WO2014057567A1 - 排ガス処理システム及び方法 - Google Patents

排ガス処理システム及び方法 Download PDF

Info

Publication number
WO2014057567A1
WO2014057567A1 PCT/JP2012/076368 JP2012076368W WO2014057567A1 WO 2014057567 A1 WO2014057567 A1 WO 2014057567A1 JP 2012076368 W JP2012076368 W JP 2012076368W WO 2014057567 A1 WO2014057567 A1 WO 2014057567A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
mist
water
cooling
washing
Prior art date
Application number
PCT/JP2012/076368
Other languages
English (en)
French (fr)
Inventor
大石 剛司
田中 裕士
長安 弘貢
琢也 平田
嘉則 梶谷
朋来 登里
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP20160876.7A priority Critical patent/EP3685907B1/en
Priority to US14/432,449 priority patent/US9568193B2/en
Priority to CA2886800A priority patent/CA2886800C/en
Priority to PCT/JP2012/076368 priority patent/WO2014057567A1/ja
Priority to EP12886392.5A priority patent/EP2907563B1/en
Priority to JP2014540697A priority patent/JP6072055B2/ja
Priority to AU2012391846A priority patent/AU2012391846B2/en
Publication of WO2014057567A1 publication Critical patent/WO2014057567A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/02Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material
    • F23J15/04Arrangements of devices for treating smoke or fumes of purifiers, e.g. for removing noxious material using washing fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1481Removing sulfur dioxide or sulfur trioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1493Selection of liquid materials for use as absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/006Layout of treatment plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2062Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/102Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/10Inorganic absorbents
    • B01D2252/103Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20494Amino acids, their salts or derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/205Other organic compounds not covered by B01D2252/00 - B01D2252/20494
    • B01D2252/2053Other nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/30Ionic liquids and zwitter-ions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/75Multi-step processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/20Sulfur; Compounds thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2215/00Preventing emissions
    • F23J2215/50Carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J2219/00Treatment devices
    • F23J2219/40Sorption with wet devices, e.g. scrubbers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Definitions

  • the present invention relates to an exhaust gas treatment system and method for removing CO 2 in exhaust gas.
  • CO 2 absorption tower (hereinafter, simply referred to as "absorption column”.) And the combustion exhaust gas and the CO 2 absorbing solution in the contacting a, CO 2 absorbent having absorbed CO 2 (hereinafter, simply referred to as "absorbing solution”.) the absorbent regenerator (hereinafter, simply referred to as "regeneration tower”.) was heated at, CO 2 CO 2 recovery apparatus and a step of reusing circulated to CO 2 absorbing solution again the CO 2 absorber to play has been proposed with dissipating (e.g., see Patent Document 1).
  • an amine-based CO 2 absorbing solution such as alkanolamine is used to make a countercurrent contact, and CO 2 in the exhaust gas is absorbed into the CO 2 absorbing solution by a chemical reaction (exothermic reaction).
  • the exhaust gas from which 2 has been removed is discharged out of the system.
  • CO 2 absorbent that has absorbed CO 2 is referred to as rich solution.
  • the rich solution is pressurized by a pump, and is heated in the heat exchanger by a high-temperature CO 2 absorbing solution (lean solution) that CO 2 is diffused and regenerated in the regenerator in the heat exchanger, and is supplied to the regenerator.
  • the exhaust gas treatment system the flue gas introduced into the CO 2 absorber that absorbs CO 2 of the CO 2 recovery apparatus, the mist generating material which is a source of mist generated in the absorption tower of the CO 2 recovery apparatus
  • the CO 2 absorbent is entrained by the mist generating substance, so that there is a problem that the amount of the CO 2 absorbent that scatters out of the system increases. If there is scattering out of the system such CO 2 absorbing liquid, so that the refilling with leads to significant loss of reuse to the CO 2 absorbing liquid, unnecessarily CO 2 absorbing liquid in the regeneration tower Therefore, it is necessary to suppress the CO 2 absorbing liquid from scattering outside the system.
  • the present invention provides an exhaust gas treatment system capable of significantly reducing entrainment of a CO 2 absorbent and performing an appropriate exhaust gas treatment when exhausting exhaust gas from which CO 2 has been removed outside the system. It is an object to provide a method.
  • the first invention of the present invention for solving the above-mentioned problems is a desulfurization device for removing sulfur oxides in exhaust gas from a boiler, and a dew point temperature of the exhaust gas provided on the downstream side of the desulfurization device.
  • the exhaust gas is cooled or heated by the temperature adjusting means to adjust, the particle size of the SO 3 mist contained in the exhaust gas is enlarged, the cooling tower for lowering the exhaust gas temperature, and the CO 2 in the exhaust gas into the CO 2 absorbing liquid and the CO 2 absorber to remove in contact, to release CO 2 from the CO 2 absorbing solution with the recovery of CO 2, comprising a, a CO 2 recovery apparatus comprising a regenerator to regenerate the CO 2 absorbing solution
  • the exhaust gas treatment system is characterized by the above.
  • an exhaust gas treatment system according to the first aspect, further comprising mist collecting means for collecting enlarged mist in the vicinity of the top of the cooling tower.
  • a third invention is the cooling according to the first or second invention, wherein the temperature adjusting means includes a heat exchanger for cooling the cooling water circulating in the cooling tower to ⁇ 20 ° C. or lower than the exhaust gas introduction temperature. It is in the exhaust gas treatment system characterized by being a part.
  • the temperature adjusting means includes a heater provided with a heater that heats the circulating water circulating in the cooling tower to + 10 ° C or higher than the exhaust gas introduction temperature;
  • the exhaust gas treatment system includes a cooling unit that is provided on the downstream side of the gas flow of the heating unit and that cools the heated exhaust gas to the CO 2 absorption tower introduction temperature or lower.
  • an exhaust gas treatment system comprising basic substance introduction means for introducing a basic substance into the exhaust gas between the desulfurization apparatus and the cooling tower. is there.
  • the sixth invention is the exhaust gas treatment system according to the first or second invention, wherein the circulating water of the cooling tower is an absorbent for desulfurization.
  • the desulfurization apparatus which removes the sulfur oxide in the waste gas from a boiler, and the said desulfurization apparatus, removes the sulfur oxide which remains in waste gas, and lowers
  • a main water rinsing unit that is provided on the downstream side of the gas flow of the absorption unit, cools the CO 2 removal exhaust gas with the wash water, and collects the accompanying CO 2 absorption liquid with the wash water, and stores liquid in the main water wash unit Washing water containing the CO 2 absorbing solution recovered in the section is washed with the main
  • a circulation line that is supplied and circulated from the top side of the section, and a preliminary water washing section provided between the CO 2 recovery section and the main water washing section, and from the main water washing section, the CO 2 absorbing liquid is supplied. Withdrawing a part of the washing water containing, supplying the extracted washing water to the preliminary washing unit side, CO 2 absorption liquid entrained in the exhaust gas in which CO 2 was absorbed by the CO 2 absorption unit,
  • the exhaust gas treatment system is characterized by preliminarily washing with the extracted washing water and enlarging the particle size of the SO 3 mist containing the CO 2 absorbent.
  • the eighth invention is the exhaust gas treatment system according to the seventh invention, characterized in that it has a heater for heating the extracted wash water, and the heated wash water is supplied to the preliminary washing section.
  • a ninth invention is characterized in that, in the seventh or eighth invention, the mist collecting means is provided between the preliminary washing unit and the main washing unit and collects mist. In the exhaust gas treatment system.
  • a tenth aspect of the present invention is a desulfurization apparatus that removes sulfur oxides in exhaust gas from a boiler, and an SO 3 mist that is provided on the downstream side of the desulfurization apparatus and adjusts the gas dew point temperature of the exhaust gas.
  • the particle size was enlarged by the temperature adjusting means, a cooling tower to lower the exhaust gas temperature, and the CO 2 absorber to remove CO 2 in the flue gas is brought into contact with CO 2 absorbing solution, CO 2 from the CO 2 absorbing solution with the recovery of CO 2 by releasing the CO 2 recovery apparatus comprising a regenerator to regenerate the CO 2 absorbing solution, as well as equipped with the CO 2 absorption tower, CO 2 containing exhaust gas by the CO 2 absorbing solution and CO 2 absorbing section for absorbing the CO 2 in the CO 2 provided in the gas flow downstream side of the absorber, to cool the CO 2 flue gas by washing water, the washing water entrained CO 2 absorbing solution
  • the main water washing section recovered by the above and the main water washing Provided between the CO 2 absorption part and the main water washing part, a circulation line for supplying and circulating cleaning water containing the CO 2 absorbing liquid recovered in the liquid storage part of the main part from the top side of the main water washing part And a part of the washing water containing the CO 2 absorbent is extracted
  • An eleventh aspect of the invention is an exhaust gas treatment system according to the tenth aspect of the invention, which has a heater for heating the extracted washing water and supplies the heated washing water to the preliminary washing unit.
  • a twelfth aspect of the invention is characterized in that in the tenth or eleventh aspect of the invention, the mist collecting means is provided between the preliminary water washing section and the main water washing section and collects mist. In the exhaust gas treatment system.
  • an exhaust gas treatment system characterized by having mist collecting means for collecting enlarged mist near the top of the cooling tower.
  • a fourteenth invention is the cooling according to the tenth or thirteenth invention, wherein the temperature adjusting means includes a heat exchanger for cooling the cooling water circulating in the cooling tower to -20 ° C or lower than the exhaust gas introduction temperature.
  • the exhaust gas treatment system is characterized by being a means.
  • the temperature adjusting means includes a heating unit provided with a heater that heats the circulating water circulating in the cooling tower to + 10 ° C. or higher than the exhaust gas introduction temperature;
  • the exhaust gas treatment system includes a cooling unit that is provided on the downstream side of the heating unit and cools the heated exhaust gas to a temperature equal to or lower than the CO 2 absorption tower introduction temperature.
  • a sixteenth aspect of the present invention is the exhaust gas treatment system according to the tenth or thirteenth aspect of the present invention, further comprising basic substance introduction means for introducing a basic substance into the exhaust gas between the desulfurization apparatus and the cooling tower. is there.
  • the seventeenth invention is the exhaust gas treatment system according to the tenth or thirteenth invention, wherein the circulating water of the cooling tower is an absorbent for desulfurization.
  • the exhaust gas is cooled or heated by a desulfurization step of removing sulfur oxides in the exhaust gas from the boiler by a desulfurization apparatus and a gas dew point temperature of the exhaust gas, and is contained in the exhaust gas.
  • the particle size of the SO 3 mist is enlarged, a cooling step of lowering the exhaust gas temperature, and the CO 2 absorber to the CO 2 in the flue gas is brought into contact with CO 2 absorbing liquid to remove the CO 2 from the CO 2 absorbing solution with release to recover the CO 2, in an exhaust gas processing method characterized by having a CO 2 recovery step comprising a regenerator to regenerate the CO 2 absorbing solution.
  • a nineteenth aspect of the present invention is a desulfurization step for removing sulfur oxide in exhaust gas from a boiler, and is provided on the downstream side of the desulfurization device to remove sulfur oxide remaining in the exhaust gas and lower the gas temperature.
  • a cooling step the CO 2 absorption tower for removing CO 2 in the flue gas is brought into contact with CO 2 absorbing liquid, by releasing CO 2 from the CO 2 absorbing solution with the recovery of CO 2, CO 2 absorbing solution becomes a, a CO 2 recovery step comprising a regenerator for regeneration, in the CO 2 absorption tower, and CO 2 absorption step for absorbing the CO 2 in the CO 2 content in the exhaust gas by the CO 2 absorbing liquid, the CO 2 provided on the downstream side of the gas flow of the absorption part, cooling the CO 2 removal exhaust gas with the wash water, and recovering the accompanying CO 2 absorbent with the wash water, the CO 2 absorption process and the Preliminary water provided during the main water washing process And a part of the washing water containing the CO 2 absorbent used in the main water washing
  • the particle size of SO 3 contained in the exhaust gas is enlarged by the temperature adjusting means for adjusting the gas dew point temperature, the enlarged SO 3 mist is introduced into the absorption tower.
  • the enlarged mist can be collected by the mist collecting means.
  • the generation of white smoke of the purified gas discharged from the absorption tower due to the SO 3 mist is suppressed, and the accompanying entrainment of the absorbing liquid can be suppressed.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment system according to a first embodiment.
  • FIG. 2 is a schematic diagram of the exhaust gas treatment system according to the second embodiment.
  • FIG. 3 is a schematic diagram of an exhaust gas treatment system according to a third embodiment.
  • FIG. 4 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the fourth embodiment.
  • FIG. 5 is a schematic diagram of a CO 2 recovery device of the exhaust gas treatment system according to the fifth embodiment.
  • FIG. 6 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the sixth embodiment.
  • FIG. 7 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the seventh embodiment.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment system according to a first embodiment.
  • FIG. 2 is a schematic diagram of the exhaust gas treatment system according to the second embodiment.
  • FIG. 3 is a schematic diagram of an exhaust gas treatment system according to a third embodiment.
  • FIG. 4 is
  • FIG. 8 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the eighth embodiment.
  • FIG. 9 is a graph showing the relationship between the maximum deviation (° C.) between the gas dew point in the cooling tower and the gas dew point at the inlet of the cooling tower and the mist particle size ratio (outlet / inlet) in the gas in the cooling tower.
  • FIG. 10 is a diagram showing the relationship between the mist particle size ( ⁇ m) and the mist collection efficiency (%) when a demister is used.
  • FIG. 11 is a conceptual diagram of the behavior of SO 3 mist in exhaust gas by cooling.
  • FIG. 12 is a conceptual diagram of the behavior of SO 3 mist in exhaust gas by heating.
  • FIG. 13 is a conceptual diagram of the behavior of SO 3 mist in the exhaust gas in the CO 2 absorption section and the preliminary water washing section.
  • FIG. 14 is a diagram showing the tendency of enlargement in the gas flow direction between the cooling tower and the CO 2 absorbing portion with respect to the SO 3 mist particle diameter in Example 1.
  • FIG. 15 is a diagram showing the tendency of enlargement in the gas flow direction between the cooling tower and the CO 2 absorbing portion for the SO 3 mist particle size in Example 4.
  • FIG. 1 is a schematic diagram of an exhaust gas treatment system according to a first embodiment.
  • an exhaust gas treatment system 100A according to the present embodiment is provided on the downstream side of a desulfurization device 105 that removes sulfur oxide in the exhaust gas 11 from the boiler 101, and the desulfurization device 105, and the exhaust gas 11
  • the cooling tower 70A that cools or heats the exhaust gas 11 to enlarge the particle size of SO 3 mist contained in the exhaust gas 11 and lowers the exhaust gas temperature by the temperature adjusting means that adjusts the gas dew point temperature, and the exhaust gas 11 the CO 2 and the CO 2 absorber (absorption tower) 13 for removing in contact with CO 2 absorption liquid, together with the recovery of CO 2 to release CO 2 from the CO 2 absorbing liquid, to reproduce the CO 2 absorbing solution
  • a denitration device 103 an air heater (AH) for exchanging heat between the exhaust gas 11 and the air 111, and an electric dust collector 104 as dust removing means are provided at the boiler outlet.
  • reference numeral 106 denotes a chimney
  • 107 denotes an exhaust gas introduction line for introducing the exhaust gas 11 from the desulfurizer 105 to the cooling tower 70A
  • 108 denotes an exhaust gas introduction line for introducing the cooling exhaust gas 11A from the cooling tower 70A.
  • the exhaust gas 11 from the boiler 101 removes nitrogen oxide (NOx) in the exhaust gas 11 by the denitration device 103, and then first heats the air 111 that is guided to the air heater AH and supplied to the boiler 101. To do. Thereafter, the exhaust gas 11 is introduced into, for example, a dry electrostatic precipitator 104 to remove the dust 104a. The removed dust 104a is processed by the ash processing means 10b.
  • NOx nitrogen oxide
  • the exhaust gas 11 from which the dust is removed by the electrostatic precipitator 104 removes sulfur oxides in the exhaust gas 11 by the desulfurization apparatus 105, and the removed sulfur oxides are converted into limestone (CaCO 3 ) 105a and oxidizing air 105b. It is supplied and made into gypsum 105c by the lime / gypsum method, and the desulfurization waste water 105d is treated separately.
  • the gas temperature adjusting means of the cooling tower 70A includes a circulation pump 72, a cooler 73 as a heat exchanger, a circulation line 74 interposed therebetween, and a cooling water 71 via a nozzle 74a.
  • the cooling unit 70a cools down the exhaust gas 11 flowing down (broken line). And the exhaust gas 11 is cooled by circulating the cooling water 71 cooled by the cooler 73 through the cooling part 70a in the cooling tower 70A. Surplus water is separately discharged to the outside.
  • the cooling temperature of the cooler 73 is adjusted to a desired temperature to lower the temperature of the cooling water 71, and the cooling water 71 and the exhaust gas 11 introduced from the lower side of the cooling tower 70A are opposed to each other to reach a predetermined temperature or lower.
  • the cooling exhaust gas is cooled to a temperature (T 1 ) of ⁇ 20 ° C. or lower than the exhaust gas introduction temperature (T 0 ) to obtain a cooled exhaust gas 11A.
  • the enlarged SO 3 mist is captured by using, for example, a demister 80 which is a mist collecting means provided near the outlet of the cooling tower 70A to capture the enlarged SO 3 mist in the cooling exhaust gas 11A.
  • a demister 80 which is a mist collecting means provided near the outlet of the cooling tower 70A to capture the enlarged SO 3 mist in the cooling exhaust gas 11A.
  • the amount of SO 3 mist released in the cooling exhaust gas 11A released from the top of the cooling tower 70A is reduced.
  • the number of mists contained in the cooling exhaust gas 11A is lower than that of the prior art in which the cooling temperature of the exhaust gas 11 introduced into the cooling tower by the temperature adjusting means as in the present invention is not lowered to ⁇ 20 ° C. or lower than the introduction temperature.
  • the ratio is greatly reduced.
  • FIG. 10 is a diagram showing the relationship between the mist particle size ( ⁇ m) and the mist collection efficiency (%) when a demister is used. According to FIG. 10, it is confirmed that 90% or more is collected when the particle diameter of the mist becomes 0.65 ⁇ m or more. In addition, the measurement of the mist particle diameter was performed according to the measurement of soot (JIS K0302).
  • the particle size of the SO 3 mist is enlarged and provided near the outlet of the cooling tower 70A. was bloated mist was collected in demister 80, and thus to reduce the introduction amount of SO 3 mists on the CO 2 absorption tower 13 of the CO 2 recovery apparatus 10.
  • the present Example demonstrates the case where the demister 80 was installed, this invention is not limited to this, You may make it not install the demister 80.
  • FIG. When this demister 80 is not installed, the enlarged SO 3 mist is introduced into the CO 2 absorption tower 13. As a result, the proportion of the enlarged SO 3 mist increases from that of the conventional one, and the enlarged SO 3 mist is further enlarged, so that it is collected in the demister 80 provided near the outlet of the absorption tower 13. It will be.
  • the amount of mist introduced into the absorption tower 13 is greatly reduced.
  • the generation of white smoke of the purified gas 11B discharged from the absorption tower 13 due to the SO 3 mist is suppressed, and the accompanying entrainment of the absorbing liquid 12 is suppressed.
  • an amine-based absorbent is illustrated as the absorbent 12, but the absorbent of the present invention is not limited to the amine-based absorbent.
  • the absorbent other than the amine-based absorbent include an ammonia absorbent, an amino acid-based absorbent, an ionic liquid absorbent, and a hot potassium carbonate absorbent composed of potassium carbonate and an amine.
  • reference numeral 61 is a reboiler for regenerating the absorbing liquid 12
  • 62 is saturated steam supplied to the reboiler
  • 63 is steam condensed water
  • 43 is a separation drum
  • 45 is recovered CO 2 gas (recovered CO 2 2 ) and 52 respectively indicate heat exchangers for exchanging heat between the absorbing solution that has absorbed CO 2 (rich solution 12A) and the regenerated CO 2 absorbing solution (lean solution 12B).
  • FIG. 9 is a graph showing the relationship between the maximum deviation (° C.) between the gas dew point in the cooling tower and the gas dew point at the inlet of the cooling tower and the mist particle size ratio (outlet / inlet) in the gas in the cooling tower.
  • the gas temperature of the exhaust gas 11 introduced into the cooling tower is used as a reference.
  • the introduction gas temperature of the reference (T 0) by lowering the gas temperature (T 1) to -20 ° C. or less, the mist particle size ratio is increased, and thus increase the bloated mist.
  • the cooling means includes a heat exchanger that cools to ⁇ 20 ° C. or lower than the exhaust gas introduction temperature (reference).
  • FIG. 11 is a conceptual diagram of the behavior of SO 3 mist in exhaust gas by cooling. 11, the first cooling tower before flow in the exhaust gas 11, in SO 3 gas and the water vapor below the acid dew point gas temperature, SO 3 mist 202 is generated, SO 3 mist 202 to some extent in the exhaust gas 11 is included.
  • the exhaust gas 11 is introduced into the cooling tower 70A at the introduction gas temperature (T 0 ), and the exhaust gas 11 is cooled to a predetermined temperature or lower. That is, as shown in FIG. 11, when the dew point of the gas in the cooling tower 70A becomes lower than the dew point of the inlet gas ( ⁇ 20 ° C.) due to the cooling of the flowing water 200 which is the cooling water circulated in the cooling tower 70A.
  • the water vapor 201 in the gas is condensed into the flowing water 200 and the SO 3 mist 202.
  • the steam 201 is condensed in the SO 3 mist 202 is taken, thereby the particle diameter d 1 of the SO 3 mist 202 in the cooled exhaust gas, the SO 3 mist in the exhaust gas at the inlet portion particle size d
  • the SO 3 mist 202 in the exhaust gas 11 is enlarged.
  • the medium circulating in the cooling tower 70A is the cooling water.
  • the present invention is not limited to the cooling water, and this cooling water has a desulfurization absorbing liquid that has a desulfurization function. You may make it aim at desulfurization. That is, the function of the desulfurization tower can be further provided to the cooling tower 70A on the downstream side of the desulfurization apparatus 105, and the residual sulfur oxide reduced to a predetermined value or less by the desulfurization apparatus 105 can be further removed. As a result, it is possible to cope with a reduction in the amount of sulfur oxide mixed into the CO 2 absorbent and a case where exhaust gas regulations are severe.
  • examples of the absorbing solution for desulfurization include sodium hydroxide, potassium hydroxide, potassium carbonate, sodium carbonate and the like, but are not limited thereto as long as they have a desulfurizing action.
  • the desulfurization step of removing sulfur oxides in the exhaust gas 11 from the boiler 101 by the desulfurization apparatus 105, and the gas dew point temperature with respect to the exhaust gas 11 after desulfurization Is cooled to -20 ° C or lower than the introduction temperature by the temperature adjusting means for adjusting the temperature, the particle size of the SO 3 mist contained in the exhaust gas 11 is enlarged, and the cooling step is performed to lower the gas temperature, and the cooling step is performed.
  • the amount of mist introduced in the CO 2 absorption step using the absorption tower 13 is greatly reduced.
  • the generation of white smoke of the purified gas 11B discharged from the absorption tower 13 due to the SO 3 mist is suppressed, and the accompanying entrainment of the absorbing liquid 12 is suppressed.
  • FIG. 2 is a schematic diagram of the exhaust gas treatment system according to the second embodiment.
  • symbol is attached
  • the exhaust gas treatment system 100 ⁇ / b> B according to the present embodiment includes a cooling tower 70 ⁇ / b> B installed on the downstream side of the desulfurization apparatus 105 as in the first embodiment.
  • the cooling tower 70B enlarges the particle size of SO 3 mist contained in the exhaust gas 11 by temperature adjusting means for adjusting the gas dew point temperature.
  • the temperature adjusting means includes a heating unit 70b including a heater 76 that heats the circulating water circulating in the cooling tower 70B to + 10 ° C. or higher than the exhaust gas introduction temperature, and the heating unit.
  • the cooling unit 70a is provided on the downstream side of the gas flow 70b and cools the heated exhaust gas to a temperature lower than the introduction temperature of the absorption tower 13.
  • a part of the cooling water 71 surplus from the circulation line 74 of the cooling unit 70 a is supplied to the circulation line 75 via the line 79. Surplus water is separately discharged to the outside.
  • the heating water 77 is heated to a predetermined temperature by the heater 76 that heats the water circulating in the circulation line 75 by the circulation pump 78.
  • the heater 76 As a heat source to be used for the heater 76, waste heat steam in the plant, residual heat in the CO 2 recovery apparatus 10, and the like can be used.
  • the heated water 77 and the introduced exhaust gas 11 are brought into contact with each other to heat the exhaust gas 11, and the heated exhaust gas is provided on the downstream side of the gas flow in the heating unit 70b.
  • the cooling unit 70a cools to a temperature suitable for introduction of the absorption tower 13 installed on the side.
  • T 2 60 ° C.
  • SO 3 mist is enlarged (for example, about 1.0 ⁇ m).
  • the exhaust gas 11 containing the enlarged SO 3 mist is cooled to a predetermined temperature by the cooling unit 70a.
  • the enlarged SO 3 mist in the exhaust gas is captured by, for example, a demister 80 which is a mist collecting means provided near the outlet of the cooling tower 70B.
  • a demister 80 is a mist collecting means provided near the outlet of the cooling tower 70B.
  • the ratio of the number of mists contained in the cooling exhaust gas 11A is significantly larger than the case where the temperature of the exhaust gas 11 introduced into the cooling tower 70B by the temperature adjusting means as in the present invention is not more than + 10 ° C. from the introduction temperature. Becomes smaller.
  • the number of SO 3 mists introduced into the CO 2 absorption tower 13 is reduced, enlargement of the SO 3 mist in the CO 2 absorption tower 13 is promoted accordingly. Thereby, SO 3 mist enlarged by the demister 80 provided in the vicinity of the outlet of the CO 2 absorption tower 13 is collected.
  • the gas dew point temperature is controlled by the temperature adjusting means of the cooling tower 70B so that the exhaust gas temperature is higher than the introduction temperature, the particle size of the SO 3 mist is enlarged and provided near the outlet of the cooling tower 70B.
  • the mist enlarged by the demister 80 is collected, and the amount of SO 3 mist introduced into the CO 2 recovery device 10 is reduced.
  • FIG. 9 is a graph showing the relationship between the maximum deviation (° C.) between the gas dew point in the cooling tower and the gas dew point at the inlet of the cooling tower and the mist particle size ratio (outlet / inlet) in the gas in the cooling tower.
  • the gas temperature of the exhaust gas 11 introduced into the cooling tower is used as a reference. By heating + 10 ° C. or more from the standard gas temperature, the mist particle size ratio increases, and the mist enlargement increases.
  • Example 1 the exhaust gas was actively cooled to enlarge the SO 3 mist.
  • the exhaust gas 11 was actively heated to enlarge the SO 3 mist. Yes.
  • the heating means is heated to + 10 ° C. or higher than the exhaust gas introduction temperature (reference).
  • FIG. 12 is a conceptual diagram of the behavior of SO 3 mist in exhaust gas by heating.
  • SO 3 mist 202 is generated from SO 3 gas and water vapor under gas temperature conditions below the acid dew point, and the exhaust gas 11 contains SO 3 mist 202 to some extent.
  • heated water 77 circulated in the heating unit 70b of the cooling tower 70B.
  • the dew point of the gas in the heating unit 70b in the cooling tower 70B becomes higher than the dew point of the inlet gas (+ 10 ° C. or higher).
  • the evaporation of water vapor from the heated flowing water 200 increases.
  • the condensed water vapor 201 is taken into the SO 3 mist 202 (that is, the SO 3 mist is diluted with water vapor).
  • the SO 3 mist is enlarged.
  • the particle size d 2 of the SO 3 mist 202 also increases than the particle size d 0 of SO 3 mist 202 at the inlet portion, SO 3 mist 202 is to be enlarged.
  • the enlarged mist is collected by the demister 80 as in the first embodiment.
  • the amount of mist introduced into the absorption tower is significantly reduced.
  • the generation of white smoke of the purified gas 11B discharged from the absorption tower 13 due to the SO 3 mist is suppressed, and the accompanying entrainment of the absorbing liquid 12 is suppressed.
  • the desulfurization step of removing sulfur oxides in the exhaust gas 11 from the boiler 101 by the desulfurizer 105, and the gas dew point temperature with respect to the exhaust gas 11 after desulfurization As shown in FIG. 2, the desulfurization step of removing sulfur oxides in the exhaust gas 11 from the boiler 101 by the desulfurizer 105, and the gas dew point temperature with respect to the exhaust gas 11 after desulfurization.
  • T 2 10 ° C.
  • T 1 50 ° C.
  • the dew point of the gas changes, and the water vapor contained in the exhaust gas whose amount has increased due to the evaporation of water from the falling liquid is condensed, and the condensed water vapor is taken into the SO 3 mist.
  • the SO 3 mist is enlarged.
  • the heated exhaust gas is cooled by the cooling unit 70 a to a temperature not higher than the introduction temperature of the absorption tower 13.
  • the enlarged mist is collected by the demister 80 as in the first embodiment.
  • the amount of mist introduced in the CO 2 absorption step using the absorption tower 13 is greatly reduced.
  • the generation of white smoke of the purified gas 11B discharged from the absorption tower 13 due to the SO 3 mist is suppressed, and the accompanying entrainment of the absorbing liquid 12 is suppressed.
  • FIG. 3 is a schematic diagram of an exhaust gas treatment system according to a third embodiment.
  • the exhaust gas treatment system 100C according to the present embodiment is a basic substance in the exhaust gas 11 between the desulfurization apparatus 105 and the cooling tower 70A in the exhaust gas treatment system 100A of the first embodiment.
  • a basic substance introducing means for supplying ammonia (NH 3 ) is provided.
  • the cooling water is cooled to about ⁇ 10 ° C. from the same introduction temperature as in the prior art, but may be ⁇ 20 ° C. or lower as in the first embodiment.
  • the salt concentration in the SO 3 mist in the exhaust gas 11 is increased before entering the cooling tower 70A.
  • water vapor is taken in the cooling unit 70a of the cooling tower 70A to dilute the salt concentration, and the mist can be enlarged.
  • ammonia is used as the basic substance, but the present invention is not limited to this.
  • a lower amine such as a volatile amine may be used.
  • the drainage of the cooling water in the present embodiment includes ammonia and lower amines, if there is a drainage regulation, it is discharged after being detoxified by a separate drainage treatment means.
  • the enlarged mist is collected by the demister 80 as in the first embodiment.
  • the basic substance is introduced into the exhaust gas outlet on the upstream side of the cooling tower 70A, SO 3 mist can be collected and the amount of mist introduced into the absorption tower 13 is increased. Is significantly reduced.
  • the generation of white smoke of the purified gas 11B discharged from the absorption tower 13 due to the SO 3 mist is suppressed, and the accompanying entrainment of the absorbing liquid 12 is suppressed.
  • a desulfurization device for circulating the desulfurization absorbing liquid may be provided on the downstream side of the exhaust gas flow of the cooling unit 70a.
  • Example 2 it may be combined with the temperature adjusting means of Example 1 or Example 2.
  • FIG. 4 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the fourth embodiment.
  • symbol is attached
  • the CO 2 recovery device 10A of the exhaust gas treatment system is provided on the downstream side of the desulfurization device that removes sulfur oxide in the exhaust gas from the boiler and the desulfurization device, and the exhaust gas to remove the sulfur oxides remaining in, CO and cooling tower 70 to lower the gas temperature, the CO 2 in the flue gas and the absorption tower 13 which removes by contacting the CO 2 absorbing solution, from the CO 2 absorbing liquid 12 2 and recovering CO 2 , and a CO 2 recovery device 10A including a regeneration tower 14 for regenerating the CO 2 absorbent 12.
  • the CO 2 absorption tower 13, CO and CO 2 absorbing section 13A that absorbs CO 2 of the CO 2 contained in the exhaust gas by 2 absorbent 12, stream after the gas stream of the CO 2 absorbing section 13A
  • the cleaning water 20 cools the CO 2 removal exhaust gas and collects the accompanying CO 2 absorbent with the cleaning water 20 and the liquid storage unit 21 of the main water cleaning unit 13C.
  • a water washing section 13B a water washing section 13B.
  • a part 20a of the wash water 20 containing the CO 2 absorbent is extracted from the circulation line L 1 , but the present invention is not limited to this, and the CO 2 absorption from the circulation line L 1. You may make it provide separately the storage part which stores the part 20a of the wash water 20 containing a liquid, and it may extract from this storage part.
  • FIG. 13 is a conceptual diagram of the behavior of SO 3 mist in the exhaust gas in the CO 2 absorption section and the preliminary water washing section.
  • SO 3 mist 202 is generated from the SO 3 gas and water vapor in the upstream of the cooling tower under the gas temperature condition below the acid dew point, and in the exhaust gas 11 that has passed through the cooling tower. Contains SO 3 mist 202 to some extent.
  • the SO 3 mist that does not contain the absorbing liquid behaves so as to approach the composition of the flowing-down absorbing liquid 203, and the vapor-shaped absorbing liquid 203a in the gas evaporated from the flowing-down absorbing liquid 203 becomes SO 2.
  • 3 absorbed in mist 202 the gaseous water vapor 201 evaporated from the flowing-down absorption liquid is also condensed into the SO 3 mist, and as a result, the SO 3 mist 202 is enlarged.
  • the SO 3 mist containing the relatively high concentration absorbing liquid behaves so as to approach the composition of the flowing-down cleaning liquid 205 containing the low concentration absorbing liquid, and the absorbing liquid is discharged from the SO 3 mist. together is dissipated during the fast gas water vapor mass transfer is also condensed SO 3 mist, steam 201 is taken into the SO 3 mist 202 (i.e. SO 3 mist is diluted with water vapor). As a result, the SO 3 mist is enlarged.
  • the particle size d 4 of SO 3 mist 202 also increases than the particle size d 3 of SO 3 mist 202 after exiting the CO 2 absorber section 13A, SO 3 mist 202 is to be enlarged. This enlarged mist is collected by a demister 80 provided in the vicinity of the top of the CO 2 absorber 13.
  • a finishing water washing unit 13D for removing the CO 2 absorbent in the exhaust gas is installed on the tower top 13a side of the main water washing unit 13C, washed with the washing water 44a, then passed through the demister 80, and purified gas.
  • 11B is discharged from the tower top 13a to the outside. Cooling gas 11A introduced into the CO 2 absorption tower 13 is contacted with the absorption liquid 12 in the CO 2 absorbing section 13A, CO 2 in the exhaust gas is removed, it is introduced as an exhaust gas 11A 1 to the preliminary washing unit 13B .
  • the mist particle size is enlarged, and the enlarged mist grows in the exhaust gas.
  • the exhaust gas in which the SO 3 mist is enlarged is introduced through the chimney tray 16 as exhaust gas 11A 2 to the main water washing section 13C.
  • cleaning in the exhaust gas is performed to remove the accompanying absorbing liquid 12.
  • This cleaned exhaust gas is introduced into the finishing water washing section 13D as exhaust gas 11A 3 .
  • finish cleaning in the exhaust gas is performed, and the remaining absorbent 12 is further removed.
  • the exhaust gas that has passed through the finish cleaning section 13D collects the dust and the enlarged SO 3 mist in the exhaust gas by the demister 80, and the purified purified gas 11B is released from the tower top portion 13a to the outside.
  • the SO 3 mist is enlarged in the CO 2 absorption tower 13 and collected by the demister 80, so that the purification discharged from the absorption tower 13 due to the SO 3 mist is performed.
  • production of the white smoke of gas 11B will be suppressed, and entrainment of the absorption liquid 12 will be suppressed.
  • the rich solution 12 ⁇ / b > A that has absorbed CO 2 is pressurized by a rich solvent pump 51 interposed in the rich solution supply pipe 50, and the lean solution 12 ⁇ / b> B regenerated in the absorbent regenerator 14 in the rich / lean solution heat exchanger 52. And is supplied to the top 14a side of the absorption liquid regeneration tower 14.
  • the CO 2 absorbent 12 that has released part or most of the CO 2 in the regeneration tower 14 is referred to as a “semi-lean solution”.
  • the semi-lean solution (not shown) flows down to the bottom 14b of the regeneration tower 14, it becomes a lean solution 12B from which almost all of the CO 2 has been removed.
  • the lean solution 12B is heated by saturated steam 62 at a reboiler 61 which is interposed in the circulation line L 20.
  • the saturated steam 62 after heating becomes steam condensed water 63.
  • the CO 2 gas 41 accompanied by water vapor dissipated from the rich solution 12A and a semi-lean solution (not shown) is released from the top 14a of the regeneration tower 14 in the tower. Then, CO 2 gas 41 accompanied by water vapor is derived by the gas discharge line L 21, the water vapor is condensed by a condenser 42 which is interposed in the gas discharge line L 21, condensed water 44 is separated in the separation drum 43, The CO 2 gas 45 is discharged out of the system, and post-processing such as compression recovery is performed separately.
  • the condensed water 44 separated in the separation drum 43 is the upper portion of the absorbing solution regeneration tower 14 by the condensed water circulation pump 46 interposed in condensate line L 23, it is cooled and supplied by the cooling unit 25. Although not shown, a portion of the condensed water 44 is fed into the circulation line L 1 of the washing water 20 containing the CO 2 absorbing liquid 12, used in the absorption of CO 2 absorbing liquid 12 accompanying the CO 2 flue gas You may do it.
  • the regenerated CO 2 absorbent (lean solution 12B) 12 is sent to the CO 2 absorption tower 13 side by the lean solution pump 54 via the lean solution supply pipe 53 and circulated and used as the CO 2 absorbent 12.
  • the lean solution 12B is cooled to a predetermined temperature by the cooling unit 55 and is supplied into the CO 2 absorbing unit 13A through the nozzle 56. Therefore, the CO 2 absorbing liquid 12 forms a closed path for circulating a CO 2 absorption tower 13 and the absorption solution regenerator 14 is reused in the CO 2 absorbing section 13A of the CO 2 absorber 13.
  • the CO 2 absorbent 12 is supplied from a replenishment line (not shown) as needed, and the CO 2 absorbent is regenerated by a reclaimer (not shown) as needed.
  • Exhaust gas treatment method of the present embodiment as shown in FIG. 4, the CO 2 in the absorption tower 13, CO 2 using CO 2 absorbing section 13A that absorbs CO 2 of the CO 2 contained in the exhaust gas by the CO 2 absorbing solution An absorption step, and a main water wash that is provided on the downstream side of the gas flow of the CO 2 absorption section and cools the CO 2 removal exhaust gas with the circulating wash water 20 and collects the accompanying CO 2 absorbent with the wash water 20 A main water washing process using the section 13C, and a preliminary water washing process using the preliminary water washing section 13B provided between the CO 2 absorption process and the main water washing process.
  • a part 20a of the circulating cleaning water 20 containing the CO 2 absorbent used in the main water washing step is extracted, and the extracted cleaning water is supplied to the preliminary washing unit 13B side, and the CO 2 absorption unit 13A
  • a pre-washed pre-washed CO 2 absorbent entrained in the exhaust gas in which CO 2 has been absorbed is pre-washed with the extracted wash water, and the particle size of the SO 3 mist containing the CO 2 absorbent is enlarged. Washing water is allowed to flow directly to the CO 2 absorption part side.
  • the enlarged mist is collected by a demister 80 on the tower top 13a side.
  • the mist is enlarged by increasing the particle size of the SO 3 mist in the preliminary washing step, the mist is reliably collected by the demister 80, and the SO 3 While generation
  • FIG. 5 is a schematic diagram of a CO 2 recovery device of the exhaust gas treatment system according to the fifth embodiment.
  • the CO 2 recovery apparatus 10B of the exhaust gas treatment system according to the present embodiment is configured to collect mist between the preliminary water washing section 13B and the main water washing section 13C in the CO 2 recovery apparatus 10A of the fourth embodiment.
  • a demister 80 as means is provided.
  • the enlarged SO 3 mist is installed on the tower top 13a side by the demister 80.
  • the demister 80 installed separately in the middle part is used for collection.
  • FIG. 6 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the sixth embodiment.
  • symbol is attached
  • the CO 2 recovery device 10C of the exhaust gas treatment system according to the present embodiment uses a part of the wash water 20 extracted through the extraction line L 2 in the CO 2 recovery device 10A of the fourth embodiment. , it is introduced into the circulation line L 3 to clean the pre-washing unit 13B. And the heater 76 which heats this introduce
  • the heating temperature is preferably set to a temperature (55 to 65 ° C.) that is + 5 ° C. or higher than the temperature of the extracted washing water (for example, 50 to 60 ° C.).
  • FIG. 7 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the seventh embodiment.
  • the CO 2 recovery device 10D of the exhaust gas treatment system according to the present example is configured to collect mist between the preliminary water washing unit 13B and the main water washing unit 13C in the CO 2 recovery device 10C of Example 6.
  • a demister 80 as means is provided.
  • the enlarged SO 3 mist is installed on the tower top portion 13a side by the demister 80.
  • the demister 80 installed in the middle part is used for collection.
  • the number of SO 3 mists introduced into the main water washing section 13C is reduced.
  • enlargement of SO 3 mist in the main water washing section 13C is promoted.
  • the amount of SO 3 mist enlarged by the demister 80 for example, about 1.0 ⁇ m
  • FIG. 8 is a schematic diagram of the CO 2 recovery device of the exhaust gas treatment system according to the eighth embodiment.
  • the CO 2 recovery device 10E of the exhaust gas treatment system according to this example is the same as the CO 2 recovery device 10A of Example 4, except that the cooling tower on the front stage side of the CO 2 absorption tower 13 is the second example.
  • the cooling tower 70B is installed.
  • ammonia is injected into the exhaust gas 11 introduced into the cooling tower 70B from the ammonia injection device 81 so as to increase the salt concentration in the exhaust gas.
  • a packed bed 91 is installed between the cooling unit 70 a and the demister 80.
  • the packed bed 91 is for removing in advance the soot dust in the exhaust gas and the SO 3 mist having a large particle diameter.
  • cleaning water 93 is sprayed by the cleaning nozzle 92 of the cleaning means installed on the demister 80 side to remove dust and the like.
  • a part of the circulating washing water of the main water washing unit 13C in the CO 2 absorption tower 13 is extracted (* 1 ) and is passed through the circulation line 75 of the heating unit 70b.
  • This is a heat source for the heater 76A.
  • the washing water after heat exchange is returned again (* 2 ).
  • the heater 76B for introducing the steam drain 94 is interposed in the circulation line 75 to form the heated water 77.
  • the heat source to the heater 76 is not limited to this.
  • a part of the CO 2 gas 45 discharged from the regeneration tower 14 is extracted from the gas discharge line L 21 to be used as a heat source or recovered. You may make it utilize the heat of compression with the compressor at the time of doing.
  • Test Example A In Table 1, in the prior art, when the inlet temperature to be introduced into the cooling tower is 50 ° C., the test was conducted on the basis of cooling to 40 ° C., which is ⁇ 10 ° C. from that temperature.
  • Test Example 1 is a case where cooling was performed at ⁇ 24 ° C. from the introduced gas temperature corresponding to Example 1.
  • Test Example 2 is a case where + 11 ° C. heating is performed from the introduced gas temperature corresponding to Example 2.
  • Test Example 3 is a case where ammonia was injected into the introduced gas corresponding to Example 3.
  • the mist particle size ratio (outlet mist particle size / inlet mist particle size) in this standard was 1.4.
  • the mist number ratio was compared as a gas property comparison at the outlet of the cooling tower.
  • the number was reduced to 0.8 times the standard.
  • the number was significantly reduced to 0.5 times the standard.
  • the value was 0.8 times the standard.
  • the mist particle size ratio at the absorption tower outlet of Test Example 1 was increased to 1.5 times the standard. Further, the mist-accompanying out-of-system released absorbing liquid amount ratio discharged out of the system from the absorption tower outlet in Test Example 1 was greatly reduced to the standard 0.2.
  • the mist particle size ratio at the absorption tower outlet in Test Example 2 was increased to 1.8 times the standard.
  • the ratio of the mist-accompanying out-of-system released absorbent discharged from the absorption tower outlet of Test Example 2 to the outside of the system was less than the standard of 0.1, which was much smaller than that of Test Example 1.
  • the mist particle size ratio at the absorption tower outlet of Test Example 3 increased 3.7 times the standard. Further, the ratio of the amount of the mist-accompanying system release / release liquid discharged from the absorption tower outlet of Test Example 3 to the outside of the system was less than 0.1 of the standard, which was much smaller than that of Test Example 1.
  • FIG. 14 is a diagram showing the tendency of enlargement in the gas flow direction between the cooling section and the CO 2 absorption section for the SO 3 mist particle diameter in Test Example 1 corresponding to Example 1.
  • the mist whose mist particle size is enlarged in the cooling tower 70 ⁇ / b > A enters the CO 2 absorption tower 13, first, the particles are formed in the CO 2 absorption section 13 ⁇ / b > A along the height direction of the filling tank. The diameter further enlarges. Next, the enlarged mist was further enlarged in the preliminary washing unit 13B.
  • the reason why the mist particle size changes at the boundary between the cooling tower 70A and the CO 2 absorbing portion 13A and the boundary between the CO 2 absorbing portion 13A and the preliminary water washing portion 13B is due to temporary fluctuations in the mist composition. .
  • Test Example B In Table 2, the test was performed based on the case where the mist particle size was not adjusted in the water washing section of the CO 2 absorption tower in the conventional technology.
  • Test Example 4 is a case where the mist is enlarged in the preliminary water washing section corresponding to Example 4 and collected by the demister at the top of the tower.
  • Test Example 5 is a case where heating is performed when the mist is enlarged in the preliminary water washing section corresponding to Example 6, and is collected by a demister at the top of the tower.
  • Test Example 6 was heated when the mist was enlarged in the preliminary flushing section corresponding to Example 7, and a demister was installed between the preliminary flushing section and the main cleaning section, and at the top of the tower. It is a case where it collects by.
  • Table 2 The comparison results are shown in Table 2.
  • the mist particle size ratio at the outlet of the preliminary washing section in Test Example 4 increased 1.1 times the standard.
  • the ratio of the mist-accompanying system-released absorption liquid discharged from the absorption tower outlet of Test Example 4 to the outside of the system was significantly reduced to less than the standard 0.1.
  • the mist particle size ratio at the preliminary washing section outlet in Test Example 5 increased 1.1 times the standard.
  • the ratio of the amount of the mist-accompanying system release / release liquid discharged from the absorption tower outlet of Test Example 5 to the outside of the system was significantly reduced to 0.5 times the standard.
  • the mist particle size ratio at the preliminary washing section outlet in Test Example 6 increased 1.1 times the standard. Further, the mist-accompanying out-of-system released absorbing liquid amount ratio discharged out of the system from the outlet of the absorption tower in Test Example 6 was significantly reduced to less than the standard 0.1.
  • FIG. 15 is a diagram showing the tendency of enlargement in the gas flow direction between the cooling tower and the CO 2 absorbing portion for the SO 3 mist particle diameter in Test Example 4 corresponding to Example 4. As shown in FIG. 15, the same behavior was observed up to the CO 2 absorption part, but when entering the preliminary water washing part, the particle diameter increased along the height direction of the packed bed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

 ボイラ101からの排ガス11中の硫黄酸化物を除去する脱硫装置105と、脱硫装置105の後流側に設けられ、排ガス11のガス露点温度を調整する温度調整手段により、排ガス11を冷却又は加熱し、排ガス11中に含まれるSO3ミストの粒径を肥大化させ、排ガス温度を下げる冷却塔70Aと、前記排ガス11中のCO2をCO2吸収液に接触させて除去するCO2吸収塔13と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液12を再生する再生塔14とからなるCO2回収装置10と、を具備し、冷却部70aで排ガス11を冷却し、排ガス中のSO3ミストの肥大化を図る。

Description

排ガス処理システム及び方法
 本発明は、排ガス中のCO2を除去する排ガス処理システム及び方法に関する。
 近年、地球の温暖化現象の原因の一つとして、CO2による温室効果が指摘され、地球環境を守る上で国際的にもその対策が急務となってきた。CO2の発生源としては化石燃料を燃焼させるあらゆる人間の活動分野に及び、その排出抑制への要求が一層強まる傾向にある。これに伴い大量の化石燃料を使用する火力発電所などの動力発生設備を対象に、ボイラやガスタービン等、産業設備の燃焼排ガスをアミン系CO2吸収液と接触させ、燃焼排ガス中のCO2を除去・回収する方法および回収されたCO2を大気へ放出することなく貯蔵する排ガス処理システムが精力的に研究されている。
 前記のようなCO2吸収液を用い、燃焼排ガスからCO2を除去・回収する工程としては、CO2吸収塔(以下、単に「吸収塔」ともいう。)において燃焼排ガスとCO2吸収液とを接触させる工程と、CO2を吸収したCO2吸収液(以下、単に「吸収液」ともいう。)を吸収液再生塔(以下、単に「再生塔」ともいう。)において加熱し、CO2を放散させるとともにCO2吸収液を再生して再びCO2吸収塔に循環して再利用する工程とを有するCO2回収装置が提案されている(例えば、特許文献1を参照)。
 CO2吸収塔では、例えばアルカノールアミン等のアミン系CO2吸収液を用いて、交向流接触し、排ガス中のCO2は、化学反応(発熱反応)によりCO2吸収液に吸収され、CO2が除去された排ガスは系外に放出される。CO2を吸収したCO2吸収液はリッチ溶液とも呼称される。このリッチ溶液はポンプにより昇圧され、熱交換器において、再生塔でCO2が放散し再生した高温のCO2吸収液(リーン溶液)により、熱交換器において加熱され、再生塔に供給される。
特開平3-193116号公報
 しかしながら、排ガス処理システムにおいて、CO2回収装置のCO2を吸収するCO2吸収塔に導入される排ガス中に、CO2回収装置の吸収塔内で発生するミストの発生源であるミスト発生物質が含まれる場合、CO2吸収液がこのミスト発生物質に同伴されるため、系外へ飛散するCO2吸収液の量が増大する、という問題がある。
 このようなCO2吸収液の系外への飛散がある場合には、再生塔で再利用するCO2吸収液の大幅なロスにつながると共に、CO2吸収液を必要以上に補充することとなるので、系外へCO2吸収液が飛散することを抑制する必要がある。
 そこで、CO2吸収塔からのCO2吸収液の飛散を抑制した排ガス処理システムの確立が切望されている。
 本発明は、前記問題に鑑み、系外にCO2を除去した排ガスを排出する際に、CO2吸収液の同伴を大幅に低減すると共に、適正な排ガス処理を行うことができる排ガス処理システム及び方法を提供することを課題とする。
 上述した課題を解決するための本発明の第1の発明は、ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、前記脱硫装置の後流側に設けられ、排ガスのガス露点温度を調整する温度調整手段により、排ガスを冷却又は加熱し、排ガス中に含まれるSO3ミストの粒径を肥大化させ、排ガス温度を下げる冷却塔と、前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、を具備することを特徴とする排ガス処理システムにある。
 第2の発明は、第1の発明において、前記冷却塔の塔頂部近傍に、肥大化したミストを捕集するミスト捕集手段を有することを特徴とする排ガス処理システムにある。
 第3の発明は、第1又は2の発明において、前記温度調整手段が、冷却塔内を循環する冷却水を、排ガス導入温度よりも、-20℃以下に冷却する熱交換器を備えた冷却部であることを特徴とする排ガス処理システムにある。
 第4の発明は、第1又は2の発明において、前記温度調整手段が、冷却塔内を循環する循環水を、排ガス導入温度よりも、+10℃以上に加熱する加熱器を備えた加熱部と、前記加熱部のガス流れ後流側に設けられ、加熱された排ガスを、前記CO2吸収塔導入温度以下まで冷却する冷却部とからなることを特徴とする排ガス処理システムにある。
 第5の発明は、第1又は2の発明において、前記脱硫装置と冷却塔との間で、排ガス中に塩基性物質を導入する塩基性物質導入手段を有することを特徴とする排ガス処理システムにある。
 第6の発明は、第1又は2の発明において、前記冷却塔の循環水が、脱硫用吸収液であることを特徴とする排ガス処理システムにある。
 第7の発明は、ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、前記脱硫装置の後流側に設けられ、排ガス中に残存する硫黄酸化物を除去すると共に、ガス温度を下げる冷却塔と、前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、を具備してなり、前記CO2吸収塔が、CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収部と、前記CO2吸収部のガス流れ後流側に設けられ、洗浄水によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を前記洗浄水により回収する本水洗部と、前記本水洗部の液貯留部で回収されたCO2吸収液を含む洗浄水を前記本水洗部の頂部側から供給して循環する循環ラインと、前記CO2回収部と前記本水洗部との間に設けられる予備水洗部と、を具備し、前記本水洗部から、CO2吸収液を含む洗浄水の一部を抜き出すと共に、前記抜出した洗浄水を、前記予備水洗部側に供給し、前記CO2吸収部でCO2が吸収された排ガス中に同伴されるCO2吸収液を、該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させることを特徴とする排ガス処理システムにある。
 第8の発明は、第7の発明において、前記抜出した洗浄水を加熱する加熱器を有し、予備水洗部に加熱した洗浄水を供給することを特徴とする排ガス処理システムにある。
 第9の発明は、第7又は8の発明において、前記予備水洗部と前記本水洗部との間に設けられ、ミストを捕集するミスト捕集手段と、を具備してなることを特徴とする排ガス処理システムにある。
 第10の発明は、ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、脱硫装置の後流側に設けられ、排ガス中に含まれるSO3ミストを、排ガスのガス露点温度を調整する温度調整手段によりその粒径を肥大化させ、排ガス温度を下げる冷却塔と、前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、を具備すると共に、前記CO2吸収塔が、CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収部と、前記CO2吸収部のガス流れ後流側に設けられ、洗浄水によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を前記洗浄水により回収する本水洗部と、前記本水洗部の液貯留部で回収されたCO2吸収液を含む洗浄水を前記本水洗部の頂部側から供給して循環する循環ラインと、前記CO2吸収部と前記本水洗部との間に設けられる予備水洗部と、を具備し、前記本水洗部から、CO2吸収液を含む洗浄水の一部を抜き出すと共に、前記抜出した洗浄水を、前記予備水洗部側に供給し、前記CO2吸収部でCO2が吸収された排ガス中に同伴されるCO2吸収液を、該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させることを特徴とする排ガス処理システムにある。
 第11の発明は、第10の発明において、前記抜出した洗浄水を加熱する加熱器を有し、予備水洗部に加熱した洗浄水を供給することを特徴とする排ガス処理システムにある。
 第12の発明は、第10又は11の発明において、前記予備水洗部と本水洗部との間に設けられ、ミストを捕集するミスト捕集手段と、を具備してなることを特徴とする排ガス処理システムにある。
 第13の発明は、第10の発明において、前記冷却塔の塔頂部近傍に、肥大化したミストを捕集するミスト捕集手段を有することを特徴とする排ガス処理システムにあるにある。
 第14の発明は、第10又は13の発明において、前記温度調整手段が、冷却塔内を循環する冷却水を、排ガス導入温度よりも、-20℃以下に冷却する熱交換器を備えた冷却手段であることを特徴とする排ガス処理システムにある。
 第15の発明は、第10又は13の発明において、前記温度調整手段が、冷却塔内を循環する循環水を、排ガス導入温度よりも、+10℃以上に加熱する加熱器を備えた加熱部と、前記加熱部の後流側に設けられ、加熱された排ガスを、前記CO2吸収塔導入温度以下まで冷却する冷却部とからなることを特徴とする排ガス処理システムにある。
 第16の発明は、第10又は13の発明において、前記脱硫装置と冷却塔との間で、排ガス中に塩基性物質を導入する塩基性物質導入手段を有することを特徴とする排ガス処理システムにある。
 第17の発明は、第10又は13の発明において、前記冷却塔の循環水が、脱硫用吸収液であることを特徴とする排ガス処理システムにある。
 第18の発明は、ボイラからの排ガス中の硫黄酸化物を脱硫装置により除去する脱硫工程と、排ガスのガス露点温度を調整する温度調整手段により、排ガスを冷却又は加熱し、排ガス中に含まれるSO3ミストの粒径を肥大化させ、排ガス温度を下げる冷却工程と、前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収工程と、を有することを特徴とする排ガス処理方法にある。
 第19の発明は、ボイラからの排ガス中の硫黄酸化物を除去する脱硫工程と、前記脱硫装置の後流側に設けられ、排ガス中に残存する硫黄酸化物を除去すると共に、ガス温度を下げる冷却工程と、前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収工程と、を有してなり、前記CO2吸収塔において、CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収工程と、前記CO2吸収部のガス流れ後流側に設けられ、洗浄水によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を前記洗浄水により回収する本水洗工程と、前記CO2吸収工程と前記本水洗工程との間に設けられる予備水洗工程と、を有し、前記本水洗工程で用いたCO2吸収液を含む洗浄水の一部を抜き出すと共に、前記抜出した洗浄水を、前記予備水洗部側に供給し、前記CO2吸収部でCO2が吸収された排ガス中に同伴されるCO2吸収液を該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させることを特徴とする排ガス処理方法にある。
 本発明にかかる発明によれば、ガス露点温度を調整する温度調整手段により排ガス中に含まれるSO3の粒径を肥大化させているので、肥大化したSO3ミストを吸収塔の導入することができ、肥大化したミストをミスト捕集手段で捕集することができる。この結果、SO3ミストに起因する吸収塔から排出する浄化ガスの白煙の発生が抑制されると共に、吸収液の同伴を抑制することができる。
図1は、実施例1に係る排ガス処理システムの概略図である。 図2は、実施例2に係る排ガス処理システムの概略図である。 図3は、実施例3に係る排ガス処理システムの概略図である。 図4は、実施例4に係る排ガス処理システムのCO2回収装置の概略図である。 図5は、実施例5に係る排ガス処理システムのCO2回収装置の概略図である。 図6は、実施例6に係る排ガス処理システムのCO2回収装置の概略図である。 図7は、実施例7に係る排ガス処理システムのCO2回収装置の概略図である。 図8は、実施例8に係る排ガス処理システムのCO2回収装置の概略図である。 図9は、冷却塔内ガス露点と冷却塔入口ガス露点との最大偏差(℃)と、冷却塔内ガス中ミスト粒径比(出口/入口)との関係を示した図である。 図10は、デミスタを用いた場合のミストの粒子径(μm)と、ミスト捕集効率(%)との関係を示す図である。 図11は、冷却による排ガス中のSO3ミストの挙動の概念図である。 図12は、加熱による排ガス中のSO3ミストの挙動の概念図である。 図13は、CO2吸収部と予備水洗部とにおける排ガス中のSO3ミストの挙動の概念図である。 図14は、実施例1におけるSO3ミスト粒径について、冷却塔とCO2吸収部とのガス流れ方向における肥大化の傾向を示す図である。 図15は、実施例4におけるSO3ミスト粒径について、冷却塔とCO2吸収部とのガス流れ方向における肥大化の傾向を示す図である。
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の実施例により本発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施例で開示した構成要素は適宜組み合わせることが可能である。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図1は、実施例1に係る排ガス処理システムの概略図である。
 図1に示すように、本実施例に係る排ガス処理システム100Aは、ボイラ101からの排ガス11中の硫黄酸化物を除去する脱硫装置105と、脱硫装置105の後流側に設けられ、排ガス11のガス露点温度を調整する温度調整手段により、排ガス11を冷却又は加熱し、排ガス11中に含まれるSO3ミストの粒径を肥大化させ、排ガス温度を下げる冷却塔70Aと、前記排ガス11中のCO2をCO2吸収液に接触させて除去するCO2吸収塔(吸収塔)13と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔14とからなるCO2回収装置10と、を具備する。本実施例では、ボイラ出口に脱硝装置103と、排ガス11と空気111とを熱交換するエアヒータ(AH)と、除塵手段である電気集塵機104とを有している。
 図1中、符号106は煙突、107は脱硫装置105から冷却塔70Aに排ガス11を導入する排ガス導入ライン、108は冷却塔70Aから冷却排ガス11Aを導入する排ガス導入ラインを図示する。
 排ガス処理システム100Aにおいて、ボイラ101からの排ガス11は、脱硝装置103で排ガス11中の窒素酸化物(NOx)を除去した後、まずエアヒータAHに導かれてボイラ101に供給される空気111を加熱する。その後排ガス11は、例えば乾式の電気集塵機104に導入されて煤塵104aが除去される。なお、除去された煤塵104aは、灰処理手段10bで処理される。
 次に、電気集塵機104で煤塵が除去された排ガス11は、脱硫装置105で排ガス11中の硫黄酸化物を除去し、除去された硫黄酸化物は石灰石(CaCO3)105aと酸化用空気105bを供給し、石灰・石膏法により石膏105cとすると共に、脱硫排水105dは別途処理される。
 ここで、本実施例に係る冷却塔70Aのガス温度調整手段は、循環ポンプ72と熱交換器である冷却器73と、これらを介装する循環ライン74と、冷却水71がノズル74aを介して流下(破線)して、上昇する排ガス11を冷却する冷却部70aとから構成されている。そして、冷却器73で冷却された冷却水71を冷却塔70A内の冷却部70aを循環させることで、排ガス11を冷却するものである。なお、余剰水は別途外部に排出される。
 そして、冷却器73の冷却温度を所望温度に調整して冷却水71の温度を低下させ、この冷却水71と冷却塔70Aの下部側から導入される排ガス11とを対向接触させて所定温度以下(排ガス導入温度(T0)よりも、-20℃以下の温度(T1)までに冷却する)まで冷却して、冷却排ガス11Aとしている。
 ここで、本発明では、脱硫装置105で脱硫されて導入する排ガス11を、冷却塔70A内を流下する冷却水71で排ガス11の温度を、その導入温度(例えばT0=50℃)よりも-20℃以下の温度(例えばT1=30℃)まで冷却している。
 この冷却によりガスの露点が変化し、排ガス中に含まれる水蒸気が凝縮し、その凝縮した水蒸気がSO3ミスト内に取り込まれる。この結果、SO3ミストが肥大化することとなる。
 この肥大化したSO3ミストは、冷却塔70Aの出口近傍に設けたミスト捕集手段である例えばデミスタ80を用いて、冷却排ガス11A中の肥大化したSO3ミストを捕捉するようにしている。
 この結果、冷却塔70Aの頂部から放出される冷却排ガス11A中のSO3ミストの放出量が低減されることとなる。すなわち、本発明のような温度調整手段により冷却塔に導入する排ガス11の冷却温度をその導入温度よりも-20℃以下と低下しない従来技術と較べて、冷却排ガス11A中に含まれるミストの個数比が大幅に小さくなる。
 この結果、CO2吸収塔13に導入するSO3ミストの個数が低減するので、その分CO2吸収塔13内でのSO3ミストの肥大化が助長される。これにより、CO2吸収塔13の出口近傍に設けた、デミスタ80で肥大化(例えば1.0μm程度)したSO3ミストが捕集されることとなる。
 図10は、デミスタを用いた場合のミストの粒子径(μm)と、ミスト捕集効率(%)との関係を示す図である。
 図10によれば、ミストの粒子径が0.65μm以上となった場合には、90%以上が捕集されることが確認される。
 なお、ミスト粒径の計測は、煤塵の計測(JIS K0302)に準じておこなった。
 以上より、冷却塔70Aの温度調整手段により排ガス温度をその導入温度よりも低温側としてガス露点温度を制御するので、SO3ミストの粒径の肥大化を図り、冷却塔70Aの出口近傍に設けたデミスタ80で肥大化したミストを捕集し、CO2回収装置10のCO2吸収塔13へのSO3ミストの導入量の低減を図ることとなる。
 なお、本実施例では、デミスタ80を設置した場合について説明しているが、本発明はこれに限定されず、デミスタ80を設置しないようにしてもよい。
 このデミスタ80を設置しない場合には、肥大化したSO3ミストがCO2吸収塔13内に導入される。この結果、従来よりも肥大化したSO3ミストの割合が多くなり、この肥大化したSO3ミストがさらに肥大化されるので、吸収塔13の出口近傍に設けたデミスタ80において、捕集されることとなる。
 以上説明したように、本発明によれば、冷却塔において、SO3ミストを捕集しているので、吸収塔13へのミスト導入量が大幅に低下する。この結果、SO3ミストに起因する吸収塔13から排出する浄化ガス11Bの白煙の発生が抑制されると共に、吸収液12の同伴を抑制することとなる。
 この結果、吸収液12のロスが極めて少ない排ガス処理システムを提供することができる。
 ここで、本実施例では吸収液12として、アミン系吸収液を例示しているが、本発明の吸収液はアミン系吸収液に限定されるものではない。吸収液としてアミン系吸収液以外には、例えばアンモニア吸収液、アミノ酸系吸収液、イオン性液体吸収液、炭酸カリウムとアミンとからなる熱炭酸カリ吸収液等を例示することができる。
 なお、図1中、符号61は吸収液12を再生するためのリボイラ、62はリボイラに供給する飽和水蒸気、63は水蒸気凝縮水、43は分離ドラム、45は回収されるCO2ガス(回収CO2)、52はCO2を吸収した吸収液(リッチ溶液12A)と再生したCO2吸収液(リーン溶液12B)とを熱交換させる熱交換器を各々図示する。
 次に、冷却塔70Aでの排ガス11の温度を低下させる温度調整手段とその温度調整によって、排ガス11中に含まれるSO3ミストが肥大化するメカニズムについて、更に説明する。
 図9は、冷却塔内ガス露点と冷却塔入口ガス露点との最大偏差(℃)と、冷却塔内ガス中ミスト粒径比(出口/入口)との関係を示した図である。
 図9では、冷却塔に導入する排ガス11のガス温度を基準としている。
 この基準の導入ガス温度(T0)より、-20℃以下までガス温度(T1)を低下させることで、ミスト粒径比が増大し、ミストの肥大化を増大させることとなる。
 本発明では、排ガス導入温度(基準)よりも、-20℃以下に冷却する熱交換器を備えた冷却手段としている。
 図11は、冷却による排ガス中のSO3ミストの挙動の概念図である。
 図11において、先ず冷却塔前流では、排ガス11中において、SO3ガスと水蒸気から酸露点以下のガス温度条件で、SO3ミスト202が発生し、排ガス11中にはある程度SO3ミスト202が含まれる。
 この状態で、冷却塔70A内に排ガス11が導入ガス温度(T0)で導入され、排ガス11が所定温度以下まで冷却される。すなわち、図11に示すように、冷却塔70A内に循環される冷却水である流下水200の冷却により、冷却塔70A内のガスの露点が入口ガスの露点に較べて低くなると(-20℃以下)、ガス中の水蒸気201が流下水200及びSO3ミスト202に凝縮する。
 この結果、SO3ミスト202内に凝縮した水蒸気201が取り込まれるので、これにより冷却された排ガス中のSO3ミスト202の粒径d1が、入口部における排ガス中のSO3ミストの粒径d0よりも増大し、排ガス11中のSO3ミスト202が肥大化することとなる。
 本発明では、冷却塔70A内を循環する媒体を冷却水としているが、本発明は、冷却水に限定されず、この冷却水に脱硫機能をもたせるようにした脱硫用吸収液を用い、高度深度脱硫を図るようにしてもよい。
 すなわち、脱硫装置105の後流側にさらに脱硫塔としての機能を冷却塔70Aにもたせるようにし、脱硫装置105で所定値以下に低減した残留する硫黄酸化物をさらに除去することができる。これにより、CO2吸収液への硫黄酸化物の混入量低減や排ガス規制が厳しい場合にも対応することができる。
 ここで脱硫用吸収液としては、例えば水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム等を挙げることができるが、脱硫作用があればこれらに限定されるものではない。
 本実施例の排ガス処理方法は、図1に示すようにボイラ101からの排ガス11中の硫黄酸化物を脱硫装置105により除去する脱硫工程と、脱硫後の排ガス11中に対して、ガス露点温度を調整する温度調整手段により、その導入温度よりも-20℃以下まで冷却し、排ガス11中に含まれるSO3ミストの粒径を肥大化させ、ガス温度を下げる冷却工程と、冷却工程で冷却された冷却排ガス11A中のCO2をCO2吸収液12に接触させて除去する吸収塔13と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔14とからなるCO2回収工程と、を有するものである。
 この結果、冷却工程において、排ガス11を、冷却塔70A内を流下する冷却水71で排ガス11の温度を、その導入温度(例えばT0=50℃)よりも-20℃以下の温度(例えばT1=30℃)まで冷却している。
 この冷却によりガスの露点が変化し、排ガス中に含まれる水蒸気が凝縮し、その凝縮した水蒸気がSO3ミスト内に取り込まれる。この結果、SO3ミストが肥大化することとなる。
 この肥大化したミストはデミスタ80により捕集される。
 以上説明したように、本発明によれば、冷却工程において、SO3ミストを捕集しているので、吸収塔13を用いてのCO2吸収工程でのミスト導入量が大幅に低下する。この結果、SO3ミストに起因する吸収塔13から排出する浄化ガス11Bの白煙の発生が抑制されると共に、吸収液12の同伴を抑制することとなる。
 この結果、吸収液12のロスが極めて少ない排ガス処理方法を提供することができる。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図2は、実施例2に係る排ガス処理システムの概略図である。なお、実施例1の構成部材と重複する部材については、同一符号を付してその説明は省略する。
 図2に示すように、本実施例に係る排ガス処理システム100Bは、実施例1と同様に脱硫装置105の後流側に設置する冷却塔70Bを備えている。
 この冷却塔70Bは、排ガス11中に含まれるSO3ミストを、ガス露点温度を調整する温度調整手段によりその粒径を肥大化させている。
 ここで、本実施例では、温度調整手段が、冷却塔70B内を循環する循環水を、排ガス導入温度よりも、+10℃以上に加熱する加熱器76を備えた加熱部70bと、前記加熱部70bのガス流れ後流側に設けられ、加熱された排ガスを、吸収塔13の導入温度以下まで冷却する冷却部70aとから構成されている。
 なお、冷却部70aの循環ライン74から余剰となった冷却水71の一部はライン79を介して、循環ライン75に供給されている。なお、余剰水は別途外部に排出される。
 加熱部70bでは、循環ライン75を循環ポンプ78により循環する水を加熱する加熱器76により所定温度の加熱水77としている。
 ここで、加熱器76の使用熱源としては、プラント内の廃熱蒸気、CO2回収装置10内の余熱等を用いることができる。
 そして、加熱部70bにおいては、この加熱水77と導入した排ガス11とを接触させて排ガス11を加熱すると共に、この加熱部70bのガス流れ後流側に設けられ、加熱された排ガスを、後段側に設置される吸収塔13の導入に適した温度まで冷却部70aで冷却するようにしている。
 ここで、本発明では、脱硫装置105で脱硫されて導入する排ガス11を、冷却塔70Bの加熱部70b内を流下する加熱水77で排ガス11の温度を、その導入温度(例えばT0=50℃)よりも+10℃以上の温度(例えばT2=60℃)まで加熱している。
 この加熱により、流下する加熱水77からの水分蒸発により、ガス中の水蒸気が高まり、この結果、排ガス中のSO3ミストへ水蒸気が凝縮し、取り込まれる(すなわちSO3ミストが水蒸気で希釈される)。この結果、SO3ミストが肥大化(例えば1.0μm程度)することとなる。
 この肥大化したSO3ミストを含む排ガス11は冷却部70aで所定温度まで冷却される。例えば、排ガス入口温度(例えばT0=50℃)よりも、例えば-10℃低い温度(T3=40℃)まで冷却部70aで冷却する。その後、冷却塔70Bの出口近傍に設けたミスト捕集手段である例えばデミスタ80により排ガス中の肥大化したSO3ミストが捕捉される。この結果、冷却塔70Bの頂部から放出される冷却排ガス11A中のSO3ミストの放出量が低減されることとなる。すなわち、本発明のような温度調整手段により冷却塔70Bに導入する排ガス11の温度を、その導入温度より+10℃以上としない場合に較べて、冷却排ガス11A中に含まれるミストの個数比が大幅に小さくなる。
 この結果、CO2吸収塔13に導入するSO3ミストの個数が低減するので、その分CO2吸収塔13内でのSO3ミストの肥大化が助長される。これにより、CO2吸収塔13の出口近傍に設けた、デミスタ80で肥大化したSO3ミストが捕集されることとなる。
 以上より、冷却塔70Bの温度調整手段により排ガス温度をその導入温度よりも高温側としてガス露点温度を制御するので、SO3ミストの粒径の肥大化を図り、冷却塔70Bの出口近傍に設けたデミスタ80で肥大化したミストを捕集し、CO2回収装置10へのSO3ミストの導入量の低減を図ることとなる。
 また、本実施例では図示していないが、加熱部70bと冷却部70aとの間に、ミスト捕集手段であるデミスタ80を設け、肥大化したSO3ミストを捕集し、その後排ガスを所定温度となるまで冷却するようにしてもよい。すなわち、排ガス11を加熱して排ガス中のSO3ミストを肥大化させ、肥大化したSO3ミストをデミスタ80で捕集した後、SO3ミストが除去された排ガスを、排ガス11の冷却塔70Bの入口の導入ガス温度(T0=50℃)よりも例えば-10℃程度の温度(T3=40℃)まで冷却し、吸収塔13の導入温度とするようにしてもよい。
 次に、冷却塔70Bでの排ガス11の温度を上昇させる温度調整手段とその温度調整によって、排ガス11中に含まれるSO3ミストが肥大化するメカニズムについて、更に説明する。
 図9は、冷却塔内ガス露点と冷却塔入口ガス露点との最大偏差(℃)と、冷却塔内ガス中ミスト粒径比(出口/入口)との関係を示した図である。
 図9では、冷却塔に導入する排ガス11のガス温度を基準としている。
 この基準のガス温度より、+10℃以上加熱させることで、ミスト粒径比が増大し、ミストの肥大化を増大させることとなる。
 実施例1では、排ガスを積極的に冷却させることでSO3ミストの肥大化を図っていたが、本実施例では、排ガス11を積極的に加熱させることでSO3ミストの肥大化を図っている。
 本発明では、排ガス導入温度(基準)よりも、加熱手段により+10℃以上に加熱するようにしている。
 図12は、加熱による排ガス中のSO3ミストの挙動の概念図である。
 図12において、冷却塔前流においては、SO3ガスと水蒸気から酸露点以下のガス温度条件において、SO3ミスト202が発生し、排ガス11中にはある程度SO3ミスト202が含まれている。
 この状態で、冷却塔70B内に導入され、加熱部70bにおいて排ガス11が所定温度以上まで加熱されると、図12に示すように、冷却塔70Bの加熱部70b内で循環される加熱水77である流下水200により、冷却塔70B内の加熱部70bにおけるガスの露点が入口ガスの露点に較べて高くなる(+10℃以上)。この結果、加熱された流下水200からの水蒸気の蒸散が高まる。この結果、SO3ミスト202内に凝縮した水蒸気201が取り込まれる(すなわちSO3ミストが水蒸気で希釈される)。この結果、SO3ミストが肥大化することとなる。これによりSO3ミスト202の粒径d2が、入口部におけるSO3ミスト202の粒径d0よりも増大し、SO3ミスト202が肥大化することとなる。
 この肥大化したミストは実施例1と同様にデミスタ80により捕集される。
 以上説明したように、本発明によれば、冷却塔70Bにおいて、SO3ミストを捕集しているので、吸収塔へのミスト導入量が大幅に低下する。この結果、SO3ミストに起因する吸収塔13から排出する浄化ガス11Bの白煙の発生が抑制されると共に、吸収液12の同伴を抑制することとなる。
 この結果、吸収液12のロスが極めて少ない排ガス処理システムを提供することができる。
 本実施例の排ガス処理方法は、図2に示すようにボイラ101からの排ガス11中の硫黄酸化物を脱硫装置105により除去する脱硫工程と、脱硫後の排ガス11中に対して、ガス露点温度を調整する温度調整手段により、その導入温度よりも+10以上まで加熱し、排ガス中に含まれるSO3ミストの粒径を肥大化させ、ガス温度を上げる加熱工程と、この加熱された排ガスを冷却する冷却工程と、冷却工程で冷却された冷却排ガス11A中のCO2をCO2吸収液12に接触させて除去する吸収塔13と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔14とからなるCO2回収工程と、を有するものである。
 この結果、冷却工程の前段側において、冷却塔70B内を流下する加熱水77で排ガス11の温度を、その導入温度(例えばT1=50℃)よりも+10℃以上の温度(例えばT2=60℃)まで加熱している。
 この加熱によりガスの露点が変化し、流下液からの水分蒸発により、その量が増加した排ガス中に含まれる水蒸気が凝縮し、その凝縮した水蒸気がSO3ミスト内に取り込まれる。この結果、SO3ミストが肥大化することとなる。その後、加熱された排ガスを、吸収塔13の導入温度以下まで冷却部70aで冷却するようにしている。
 この肥大化したミストは実施例1と同様にデミスタ80により捕集される。
 以上説明したように、本発明によれば、冷却工程において、SO3ミストを捕集しているので、吸収塔13を用いてのCO2吸収工程でのミスト導入量が大幅に低下する。この結果、SO3ミストに起因する吸収塔13から排出する浄化ガス11Bの白煙の発生が抑制されると共に、吸収液12の同伴を抑制することとなる。
 この結果、吸収液12のロスが極めて少ない排ガス処理方法を提供することができる。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図3は、実施例3に係る排ガス処理システムの概略図である。なお、実施例1の構成部材と重複する部材については、同一符号を付してその説明は省略する。
 図3に示すように、本実施例に係る排ガス処理システム100Cは、実施例1の排ガス処理システム100Aにおいて、さらに脱硫装置105と冷却塔70Aとの間において、排ガス11中に塩基性物質であるアンモニア(NH3)を供給する塩基性物質導入手段を備えている。
 ここで、本実施例では、冷却水の冷却は従来と同様の導入温度から-10℃程度の冷却としているが、実施例1と同様に-20℃以下とするようにしてもよい。
 このアンモニアの導入により、冷却塔70Aに入る前において、排ガス11中のSO3ミスト中の塩濃度を高めている。この塩濃度が高まった結果、冷却塔70Aの冷却部70aにおいて、塩濃度を希釈しようと水蒸気が取り込まれ、ミストの肥大化を図ることができる。
 本実施例では、塩基性物質としてアンモニアを用いたが、本発明はこれに限定されず、例えば揮発性アミン等の低級アミンを用いるようにしてもよい。
 なお、本実施例での冷却水の排水は、アンモニアや低級アミンを含むので、排水規制がある場合には、別途排水処理手段により無害化処理した後、放流することとなる。
 この肥大化したミストは実施例1と同様にデミスタ80により捕集される。
 以上説明したように、本発明によれば、冷却塔70Aの前流側において、排ガス口に塩基性物質を導入しているので、SO3ミストを捕集でき、吸収塔13へのミスト導入量が大幅に低下する。この結果、SO3ミストに起因する吸収塔13から排出する浄化ガス11Bの白煙の発生が抑制されると共に、吸収液12の同伴を抑制することとなる。
 この結果、吸収液12のロスが極めて少ない排ガス処理システムを提供することができる。
 また、冷却部70aの排ガス流れ後流側に、脱硫用吸収液を循環させる脱硫装置を設けるようにしてもよい。
 また、実施例1又は実施例2の温度調整手段と組み合わせるようにしてもよい。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図4は、実施例4に係る排ガス処理システムのCO2回収装置の概略図である。なお、実施例1の構成部材と重複する部材については、同一符号を付してその説明は省略する。
 図4に示すように、本実施例に係る排ガス処理システムのCO2回収装置10Aは、ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、脱硫装置の後流側に設けられ、排ガス中に残存する硫黄酸化物を除去すると共に、ガス温度を下げる冷却塔70と、前記排ガス中のCO2をCO2吸収液に接触させて除去する吸収塔13と、CO2吸収液12からCO2を放出してCO2を回収すると共に、CO2吸収液12を再生する再生塔14とからなるCO2回収装置10Aと、を具備してなるものである。
 そして、本実施例では、前記CO2吸収塔13は、CO2吸収液12によりCO2含有排ガス中のCO2を吸収するCO2吸収部13Aと、前記CO2吸収部13Aのガス流れ後流側に設けられ、洗浄水20によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を前記洗浄水20により回収する本水洗部13Cと、前記本水洗部13Cの液貯留部21で回収されたCO2吸収液を含む洗浄水20を前記本水洗部13Cの頂部側から供給して循環する循環ラインL1と、前記CO2吸収部13Aと本水洗部13Cとの間に設けられる予備水洗部13Bと、を具備している。そして、前記本水洗部13Cから、CO2吸収液を含む洗浄水20の一部20aを抜出しラインL2を介して抜き出すと共に、前記抜出した洗浄水を、前記予備水洗部13B側に供給し、前記CO2吸収部でCO2が吸収された排ガス中に同伴されるCO2吸収液を、該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させ、予備洗浄した予備洗浄水を、前記CO2吸収部13A側に直接流下させるようにしている。
 なお、循環ラインL1には冷却部22を設け、所定の温度(例えば40℃以下)まで冷却している。また、洗浄水20の抜出し量は、調整弁24により調整している。
 本実施例では、循環ラインL1から、CO2吸収液を含む洗浄水20の一部20aを抜き出すようにしているが、本発明はこれに限定されず、循環ラインL1から、CO2吸収液を含む洗浄水20の一部20aを貯留する貯留部を別途設け、この貯留部から抜き出すようにしてもよい。 
 次に、CO2吸収塔13での排ガス中に含まれるSO3ミスト202が肥大化するメカニズムについて説明する。
 図13は、CO2吸収部と予備水洗部とにおける排ガス中のSO3ミストの挙動の概念図である。
 図13において、CO2吸収塔13入口においては、冷却塔前流におけるSO3ガスと水蒸気から酸露点以下のガス温度条件において、SO3ミスト202が発生し、冷却塔を通過した排ガス11中にはある程度SO3ミスト202が含まれている。
 先ず、CO2吸収部13Aでは、吸収液を含まないSO3ミストは、流下吸収液203の組成に近づくように挙動し、流下吸収液203から蒸発したガス中の蒸気状吸収液203aが、SO3ミスト202内に吸収される。これと共に、流下した吸収液から蒸発したガス状の水蒸気201もSO3ミストに凝縮し、この結果SO3ミスト202が肥大化することとなる。これによりSO3ミスト202の粒径d3が、CO2吸収塔13の入口部におけるSO3ミスト202の粒径d1(d2)よりも増大し、SO3ミスト202が肥大化することとなる。
 次に、予備水洗部13Bでは、比較的高い濃度の吸収液を含むSO3ミストは、低濃度吸収液が含まれる流下洗浄液205の組成に近づくように挙動し、吸収液がSO3ミストから排ガス中に放散されると共に、物質移動が速いガス中水蒸気もSO3ミストに凝縮し、SO3ミスト202内に水蒸気201が取り込まれる(すなわちSO3ミストが水蒸気で希釈される)。この結果、SO3ミストが肥大化することとなる。これによりSO3ミスト202の粒径d4が、CO2吸収部13Aを出た後のSO3ミスト202の粒径d3よりも増大し、SO3ミスト202が肥大化することとなる。
 この肥大化したミストは、CO2吸収部13の塔頂部近傍に設けたデミスタ80により捕集される。
 本実施例では、本水洗部13Cの塔頂部13a側に排ガス中のCO2吸収液を除去する仕上水洗部13Dを設置して、洗浄水44aにより洗浄し、その後デミスタ80を通過し、浄化ガス11Bとして、塔頂部13aから外部に放出されている。
 CO2吸収塔13内に導入された冷却ガス11Aは、CO2吸収部13Aで吸収液12と接触して、排ガス中のCO2が除去され、予備水洗部13Bに排ガス11A1として導入される。
 この予備水洗部13Bでは、ミスト粒径の肥大化がなされ、排ガス中に肥大化したミストが成長する。
 このSO3ミストが肥大化した排ガスは、本水洗部13C側に排ガス11A2として、チムニートレイ16を介して、導入される。ここで、排ガス中の洗浄を行い同伴する吸収液12を除去する。
 この洗浄された排ガスは、仕上水洗部13Dに排ガス11A3として導入される。ここで、排ガス中の仕上げ洗浄を行い、残存する吸収液12をさらに除去する。
 そして、仕上洗浄部13Dを通過した排ガスは、デミスタ80で排ガス中の煤塵と肥大化したSO3ミストを捕集し、浄化された浄化ガス11Bが塔頂部13aから外部に放出される。
 以上より、本実施例によれば、CO2吸収塔13内において、SO3ミストを肥大化させて、デミスタ80により捕集しているので、SO3ミストに起因する吸収塔13から排出する浄化ガス11Bの白煙の発生が抑制されると共に、吸収液12の同伴を抑制することとなる。
 この結果、吸収液12のロスが極めて少ない排ガス処理システムを提供することができる。
 CO2を吸収したリッチ溶液12Aは、リッチ溶液供給管50に介装されたリッチソルベントポンプ51により昇圧され、リッチ・リーン溶液熱交換器52において、吸収液再生塔14で再生されたリーン溶液12Bにより加熱され、吸収液再生塔14の頂部14a側に供給される。
 前記再生塔14の塔頂部側14aから塔内部に放出されたリッチ溶液12Aは、その塔底部14bからの水蒸気による加熱により、大部分のCO2を放出する。再生塔14内で一部または大部分のCO2を放出したCO2吸収液12は「セミリーン溶液」と呼称される。この図示しないセミリーン溶液は、再生塔14の搭底部14bに流下する頃には、ほぼ全てのCO2が除去されたリーン溶液12Bとなる。このリーン溶液12Bは循環ラインL20に介装されたリボイラ61で飽和水蒸気62により加熱される。加熱後の飽和水蒸気62は水蒸気凝縮水63となる。
 一方、再生塔14の塔頂部14aからは塔内においてリッチ溶液12A及び図示しないセミリーン溶液から逸散された水蒸気を伴ったCO2ガス41が放出される。
 そして、水蒸気を伴ったCO2ガス41がガス排出ラインL21により導出され、ガス排出ラインL21に介装されたコンデンサ42により水蒸気が凝縮され、分離ドラム43にて凝縮水44が分離され、CO2ガス45が系外に放出されて、別途圧縮回収等の後処理がなされる。
 分離ドラム43にて分離された凝縮水44は凝縮水ラインL23に介装された凝縮水循環ポンプ46にて吸収液再生塔14の上部に、冷却部25により冷却されて供給される。
 なお、図示していないが、一部の凝縮水44はCO2吸収液12を含む洗浄水20の循環ラインL1に供給され、CO2除去排ガスに同伴するCO2吸収液12の吸収に用いるようにしてもよい。
 再生されたCO2吸収液(リーン溶液12B)12はリーン溶液供給管53を介してリーン溶液ポンプ54によりCO2吸収塔13側に送られ、CO2吸収液12として循環利用される。この際、リーン溶液12Bは、冷却部55により所定の温度まで冷却して、CO2吸収部13A内にノズル56を介して、供給されている。
 よって、CO2吸収液12は、CO2吸収塔13と吸収液再生塔14とを循環する閉鎖経路を形成し、CO2吸収塔13のCO2吸収部13Aで再利用される。なお、必要に応じて図示しない補給ラインによりCO2吸収液12は供給され、また必要に応じて図示しないリクレーマによりCO2吸収液を再生するようにしている。
 本実施例の排ガス処理方法は、図4に示すように、前記CO2吸収塔13において、CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収部13Aを用いたCO2吸収工程と、前記CO2吸収部のガス流れ後流側に設けられ、循環する洗浄水20によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を前記洗浄水20により回収する本水洗部13Cを用いた本水洗工程と、前記CO2吸収工程と本水洗工程との間に設けられる予備水洗部13Bを用いた予備水洗工程と、を有している。
 そして、前記本水洗工程で用いたCO2吸収液を含む循環洗浄水20の一部20aを抜き出し、前記抜出した洗浄水を、前記予備水洗部13B側に供給し、前記CO2吸収部13AでCO2が吸収された排ガス中に同伴されるCO2吸収液を該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させ、予備洗浄した予備洗浄水を、前記CO2吸収部側に直接流下させている。
 この肥大化したミストは塔頂部13a側のデミスタ80により捕集される。
 以上説明したように、本発明によれば、予備水洗工程において、SO3ミストの粒径を増大させてミストを肥大化させているので、デミスタ80でミストの捕集が確実になされ、SO3ミストに起因する吸収塔13から排出する浄化ガス11Bの白煙の発生が抑制されると共に、吸収液12の同伴を抑制することとなる。
 この結果、吸収液12のロスが極めて少ない排ガス処理方法を提供することができる。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図5は、実施例5に係る排ガス処理システムのCO2回収装置の概略図である。なお、実施例1及び実施例4の構成部材と重複する部材については、同一符号を付してその説明は省略する。
 図5に示すように、本実施例に係る排ガス処理システムのCO2回収装置10Bは、実施例4のCO2回収装置10Aにおいて、予備水洗部13Bと本水洗部13Cとの間にミスト捕集手段であるデミスタ80を設けている。
 実施例4で説明したように、予備水洗部13Bにおいて、排ガス中に含まれるSO3ミストの肥大化がなされているので、この肥大化したSO3ミストを塔頂部13a側に設置したデミスタ80で捕集する以前に、中間部に別途設置したデミスタ80で捕集するようにしている。
 この結果、肥大化したSO3ミストが捕集されるので、本水洗部13Cに導入するSO3ミストの個数が低減する。この結果、本水洗部13CでのSO3ミストの肥大化が助長される。これにより、CO2吸収塔13の出口近傍に設けた、デミスタ80で肥大化(例えば1.0μm程度)したSO3ミストが捕集される量が増大することとなる。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図6は、実施例6に係る排ガス処理システムのCO2回収装置の概略図である。なお、実施例1及び実施例4の構成部材と重複する部材については、同一符号を付してその説明は省略する。
 図6に示すように、本実施例に係る排ガス処理システムのCO2回収装置10Cは、実施例4のCO2回収装置10Aにおいて、抜出しラインL2を介して抜き出した洗浄水20の一部を、予備水洗部13Bを洗浄する循環ラインL3に導入している。そして、この導入した洗浄水を加熱する加熱器76を設けている。
 そして、抜出した洗浄水20aを加熱器76で加熱し、予備水洗部13Bに加熱した洗浄水を供給するようにしている。
 この加熱温度は、例えば抜出した洗浄水の温度(例えば50~60℃)よりも+5℃以上の温度(55~65℃)とするのが好ましい。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図7は、実施例7に係る排ガス処理システムのCO2回収装置の概略図である。なお、実施例1、実施例4及び6の構成部材と重複する部材については、同一符号を付してその説明は省略する。
 図7に示すように、本実施例に係る排ガス処理システムのCO2回収装置10Dは、実施例6のCO2回収装置10Cにおいて、予備水洗部13Bと本水洗部13Cとの間にミスト捕集手段であるデミスタ80を設けている。
 実施例4で説明したように、予備水洗部13において、排ガス中に含まれるSO3ミストの肥大化がなされているので、この肥大化したSO3ミストを塔頂部13a側に設置したデミスタ80で捕集する以前に、中間部に設置したデミスタ80で捕集するようにしている。
 この結果、肥大化したSO3ミストが捕集されるので、本水洗部13Cに導入するSO3ミストの個数が低減する。この結果、本水洗部13CでのSO3ミストの肥大化が助長される。これにより、CO2吸収塔13の出口近傍に設けた、デミスタ80で肥大化(例えば1.0μm程度)したSO3ミストが捕集される量が増大することとなる。
 本発明による実施例に係る排ガス処理システム及び方法について、図面を参照して説明する。図8は、実施例8に係る排ガス処理システムのCO2回収装置の概略図である。なお、実施例1、2及び実施例4の構成部材と重複する部材については、同一符号を付してその説明は省略する。
 図8に示すように、本実施例に係る排ガス処理システムのCO2回収装置10Eは、実施例4のCO2回収装置10Aにおいて、CO2吸収塔13の前段側の冷却塔を、実施例2の冷却塔70Bを設置したものである。
 また、冷却塔70Bに導入する排ガス11にアンモニアをアンモニア注入装置81から注入し、排ガス中の塩濃度を高めるようにしている。
 さらに本実施例の冷却塔70Bでは、冷却部70aとデミスタ80との間に、充填層91を設置している。
 この充填層91は、排ガス中の煤塵や大粒径となったSO3ミストを予め除去するためのものである。
 この充填層91の設置により、デミスタ80側に直接排ガス11中の煤塵が捕集されないので、デミスタ80の保護を図ることができ、長期間に亙って連続してデミスタを運転することができる。
 この充填層91に、煤塵付着による目詰まり等が発生した場合には、デミスタ80側に設置した洗浄手段の洗浄ノズル92により洗浄水93を噴霧して、煤塵等を除去するようにしている。
 また、本実施例では、加熱部70bを加熱する手段として、CO2吸収塔13内の本水洗部13Cの循環洗浄水の一部を抜出し(※1)、加熱部70bの循環ライン75に介装した加熱器76Aの熱源としている。なお、熱交換した後の洗浄水は、再度戻すようにしている(※2)。
 また、加熱器76Aでは、加熱が十分ではない場合、蒸気ドレン94を導入する加熱器76Bを循環ライン75に介装して、加熱水77としている。
 また、加熱器76への熱源は、これに限定されず、例えば再生塔14から排出されるCO2ガス45のガス排出ラインL21にから一部抽気して、熱源として利用することや、回収する際の圧縮機での圧縮熱を利用するようにしてもよい。
[試験例A]
 表1に、従来技術において、冷却塔に導入する入口温度を50℃とした場合、その温度よりも-10℃の40℃に冷却する場合を基準として試験を行った。
 試験例1は、実施例1に対応する導入ガス温度よりも-24℃冷却を行った場合である。
 試験例2は、実施例2に対応する導入ガス温度よりも+11℃加熱を行った場合である。
 試験例3は、実施例3に対応する導入ガスに、アンモニアを注入した場合である。
 この基準におけるミストの粒径比(出口ミスト粒径/入口ミスト粒径)は1.4であった。この1.4の値を基準(1)として、冷却塔出口のガス性状比較として、ミスト個数比を比較した。
 この結果、試験例1では、基準の0.8倍と少なくなった。
 また、試験例2では、基準の0.5倍と大幅に少なくなった。
 また、試験例3では、基準の0.8倍と少なくなった。
 また、このガスを吸収塔13に導入し、その吸収塔13出口の浄化ガス11Bのガス性状を比較した。
 その比較結果も表1に示している。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試験例1の吸収塔出口のミスト粒径比は、基準の1.5倍に増大していた。また、試験例1の吸収塔出口から系外に放出されるミスト同伴系外放出吸収液量比は、基準の0.2と大幅に減少していた。
 また、表1に示すように、試験例2の吸収塔出口のミスト粒径比は、基準の1.8倍に増大していた。また、試験例2の吸収塔出口から系外に放出されるミスト同伴系外放出吸収液量比は、基準の0.1未満と試験例1よりもさらに大幅に減少していた。
 また、表1に示すように、試験例3の吸収塔出口のミスト粒径比は、基準の3.7倍に増大していた。また、試験例3の吸収塔出口から系外に放出されるミスト同伴系外放吸収液量比は、基準の0.1未満と試験例1よりもさらに大幅に減少していた。
 図14は、実施例1に対応する試験例1におけるSO3ミスト粒径について、冷却部とCO2吸収部とのガス流れ方向における肥大化の傾向を示す図である。
 図14に示すように、冷却塔70Aでミスト粒径が肥大化したミストは、CO2吸収塔13内に入ると、先ずCO2吸収部13Aでその充填槽の高さ方向に沿ってその粒径がさらに肥大化する。
 次に、予備水洗部13Bにおいて、肥大化したミストはさらに肥大化することとなった。
 なお、冷却塔70AとCO2吸収部13Aとの境と、CO2吸収部13Aと予備水洗部13Bとの境でミスト粒径が変化するのは、ミスト組成に一時的な変動が生じることによる。
[試験例B]
 表2に、従来技術において、CO2吸収塔の水洗部において、ミスト粒径の調節をおこなわない場合を基準として試験を行った。
 試験例4は、実施例4に対応する予備水洗部でミストの肥大化をさせ、塔頂部でデミスタにより捕集した場合である。
 試験例5は、実施例6に対応する予備水洗部でミストの肥大化をさせる際に加熱したものであり、塔頂部でデミスタにより捕集した場合である。
 試験例6は、実施例7に対応する予備水洗部でミストの肥大化をさせる際に加熱したものであり、予備水洗部と本洗浄部との間にデミスタを設置すると共に、塔頂部でデミスタにより捕集した場合である。
 その比較結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、試験例4の予備水洗部出口のミスト粒径比は、基準の1.1倍に増大していた。また、試験例4の吸収塔出口から系外に放出されるミスト同伴系外放出吸収液量比は、基準の0.1未満と大幅に減少していた。
 表2に示すように、試験例5の予備水洗部出口のミスト粒径比は、基準の1.1倍に増大していた。また、試験例5の吸収塔出口から系外に放出されるミスト同伴系外放吸収液量比は、基準の0.5倍と大幅に減少していた。
 表2に示すように、試験例6の予備水洗部出口のミスト粒径比は、基準の1.1倍に増大していた。また、試験例6の吸収塔出口から系外に放出されるミスト同伴系外放出吸収液量比は、基準の0.1未満と大幅に減少していた。
 図15は、実施例4に対応する試験例4におけるSO3ミスト粒径について、冷却塔とCO2吸収部とのガス流れ方向における肥大化の傾向を示す図である。
 図15に示すように、CO2吸収部までは同じ挙動をしめしたが、予備水洗部に入ると、その充填層の高さ方向に沿ってその粒径が肥大化した。
 10A~10E CO2回収装置
 11 排ガス
 12 CO2吸収液(吸収液)
 12A リッチ溶液
 12B リーン溶液
 13 CO2吸収塔(吸収塔)
 13A CO2吸収部
 13B 予備水洗部
 13C 本水洗部
 13D 仕上水洗部
 14 吸収液再生塔(再生塔)
 20 洗浄水
 20a 洗浄水の一部 
 70A、70B 冷却塔
 70a 冷却部
 70b 加熱部
 80 デミスタ

Claims (19)

  1.  ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、
     前記脱硫装置の後流側に設けられ、排ガスのガス露点温度を調整する温度調整手段により、排ガスを冷却又は加熱し、排ガス中に含まれるSO3ミストの粒径を肥大化させ、排ガス温度を下げる冷却塔と、
     前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、を具備することを特徴とする排ガス処理システム。
  2.  請求項1において、
     前記冷却塔の塔頂部近傍に、肥大化したミストを捕集するミスト捕集手段を有することを特徴とする排ガス処理システム。
  3.  請求項1又は2において、
     前記温度調整手段が、冷却塔内を循環する冷却水を、排ガス導入温度よりも、-20℃以下に冷却する熱交換器を備えた冷却部であることを特徴とする排ガス処理システム。
  4.  請求項1又は2において、
     前記温度調整手段が、冷却塔内を循環する循環水を、排ガス導入温度よりも、+10℃以上に加熱する加熱器を備えた加熱部と、
     前記加熱部のガス流れ後流側に設けられ、加熱された排ガスを、前記CO2吸収塔導入温度以下まで冷却する冷却部とからなることを特徴とする排ガス処理システム。
  5.  請求項1又は2において、
     前記脱硫装置と冷却塔との間で、排ガス中に塩基性物質を導入する塩基性物質導入手段を有することを特徴とする排ガス処理システム。
  6.  請求項1又は2において、
     前記冷却塔の循環水が、脱硫用吸収液であることを特徴とする排ガス処理システム。
  7.  ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、
     前記脱硫装置の後流側に設けられ、排ガス中に残存する硫黄酸化物を除去すると共に、ガス温度を下げる冷却塔と、
     前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、を具備してなり、
     前記CO2吸収塔が、
     CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収部と、
     前記CO2吸収部のガス流れ後流側に設けられ、洗浄水によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を前記洗浄水により回収する本水洗部と、
     前記本水洗部の液貯留部で回収されたCO2吸収液を含む洗浄水を前記本水洗部の頂部側から供給して循環する循環ラインと、
     前記CO2回収部と前記本水洗部との間に設けられる予備水洗部と、を具備し、
     前記本水洗部から、CO2吸収液を含む洗浄水の一部を抜き出すと共に、前記抜出した洗浄水を、前記予備水洗部側に供給し、前記CO2吸収部でCO2が吸収された排ガス中に同伴されるCO2吸収液を、該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させることを特徴とする排ガス処理システム。
  8.  請求項7において、
     前記抜出した洗浄水を加熱する加熱器を有し、予備水洗部に加熱した洗浄水を供給することを特徴とする排ガス処理システム。
  9.  請求項7又は8において、
     前記予備水洗部と前記本水洗部との間に設けられ、ミストを捕集するミスト捕集手段と、を具備してなることを特徴とする排ガス処理システム。
  10.  ボイラからの排ガス中の硫黄酸化物を除去する脱硫装置と、
     脱硫装置の後流側に設けられ、排ガス中に含まれるSO3ミストを、排ガスのガス露点温度を調整する温度調整手段によりその粒径を肥大化させ、排ガス温度を下げる冷却塔と、
     前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収装置と、を具備すると共に、
     前記CO2吸収塔が、
     CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収部と、
     前記CO2吸収部のガス流れ後流側に設けられ、洗浄水によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を
    前記洗浄水により回収する本水洗部と、
     前記本水洗部の液貯留部で回収されたCO2吸収液を含む洗浄水を前記本水洗部の頂部側から供給して循環する循環ラインと、
     前記CO2吸収部と前記本水洗部との間に設けられる予備水洗部と、を具備し、
     前記本水洗部から、CO2吸収液を含む洗浄水の一部を抜き出すと共に、前記抜出した洗浄水を、前記予備水洗部側に供給し、前記CO2吸収部でCO2が吸収された排ガス中に同伴されるCO2吸収液を、該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させることを特徴とする排ガス処理システム。
  11.  請求項10において、
     前記抜出した洗浄水を加熱する加熱器を有し、予備水洗部に加熱した洗浄水を供給することを特徴とする排ガス処理システム。
  12.  請求項10又は11において、
     前記予備水洗部と本水洗部との間に設けられ、ミストを捕集するミスト捕集手段と、を具備してなることを特徴とする排ガス処理システム。
  13.  請求項10において、
     前記冷却塔の塔頂部近傍に、肥大化したミストを捕集するミスト捕集手段を有することを特徴とする排ガス処理システム。
  14.  請求項10又は13において、
     前記温度調整手段が、冷却塔内を循環する冷却水を、排ガス導入温度よりも、-20℃以下に冷却する熱交換器を備えた冷却手段であることを特徴とする排ガス処理システム。
  15.  請求項10又は13において、
     前記温度調整手段が、冷却塔内を循環する循環水を、排ガス導入温度よりも、+10℃以上に加熱する加熱器を備えた加熱部と、
     前記加熱部の後流側に設けられ、加熱された排ガスを、前記CO2吸収塔導入温度以下まで冷却する冷却部とからなることを特徴とする排ガス処理システム。
  16.  請求項10又は13において、
     前記脱硫装置と冷却塔との間で、排ガス中に塩基性物質を導入する塩基性物質導入手段を有することを特徴とする排ガス処理システム。
  17.  請求項10又は13において、
     前記冷却塔の循環水が、脱硫用吸収液であることを特徴とする排ガス処理システム。
  18.  ボイラからの排ガス中の硫黄酸化物を脱硫装置により除去する脱硫工程と、
     排ガスのガス露点温度を調整する温度調整手段により、排ガスを冷却又は加熱し、排ガス中に含まれるSO3ミストの粒径を肥大化させ、排ガス温度を下げる冷却工程と、
     前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収工程と、を有することを特徴とする排ガス処理方法。
  19.  ボイラからの排ガス中の硫黄酸化物を除去する脱硫工程と、
     前記脱硫装置の後流側に設けられ、排ガス中に残存する硫黄酸化物を除去すると共に、ガス温度を下げる冷却工程と、
     前記排ガス中のCO2をCO2吸収液に接触させて除去するCO2吸収塔と、CO2吸収液からCO2を放出してCO2を回収すると共に、CO2吸収液を再生する再生塔とからなるCO2回収工程と、を有してなり、
     前記CO2吸収塔において、
     CO2吸収液によりCO2含有排ガス中のCO2を吸収するCO2吸収工程と、
     前記CO2吸収部のガス流れ後流側に設けられ、洗浄水によりCO2除去排ガスを冷却すると共に、同伴するCO2吸収液を前記洗浄水により回収する本水洗工程と、
     前記CO2吸収工程と前記本水洗工程との間に設けられる予備水洗工程と、を有し、
     前記本水洗工程で用いたCO2吸収液を含む洗浄水の一部を抜き出すと共に、前記抜出した洗浄水を、前記予備水洗部側に供給し、前記CO2吸収部でCO2が吸収された排ガス中に同伴されるCO2吸収液を該抜出した洗浄水で予備洗浄すると共に、前記CO2吸収液を含むSO3ミストの粒径を肥大化させることを特徴とする排ガス処理方法。
PCT/JP2012/076368 2012-10-11 2012-10-11 排ガス処理システム及び方法 WO2014057567A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP20160876.7A EP3685907B1 (en) 2012-10-11 2012-10-11 Air pollution control system and air pollution control method
US14/432,449 US9568193B2 (en) 2012-10-11 2012-10-11 Air pollution control system and air pollution control method
CA2886800A CA2886800C (en) 2012-10-11 2012-10-11 Air pollution control system and air pollution control method
PCT/JP2012/076368 WO2014057567A1 (ja) 2012-10-11 2012-10-11 排ガス処理システム及び方法
EP12886392.5A EP2907563B1 (en) 2012-10-11 2012-10-11 Exhaust gas treatment system and method
JP2014540697A JP6072055B2 (ja) 2012-10-11 2012-10-11 排ガス処理システム及び方法
AU2012391846A AU2012391846B2 (en) 2012-10-11 2012-10-11 Exhaust gas treatment system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/076368 WO2014057567A1 (ja) 2012-10-11 2012-10-11 排ガス処理システム及び方法

Publications (1)

Publication Number Publication Date
WO2014057567A1 true WO2014057567A1 (ja) 2014-04-17

Family

ID=50477055

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076368 WO2014057567A1 (ja) 2012-10-11 2012-10-11 排ガス処理システム及び方法

Country Status (6)

Country Link
US (1) US9568193B2 (ja)
EP (2) EP3685907B1 (ja)
JP (1) JP6072055B2 (ja)
AU (1) AU2012391846B2 (ja)
CA (1) CA2886800C (ja)
WO (1) WO2014057567A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107162A (ja) * 2014-12-01 2016-06-20 株式会社東芝 二酸化炭素回収システム
JP2016131969A (ja) * 2015-01-22 2016-07-25 三菱重工業株式会社 排ガス処理システム及び方法
JP2018192396A (ja) * 2017-05-15 2018-12-06 株式会社東芝 排ガス成分の除去方法、排ガス成分の除去器および二酸化炭素の分離回収方法ならびに分離回収装置
WO2020241654A1 (ja) * 2019-05-28 2020-12-03 株式会社トクヤマ 炭酸ガス、およびその他ガスの回収方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6004821B2 (ja) * 2012-08-08 2016-10-12 三菱重工業株式会社 Co2回収装置およびco2回収方法
JP6581768B2 (ja) * 2014-11-04 2019-09-25 三菱重工エンジニアリング株式会社 Co2回収装置およびco2回収方法
CN104923056A (zh) * 2015-06-26 2015-09-23 大连海事大学 一种船舶废气脱硫装置及方法
EP3181540B1 (de) * 2015-12-18 2019-07-24 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Verfahren zur trennung von methanol aus gasgemischen
US20170354926A1 (en) * 2016-06-13 2017-12-14 General Electric Technology Gmbh Integrated desulfurization and carbon dioxide capture system for flue gases
CN107519733A (zh) * 2016-06-20 2017-12-29 金贤 燃煤烟气脱硫资源化零排放装置
CN106861354A (zh) * 2017-03-07 2017-06-20 永康市常青环保科技有限公司 一种冷凝法节水湿式脱硫装置
US11207626B2 (en) * 2017-07-19 2021-12-28 Vertigo Vapor LLC Liquid restriction apparatus for use in a vaporizer
CN109692537A (zh) * 2019-01-14 2019-04-30 南京圣创科技有限公司 一种冷却凝并水回收气体净化的方法与装置
CN110118360B (zh) * 2019-05-28 2020-06-26 山东大学 一种协同烟气余热利用系统及炭基负载离子液脱硫方法
CN111495119A (zh) * 2019-05-29 2020-08-07 河北中科朗博环保科技有限公司 一种湿法脱硫烟气深度脱白的系统及方法
EP3747530A1 (en) * 2019-06-06 2020-12-09 CMI UVK GmbH System for cleaning an off-gas, comprising an acid component, and/or for regenerating an acid component comprised in an off-gas, method
CN110433634A (zh) * 2019-07-05 2019-11-12 浙江天蓝环保技术股份有限公司 一种深度脱硫除尘以及消白烟装置及工艺
TWI699234B (zh) * 2019-11-21 2020-07-21 財團法人工業技術研究院 微粒捕集裝置
CN114733321A (zh) * 2022-04-20 2022-07-12 清华大学 So3高选择性吸收剂的制备方法及制备系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193116A (ja) 1989-12-25 1991-08-22 Mitsubishi Heavy Ind Ltd 燃焼排ガス中のco↓2の除去方法
JP2011115724A (ja) * 2009-12-03 2011-06-16 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法
JP2011136258A (ja) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法
WO2011152546A1 (ja) * 2010-05-31 2011-12-08 三菱重工業株式会社 排ガス処理システム及び方法
WO2011152550A1 (ja) * 2010-05-31 2011-12-08 三菱重工業株式会社 排ガス処理システム及び方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07246313A (ja) * 1994-03-09 1995-09-26 Kansai Electric Power Co Inc:The 燃焼排ガス中の二酸化炭素と硫黄酸化物を除去する方法
JP4216152B2 (ja) 2003-09-16 2009-01-28 関西電力株式会社 脱硫脱炭酸方法及びその装置
DE102007043331A1 (de) 2007-08-16 2009-02-19 Hitachi Power Europe Gmbh Gekühlte NaOH-Rauchgaswäsche
GB0721488D0 (en) * 2007-11-01 2007-12-12 Alstom Technology Ltd Carbon capture system
JP5093205B2 (ja) * 2009-09-30 2012-12-12 株式会社日立製作所 二酸化炭素回収型発電システム
EP2578298B1 (en) * 2010-05-31 2020-12-23 Mitsubishi Heavy Industries Engineering, Ltd. Exhaust gas processing method
US9492786B2 (en) * 2011-11-22 2016-11-15 Fluor Corporation Multi-purpose absorber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03193116A (ja) 1989-12-25 1991-08-22 Mitsubishi Heavy Ind Ltd 燃焼排ガス中のco↓2の除去方法
JP2011115724A (ja) * 2009-12-03 2011-06-16 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法
JP2011136258A (ja) * 2009-12-25 2011-07-14 Mitsubishi Heavy Ind Ltd Co2回収装置およびco2回収方法
WO2011152546A1 (ja) * 2010-05-31 2011-12-08 三菱重工業株式会社 排ガス処理システム及び方法
WO2011152550A1 (ja) * 2010-05-31 2011-12-08 三菱重工業株式会社 排ガス処理システム及び方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2907563A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016107162A (ja) * 2014-12-01 2016-06-20 株式会社東芝 二酸化炭素回収システム
US10112146B2 (en) 2014-12-01 2018-10-30 Kabushiki Kaisha Toshiba Carbon dioxide capture system
JP2016131969A (ja) * 2015-01-22 2016-07-25 三菱重工業株式会社 排ガス処理システム及び方法
JP2018192396A (ja) * 2017-05-15 2018-12-06 株式会社東芝 排ガス成分の除去方法、排ガス成分の除去器および二酸化炭素の分離回収方法ならびに分離回収装置
WO2020241654A1 (ja) * 2019-05-28 2020-12-03 株式会社トクヤマ 炭酸ガス、およびその他ガスの回収方法
JP6834066B1 (ja) * 2019-05-28 2021-02-24 株式会社トクヤマ 炭酸ガス、およびその他ガスの回収方法

Also Published As

Publication number Publication date
US9568193B2 (en) 2017-02-14
US20150241059A1 (en) 2015-08-27
JPWO2014057567A1 (ja) 2016-08-25
EP2907563A1 (en) 2015-08-19
CA2886800A1 (en) 2014-04-17
EP2907563B1 (en) 2020-05-13
AU2012391846B2 (en) 2016-10-13
EP3685907B1 (en) 2022-11-30
EP3685907A1 (en) 2020-07-29
CA2886800C (en) 2018-04-10
AU2012391846A1 (en) 2015-04-23
EP2907563A4 (en) 2016-05-25
JP6072055B2 (ja) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6072055B2 (ja) 排ガス処理システム及び方法
JP6045652B2 (ja) Co2吸収液の飛散抑制方法
WO2011152552A1 (ja) 排ガス処理システム及び方法
CA2824740C (en) Combustion exhaust gas treatment system and method of treating combustion exhaust gas
JP2015211969A (ja) 排ガス処理システム及び方法
US9216380B1 (en) Ammonia stripper for a carbon capture system for reduction of energy consumption
WO2013039041A1 (ja) Co2回収装置およびco2回収方法
JP6071838B2 (ja) Co2又はh2s又はその双方の回収装置及び方法
WO2011152547A1 (ja) 排ガス処理システム及び方法
JP5755047B2 (ja) 排ガス処理システム及び排ガス処理方法
WO2011152546A1 (ja) 排ガス処理システム及び方法
JP5738137B2 (ja) Co2回収装置およびco2回収方法
US10610820B2 (en) Flue gas treatment system and method
JP5944042B2 (ja) 排ガス処理システム及び排ガス処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12886392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540697

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2886800

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14432449

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012886392

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012391846

Country of ref document: AU

Date of ref document: 20121011

Kind code of ref document: A