WO2020241387A1 - マルチレイヤー構造を有する静電アクチュエータ - Google Patents

マルチレイヤー構造を有する静電アクチュエータ Download PDF

Info

Publication number
WO2020241387A1
WO2020241387A1 PCT/JP2020/019839 JP2020019839W WO2020241387A1 WO 2020241387 A1 WO2020241387 A1 WO 2020241387A1 JP 2020019839 W JP2020019839 W JP 2020019839W WO 2020241387 A1 WO2020241387 A1 WO 2020241387A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrostatic actuator
elastic
elastic layer
layers
Prior art date
Application number
PCT/JP2020/019839
Other languages
English (en)
French (fr)
Inventor
実吉 敬二
伊藤 誠
輝 泉谷
Original Assignee
ストローブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ストローブ株式会社 filed Critical ストローブ株式会社
Priority to US17/614,695 priority Critical patent/US20220224251A1/en
Priority to CN202080039079.2A priority patent/CN113906665A/zh
Priority to KR1020217041145A priority patent/KR20220016107A/ko
Priority to JP2021522256A priority patent/JPWO2020241387A1/ja
Priority to EP20813125.0A priority patent/EP3979486A4/en
Publication of WO2020241387A1 publication Critical patent/WO2020241387A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/20Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators
    • H10N30/206Piezoelectric or electrostrictive devices with electrical input and mechanical output, e.g. functioning as actuators or vibrators using only longitudinal or thickness displacement, e.g. d33 or d31 type devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/002Electrostatic motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/204Di-electric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/857Macromolecular compositions

Definitions

  • the present invention relates to an electrostatic actuator having a multi-layer structure.
  • the dielectric elastomer actuator has a drive element A having a structure in which an elastomer is sandwiched between a pair of stretchable electrodes and an elastomer between the pair of stretchable electrodes.
  • a drive element B having a structure sandwiching the drive element B and a connecting portion for connecting the drive element A and the drive element B in series are provided, and when a voltage is applied between the pair of electrodes of the drive element A and the drive element B, A dielectric elastomer actuator and a dielectric elastomer actuator in which the electric field generated between the pair of electrodes displaces the pair of electrodes in a direction parallel to the electric field and the elastomer extends in a direction perpendicular to the electric field, and the elongation of the elastomer interacts with each other through the connection.
  • Patent Document 1 There is a technique for disclosing a publication regarding the drive system.
  • a conventional electrostatic actuator has a structure in which a dielectric elastomer, which is an elastic material, is sandwiched between conductor layers, and the conductor layers are contracted by an electrostatic attraction generated by applying a voltage between the opposing conductor layers. It was.
  • the dielectric elastomer also served as an insulating material between the conductor layers.
  • a voltage is applied to the electrostatic actuator for a long time and a compressive force is applied to the dielectric elastomer by electrostatic attraction for a long time, if the dielectric elastomer is soft, the dielectric elastomer spreads laterally together with the conductor, and the dielectric elastomer due to the creep phenomenon.
  • the conventional electrostatic actuator cannot be used for a long period of time, and it is difficult to put it into practical use.
  • a dielectric elastomer having a hard elastic performance is adopted, there is a problem that the shrinkage rate is lowered and a sufficient stroke cannot be secured.
  • the laminated electrostatic actuator according to claim 1 has a structure in which a plurality of electrode films are laminated and bonded, Each electrode film has a five-layer structure of an elastic layer, an insulating layer, a conductor layer, an insulating layer, and an elastic layer.
  • the Young's modulus of the material constituting the elastic layer is smaller than the Young's modulus of the material constituting the insulating layer.
  • the laminated electrostatic actuator according to claim 2 has a structure in which a plurality of electrode films are laminated and bonded, Each electrode film has a five-layer structure of an elastic layer, an insulating layer, a conductor layer, an insulating layer, and an elastic layer.
  • the spring constant of the material constituting the elastic layer increases as the electrode film stretches in the stacking direction.
  • the laminated electrostatic actuator according to claim 3 is In the electrostatic actuator according to claim 1 or 2.
  • the elastic layers of the electrode films are connected by adhesion, covalent bond, or elastic adhesive force.
  • the laminated electrostatic actuator according to claim 4 has a structure in which electrode layers in which insulating layers are arranged on both sides of a conductor layer are laminated and bonded via an elastic layer.
  • the Young's modulus of the material constituting the elastic layer is smaller than the Young's modulus of the material constituting the insulating layer, or The spring constant of the material constituting the elastic layer increases as the electrostatic actuator extends in the stacking direction.
  • the laminated electrostatic actuator according to claim 5 is In the electrostatic actuator according to claim 4,
  • the elastic layer is a structure having a plurality of columns separated from each other in the plane direction of the electrode layer.
  • the elastic layer when a voltage is applied between the electrodes, the elastic layer is softly deformed, but the conductor layer is protected by an insulating layer. Even if the elastic layer is deformed by the creep phenomenon when a voltage is applied for a long period of time, the conductor layer can be kept insulated by the insulating layer. As a result, it has become possible to use an elastic material having soft elastic performance, and it has become possible to achieve both sufficient stroke and reliability.
  • FIG. 5 is a cross-sectional view of the entire laminated electrostatic actuator having a structure in which the electrode films shown in FIG. 1 are laminated and bonded. It is a figure which shows the state which the space between the electrode films is extended by applying the external force in the direction which tries to separate a stack between two end members. It is a figure which shows the state which the interval of the electrode film is contracted by applying a voltage. It is sectional drawing of the laminated type electrostatic actuator which concerns on 2nd Embodiment. This is a modified example of the laminated electrostatic actuator shown in FIG.
  • FIG. 1 is a cross-sectional view of one layer of an electrode film 10 constituting the laminated electrostatic actuator 1 according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the entire laminated electrostatic actuator 1 having a structure in which the electrode films 10 shown in FIG. 1 are laminated and bonded.
  • the laminated electrostatic actuator 1 is configured by laminating and bonding a large number of electrode films 10a and 10b sandwiched between two end members (not shown) (FIG. 2, described later).
  • each of the electrode films 10a and 10b has a five-layer structure including a first elastic layer 11a, a first insulating layer 12a, a conductor layer 13a, a second insulating layer 14a, and a second elastic layer 15a. It is composed of.
  • the first insulating layer 12a, the conductor layer 13a, and the second insulating layer 14a may be referred to as an electrode layer 16a.
  • the conductor layers 13 and 13a are composed of, for example, a metal film such as copper, a conductive polymer, or a film having good electrical conductivity such as a conductive carbon homogeneity (or a conductive mixture mainly composed of carbon). ..
  • Insulating layers are formed on both surfaces of the conductor layers 13 and 13a by coating, adhesion or vapor deposition, and the conductor layers 13 and 13a are combined with the first insulating layer 12 , 12a and the second insulating layers 14, 14a constitute the electrode layers 16, 16a.
  • an insulating polymer material such as parylene (registered trademark) may be used, and a ceramic or glass material having good withstand voltage characteristics may be used. Etc. may be used.
  • the thickness of the electrode layers 16 and 16a is, for example, several micrometers.
  • the material constituting the first elastic layers 11, 11a and the second elastic layers 15, 15a Young's modulus smaller than the Young's modulus of the materials constituting the first insulating layers 12, 12a and the second insulating layers 14, 14a is smaller.
  • a material having a modulus may be adopted.
  • a material constituting the first elastic layers 11, 11a and the second elastic layers 15, 15a a material having a property that the spring constant increases as the laminated electrostatic actuator 1 extends in the stacking direction is adopted. You may.
  • the electrode films 10a and 10b having the above configurations are laminated and coupled to form the laminated electrostatic actuator 1.
  • the laminated bond is performed, for example, by a covalent bond between elastic layers or an elastic body adhesive force.
  • the electrode layer in which the insulating layers are arranged on both sides of the conductor layer may be laminated and bonded via the elastic layer to form an electrostatic actuator.
  • FIG. 3 is a diagram showing a state in which an external force in a direction for separating the laminate is applied between two end members (not shown) to extend the distance between the electrode films 10a and 10b
  • FIG. 4 is a diagram showing a voltage. It is a figure which shows the state which the space between the electrode films 10a and 10b is contracted by applying.
  • the elastic layers 15a and 11b between the first electrode film 10a and the second electrode film 10b are elongated in the laminating direction and at the same time perpendicular to the laminating direction. It is recessed inward between the electrode films (Fig. 3).
  • a voltage is applied between the conductor layers 13a and 13b of the first and second electrode films 10a and 10b, the first and second electrode films 10a and 10b attract each other, and the elastic layers 15a and 11b are in the stacking direction. At the same time, it shrinks to the outside and swells outward between the electrode films 10a and 10b perpendicular to the stacking direction (FIG. 4).
  • the elastic layers 15a and 11b When a voltage is applied, the elastic layers 15a and 11b are deformed, but the conductor layers 13a and 13b are protected by the insulating layers 14a and 12b. Therefore, even if the elastic layers 15a and 11b are creeped by applying a voltage for a long time, dielectric breakdown occurs due to the presence of the insulating layers 14a and 12b between the conductor layers 13a and 13b and the elastic layers 15a and 11b. The insulation performance of the conductor layers 13a and 13b is ensured. As a result, it becomes possible to use a soft material for the elastic layers 15a and 11b, and it is possible to secure a sufficient stroke as an electrostatic actuator and to achieve both reliability in insulation performance.
  • FIG. 5 is a cross-sectional view of the laminated electrostatic actuator 101 according to the second embodiment.
  • FIG. 6 is a modified example of the laminated electrostatic actuator 101 shown in FIG.
  • the same or similar elements as those of the laminated electrostatic actuator 1 according to the first embodiment are designated by the same or similar reference numerals, and the description thereof will be omitted.
  • the laminated electrostatic actuator 101 is configured by laminating and bonding electrode layers 116 in which insulating layers 112 and 114 are arranged on both sides of a conductor layer 113 via an elastic layer 115.
  • the elastic layer 115 has a plurality of columns 121a and 121b separated from each other in the plane direction of the electrode layer 116 having voids 120a and 120b inside.
  • the amount of deformation in the vicinity of the outer peripheral surface of the elastic layer bulging outward becomes large, and the elastic layers 11 and 15 in the vicinity of the outer peripheral surface of the laminated electrostatic actuator 1 are particularly large. A large stress is generated at the connection portion between the elastic layers 11 and 15 and the insulating layers 12 and 14 (see FIG. 4).
  • the individual columns 121a and 121b are deformed independently, so that the amount of deformation of the individual columns 121a and 121b is reduced, and the elastic layer The stress generated in 115 can be reduced.
  • the pillars 121 may be connected at the ends (FIG. 6 (a)), or may be individually and independently connected to the insulating layers 114a and 112b (FIG. 6 (b)). Further, the number of columns, the cross-sectional shape, and the position are appropriately set according to the size of the surface of the electrode layer, the size of the force applied to the laminated electrostatic actuator, the required response performance, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Micromachines (AREA)

Abstract

弾性層がクリープ現象により変形しても導体層間の絶縁性能が維持された積層型静電アクチュエータを提供する。 複数の電極フィルムが積層結合した構造を有する静電アクチュエータであって、各電極フィルムは、弾性層、絶縁層、導体層、絶縁層、弾性層の5層構造を有し、弾性層を構成する材料のヤング率は、絶縁層を構成する材料のヤング率よりも小さい、或いは、弾性層を構成する材料のばね定数は、電極フィルムが積層方向に伸長するのに伴い増加する。

Description

マルチレイヤー構造を有する静電アクチュエータ
 本発明は、マルチレイヤー構造を有する静電アクチュエータに関する。
 使いやすい構造の誘電エラストマーアクチュエータおよびその駆動システムの提供を課題として、誘電エラストマーアクチュエータが、伸縮可能な一対の電極間にエラストマーを挟んだ構造の駆動要素Aと、伸縮可能な一対の電極間にエラストマーを挟んだ構造の駆動要素Bと、駆動要素Aと駆動要素Bとを直列に接続する接続部とを備え、駆動要素Aおよび駆動要素Bが有する一対の電極間に電圧を印加したときに、一対の電極間に生じる電場により一対の電極が電場と平行な方向に変位してエラストマーが電場と垂直な方向に伸長し、エラストマーの伸長が接続部を介して互いに作用し合う、誘電エラストマーアクチュエータおよびその駆動システムに関する公報開示の技術が存在する(特許文献1)。
特開2018-33293号公報
 従来の静電アクチュエータは、導体層間に弾性材料である誘電エラストマーを挟んだ構造を有しており、対向する導体層間に電圧が印加されて発生する静電引力で導体層間を収縮させる構成であった。誘電エラストマーは導体層間の絶縁材料としての機能も果たしていた。ここで、静電アクチュエータに長時間電圧を印加して静電引力によって誘電エラストマーに圧縮力を長時間印加するとき、誘電エラストマーが柔らかいと誘電エラストマーは導体と共に横方向に広がり、クリープ現象により誘電エラストマーの層(弾性層)を構成する材料の分子が移動して層が崩れ絶縁破壊が生じる懸念があった。これが理由で、従来の静電アクチュエータは長期間使用することができず、実用化が困難であった。一方、硬い弾性性能を有する誘電エラストマーを採用すれば、収縮率が低下して十分なストロークを確保できないという課題があった。
 本発明は、弾性層がクリープ現象により変形しても導体層間の絶縁性能が維持された積層型静電アクチュエータの提供を目的とする。また、十分なストロークの確保が容易な積層型静電アクチュエータの提供を目的とする。
 上記課題を解決するために、請求項1に記載の積層型静電アクチュエータは、
複数の電極フィルムが積層結合した構造を有し、
各電極フィルムは、弾性層、絶縁層、導体層、絶縁層、弾性層の5層構造を有し、
弾性層を構成する材料のヤング率は、絶縁層を構成する材料のヤング率よりも小さい。
 上記課題を解決するために、請求項2に記載の積層型静電アクチュエータは、
複数の電極フィルムが積層結合した構造を有し、
各電極フィルムは、弾性層、絶縁層、導体層、絶縁層、弾性層の5層構造を有し、
弾性層を構成する材料のばね定数は、電極フィルムが積層方向に伸長するのに伴い増加する。
 請求項3に記載の積層型静電アクチュエータは、
請求項1又は2に記載の静電アクチュエータにおいて、
隣り合う2つの電極フィルムは、電極フィルムの弾性層間が接着或いは共有結合又は弾性体粘着力により接続されている。
 上記課題を解決するために、請求項4に記載の積層型静電アクチュエータは、
導体層の両面に絶縁層が配された電極層が弾性層を介して積層結合した構造を有し、
弾性層を構成する材料のヤング率は、絶縁層を構成する材料のヤング率よりも小さい、或いは、
弾性層を構成する材料のばね定数は、静電アクチュエータが積層方向に伸長するのに伴い増加する。
 請求項5に記載の積層型静電アクチュエータは、
請求項4に記載の静電アクチュエータにおいて、
弾性層は、電極層の面方向に互いに離間した複数の柱を有する構造体である。
 本発明によれば、電極間に電圧が印加されるとき、弾性層は柔らかく変形するが、導体層は絶縁層で保護される。長期間の電圧印加で弾性層がクリープ現象により変形しても導体層は絶縁層によって絶縁が維持されることが可能となった。その結果、柔らかい弾性性能を有する弾性材料の採用が可能となり、十分なストロークと信頼性の両立が可能となった。
第1実施形態に係る積層型静電アクチュエータを構成する電極フィルム一層の断面図である。 図1に示す電極フィルムが積層結合した構造を有する積層型静電アクチュエータ全体の断面図である。 2つの端部材の間に積層を離そうとする向きの外力が印加されて電極フィルムの間隔が伸長した状態を示す図である。 電圧が印加されて電極フィルムの間隔が収縮した状態を示す図である。 第2実施形態に係る積層型静電アクチュエータの断面図である。 図5に示す積層型静電アクチュエータの変形例である。
(第1実施形態)
 本発明の一実施形態を図面を用いて以下に説明する。図1は、第1実施形態に係る積層型静電アクチュエータ1を構成する電極フィルム10一層の断面図である。図2は、図1に示す電極フィルム10が積層結合した構造を有する積層型静電アクチュエータ1全体の断面図である。
(構成)
 積層型静電アクチュエータ1は、2つの端部材(図示省略)に挟まれた、多数の電極フィルム10a,10bが積層結合されて構成される(図2、後述)。各電極フィルム10a,10bは、図1に示すように、第1弾性層11a、第1絶縁層12a、導体層13a、第2絶縁層14a、第2弾性層15aからなる5層構造を有して構成される。以下の説明では、第1絶縁層12aと導体層13aと第2絶縁層14aとを電極層16aと称することがある。
 第1弾性層11,11a及び第2弾性層15,15aは、例えばゲルやアクリル系またはシリコン系樹脂等の柔軟材料が採用される。導体層13,13aは、例えば銅等の金属膜や導電性高分子、または導電性の炭素同素体(または炭素を主体とした導電性の混合体)等の良電気伝導性の膜で構成される。導体層13,13aの両面には塗布、接着又は蒸着等により絶縁層(第1絶縁層12,12a、第2絶縁層14,14a)を形成し、導体層13,13aを第1絶縁層12,12a及び第2絶縁層14,14aが挟んで電極層16,16aを構成する。第1及び第2の絶縁層12,14;12a,14aの材料には、例えばパリレン(登録商標)等の絶縁性の高分子材料を使用してもよく、耐電圧特性の良いセラミックやガラス材料などを使用してもよい。電極層16,16aの厚さは、例えば数マイクロメートルである。
 ここで、第1弾性層11,11a及び第2弾性層15,15aを構成する材料として、第1絶縁層12,12a及び第2絶縁層14,14aを構成する材料のヤング率よりも小さいヤング率を有する材料を採用してもよい。あるいは、第1弾性層11,11a及び第2弾性層15,15aを構成する材料として、積層型静電アクチュエータ1が積層方向に伸長するのに伴いばね定数が増加する性質を有する材料を採用してもよい。
 以上の構成を有する電極フィルム10a,10bが、積層結合されて積層型静電アクチュエータ1が構成される。積層結合は、例えば、弾性層間の共有結合や弾性体粘着力により実行される。尚、弾性層間が結合された構造を説明したが、導体層の両面に絶縁層が配された電極層が弾性層を介して積層結合されて静電アクチュエータを構成してもよい。
(動作)
 図3は、2つの端部材(図示省略)の間に積層を離そうとする向きの外力が印加されて電極フィルム10a,10bの間隔が伸長した状態を示す図であり、図4は、電圧が印加されて電極フィルム10a,10bの間隔が収縮した状態を示す図である。
 各電極フィルム10を離そうとする向きの外力を受けると、第1の電極フィルム10aと第2の電極フィルム10bとの間の弾性層15a,11bは積層方向に伸長すると同時に積層方向に垂直で電極フィルム間の内方向に凹む(図3)。第1及び第2の電極フィルム10a,10bの導体層13a,13bの間に電圧が印加されると、第1及び第2の電極フィルム10a,10bは互いに引き合い、弾性層15a,11bは積層方向に収縮すると同時に積層方向に垂直で電極フィルム10a,10b間の外方向に膨らむ(図4)。
 電圧が印加されるとき、弾性層15a,11bは変形するが、導体層13a,13bは絶縁層14a,12bで保護される。このため、長時間の電圧印加で弾性層15a,11bにクリープが生じても、導体層13a,13bと弾性層15a,11bとの間に絶縁層14a,12bが存在することにより絶縁破壊は発生せず、導体層13a,13bの絶縁性能は確保される。これにより、弾性層15a,11bに柔らかい材料を採用することが可能となり、静電アクチュエータとして十分なストロークの確保と絶縁性能に対する信頼性とを両立させることが可能となる。
(第2実施形態)
 図5は、第2実施形態に係る積層型静電アクチュエータ101の断面図である。図6は、図5に示す積層型静電アクチュエータ101の変形例である。第1実施形態に係る積層型静電アクチュエータ1との同一又は類似の要素については、同一又は類似の符号を付して説明を省略する。図5に示すように、積層型静電アクチュエータ101は、導体層113の両面に絶縁層112,114が配された電極層116が弾性層115を介して積層結合されて構成される。弾性層115は、内部に空隙120a,120bを設けた電極層116の面方向に互いに離間した複数の柱121a,121bを有する。
 第1実施形態に係る積層型静電アクチュエータ1では、弾性層の外方向に膨らんだ外周面付近の変形量が大きくなり、積層型静電アクチュエータ1の外周面近傍の弾性層11,15、特に弾性層11,15と絶縁層12,14との接続部に大きな応力が発生する(図4参照)。これに対して、図5に示すように、弾性層115を柱状に分割することで、個々の柱121a,121bは独立に変形するため個々の柱121a,121bの変形量が小さくなり、弾性層115に発生する応力を低減させることができる。これにより、積層型静電アクチュエータとして十分なストロークの確保と絶縁性能に対する信頼性とを両立させることが可能となる。また、引っ張りに対してすべての柱121a,121bで支え合うため、強度が高まる。尚、柱121は端部で繋がっていてもよいし(図6(a))、個々で独立に絶縁層114a,112bに繋がっていても良い(図6(b))。また、柱の本数や断面形状、位置は、電極層の面の大きさや積層型静電アクチュエータに加わる力の大きさ、要求される応答性能等により適宜設定される。
1:積層型静電アクチュエータ、10,10a,10b:電極フィルム、11,11a,11b:第1弾性層、12,12a,12b:第1絶縁層、13,13a,13b:導体層、14,14a:第2絶縁層、15,15a:第2弾性層、16,16a:電極層
101:積層型静電アクチュエータ、112,114,114a,112b:絶縁層、113:導体層、115:弾性層、116:電極層、120a,120b:空隙、121a,121b:柱

Claims (5)

  1.  複数の電極フィルムが積層結合した構造を有する静電アクチュエータであって、
     各電極フィルムは、弾性層、絶縁層、導体層、絶縁層、弾性層の5層構造を有し、
     前記弾性層を構成する材料のヤング率は、前記絶縁層を構成する材料のヤング率よりも小さい、静電アクチュエータ。
  2.  複数の電極フィルムが積層結合した構造を有する静電アクチュエータであって、
     各電極フィルムは、弾性層、絶縁層、導体層、絶縁層、弾性層の5層構造を有し、
     前記弾性層を構成する材料のばね定数は、前記電極フィルムが積層方向に伸長するのに伴い増加する、静電アクチュエータ。
  3.  請求項1又は2に記載の静電アクチュエータにおいて、
     隣り合う2つの前記電極フィルムは、当該電極フィルムの前記弾性層間が接着或いは共有結合又は弾性体粘着力により接続されている、静電アクチュエータ。
  4.  導体層の両面に絶縁層が配された電極層が弾性層を介して積層結合した構造を有する静電アクチュエータであって、
     前記弾性層を構成する材料のヤング率は、前記絶縁層を構成する材料のヤング率よりも小さい、或いは、
     前記弾性層を構成する材料のばね定数は、前記静電アクチュエータが積層方向に伸長するのに伴い増加する、静電アクチュエータ。
  5.  請求項4に記載の静電アクチュエータにおいて、
     前記弾性層は、前記電極層の面方向に互いに離間した複数の柱を有する構造体である、静電アクチュエータ。
PCT/JP2020/019839 2019-05-31 2020-05-20 マルチレイヤー構造を有する静電アクチュエータ WO2020241387A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/614,695 US20220224251A1 (en) 2019-05-31 2020-05-20 Electrostatic actuator having multilayer structure
CN202080039079.2A CN113906665A (zh) 2019-05-31 2020-05-20 具有多层构造的静电致动器
KR1020217041145A KR20220016107A (ko) 2019-05-31 2020-05-20 멀티레이어 구조를 갖는 정전 액추에이터
JP2021522256A JPWO2020241387A1 (ja) 2019-05-31 2020-05-20
EP20813125.0A EP3979486A4 (en) 2019-05-31 2020-05-20 ELECTROSTATIC ACTUATOR WITH MULTILAYER STRUCTURE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-102866 2019-05-31
JP2019102866 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241387A1 true WO2020241387A1 (ja) 2020-12-03

Family

ID=73552356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019839 WO2020241387A1 (ja) 2019-05-31 2020-05-20 マルチレイヤー構造を有する静電アクチュエータ

Country Status (7)

Country Link
US (1) US20220224251A1 (ja)
EP (1) EP3979486A4 (ja)
JP (1) JPWO2020241387A1 (ja)
KR (1) KR20220016107A (ja)
CN (1) CN113906665A (ja)
TW (1) TW202121822A (ja)
WO (1) WO2020241387A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284750A (ja) * 1993-03-29 1994-10-07 Nippondenso Co Ltd 積層静電アクチュエータ
JP2007259663A (ja) * 2006-03-24 2007-10-04 Dainippon Printing Co Ltd 積層型静電アクチュエータ
JP5479659B2 (ja) * 2000-02-23 2014-04-23 エスアールアイ インターナショナル 生体によって動力を供給される電気活性ポリマジェネレータ
JP2017022926A (ja) * 2015-07-14 2017-01-26 国立大学法人東京工業大学 静電アクチュエータおよび静電アクチュエータの製造方法
JP2017183814A (ja) * 2016-03-28 2017-10-05 住友理工株式会社 静電型トランスデューサ
JP2018033293A (ja) 2016-08-19 2018-03-01 ローム株式会社 誘電エラストマーアクチュエータおよびその駆動システム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1277415C (en) * 1986-04-11 1990-12-04 Lorne A. Whitehead Elastomer membrane enhanced electrostatic transducer
JPH10285956A (ja) * 1997-04-04 1998-10-23 Kasei Optonix Co Ltd 静電アクチュエータ装置
US6646364B1 (en) * 2000-07-11 2003-11-11 Honeywell International Inc. MEMS actuator with lower power consumption and lower cost simplified fabrication
US20040140733A1 (en) * 2003-01-13 2004-07-22 Keller Christopher Guild Electrostatic actuator with a multiplicity of stacked parallel plates
WO2009130863A1 (ja) * 2008-04-21 2009-10-29 株式会社村田製作所 積層型圧電アクチュエータ
JP5374984B2 (ja) * 2008-09-12 2013-12-25 豊田合成株式会社 誘電アクチュエータ
EP2244489A1 (de) * 2009-04-24 2010-10-27 Bayer MaterialScience AG Verfahren zur Herstellung eines elektromechanischen Wandlers
EP2339869A1 (de) * 2009-11-12 2011-06-29 Bayer MaterialScience AG Ferroelektret-Zwei- und Mehrschichtverbund und Verfahren zu dessen Herstellung
KR101703281B1 (ko) * 2010-12-07 2017-02-06 삼성전자주식회사 다층 전기활성 폴리머 디바이스 및 그 제조방법
DE102012212222B4 (de) * 2012-03-12 2018-05-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dielektrisches Elastomer auf Fluorosilicon-Basis und Verfahren zu seiner Herstellung
KR102466939B1 (ko) * 2015-12-31 2022-11-11 엘지디스플레이 주식회사 접촉 감응 소자, 이를 포함하는 표시 장치 및 이의 제조 방법
EP3601810A4 (en) * 2017-03-22 2020-12-23 The Regents of the University of Colorado, A Body Corporate HYDRAULICALLY-AMPLIFIED SELF-HICING ELECTROSTATIC TRANSDUCERS

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06284750A (ja) * 1993-03-29 1994-10-07 Nippondenso Co Ltd 積層静電アクチュエータ
JP5479659B2 (ja) * 2000-02-23 2014-04-23 エスアールアイ インターナショナル 生体によって動力を供給される電気活性ポリマジェネレータ
JP2007259663A (ja) * 2006-03-24 2007-10-04 Dainippon Printing Co Ltd 積層型静電アクチュエータ
JP2017022926A (ja) * 2015-07-14 2017-01-26 国立大学法人東京工業大学 静電アクチュエータおよび静電アクチュエータの製造方法
JP2017183814A (ja) * 2016-03-28 2017-10-05 住友理工株式会社 静電型トランスデューサ
JP2018033293A (ja) 2016-08-19 2018-03-01 ローム株式会社 誘電エラストマーアクチュエータおよびその駆動システム

Also Published As

Publication number Publication date
TW202121822A (zh) 2021-06-01
JPWO2020241387A1 (ja) 2020-12-03
EP3979486A4 (en) 2023-05-17
US20220224251A1 (en) 2022-07-14
KR20220016107A (ko) 2022-02-08
CN113906665A (zh) 2022-01-07
EP3979486A1 (en) 2022-04-06

Similar Documents

Publication Publication Date Title
JP5584066B2 (ja) 積層型圧電構造体
JP6201583B2 (ja) 圧電デバイスおよび圧電デバイスの製造方法
JP5403170B2 (ja) 積層型圧電アクチュエータ及び圧電振動装置
WO2020241387A1 (ja) マルチレイヤー構造を有する静電アクチュエータ
JP7429506B2 (ja) 振動パネル及び電子機器
JPS6039879A (ja) 積層セラミック圧電体
JP6825290B2 (ja) 圧電素子
JP4258238B2 (ja) 積層型圧電素子及びその製造方法
JP2007252132A (ja) アクチュエータ
JP2019057563A (ja) 積層型圧電素子及び振動デバイス
JP6011325B2 (ja) アクチュエータ、セル基板複合体、セル基板複合体の製造方法及びアクチュエータの製造方法
WO2018051698A1 (ja) 圧電発電装置
WO2016158730A1 (ja) 圧電発電素子及び圧電発電装置
JPS62200778A (ja) 積層型圧電素子
KR102353298B1 (ko) 전기 정지 마찰력을 이용한 가변 강성 메커니즘
JP2004087662A (ja) 圧電素子
KR102626610B1 (ko) 적층 압전 소자 및 그를 포함하는 압전 액추에이터
KR100599550B1 (ko) 전왜 폴리머의 팽창력을 수축력으로 변환하는 다층 폴리머액추에이터
WO2018061496A1 (ja) 圧電発電装置
JP5825656B2 (ja) 圧電アクチュエータおよび連結型圧電アクチュエータ
JP5656352B2 (ja) 積層圧電アクチュエータ
JPH04279070A (ja) 積層型セラミック素子
KR20220016106A (ko) 적층형 정전 액추에이터
JP5949927B2 (ja) 電歪アクチュエータおよびその製造方法
JP2002299706A (ja) 積層型圧電アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021522256

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217041145

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020813125

Country of ref document: EP

Effective date: 20220103