-21 | 2018-01-25 | ガス テクノロジー インスティテュート | 二酸化炭素回収のためのエネルギー効率のよい溶媒再生プロセス |
JP2016159239A (ja) * | 2015-03-02 | 2016-09-05 | 三菱日立パワーシステムズ株式会社 | 二酸化炭素の回収装置および回収方法 |
JP2016188161A (ja) * | 2015-03-30 | 2016-11-04 | 新日鉄住金エンジニアリング株式会社 | 二酸化炭素製造設備及び二酸化炭素製造方法 |
Also Published As
Publication number | Publication date |
---|---|
TW202102296A (zh) | 2021-01-16 |
JP6834066B1 (ja) | 2021-02-24 |
CN113840803A (zh) | 2021-12-24 |
JPWO2020241654A1 (ja) | 2021-09-13 |
CN113840803B (zh) | 2024-02-02 |
US20220234000A1 (en) | 2022-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
PL194720B1 (pl) | Sposób obróbki spalin, stosowany w procesie oczyszczania gazów kominowych pochodzących ze spalania | |
JP5009746B2 (ja) | 燃焼排ガス中の二酸化炭素の化学固定法 | |
WO2017090814A1 (ko) | 산성 가스 내 이산화탄소 제거 방법 및 그 장치 | |
CN102441322A (zh) | 一种烟气脱硫并副产絮凝剂的方法 | |
JP6834066B1 (ja) | 炭酸ガス、およびその他ガスの回収方法 | |
JP2007091560A (ja) | 塩化水素ガスの精製方法 | |
CN106477525B (zh) | 一种氯代反应尾气氯化氢脱氯气净化方法 | |
JP4637810B2 (ja) | 脱硫廃液と硫黄粒子の焼却処理方法 | |
CN112142150A (zh) | 一种高效低耗同步回收沼液中氮磷的装置及其方法 | |
CN101327931A (zh) | 一种硅胶的清洁生产方法以及硫酸的生产方法 | |
JP4333859B2 (ja) | アンモニア含有水の処理方法 | |
JP5637797B2 (ja) | 難分解性物質を含む排水の処理方法及び処理装置 | |
JP2014144445A (ja) | 過酸化水素及びアンモニア含有水の処理方法及び装置 | |
US7632471B2 (en) | Reaction furnace utilizing high-temp steam and recirculated heat source to separate mercury and crack dioxin and organic substances contained in waste | |
JP2011162404A (ja) | 炭酸ナトリウムの製造方法 | |
CN1156392C (zh) | 从谷氨酸发酵中回收二氧化碳的方法 | |
CN116460120A (zh) | 一种垃圾焚烧飞灰的脱氯除盐方法 | |
CN108821315A (zh) | 热化学循环矿化co2同时分解h2o制h2的方法及装置 | |
CN111097273B (zh) | 一种fcc再生烟气的处理方法及装置 | |
CN109045963B (zh) | 一种氧化-吸收脱除燃煤烟气中气态二氧化硒的方法 | |
JP2012200654A (ja) | 液体中のアンモニア除去方法及び除去装置 | |
JP4915095B2 (ja) | 一酸化炭素の製造方法及びホスゲンの製造方法 | |
JP2006231119A (ja) | 有機廃棄物の湿式酸化分解処理装置の廃熱回収装置 | |
JP4502633B2 (ja) | 有機性廃棄物の高温高圧処理方法 | |
JP2003245537A (ja) | 食用油の製造過程で生じる廃棄物の処理方法及び処理装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020553663 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20812708 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20812708 Country of ref document: EP Kind code of ref document: A1 |