WO2020241242A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2020241242A1
WO2020241242A1 PCT/JP2020/018961 JP2020018961W WO2020241242A1 WO 2020241242 A1 WO2020241242 A1 WO 2020241242A1 JP 2020018961 W JP2020018961 W JP 2020018961W WO 2020241242 A1 WO2020241242 A1 WO 2020241242A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon material
storage device
power storage
graphite
weight
Prior art date
Application number
PCT/JP2020/018961
Other languages
English (en)
French (fr)
Inventor
和田 拓也
直樹 笹川
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to JP2020530387A priority Critical patent/JPWO2020241242A1/ja
Priority to CN202080034590.3A priority patent/CN113795951A/zh
Priority to EP20814262.0A priority patent/EP3979370A4/en
Priority to US17/614,082 priority patent/US20220223354A1/en
Publication of WO2020241242A1 publication Critical patent/WO2020241242A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a power storage device using an electrode composed of an electrode material containing a carbon material.
  • Patent Document 1 discloses an electric double layer capacitor having a polarizable electrode layer containing activated carbon, a conductive auxiliary agent, and a binder. Carbon black is described as the conductive auxiliary agent. The binder plays a role of binding the current collector and the active material in the electrode. Further, it is described that the electric double layer capacitor of Patent Document 1 may further contain an electrolytic solution such as propylene carbonate.
  • the electric double layer capacitor as in Patent Document 1 has a problem that it is difficult to drive it at a high voltage.
  • An object of the present invention is to provide a power storage device having excellent withstand voltage resistance and enabling high voltage drive.
  • the power storage device includes an electrode composed of an electrode material containing a carbon material and substantially free of a binder, and an electrolytic solution containing an ionic liquid composed of cations and anions. Be prepared.
  • the cations of the ionic liquid are 1-butyl-1-methylpyrrolidinium, n, n-diethyl-n-methyl-n- (2-methoxyethyl) ammonium. , 1-Methyl-1-propylpiperidinium, 1-methyl-1-propyl-pyrrolidinium, N- (2-methoxyethyl) -N-methylpyrrolidinium, N, N, N-trimethyl-N-propylammonium , And at least one selected from the group consisting of 1-ethyl-3-methylimidazolium.
  • the cation of the ionic liquid is 1-butyl-1-methylpyrrolidinium.
  • the anion of the ionic liquid is selected from the group consisting of bis (fluorosulfonyl) imide, bis (trifluoromethanesulfonyl) imide, tetrafluoroborate, and methylphosphonate. At least one of them.
  • 0.2 g of the carbon material is filled in a cylindrical sieve having a diameter of 2 cm and compressed at a pressure of 16 kN to obtain the total amount of the compressed carbon material.
  • the weight of the carbon material remaining on the sieve after shaking is 100 weight of the carbon material charged into the sieve. It is 90% by weight or more with respect to%.
  • the carbon material includes a carbon material having a graphene laminated structure.
  • the carbon material having the graphene laminated structure is graphite or flaky graphite.
  • the carbon material having the graphene laminated structure is a partially exfoliated flaky graphite having a graphite structure and partially exfoliated graphite.
  • the carbon material comprises carbides of the resin.
  • Yet another specific aspect of the power storage device according to the present invention is an electric double layer capacitor or a lithium ion capacitor.
  • FIG. 1 is a schematic view of a triode cell produced in the examples.
  • FIG. 2 is a diagram showing charge / discharge results of the triode cell produced in Example 1.
  • FIG. 3 is a diagram showing the charge / discharge results of the triode cell produced in Example 2.
  • FIG. 4 is a diagram showing the charge / discharge results of the triode cell produced in Example 3.
  • FIG. 5 is a diagram showing charge / discharge results of the triode cell produced in Example 4.
  • the power storage device of the present invention is not particularly limited, but is a non-aqueous electrolyte primary battery, an aqueous electrolyte primary battery, a non-aqueous electrolyte secondary battery, an aqueous electrolyte secondary battery, an all-solid electrolyte primary battery, an all-solid electrolyte secondary battery, and the like.
  • Examples thereof include capacitors, electric double layer capacitors, and lithium ion capacitors.
  • the power storage device of the present invention includes an electrode and an electrolytic solution.
  • the electrode is made of an electrode material containing a carbon material. Moreover, the electrode material does not substantially contain a binder. In the present invention, “substantially free of binder” means that the content of the binder in 100% by weight of the electrode material is 2% by weight or less.
  • the above-mentioned electrodes are a pair of polarizable electrodes and a pair of electrodes such as a positive electrode and a negative electrode.
  • at least one of the pair of electrodes may be made of an electrode material containing a carbon material and substantially free of a binder.
  • both electrodes of the pair of electrodes are made of an electrode material containing a carbon material and substantially free of a binder.
  • the above electrolytic solution contains an ionic liquid.
  • Ionic liquids are composed of cations and anions.
  • the power storage device of the present invention includes an electrode composed of an electrode material containing a carbon material and substantially free of a binder, and an electrolytic solution containing an ionic liquid composed of cations and anions. It has excellent withstand voltage resistance and enables high voltage drive.
  • the present inventors focus on the electrode material constituting the electrode and the electrolytic solution, and include an electrode material containing a carbon material and substantially free of a binder, and an ionic liquid composed of cations and anions. It has been found that the decomposition of the binder and the electrolytic solution can be suppressed by using the electrolytic solution, thereby increasing the withstand voltage and increasing the driving voltage.
  • the power storage device of the present invention can increase the drive voltage, so that the energy density can be increased. Therefore, the power storage device of the present invention can be suitably used as a capacitor or a secondary battery, and more preferably as a lithium ion capacitor or an electric double layer capacitor.
  • Electrode (Carbon material)
  • the electrode used in the power storage device of the present invention is made of an electrode material containing a carbon material.
  • the content of the carbon material in 100% by weight of the electrode material is preferably 90% by weight or more, more preferably 98% by weight or more.
  • the withstand voltage can be further increased, and the drive voltage can be further increased.
  • the upper limit of the content of the carbon material in 100% by weight of the electrode material can be, for example, 100% by weight.
  • the carbon material With 0.2 g of the carbon material filled in a cylindrical syringe having a diameter of 2 cm, it is compressed at a pressure of 16 kN, and the entire amount of the compressed carbon material is taken out from the syringe and put into a sieve having a mesh opening of 4.75 mm.
  • the weight of the carbon material remaining on the sieve after shaking is preferably 90% by weight or more with respect to 100% by weight of the carbon material charged into the sieve.
  • the carbon material can form a self-supporting film by compression of 16 kN even if it does not substantially contain a binder.
  • substantially free of binder means that the content of the binder is 2% by weight or less with respect to 100% by weight of the material forming the film.
  • the carbon material preferably has a plurality of concave portions and a plurality of convex portions.
  • the plurality of concave portions and the plurality of convex portions are fitted to each other by pressurization. In this case, the self-supporting film can be formed more easily.
  • the shape and size of the plurality of convex portions and the plurality of concave portions are such that the shape and size can form a self-supporting film.
  • the diameter of the recesses is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the major axis of the recesses is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the planar shapes of the plurality of recesses are substantially rectangular, the long sides of the recesses are preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the depth of the plurality of recesses is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the diameter of the convex portions is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the major axis of the convex portions is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the planar shapes of the plurality of convex portions are substantially rectangular, the long sides of the convex portions are preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the height of the protruding portion in the convex portion is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less.
  • the carbon material is preferably a porous body.
  • the plurality of recesses correspond to the respective holes of the porous body.
  • the above carbon material, BET specific surface area is preferably 240 m 2 / g or more, more preferably 450 m 2 / g or more, more preferably 1100 m 2 / g or more, preferably not more than 4000 m 2 / g, more preferably 3500 m 2 / It is less than or equal to g.
  • BET specific surface area is within the above range, characteristics such as the capacity of the power storage device can be further enhanced.
  • the carbon material may be provided with pores such as mesopores.
  • the mesopores refer to pores having a pore diameter of 2 nm or more and 50 nm or less.
  • the volume of the mesopores is the sum of the volumes of all the mesopores in the carbon material (total mesopore volume).
  • the volume of the mesopores can be measured by, for example, the BJH (Barret, Joiner, Hallender) method, which is a gas adsorption method.
  • the volume of the mesopore is preferably 0.04 mL / g or more, more preferably 0.05 mL / g or more, and further preferably 0.1 mL / g or more.
  • the upper limit of the volume of the mesopore is not particularly limited, but is preferably 20 mL / g or less, more preferably 1.0 mL / g or less.
  • pores such as micropores may be provided in addition to the mesopores.
  • the volume of the micropores is preferably 1.0 mL / g or less, more preferably 0.8 mL / g or less.
  • the lower limit of the volume of the micropores is not particularly limited, but is preferably 0.01 mL / g or more.
  • the micropores contribute to the improvement of the specific surface area, but since the pore diameter is small, the electrolytic solution is difficult to permeate, and the surface area is difficult to be used as a battery.
  • the electrolytic solution can more easily permeate the surface of the carbon material, and the wide specific surface area can be utilized more effectively, so that the capacity of the power storage device can be further increased. ..
  • the micropores are those with a pore diameter of less than 2 nm.
  • the volume of the micropores can be measured by, for example, the MP (MicroPore, analysis) method, which is a gas adsorption method. Further, the volume of the micropores means the sum of the volumes of all the micropores in the carbon material.
  • the carbon material may be composed only of a carbon material having a graphene laminated structure, or may be composed only of a carbide of a resin. Further, it may be a mixture of a carbon material having a graphene laminated structure and a carbide of a resin. Further, the carbon material of the present invention may further contain a resin remaining without being carbonized.
  • the X-ray diffraction spectrum can be measured by wide-angle X-ray diffraction.
  • the X-ray diffractometer for example, SmartLab (manufactured by Rigaku Co., Ltd.) can be used.
  • the carbon material of the present invention may be a composite of a carbide of a resin and a carbon material having a graphene laminated structure.
  • the peak at around 2 ⁇ of 26 ° changes in strength according to the blending ratio of amorphous carbon, which is a carbide of the resin, and crystalline graphite. Even in this case, a part of the resin may remain without being carbonized.
  • the above resin is used for the purpose of forming carbides, it shall be distinguished from the binder used as the electrode material of the power storage device.
  • Examples of the resin used for the carbide of the above resin include polypropylene glycol, polyethylene glycol, styrene polymer (polystyrene), vinyl acetate polymer (polyvinyl acetate), polyvinylidene methacrylate, polyvinyl butyral, polyacrylic acid, styrene butadiene rubber, and polyimide.
  • Examples thereof include resins, polyester polyols, polytetrafluoroethylene, and fluoropolymers such as polyvinylidene fluoride.
  • the above resins may be used alone or in combination of two or more.
  • polyethylene glycol or polyvinyl acetate is used.
  • the content of the resin and / or the carbide of the resin contained in 100% by weight of the carbon material is preferably 1% by weight or more, more preferably 3% by weight or more, still more preferably 10% by weight or more, and particularly preferably 15% by weight. % Or more, preferably 99% by weight or less, more preferably 95% by weight or less.
  • the carbon material preferably contains a carbon material having a graphene laminated structure.
  • the conductivity can be further increased. Therefore, characteristics such as rate characteristics in the power storage device can be further improved. Therefore, the content of the carbon material having a graphene laminated structure contained in 100% by weight of the carbon material is preferably 0.1% by weight or more, more preferably 1% by weight or more.
  • the upper limit of the content of the carbon material having a graphene laminated structure contained in 100% by weight of the carbon material is not particularly limited, but is, for example, 99% by weight.
  • examples of the carbon material having a graphene laminated structure include graphite and flaky graphite.
  • Graphite is a laminate of multiple graphene sheets.
  • the number of laminated graphene sheets of graphite is usually about 100,000 to 1,000,000.
  • As the graphite for example, natural graphite, artificial graphite, expanded graphite or the like can be used. Expanded graphite has a higher proportion of the inter-story distance between graphene layers than ordinary graphite. Therefore, it is preferable to use expanded graphite as the graphite.
  • the flaky graphite is obtained by exfoliating the original graphite, and refers to a graphene sheet laminate thinner than the original graphite.
  • the number of graphene sheets laminated in the flaky graphite may be smaller than that of the original graphite.
  • the flaky graphite may be flaky oxide graphite.
  • the number of graphene sheets laminated is not particularly limited, but is preferably 2 layers or more, more preferably 5 layers or more, preferably 1000 layers or less, and more preferably 500 layers or less.
  • the number of graphene sheets laminated is equal to or greater than the above lower limit, the flaky graphite is prevented from scrolling in the liquid and the flaky graphites are prevented from stacking with each other, so that the conductivity of the flaky graphite is further enhanced. be able to.
  • the number of laminated graphene sheets is not more than the above upper limit, the specific surface area of the flaky graphite can be further increased.
  • the flaky graphite is preferably a partially exfoliate type flaky graphite having a structure in which graphite is partially exfoliated.
  • partially exfoliated graphite means that in the graphene laminate, the graphene layers are open from the edge to the inside to some extent, that is, one of the graphite at the edge (edge portion). It means that the part is peeled off. Further, it means that the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary flaky graphite. Therefore, the portion where a part of graphite is peeled off at the edge is connected to the portion on the central side. Further, the partially exfoliated thinned graphite may include those in which the graphite at the edge is exfoliated and flaked.
  • the graphite layer is laminated in the central portion in the same manner as the original graphite or the primary flake graphite. Therefore, the degree of graphitization is higher than that of conventional graphene oxide or carbon black, and the conductivity is excellent. Therefore, when it is used as an electrode of a power storage device, the electron conductivity in the electrode can be further increased, and charging / discharging with a larger current becomes possible.
  • Whether or not graphite is partially peeled off can be determined by, for example, observation with a scanning electron microscope (SEM), as in the case of the flaky graphite / resin composite material described in International Publication No. 2014/034156. , Can be confirmed by the X-ray diffraction spectrum.
  • SEM scanning electron microscope
  • First method In the first method, first, graphite or primary flaky graphite and a resin are mixed to obtain a first mixture (mixing step).
  • the mixing method is not particularly limited, and for example, mixing by ultrasonic waves, mixing by a mixer, mixing by a stirrer, graphite or primary flaky graphite and resin are placed in a sealable container, and the container is shaken. Etc. can be used.
  • a solvent or the like may be further added.
  • the solvent for example, water, ethanol, methanol, THF (tetrahydrofuran), NMP (N-methyl-2-pyrrolidone) and the like can be used.
  • the first mixture obtained in this mixing step is a mixed solution.
  • a dispersant such as carboxymethyl cellulose (CMC) or sodium dodecyl sulfate (SDS) may be further mixed.
  • the first mixture may be dried.
  • the drying method is not particularly limited, and for example, a method of air drying, hot plate, vacuum drying, and freeze drying can be used.
  • the dried product of the mixed solution is also preferably a liquid.
  • the primary flaky graphite broadly includes flaky graphite obtained by exfoliating graphite by various methods.
  • the primary flaky graphite may be a partially exfoliated flaky graphite. Since the primary flaky graphite is obtained by exfoliating graphite, its specific surface area may be larger than that of graphite.
  • the resin is not particularly limited, and for example, polypropylene glycol, polyethylene glycol, polyglycidyl methacrylate, vinyl acetate polymer (polyvinyl acetate), polyvinyl butyral, polyacrylic acid, styrene polymer (polystyrene), styrene butadiene rubber, and polyimide resin.
  • Polyester polyol polytetrafluoroethylene, polyvinylidene fluoride and other fluoropolymers.
  • particles different from the carbon material are further added to the obtained first mixture and mixed.
  • particles different from the carbon material are arranged in the matrix of the carbon material constituting the first mixture to form the second mixture.
  • the carbon material constituting the second mixture may be coated with particles different from the carbon material to form the second mixture.
  • the mixing method is not particularly limited, and for example, mixing by ultrasonic waves, mixing by a mixer, mixing by a stirrer, putting the dried product and particles of the first mixture in a sealable container, and shaking the container. And so on.
  • Particles different from the above carbon material may be activators.
  • the particles different from the above carbon material are not particularly limited, but for example, zinc hydroxide, zinc chloride, zinc sulfide, calcium hydroxide, calcium chloride, calcium sulfide, calcium carbonate, sodium hydroxide, sodium chloride, sodium sulfide, etc.
  • Sodium carbonate, potassium hydroxide, potassium chloride, potassium sulfide, potassium carbonate, phosphoric acid, zinc phosphate, calcium phosphate, sodium phosphate, potassium phosphate can be used. These may be used alone or in combination of two or more.
  • the particle size of the particles different from the carbon material is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less. By setting the particle size of the particles different from the carbon material within the above range, the obtained carbon material can more easily form a self-supporting film.
  • the particle size refers to the average particle size calculated by the volume-based distribution by the dry laser diffraction method. The average particle size can be measured using, for example, MT3300EXII manufactured by Microtrac Bell.
  • the heating temperature in the heating step can be, for example, 200 ° C. to 1000 ° C.
  • the heating may be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen gas. It is desirable to carbonize at least a part of the resin by this heating step. The resin may be completely carbonized. It is also desirable that this heating step solidifies the first mixture contained in the second mixture to form a solid / solid matrix with particles different from the carbon material. Further, in this heating step, a part of graphite of graphite or primary flaky graphite may be partially exfoliated to obtain the above-mentioned partially exfoliated flaky graphite. After this heating step, activation treatment may be further performed by a chemical activation method or a gas activation method.
  • the particles are removed from the second mixture after heating.
  • the portion from which the particles arranged in the matrix of the second mixture have been removed becomes the plurality of concave portions and the plurality of convex portions.
  • the method for removing the particles is not particularly limited, and examples thereof include a method of washing and drying with a solvent such as water. Moreover, you may perform pulverization after removing the said particle.
  • the carbon material obtained by such a manufacturing method has the above-mentioned plurality of concave portions and a plurality of convex portions. Therefore, a self-supporting film (electrode film) can be easily formed even when the binder is substantially not contained.
  • a carbon material which is a composite material of a carbon material having a graphene laminated structure such as original graphite, primary flaky graphite, or partially peeled flaky graphite, and a resin and / or a carbide of the resin. Can be obtained.
  • Second method In the second method, first, particles different from the carbon material are added to the resin to be a matrix and mixed. Thereby, particles different from the carbon material are arranged in the resin matrix to form a mixture. Further, the resin may be coated with particles different from the carbon material to form a mixture.
  • the mixing method is not particularly limited, and for example, a method such as mixing by ultrasonic waves, mixing by a mixer, mixing by a stirrer, putting resin and particles in a sealable container, and shaking the container can be used. Can be mentioned.
  • the resin it is preferable to use a liquid resin.
  • the resin is not particularly limited, and for example, polypropylene glycol, polyethylene glycol, polyglycidyl methacrylate, vinyl acetate polymer (polyvinyl acetate), polyvinyl butyral, polyacrylic acid, styrene polymer (polystyrene), styrene butadiene rubber, and polyimide resin. , Polyester polyol, polytetrafluoroethylene, polyvinylidene fluoride and other fluoropolymers.
  • Particles different from the above carbon material may be activators.
  • the particles different from the above carbon material are not particularly limited, but for example, zinc hydroxide, zinc chloride, zinc sulfide, calcium hydroxide, calcium chloride, calcium sulfide, calcium carbonate, sodium hydroxide, sodium chloride, sodium sulfide, etc.
  • Sodium carbonate, potassium hydroxide, potassium chloride, potassium sulfide, potassium carbonate, phosphoric acid, zinc phosphate, calcium phosphate, sodium phosphate, potassium phosphate can be used. These may be used alone or in combination of two or more.
  • the particle size of the particles different from the carbon material is preferably 0.1 ⁇ m or more and 1000 ⁇ m or less. By setting the particle size of the particles different from the carbon material within the above range, the obtained carbon material can more easily form a self-supporting film.
  • the average particle size refers to the average particle size calculated by the volume-based distribution by the dry laser diffraction method. The average particle size can be measured using, for example, MT3300EXII manufactured by Microtrac Bell.
  • the heating temperature in the heating step can be, for example, 200 ° C. to 1000 ° C.
  • the heating may be performed in the atmosphere or in an atmosphere of an inert gas such as nitrogen gas. It is desirable to carbonize at least a part of the resin by this heating step. The resin may be completely carbonized. It is also desirable that this heating step solidifies the first mixture contained in the second mixture to form a solid / solid matrix with particles different from the carbon material.
  • activation treatment may be further performed by a chemical activation method or a gas activation method.
  • the particles are removed from the heated mixture.
  • the portion from which the particles arranged in the matrix have been removed becomes the plurality of concave portions and the plurality of convex portions.
  • the method for removing the particles is not particularly limited, and examples thereof include a method of washing and drying with a solvent such as water. Moreover, you may perform pulverization after removing the said particle.
  • the carbon material obtained by the second method also has the above-mentioned plurality of concave portions and a plurality of convex portions. Therefore, a self-supporting film (electrode film) can be easily formed even when the binder is substantially not contained.
  • graphite or a mixture of primary flaky graphite and resin as in the first method may be used, or graphite or primary flaky graphite as in the second method may not be used. Only the resin may be used.
  • a carbon material consisting only of the carbide of the resin can be obtained.
  • it may further contain a non-carbonized resin.
  • the electrode material constituting the electrode used in the power storage device of the present invention does not substantially contain a binder.
  • substantially free of binder means that the content of the binder in 100% by weight of the electrode material is 2% by weight or less.
  • binder examples include fluoropolymers such as polyvinyl butyral, polytetrafluoroethylene, styrene butadiene rubber, polyimide resin, acrylic resin and polyvinylidene fluoride, and resins such as water-soluble carboxymethyl cellulose.
  • the electrode material constituting the electrode used in the power storage device of the present invention may also contain other materials.
  • Examples of other materials include a positive electrode active material, a negative electrode active material, a conductive auxiliary agent, and the like.
  • Examples of the positive electrode active material include lithium metal oxide, lithium sulfide, and sulfur.
  • lithium metal oxide examples include those having a spinel structure, a layered rock salt structure, an olivine structure, or a mixture thereof.
  • lithium metal oxide having a spinel structure examples include lithium manganate.
  • lithium metal oxide having a layered rock salt structure examples include lithium cobalt oxide, lithium nickel oxide, and a ternary system.
  • lithium metal oxide having an olivine structure examples include lithium iron phosphate, lithium manganese iron phosphate, and lithium manganese phosphate.
  • the positive electrode active material may contain a so-called doping element.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the negative electrode active material for example, natural graphite, artificial graphite, hard carbon, metal oxide, lithium titanate, or silicon-based active material can be used.
  • the negative electrode active material may be used alone or in combination of two or more.
  • the conductive auxiliary agent for example, graphene, artificial graphite, granular graphite compound, fibrous graphite compound, carbon black, activated carbon or the like can be used.
  • the conductive auxiliary agent may be used alone or in combination of two or more.
  • the electrode used in the power storage device of the present invention can be obtained by shaping the electrode material containing the above carbon material or the like by adding a solvent or the like as necessary.
  • the shaping of the electrode material can be performed, for example, by forming a sheet with a rolling roller and then drying it.
  • the current collector may be coated with a coating liquid composed of an electrode material containing the above carbon material and the like and a solvent, and then dried.
  • ethanol N-methylpyrrolidone (NMP), tetrahydrofuran (THF), water or the like can be used.
  • NMP N-methylpyrrolidone
  • THF tetrahydrofuran
  • the electrolytic solution used in the power storage device of the present invention contains an ionic liquid.
  • Ionic liquids are composed of cations and anions.
  • 1-butyl-1-methylpyrrolidinium or n, n-diethyl-n-methyl-n- (2-methoxyethyl) ammonium is preferable, and 1-butyl-1-methylpyrrolidinium is used. More preferably.
  • the decomposition of the electrolytic solution can be further suppressed, whereby the withstand voltage resistance of the power storage device can be further increased and the drive voltage can be further increased.
  • the cation one type may be used alone, or a plurality of types may be used in combination.
  • anion examples include bis (fluorosulfonyl) imide, bis (trifluoromethanesulfonyl) imide, tetrafluoroborate, and methylphosphonate ion.
  • bis (fluorosulfonyl) imide is preferable. In this case, the decomposition of the electrolytic solution can be further suppressed, whereby the withstand voltage resistance of the power storage device can be further increased and the drive voltage can be further increased.
  • the electrolytic solution may contain other solvents and electrolytes.
  • the content of the ionic liquid in 100% by weight of the electrolytic solution is preferably 80% by weight or more, more preferably 90% by weight. That is all.
  • the upper limit of the content of the ionic liquid in 100% by weight of the electrolytic solution is 100% by weight, and it is preferable that the electrolytic solution consists only of the ionic liquid.
  • the power storage device of the present invention may further include a separator.
  • the separator may be arranged, for example, between a pair of electrodes. Those in which a separator is arranged between the positive electrode side and the negative electrode side may be used in a rotating manner, or may be used in a laminated manner.
  • the separator is not particularly limited, but can be made of, for example, an insulating material capable of holding an electrolytic solution.
  • a porous film base material such as polypropylene or polyethylene, a glass fiber base material, a non-woven fabric, a cellulosic base material such as an electric field capacitor paper or kraft paper can be used.
  • PEG600 polyethylene glycol
  • potassium carbonate K 2 CO 3 , manufactured by Wako Pure Chemical Industries, Ltd., average particle size: 600 ⁇ m
  • the obtained mixture was heated in a nitrogen atmosphere from 300 ° C. to 370 ° C. over 3 hours to obtain carbides.
  • the obtained carbide was milled and further activated.
  • the activation temperature was maintained at 850 ° C. and the activation time was maintained for 100 minutes in a nitrogen atmosphere.
  • a carbon material was obtained by neutrally washing the activated carbide with hot water.
  • the carbon material was a partially peelable flaky graphite having a plurality of concave portions and a plurality of convex portions.
  • 0.2 g of the obtained carbon material was filled in a cylindrical syringe having a diameter of 2 cm, gradually pressurized, and compressed at a pressure of 16 kN for 10 seconds. Subsequently, the entire amount of the compressed carbon material was taken out from the syringe and placed in a stainless steel sieve (inner diameter: 150 mm, depth: 45 mm) having a mesh size of 4.75 mm according to JIS Z8801-1. Next, using a sieve shaker (manufactured by AS ONE Corporation, product number "SHAKER SSR-2”), shake at a speed of 60 rpm for 1 minute in RECIPROCATOR mode, and then weigh the carbon material remaining on the sieve. It was measured. As a result, the weight of the carbon material remaining on the sieve was 97.9% by weight with respect to 100% by weight of the carbon material charged into the sieve.
  • 0.2 g of carbon material separately prepared by the same method as above was filled in a cylindrical syringe having a diameter of 2 cm, gradually pressurized, and compressed at a pressure of 16 kN for 10 seconds. After compression, it was punched to a diameter of 10 mm to prepare a disk-shaped electrode.
  • the two electrodes produced in this manner were used as a positive electrode and a negative electrode, and the cells were assembled by sandwiching them with a separator (cellulosic, diameter 12 mm).
  • a lithium metal was used as the reference electrode.
  • An ionic liquid containing 1-butyl-1-methylpyrrolidinium and bis (fluorosulfonyl) imide was used as the electrolytic solution.
  • the charge / discharge test is performed with a charge current of 5.0 mA and a discharge current of 5.0 mA, and the operating voltage is gradually increased to 0 to 3.0 V, 3.2 V, 3.4 V, 3.6 V, and 4.0 V. went.
  • the number of measurements at each voltage was two, and the data from the second cycle was used.
  • the temperature environment for charging and discharging was a constant temperature room of 25 ° C.
  • Example 2 Three poles as in Example 1 except that an ionic liquid containing n, n-diethyl-n-methyl-n- (2-methoxyethyl) ammonium and bis (fluorosulfonyl) imide was used as the electrolytic solution. A cell was prepared and charge / discharge evaluation was performed. As a result, it was confirmed that high voltage drive at 4V is possible also in Example 2.
  • Example 3 A triode cell was prepared in the same manner as in Example 1 except that an ionic liquid containing 1-methyl-1-propylpiperidinium and bis (fluorosulfonyl) imide was used as the electrolytic solution, and charge / discharge evaluation was performed. went. As a result, it was confirmed that high voltage drive at 4V is possible also in Example 3.
  • Example 4 A triode cell was prepared in the same manner as in Example 1 except that an ionic liquid containing 1-methyl-1-propyl-pyrrolidinium and bis (fluorosulfonyl) imide was used as the electrolytic solution, and charge / discharge evaluation was performed. It was. As a result, it was confirmed that the high voltage drive at 4V is possible also in the fourth embodiment.
  • an aqueous solution containing 1% by weight of CMC (carboxymethyl cellulose, manufactured by Daicel Co., Ltd., trade name "# 1120") as a binder and activated carbon are mixed at a weight ratio of 1000:90 to prepare a slurry, which is coated on an aluminum current collector foil. Worked. An electrode film was obtained by drying this coating film (weight ratio of binder to activated carbon after drying was 10:90). After the film formation, the film was punched to a diameter of 10 mm to prepare a disk-shaped electrode. In other points, charge / discharge evaluation was performed in the same manner as in Example 4. As a result, in Comparative Example 1, a film could be formed on the aluminum current collector foil by using 10% by weight of the binder resin. However, the binder was decomposed during the charge / discharge evaluation, and the high voltage drive at 4 V could not be performed.
  • CMC carboxymethyl cellulose, manufactured by Daicel Co., Ltd., trade name "# 1120”
  • OCP open circuit potential
  • OCP A ... The absolute value of the difference between the OCP at 3V drive and the OCP at 4V drive is 0.10V or less.
  • B The absolute value of the difference between the OCP at 3V drive and the OCP at 4V drive is 0.11V or more.
  • the total value of the positive and negative electrodes of the IR drop during discharge when driving at 4V is 0.3V or more and less than 0.5V C ...
  • the total value of the positive and negative electrodes of the IR drop during discharge when driven at 4V is 0.5V or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

耐電圧性に優れ、高電圧駆動を可能とする、蓄電デバイスを提供する。 炭素材料を含み、かつバインダーを実質的に含まない電極材料により構成されている、電極と、カチオン及びアニオンにより構成されているイオン液体を含む、電解液と、を備える、蓄電デバイス。

Description

蓄電デバイス
 本発明は、炭素材料を含む電極材料により構成されている電極を用いた蓄電デバイスに関する。
 近年、携帯機器、ハイブリッド自動車、電気自動車、家庭用蓄電用途等に向けて、キャパシタやリチウムイオン二次電池などの蓄電デバイスの研究開発が盛んに行われている。蓄電デバイスの電極材料としては、黒鉛、活性炭、カーボンナノファイバーあるいはカーボンナノチューブなどの炭素材料が、環境的側面から広く用いられている。
 下記の特許文献1には、活性炭と、導電補助剤と、バインダーとを含む分極性電極層を有する電気二重層キャパシタが開示されている。上記導電補助剤としては、カーボンブラックが記載されている。上記バインダーは、電極において、集電体と活物質とを結着させる役割を担っている。また、特許文献1の電気二重層キャパシタには、プロピレンカーボネートなどの電解液をさらに含んでもよいことが記載されている。
国際公開第2008/029865号
 ところで、近年、キャパシタやリチウムイオン二次電池などの蓄電デバイスの分野においては、高電圧駆動などのさらなる高性能化が求められている。特に、キャパシタにおけるエネルギー密度Eは、E=1/2CV(C:静電容量、V:電圧)で表されることから、駆動電圧を大きくすることで、飛躍的にエネルギー密度が高められることが知られている。
 しかしながら、特許文献1のような電気二重層キャパシタは、高電圧駆動が難しいという問題がある。
 この原因について、本発明者らは鋭意検討した結果、特許文献1のような電気二重層キャパシタは、高電圧駆動しようとすると、バインダーや電解液が分解し、それによってキャパシタ性能が劣化したり、安全性に問題が生じたりすることを見出した。
 本発明の目的は、耐電圧性に優れ、高電圧駆動を可能とする、蓄電デバイスを提供することにある。
 本発明に係る蓄電デバイスは、炭素材料を含み、かつバインダーを実質的に含まない電極材料により構成されている、電極と、カチオン及びアニオンにより構成されているイオン液体を含む、電解液と、を備える。
 本発明に係る蓄電デバイスのある特定の局面では、前記イオン液体のカチオンが、1-ブチル-1-メチルピロリジニウム、n,n-ジエチル-n-メチル-n-(2-メトキシエチル)アンモニウム、1-メチル-1-プロピルピペリジニウム、1-メチル-1-プロピル-ピロリジニウム、N-(2-メトキシエチル)-N-メチルピロリジニウム、N,N,N-トリメチル-N-プロピルアンモニウム、及び1-エチル-3-メチルイミダゾリウムからなる群から選択される少なくとも1種である。
 本発明に係る蓄電デバイスの他の特定の局面では、前記イオン液体のカチオンが、1-ブチル-1-メチルピロリジニウムである。
 本発明に係る蓄電デバイスのさらに他の特定の局面では、前記イオン液体のアニオンが、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、テトラフルオロボラート、及びメチルホスホネートからなる群から選択される少なくとも1種である。
 本発明に係る蓄電デバイスのさらに他の特定の局面では、前記炭素材料0.2gを直径2cmの円筒形シリンジに充填した状態で、16kNの圧力で圧縮し、圧縮された前記炭素材料の全量を前記シリンジから取り出し目開き4.75mmの篩に入れ、前記篩を1分間振とうしたとき、振とう後に篩の上に残る前記炭素材料の重量が、篩に投入した前記炭素材料の重量100重量%に対し、90重量%以上である。
 本発明に係る蓄電デバイスのさらに他の特定の局面では、前記炭素材料が、グラフェン積層構造を有する炭素材料を含む。好ましくは、前記グラフェン積層構造を有する炭素材料が、黒鉛又は薄片化黒鉛である。好ましくは、前記グラフェン積層構造を有する炭素材料が、グラファイト構造を有し、部分的にグラファイトが剥離されている、部分剥離型薄片化黒鉛である。
 本発明に係る蓄電デバイスのさらに他の特定の局面では、前記炭素材料が、樹脂の炭化物を含む。
 本発明に係る蓄電デバイスのさらに他の特定の局面では、電気二重層キャパシタ又はリチウムイオンキャパシタである。
 本発明によれば、耐電圧性に優れ、高電圧駆動を可能とする、蓄電デバイスを提供することができる。
図1は、実施例で作製した3極セルの模式図である。 図2は、実施例1で作製した3極セルの充放電結果を示す図である。 図3は、実施例2で作製した3極セルの充放電結果を示す図である。 図4は、実施例3で作製した3極セルの充放電結果を示す図である。 図5は、実施例4で作製した3極セルの充放電結果を示す図である。
 以下、本発明の詳細を説明する。
 本発明の蓄電デバイスとしては、特に限定されないが、非水電解質一次電池、水系電解質一次電池、非水電解質二次電池、水系電解質二次電池、全固体電解質一次電池、全固体電解質二次電池、コンデンサ、電気二重層キャパシタ、又はリチウムイオンキャパシタなどが例示される。
 本発明の蓄電デバイスは、電極と、電解液とを備える。上記電極は、炭素材料を含む電極材料により構成されている。また、上記電極材料は、実質的にバインダーを含んでいない。なお、本発明において、「実質的にバインダーを含んでいない」とは、電極材料100重量%中におけるバインダーの含有量が、2重量%以下であることをいう。
 また、上記電極は、一対の分極性電極や、正極及び負極のような一対の電極である。本発明においては、一対の電極のうち少なくとも一方の電極が、炭素材料を含み、かつバインダーを実質的に含まない電極材料により構成されていればよい。もっとも、一対の電極のうち双方の電極が、炭素材料を含み、かつバインダーを実質的に含まない電極材料により構成されていることが好ましい。
 上記電解液は、イオン液体を含む。イオン液体は、カチオン及びアニオンにより構成されている。
 本発明の蓄電デバイスは、炭素材料を含み、かつバインダーを実質的に含まない電極材料により構成されている、電極と、カチオン及びアニオンにより構成されているイオン液体を含む、電解液とを備えるので、耐電圧性に優れ、高電圧駆動を可能とする。
 従来、バインダーを含む電極と、電解液とを備える、蓄電デバイスでは、高電圧駆動しようとすると、バインダーや電解液が分解し、それによってキャパシタ性能や電池性能が劣化したり、安全性に問題が生じたりすることがあった。そのため、このような蓄電デバイスでは、耐電圧性が十分でなく、高電圧駆動が難しいという問題があった。
 本発明者らは、電極を構成する電極材料と、電解液に着目し、炭素材料を含み、かつバインダーを実質的に含まない電極材料と、カチオン及びアニオンにより構成されているイオン液体を含む、電解液とを用いることで、バインダーや電解液の分解を抑制することができ、それによって耐電圧性を高め、駆動電圧を高め得ることを見出した。
 このように、本発明の蓄電デバイスは、駆動電圧を高めることができるので、エネルギー密度を高めることができる。従って、本発明の蓄電デバイスは、キャパシタや二次電池として好適に用いることができ、特にリチウムイオンキャパシタや電気二重層キャパシタとしてより好適に用いることができる。
 以下、本発明の蓄電デバイスの各部材についてより詳細に説明する。
 [電極]
 (炭素材料)
 本発明の蓄電デバイスに用いられる電極は、炭素材料を含む電極材料により構成されている。
 本発明において、上記電極材料100重量%中における上記炭素材料の含有量は、好ましくは90重量%以上、より好ましくは98重量%以上である。この場合、耐電圧性をより一層高めることができ、駆動電圧をより一層高めることができる。上記電極材料100重量%中における上記炭素材料の含有量の上限値は、例えば、100重量%とすることができる。
 上記炭素材料0.2gを直径2cmの円筒形シリンジに充填した状態で、16kNの圧力で圧縮し、圧縮された炭素材料の全量をシリンジから取り出し目開き4.75mmの篩に投入する。投入後、篩を1分間振とうしたとき、振とう後に篩の上に残る炭素材料の重量が、篩に投入した炭素材料の重量100重量%に対し、90重量%以上であることが好ましい。この場合、上記炭素材料は、バインダーを実質的に含まずとも、上記16kNの圧縮により自立膜を形成することができる。なお、「バインダーを実質的に含まない」とは、膜形成をする材料100重量%に対し、バインダーの含有量が2重量%以下のことをいう。
 上記炭素材料は、複数の凹部及び複数の凸部を備えることが好ましい。特に、複数の凹部及び複数の凸部は、加圧により互いに嵌合し合うことが好ましい。この場合、より一層容易に自立膜を形成することができる。
 また、複数の凸部及び複数の凹部の形状及び大きさは、自立膜を形成できる形状及び大きさとされていることが好ましい。
 複数の凹部の平面形状が、それぞれ、略円状である場合、凹部の直径は、0.1μm以上、1000μm以下とすることが好ましい。複数の凹部の平面形状が、それぞれ、略楕円状である場合、凹部の長径は、0.1μm以上、1000μm以下とすることが好ましい。複数の凹部の平面形状が、それぞれ、略矩形状である場合、凹部の長辺は、0.1μm以上、1000μm以下とすることが好ましい。また、複数の凹部の深さは、0.1μm以上、1000μm以下とすることが好ましい。上記複数の凹部の形状及び大きさが、それぞれ、上記範囲内にある場合、上記複数の凸部及び複数の凹部が互いに嵌合し合うことにより、自立膜をより一層容易に形成することができる。
 また、複数の凸部の平面形状が、それぞれ、略円状である場合、凸部の直径は、0.1μm以上、1000μm以下とすることが好ましい。複数の凸部の平面形状が、それぞれ、略楕円状である場合、凸部の長径は、0.1μm以上、1000μm以下とすることが好ましい。複数の凸部の平面形状が、それぞれ、略矩形状である場合、凸部の長辺は、0.1μm以上、1000μm以下とすることが好ましい。また、凸部における突出部の高さは、0.1μm以上、1000μm以下とすることが好ましい。上記複数の凸部の形状及び大きさが、それぞれ、上記範囲内にある場合、上記複数の凸部及び複数の凹部が互いに嵌合し合うことにより、自立膜をより一層容易に形成することができる。
 上記炭素材料は、多孔質体であることが好ましい。この場合、複数の凹部が、多孔質体のそれぞれの孔に相当するものとする。
 上記炭素材料は、BET比表面積が、好ましくは240m/g以上、より好ましくは450m/g以上、さらに好ましくは1100m/g以上、好ましくは4000m/g以下、より好ましくは3500m/g以下である。BET比表面積が上記範囲内にある場合、蓄電デバイスの容量などの特性をより一層高めることができる。
 上記炭素材料には、メソ孔のような細孔が設けられていてもよい。なお、メソ孔とは、孔径が、2nm以上、50nm以下の細孔のことをいう。メソ孔の容積とは、炭素材料内における全てのメソ孔の容積の和(全メソ孔容積)のことをいう。メソ孔の容積は、例えば、ガス吸着法であるBJH(Barret、Joyner、Hallender)法により測定することができる。
 上記メソ孔の容積は、好ましくは0.04mL/g以上、より好ましくは0.05mL/g以上、さらに好ましくは0.1mL/g以上である。メソ孔の容積の上限は、特に限定されないが、好ましくは20mL/g以下、より好ましくは1.0mL/g以下である。メソ孔の容積が、上記下限以上である場合、炭素材料の表面に、電解液がより一層浸透し易く、広い比表面積をより一層有効に活用できるため、蓄電デバイスの容量をより一層大きくすることができる。
 上記炭素材料においては、メソ孔以外にも例えばミクロ孔のような細孔が設けられていてもよい。ミクロ孔の容積は、好ましくは1.0mL/g以下、より好ましくは0.8mL/g以下である。ミクロ孔の容積の下限は、特に限定されないが、0.01mL/g以上が好ましい。ミクロ孔は、比表面積の向上には寄与するが、孔径が小さいため、電解液が浸透しにくく、電池としては活用されにくい表面積である。ミクロ孔の容積が上記上限以下である場合、炭素材料の表面に、電解液がより一層浸透しやすく、広い比表面積をより有効に活用できるため、蓄電デバイスの容量をより一層大きくすることができる。
 なお、ミクロ孔とは、孔径が2nm未満のものをいう。ミクロ孔の容積は、例えば、ガス吸着法であるMP(MicroPore、analysis)法により測定することができる。また、ミクロ孔の容積とは、炭素材料内における全てのミクロ孔の容積の和のことをいう。
 上記炭素材料は、グラフェン積層構造を有する炭素材料のみからなっていてもよく、樹脂の炭化物のみからなっていてもよい。また、グラフェン積層構造を有する炭素材料と、樹脂の炭化物との混合物であってもよい。また、本発明の炭素材料は、炭化されずに残存している樹脂をさらに含んでいてもよい。
 なお、グラフェン積層構造を有するか否かについては、炭素材料のX線回折スペクトルをCuKα線(波長1.541Å)を用いて測定したときに、2θ=26°付近のピーク(グラフェン積層構造に由来するピーク)が観察されるか否かにより確認することができる。X線回折スペクトルは、広角X線回折法によって測定することができる。X線回折装置としては、例えば、SmartLab(リガク社製)を用いることができる。
 また、本発明の炭素材料は、樹脂の炭化物とグラフェン積層構造を有する炭素材料の複合体でもよい。この場合、X線回折法によって、上記複合体を測定した場合、2θが26°付近のピークは樹脂の炭化物であるアモルファスカーボンと結晶性黒鉛の配合比に応じて強度が変わる。なお、この場合においても、樹脂の一部は、炭化されずに残存していてもよい。
 なお、上記樹脂は、炭化物を形成する目的で使用するものなので、蓄電デバイスの電極材料に用いられるバインダーとは区別されるものとする。
 また、上記樹脂の炭化物に用いられる樹脂としては、ポリプロピレングリコール、ポリエチレングリコール、スチレンポリマー(ポリスチレン)、酢酸ビニルポリマー(ポリ酢酸ビニル)、ポリグリシジルメタクリレート、ポリビニルブチラール、ポリアクリル酸、スチレンブタジエンゴム、ポリイミド樹脂、ポリエステルポリオール、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマーなどが挙げられる。なお、上記樹脂は、単独で用いてもよく、複数を併用してもよい。好ましくは、ポリエチレングリコール又はポリ酢酸ビニルが挙げられる。
 上記炭素材料100重量%中に含まれる樹脂及び/又は樹脂の炭化物の含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、さらに好ましくは10重量%以上、特に好ましくは15重量%以上、好ましくは99重量%以下、より好ましくは95重量%以下である。樹脂及び/又は樹脂の炭化物の含有量を上記下限以上及び上記上限以下とすることで、蓄電デバイスのキャパシタ特性や電池特性をより一層高めることができる。
 上記炭素材料は、グラフェン積層構造を有する炭素材料を含んでいることが好ましい。この場合、導電性をより一層高めることができる。そのため、蓄電デバイスにおけるレート特性などの特性をより一層向上させることができる。従って、上記炭素材料100重量%中に含まれるグラフェン積層構造を有する炭素材料の含有量は、好ましくは0.1重量%以上、より好ましくは1重量%以上である。また、上記炭素材料100重量%中に含まれるグラフェン積層構造を有する炭素材料の含有量の上限値は、特に限定されないが、例えば、99重量%である。
 本発明において、グラフェン積層構造を有する炭素材料としては、例えば、黒鉛又は薄片化黒鉛などが挙げられる。
 黒鉛とは、複数のグラフェンシートの積層体である。黒鉛のグラフェンシートの積層数は、通常、10万層~100万層程度である。黒鉛としては、例えば、天然黒鉛、人造黒鉛又は膨張黒鉛などを用いることができる。膨張黒鉛は、通常の黒鉛よりもグラフェン層同士の層間距離が大きくなっている割合が高い。従って、黒鉛としては、膨張黒鉛を用いることが好ましい。
 薄片化黒鉛とは、元の黒鉛を剥離処理して得られるものであり、元の黒鉛よりも薄いグラフェンシート積層体をいう。薄片化黒鉛におけるグラフェンシートの積層数は、元の黒鉛より少なければよい。なお、薄片化黒鉛は、酸化薄片化黒鉛であってもよい。
 薄片化黒鉛において、グラフェンシートの積層数は、特に限定されないが、好ましくは2層以上、より好ましくは5層以上、好ましくは1000層以下、より好ましくは500層以下である。グラフェンシートの積層数が上記下限以上である場合、液中で薄片化黒鉛がスクロールしたり、薄片化黒鉛同士がスタックしたりすることが抑制されるため、薄片化黒鉛の導電性をより一層高めることができる。グラフェンシートの積層数が上記上限以下である場合、薄片化黒鉛の比表面積をより一層大きくすることができる。
 また、薄片化黒鉛は、部分的にグラファイトが剥離されている構造を有する部分剥離型薄片化黒鉛であることが好ましい。
 より具体的に、「部分的にグラファイトが剥離されている」とは、グラフェンの積層体において、端縁からある程度内側までグラフェン層間が開いており、すなわち端縁(エッジ部分)にてグラファイトの一部が剥離していることをいう。また、中央側の部分ではグラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層していることをいうものとする。従って、端縁にてグラファイトの一部が剥離している部分は、中央側の部分に連なっている。さらに、上記部分剥離型薄片化黒鉛には、端縁のグラファイトが剥離され薄片化したものが含まれていてもよい。
 このように、部分剥離型薄片化黒鉛は、中央側の部分において、グラファイト層が元の黒鉛又は一次薄片化黒鉛と同様に積層している。そのため、従来の酸化グラフェンやカーボンブラックより黒鉛化度が高く、導電性に優れている。従って、蓄電デバイスの電極に用いた場合、電極内での電子伝導性をより一層大きくすることができ、より一層大きな電流での充放電が可能となる。
 なお、部分的にグラファイトが剥離されているか否かは、例えば、国際公開第2014/034156号に記載の薄片化黒鉛・樹脂複合材料と同様に、例えば、走査型電子顕微鏡(SEM)による観察や、X線回折スペクトルにより確認することができる。
 (炭素材料の製造方法)
 以下、上記炭素材料の製造方法の一例としての第1の方法及び第2の方法について説明する。
 第1の方法;
 第1の方法では、まず、黒鉛又は一次薄片化黒鉛と、樹脂とを混合し第1の混合物を得る(混合工程)。なお、混合方法としては、特に限定されず、例えば、超音波による混合、ミキサーによる混合、攪拌子による混合、密閉可能な容器内に黒鉛又は一次薄片化黒鉛と樹脂を入れ、容器を振とうするなどの方法を用いることができる。
 また、この混合工程では、さらに溶媒等を添加してもよい。溶媒としては、例えば、水、エタノール、メタノール、THF(テトラヒドロフラン)、NMP(N-メチル-2-ピロリドン)等を用いることができる。この混合工程で得られる第1の混合物は、混合液であることが望ましい。また、混合工程において、さらにカルボキシメチルセルロース(CMC)やドデシル硫酸ナトリウム(SDS)のような分散剤を混合してもよい。また、第1の混合物は乾燥させてもよい。乾燥方法としては、特に限定されず、例えば、風乾、ホットプレート、真空乾燥、凍結乾燥の方法を用いることができる。なお、混合液の乾燥物も液体であることが好ましい。
 なお、上記黒鉛としては、後述する加熱工程においてより一層容易にグラファイトを剥離することが可能であるため膨張黒鉛を使用することが好ましい。また、上記一次薄片化黒鉛とは、各種方法により黒鉛を剥離することにより得られた薄片化黒鉛を広く含むものとする。一次薄片化黒鉛は、部分剥離型薄片化黒鉛であってもよい。一次薄片化黒鉛は、黒鉛を剥離することにより得られるものであるため、その比表面積は、黒鉛よりも大きいものであればよい。
 上記樹脂としては、特に限定されず、例えば、ポリプロピレングリコール、ポリエチレングリコール、ポリグリシジルメタクリレート、酢酸ビニルポリマー(ポリ酢酸ビニル)、ポリビニルブチラール、ポリアクリル酸、スチレンポリマー(ポリスチレン)、スチレンブタジエンゴム、ポリイミド樹脂、ポリエステルポリオール、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマーなどが挙げられる。
 次に、得られた第1の混合物に、さらに炭素材料とは異なる粒子を添加し混合する。それによって、第1の混合物を構成する炭素材料のマトリックス内に炭素材料とは異なる粒子を配置して、第2の混合物を形成する。また、第2の混合物を構成する炭素材料により、炭素材料とは異なる粒子を被覆して第2の混合物を形成してもよい。なお、混合方法としては、特に限定されず、例えば、超音波による混合、ミキサーによる混合、攪拌子による混合、密閉可能な容器内に第1の混合物の乾燥物と粒子を入れ、容器を振とうするなどの方法等を挙げることができる。
 上記炭素材料とは異なる粒子は賦活剤であってもよい。上記炭素材料とは異なる粒子としては、特に限定されないが、例えば、水酸化亜鉛、塩化亜鉛、硫化亜鉛、水酸化カルシウム、塩化カルシウム、硫化カルシウム、炭酸カルシウム、水酸化ナトリウム、塩化ナトリウム、硫化ナトリウム、炭酸ナトリウム、水酸化カリウム、塩化カリウム、硫化カリウム、炭酸カリウム、リン酸、リン酸亜鉛、リン酸カルシウム、リン酸ナトリウム、リン酸カリウムを用いることができる。これらは、単独で用いてもよく、複数を併用してもよい。
 上記炭素材料とは異なる粒子の粒子径は、0.1μm以上、1000μm以下であることが好ましい。上記炭素材料とは異なる粒子の粒子径を上記範囲内とすることにより、得られる炭素材料が自立膜をより一層容易に形成することができる。なお、粒子径は、乾式レーザー回折法により、体積基準分布で算出した平均粒子径をいう。平均粒子径は、例えば、マイクロトラックベル社製、MT3300EXIIを用いて測定することができる。
 次に、上記第2の混合物を加熱する(加熱工程)。上記加熱工程における加熱の温度としては、例えば、200℃~1000℃とすることができる。上記加熱は、大気中で行ってもよく、窒素ガスなどの不活性ガス雰囲気下で行ってもよい。この加熱工程により、樹脂の少なくとも一部を炭化させることが望ましい。樹脂は、完全に炭化させてもよい。また、この加熱工程により、第2の混合物に含まれる第1の混合物が固化し、炭素材料とは異なる粒子と固体/固体マトリックスを形成することが望ましい。また、この加熱工程において、黒鉛又は一次薄片化黒鉛のグラファイトの一部が部分的に剥離され、上述した部分剥離型薄片化黒鉛を得てもよい。なお、この加熱工程の後に、さらに薬品賦活法やガス賦活法により賦活処理を行ってもよい。
 次に、加熱後の第2の混合物から上記粒子を除去する。この際、第2の混合物のマトリックス内に配置された粒子が除去された部分が上記複数の凹部及び複数の凸部となる。なお、粒子の除去方法としては、特に限定されず、例えば、水などの溶媒により洗浄し乾燥させる方法が挙げられる。また、上記粒子を除去した後に粉砕を施してもよい。
 このような製造方法により得られた炭素材料は、上記複数の凹部及び複数の凸部を備える。従って、バインダーを実質的に含まない場合においても、容易に自立膜(電極膜)を形成することができる。
 なお、第1の方法では、元の黒鉛又は一次薄片化黒鉛、あるいは部分剥離型薄片化黒鉛等のグラフェン積層構造を有する炭素材料と、樹脂及び/又は樹脂の炭化物との複合材料である炭素材料を得ることができる。
 第2の方法;
 第2の方法では、まず、マトリックスとなる樹脂に炭素材料とは異なる粒子を添加し混合する。それによって、樹脂のマトリックス中に炭素材料とは異なる粒子を配置して、混合物を形成する。また、樹脂により炭素材料とは異なる粒子を被覆して混合物を形成してもよい。なお、混合方法としては、特に限定されず、例えば、超音波による混合、ミキサーによる混合、攪拌子による混合、密閉可能な容器内に樹脂と粒子とを入れ、容器を振とうするなどの方法を挙げることができる。
 上記樹脂としては、液状の樹脂を用いることが好ましい。上記樹脂としては、特に限定されず、例えば、ポリプロピレングリコール、ポリエチレングリコール、ポリグリシジルメタクリレート、酢酸ビニルポリマー(ポリ酢酸ビニル)、ポリビニルブチラール、ポリアクリル酸、スチレンポリマー(ポリスチレン)、スチレンブタジエンゴム、ポリイミド樹脂、ポリエステルポリオール、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系ポリマーなどが挙げられる。
 上記炭素材料とは異なる粒子は賦活剤であってもよい。上記炭素材料とは異なる粒子としては、特に限定されないが、例えば、水酸化亜鉛、塩化亜鉛、硫化亜鉛、水酸化カルシウム、塩化カルシウム、硫化カルシウム、炭酸カルシウム、水酸化ナトリウム、塩化ナトリウム、硫化ナトリウム、炭酸ナトリウム、水酸化カリウム、塩化カリウム、硫化カリウム、炭酸カリウム、リン酸、リン酸亜鉛、リン酸カルシウム、リン酸ナトリウム、リン酸カリウムを用いることができる。これらは、単独で用いてもよく、複数を併用してもよい。
 上記炭素材料とは異なる粒子の粒子径は、0.1μm以上、1000μm以下であることが好ましい。上記炭素材料とは異なる粒子の粒子径を上記範囲内とすることにより、得られる炭素材料が自立膜をより一層容易に形成することができる。なお、平均粒子径は、乾式レーザー回折法により、体積基準分布で算出した平均粒子径をいう。平均粒子径は、例えば、マイクロトラックベル社製、MT3300EXIIを用いて測定することができる。
 次に、上記混合物を加熱する(加熱工程)。上記加熱工程における加熱の温度としては、例えば、200℃~1000℃とすることができる。上記加熱は、大気中で行ってもよく、窒素ガスなどの不活性ガス雰囲気下で行ってもよい。この加熱工程により、樹脂の少なくとも一部を炭化させることが望ましい。樹脂は、完全に炭化させてもよい。また、この加熱工程により、第2の混合物に含まれる第1の混合物が固化し、炭素材料とは異なる粒子と固体/固体マトリックスを形成することが望ましい。なお、この加熱工程の後に、さらに薬品賦活法やガス賦活法により賦活処理を行ってもよい。
 次に、加熱後の混合物から粒子を除去する。この際、マトリックス内に配置された粒子の除去された部分が上記複数の凹部及び複数の凸部となる。なお、粒子の除去方法としては、特に限定されず、例えば、水などの溶媒により洗浄し乾燥する方法が挙げられる。また、上記粒子を除去した後に粉砕を施してもよい。
 第2の方法により得られた炭素材料も、上記複数の凹部及び複数の凸部を備える。従って、バインダーを実質的に含まない場合においても、容易に自立膜(電極膜)を形成することができる。
 よって、出発物質としては、第1の方法のように黒鉛又は一次薄片化黒鉛と樹脂との混合物を用いてもよいし、第2の方法のように黒鉛又は一次薄片化黒鉛を用いずに、樹脂のみを用いてもよい。
 なお、第2の方法では、樹脂の炭化物のみからなる炭素材料を得ることができる。もっとも、さらに炭化していない樹脂を含んでいてもよい。
 (バインダー)
 本発明の蓄電デバイスに用いられる電極を構成している電極材料は、実質的にバインダーを含んでいない。なお、本発明において、「実質的にバインダーを含んでいない」とは、電極材料100重量%中におけるバインダーの含有量が、2重量%以下であることをいう。
 バインダーとしては、例えば、ポリビニルブチラール、ポリテトラフルオロエチレン、スチレンブタジエンゴム、ポリイミド樹脂、アクリル系樹脂、ポリフッ化ビニリデンなどのフッ素系ポリマーや、水溶性のカルボキシメチルセルロースなどの樹脂等が挙げられる。
 (その他の材料)
 本発明の蓄電デバイスに用いられる電極を構成している電極材料は、さらのその他の材料を含んでいてもよい。
 その他の材料としては、正極活物質、負極活物質、あるいは導電助剤などが挙げられる。
 正極活物質としては、例えば、リチウム金属酸化物、リチウム硫化物、又は硫黄が挙げられる。
 リチウム金属酸化物としては、スピネル構造、層状岩塩構造、若しくはオリビン構造を有するもの、又はこれらの混合物が挙げられる。
 スピネル構造を有するリチウム金属酸化物としては、マンガン酸リチウムなどが例示される。
 層状岩塩構造を有するリチウム金属酸化物としては、コバルト酸リチウム、ニッケル酸リチウム、三元系などが例示される。
 オリビン構造を有するリチウム金属酸化物としては、リン酸鉄リチウム、リン酸マンガン鉄リチウム、リン酸マンガンリチウムなどが例示される。
 正極活物質には、所謂ドープ元素が含まれてもよい。正極活物質は、単独で用いてもよいし、2種類以上を併用してもよい。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛、ハードカーボン、金属酸化物、チタン酸リチウム、又はシリコン系の活物質を用いることができる。負極活物質は、単独で用いてもよいし、2種類以上を併用してもよい。
 導電助剤としては、例えば、グラフェン、人造黒鉛、粒状黒鉛化合物、繊維状黒鉛化合物、カーボンブラック、又は活性炭等を用いることができる。導電助剤は、単独で用いてもよいし、複数を併用してもよい。
 (電極の作製方法)
 本発明の蓄電デバイスに用いられる電極は、上記の炭素材料などを含む電極材料に必要に応じて溶媒等を含めて賦形することにより得ることができる。
 上記電極材料の賦形は、例えば、圧延ローラーでシート化した後、乾燥することにより行うことができる。また、上記の炭素材料などを含む電極材料と溶媒とからなる塗液を集電体に塗工し、その後乾燥することにより行ってもよい。
 なお、上記溶媒としては、エタノール、N-メチルピロリドン(NMP)、テトラヒドロフラン(THF)又は水等を用いることができる。
 [電解液]
 本発明の蓄電デバイスに用いられる電解液は、イオン液体を含んでいる。イオン液体は、カチオン及びアニオンにより構成されている。
 カチオンとしては、1-ブチル-1-メチルピロリジニウム、n,n-ジエチル-n-メチル-n-(2-メトキシエチル)アンモニウム、1-メチル-1-プロピルピペリジニウム、1-メチル-1-プロピル-ピロリジニウム、N-(2-メトキシエチル)-N-メチルピロリジニウム、N,N,N-トリメチル-N-プロピルアンモニウム、又は1-エチル-3-メチルイミダゾリウムのイオンが挙げられる。なかでも、1-ブチル-1-メチルピロリジニウム又はn,n-ジエチル-n-メチル-n-(2-メトキシエチル)アンモニウムであることが好ましく、1-ブチル-1-メチルピロリジニウムであることがより好ましい。この場合、電解液の分解をより一層抑制することができ、それによって蓄電デバイスの耐電圧性をより一層高め、駆動電圧をより一層高めることができる。なお、カチオンは、1種を単独で用いてもよく、複数種を併用してもよい。
 アニオンとしては、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、テトラフルオロボラート、又はメチルホスホネートのイオンなどが挙げられる。なかでも、ビス(フルオロスルホニル)イミドであることが好ましい。この場合、電解液の分解をより一層抑制することができ、それによって蓄電デバイスの耐電圧性をより一層高め、駆動電圧をより一層高めることができる。
 なお、電解液中には、他の溶媒や電解質が含まれていてもよい。もっとも、蓄電デバイスの耐電圧性をより一層高め、駆動電圧をより一層高める観点からは、電解液100重量%中におけるイオン液体の含有量が、好ましくは80重量%以上、より好ましくは90重量%以上である。電解液100重量%中におけるイオン液体の含有量の上限値は、100重量%であり、電解液がイオン液体のみからなることが好ましい。
 (セパレータ)
 本発明の蓄電デバイスは、さらにセパレータを備えていてもよい。セパレータは、例えば、一対の電極間に配置されていてもよい。正極側と負極側との間にセパレータを配置したものを倦回して用いてもよいし、積層して用いてもよい。
 セパレータとしては、特に限定されないが、例えば、電解液を保持することが可能な絶縁材料により構成することができる。セパレータとしては、例えば、ポリプロピレンやポリエチレン等の多孔質フィルム基材、ガラス繊維基材、不織布、電界コンデンサ紙やクラフト紙等のセルロース系の基材を用いることができる。
 次に、本発明の具体的な実施例及び比較例を挙げることにより本発明を明らかにする。なお、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 膨張黒鉛(東洋炭素社製、商品名「PFパウダー8」、BET比表面積=22m/g)1gと、ポリエチレングリコール(三洋化成社製、商品名「PEG600」)234gとを、ミキサーにて7000rpmで30分間混合した後、150℃の乾燥機内で乾燥させ、ポリエチレングリコールが膨張黒鉛に吸着されている組成物を用意した。
 次に、用意した組成物5gに賦活剤として炭酸カリウム(KCO、和光純薬工業社製、平均粒子径:600μm)を5g添加し、ミルを用いて均一に混合した。得られた混合物を窒素雰囲気下で、300℃から370℃まで3時間かけて昇温し、炭化物が得られた。得られた炭化物をミル粉砕し、さらに賦活処理を施した。該賦活処理においては、窒素雰囲気下で、賦活温度850℃、賦活時間100分間保持した。最後に、賦活処理後の炭化物を熱水で中性に洗浄することにより、炭素材料を得た。
 得られた炭素材料の走査電子顕微鏡(SEM)写真を観察したところ、炭素材料が複数の凹部及び複数の凸部を有する部分剥離型薄片化黒鉛であることを確認した。
 また、得られた炭素材料0.2gを直径2cmの円筒形シリンジに充填した状態で、徐々に加圧し、16kNの圧力で10秒間圧縮した。続いて、圧縮された上記炭素材料の全量をシリンジから取り出し、JIS・Z8801-1に準拠した目開き4.75mmのステンレス製篩(内径:150mm、深さ:45mm)に入れた。次に、篩を振とう機(ASONE社製、品番「SHAKER SSR-2」)を用い、RECIPROCATORモードにて1分間60rpmのスピードで振とうした後、篩の上に残った炭素材料の重量を測定した。その結果、篩の上に残った炭素材料の重量は、篩に投入した炭素材料の重量100重量%に対し、97.9重量%であった。
 3極セルを用いた充放電評価;
 セルには、アルミニウム製の3極セルを用いた(図1)。
 上記と同様の方法で別途作製した炭素材料0.2gを直径2cmの円筒形シリンジに充填した状態で、徐々に加圧し、16kNの圧力で10秒間圧縮した。圧縮後、直径10mmに打ち抜き、円盤状の電極を作製した。このようにして作製した2枚の電極を正極及び負極として、セパレータ(セルロース系、直径12mm)を介して挟み込んでセルを組立てた。なお、参照極には、リチウム金属を用いた。また、電解液には、1-ブチル-1-メチルピロリジニウム及びビス(フルオロスルホニル)イミドを含むイオン液体を用いた。
 充放電試験は、充電電流5.0mA及び放電電流5.0mAで行い、また作動電圧は0~3.0V、3.2V、3.4V、3.6V及び4.0Vと順次電圧を上げて行った。各電圧での測定回数は2回とし、2サイクル目のデータを用いた。また、充放電の温度環境は、25℃の恒温室とした。
 充放電試験を行ったところ、実施例1では、4Vにおける高電圧駆動が可能であることが確認できた。
 (実施例2)
 電解液として、n,n-ジエチル-n-メチル-n-(2-メトキシエチル)アンモニウム及びビス(フルオロスルホニル)イミドを含むイオン液体を用いたこと以外は、実施例1と同様にして3極セルを作製し、充放電評価を行った。その結果、実施例2においても、4Vにおける高電圧駆動が可能であることが確認できた。
 (実施例3)
 電解液として、1-メチル-1-プロピルピペリジニウム及びビス(フルオロスルホニル)イミドを含むイオン液体を用いたこと以外は、実施例1と同様にして3極セルを作製し、充放電評価を行った。その結果、実施例3においても、4Vにおける高電圧駆動が可能であることが確認できた。
 (実施例4)
 電解液として、1-メチル-1-プロピル-ピロリジニウム及びビス(フルオロスルホニル)イミドを含むイオン液体を用いたこと以外は、実施例1と同様にして3極セルを作製し、充放電評価を行った。その結果、実施例4においても、4Vにおける高電圧駆動が可能であることが確認できた。
 (比較例1)
 炭素材料として、複数の凹部及び複数の凸部を有する部分剥離型薄片化黒鉛の代わりに、活性炭(クラレ社製、商品名「クラレコールYP50F」)をそのまま用いた。
 また、バインダーとしてCMC(カルボキシメチルセルロース、ダイセル社製、商品名「#1120」)を1重量%含む水溶液と活性炭を重量比1000:90で混合してスラリーを調製し、アルミ集電箔上に塗工した。この塗工膜を乾燥させることで電極膜を得た(乾燥後のバインダーと活性炭の重量比は10:90)。成膜後、直径10mmに打ち抜き、円盤状の電極を作製した。その他の点は、実施例4と同様にして、充放電評価を行った。その結果、比較例1では、バインダー樹脂を10重量%用いることでアルミ集電箔上に膜形成ができた。しかし、充放電評価時にバインダーの分解が生じ、4Vにおける高電圧駆動ができなかった。
 (比較例2)
 炭素材料として、複数の凹部及び複数の凸部を有する部分剥離型薄片化黒鉛の代わりに、活性炭(クラレ社製、商品名「クラレコールYP50F」)をそのまま用いた。
 この活性炭0.2gを直径2cmの円筒形シリンジに充填した状態で、徐々に加圧し、16kNの圧力で10秒間圧縮した。続いて、圧縮された上記炭素材料の全量をシリンジから取り出し、JIS・Z8801-1に準拠した目開き4.75mmのステンレス製篩(内径:150mm、深さ:45mm)に入れた。次に、篩を振とう機(ASONE社製、品番「SHAKER SSR-2」)を用い、RECIPROCATORモードにて1分間60rpmのスピードで振とうした後、篩の上に残った炭素材料の重量を測定した。その結果、篩の上に残った炭素材料の重量は、篩に投入した炭素材料の重量100重量%に対し、0重量%であった。
 このように比較例2では、バインダー樹脂がなく、自立膜としての電極を作製することができず、充放電評価をすることができなかった。
 (高電圧駆動結果)
 図2~図5は、それぞれ順に、実施例1~4で作製した3極セルの充放電結果を示す図である。図中、正極側の充放電曲線を実線で示しており、負極側の充放電曲線を破線で示している。図中、作動電圧(駆動電圧)は、左側より2.5V、3.0V、3.2V、3.4V、3.6V及び4.0Vの結果を示している。
 図2~図5において、各駆動電圧における正極側の充放電曲線及び負極側の充放電曲線の交点であるオープンサーキットポテンシャル(OCP)、充放電カーブの直線性及び放電時のIRドロップを以下の評価基準で評価した。結果を下記の表1に示す。
 <評価基準>
 OCP:
 A…3V駆動時のOCPと4V駆動時のOCPの差の絶対値が0.10V以下
 B…3V駆動時のOCPと4V駆動時のOCPの差の絶対値が0.11V以上
 充放電カーブの直線性:
 A…4V駆動時の直線性に優れる
 B…4V駆動時の直線性がやや劣る
 IRドロップ:
 A…4V駆動時における放電時IRドロップの正極及び負極の合算値が0.3V未満
 B…4V駆動時における放電時IRドロップの正極及び負極の合算値が0.3V以上、0.5V未満
 C…4V駆動時における放電時IRドロップの正極及び負極の合算値が0.5V以上
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~4では、耐電圧性に優れ、高電圧駆動(4V駆動)が可能であることが確認できた。特に、実施例1~2では、4V駆動時においても、サイクル特性、出力特性などのキャパシタ特性をより高いレベルで発現できることが確認できた。

Claims (10)

  1.  炭素材料を含み、かつバインダーを実質的に含まない電極材料により構成されている、電極と、
     カチオン及びアニオンにより構成されているイオン液体を含む、電解液と、
    を備える、蓄電デバイス。
  2.  前記イオン液体のカチオンが、1-ブチル-1-メチルピロリジニウム、n,n-ジエチル-n-メチル-n-(2-メトキシエチル)アンモニウム、1-メチル-1-プロピルピペリジニウム、1-メチル-1-プロピル-ピロリジニウム、N-(2-メトキシエチル)-N-メチルピロリジニウム、N,N,N-トリメチル-N-プロピルアンモニウム、及び1-エチル-3-メチルイミダゾリウムからなる群から選択される少なくとも1種である、請求項1に記載の蓄電デバイス。
  3.  前記イオン液体のカチオンが、1-ブチル-1-メチルピロリジニウムである、請求項1又は2に記載の蓄電デバイス。
  4.  前記イオン液体のアニオンが、ビス(フルオロスルホニル)イミド、ビス(トリフルオロメタンスルホニル)イミド、テトラフルオロボラート、及びメチルホスホネートからなる群から選択される少なくとも1種である、請求項1~3のいずれか1項に記載の蓄電デバイス。
  5.  前記炭素材料0.2gを直径2cmの円筒形シリンジに充填した状態で、16kNの圧力で圧縮し、圧縮された前記炭素材料の全量を前記シリンジから取り出し目開き4.75mmの篩に入れ、前記篩を1分間振とうしたとき、振とう後に篩の上に残る前記炭素材料の重量が、篩に投入した前記炭素材料の重量100重量%に対し、90重量%以上である、請求項1~4のいずれか1項に記載の蓄電デバイス。
  6.  前記炭素材料が、グラフェン積層構造を有する炭素材料を含む、請求項1~5のいずれか1項に記載の蓄電デバイス。
  7.  前記グラフェン積層構造を有する炭素材料が、黒鉛又は薄片化黒鉛である、請求項6に記載の蓄電デバイス。
  8.  前記グラフェン積層構造を有する炭素材料が、グラファイト構造を有し、部分的にグラファイトが剥離されている、部分剥離型薄片化黒鉛である、請求項6又は7に記載の蓄電デバイス。
  9.  前記炭素材料が、樹脂の炭化物を含む、請求項1~8のいずれか1項に記載の蓄電デバイス。
  10.  電気二重層キャパシタ又はリチウムイオンキャパシタである、請求項1~9のいずれか1項に記載の蓄電デバイス。
PCT/JP2020/018961 2019-05-30 2020-05-12 蓄電デバイス WO2020241242A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020530387A JPWO2020241242A1 (ja) 2019-05-30 2020-05-12
CN202080034590.3A CN113795951A (zh) 2019-05-30 2020-05-12 蓄电设备
EP20814262.0A EP3979370A4 (en) 2019-05-30 2020-05-12 POWER STORAGE DEVICE
US17/614,082 US20220223354A1 (en) 2019-05-30 2020-05-12 Power storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019101411 2019-05-30
JP2019-101411 2019-05-30

Publications (1)

Publication Number Publication Date
WO2020241242A1 true WO2020241242A1 (ja) 2020-12-03

Family

ID=73554051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/018961 WO2020241242A1 (ja) 2019-05-30 2020-05-12 蓄電デバイス

Country Status (5)

Country Link
US (1) US20220223354A1 (ja)
EP (1) EP3979370A4 (ja)
JP (1) JPWO2020241242A1 (ja)
CN (1) CN113795951A (ja)
WO (1) WO2020241242A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231892A1 (en) * 2004-04-19 2005-10-20 Harvey Troy A High energy density electric double-layer capacitor and method for producing the same
WO2008029865A1 (en) 2006-09-01 2008-03-13 Japan Gore-Tex Inc. Electric double layer capacitor
WO2014034156A1 (ja) 2012-08-27 2014-03-06 積水化学工業株式会社 薄片化黒鉛・樹脂複合材料及びその製造方法
JP2018170328A (ja) * 2017-03-29 2018-11-01 積水化学工業株式会社 キャパシタ用電極材、キャパシタ用電極シート及びキャパシタ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5589289A (en) * 1995-09-27 1996-12-31 Motorola, Inc. Carbon electrode materials for electrochemical cells and method of making same
US6291069B1 (en) * 1997-09-01 2001-09-18 Honda Giken Kogyo Kabushiki Kaisha Activated carbon for electric double layer capacitor and method of manufacturing same
US20030108785A1 (en) * 2001-12-10 2003-06-12 Wu L. W. Meso-porous carbon and hybrid electrodes and method for producing the same
JP5435638B2 (ja) * 2009-01-21 2014-03-05 セイコーインスツル株式会社 電気化学セルおよび電気化学セルの製造方法
JP5509627B2 (ja) * 2009-03-06 2014-06-04 株式会社豊田中央研究所 蓄電デバイス
JP2012191085A (ja) * 2011-03-11 2012-10-04 Kaneka Corp 電解質組成物およびイオン液体
FR2976734B1 (fr) * 2011-06-20 2014-05-09 Commissariat Energie Atomique Composition electrolytique specifique pour dispositif a stockage d'energie
JP5621923B2 (ja) * 2012-03-30 2014-11-12 三菱レイヨン株式会社 多孔質電極基材、その製造方法及び前駆体シート
KR20140045880A (ko) * 2012-10-09 2014-04-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치
KR101596218B1 (ko) * 2014-09-30 2016-02-22 한국에너지기술연구원 고용량 슬러리 전극 및 고용량 슬러리 전극 기반의 플로우 에너지 저장장치
US9773622B2 (en) * 2015-08-26 2017-09-26 Nanotek Instruments, Inc. Porous particles of interconnected 3D graphene as a supercapacitor electrode active material and production process
DE102015224094A1 (de) * 2015-09-04 2017-03-09 Robert Bosch Gmbh Hybridsuperkondensator
US20190341584A1 (en) * 2017-01-02 2019-11-07 3Dbatteries Ltd. Energy storage devices and systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231892A1 (en) * 2004-04-19 2005-10-20 Harvey Troy A High energy density electric double-layer capacitor and method for producing the same
WO2008029865A1 (en) 2006-09-01 2008-03-13 Japan Gore-Tex Inc. Electric double layer capacitor
WO2014034156A1 (ja) 2012-08-27 2014-03-06 積水化学工業株式会社 薄片化黒鉛・樹脂複合材料及びその製造方法
JP2018170328A (ja) * 2017-03-29 2018-11-01 積水化学工業株式会社 キャパシタ用電極材、キャパシタ用電極シート及びキャパシタ

Also Published As

Publication number Publication date
US20220223354A1 (en) 2022-07-14
EP3979370A1 (en) 2022-04-06
EP3979370A4 (en) 2023-10-04
JPWO2020241242A1 (ja) 2020-12-03
CN113795951A (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
KR100769567B1 (ko) 하이브리드 캐패시터 양극, 이의 제조방법 및 하이브리드 캐패시터
JP6091602B2 (ja) 電極活物質、電極及び蓄電デバイス
JP2013258392A (ja) 電極活物質、電極及び蓄電デバイス
Liang et al. Synthesis of mesoporous β-Na0. 33V2O5 with enhanced electrochemical performance for lithium ion batteries
WO2006098518A1 (ja) 電気二重層キャパシタの製造方法
JPWO2018230080A1 (ja) 炭素材料及びその製造方法、蓄電デバイス用電極材料、並びに蓄電デバイス
KR101664357B1 (ko) 폐종이를 활용한 고다공성 흑연질 탄소 및 그 제조방법, 상기 고다공성 흑연질 탄소를 포함하는 음극 및 상기 음극을 포함하는 에너지 저장 장치
JP2020047572A (ja) 亜鉛二次電池用電極活物質及びこれを含む二次電池
JP7425605B2 (ja) 炭素材料及びその製造方法、蓄電デバイス用電極材料、並びに蓄電デバイス
JP5850007B2 (ja) ナトリウムイオン電池用負極活物質およびナトリウムイオン電池
JP2021166163A (ja) アノード電極材料、その製造方法、および、それを用いたリチウムイオン二次電池
WO2020241242A1 (ja) 蓄電デバイス
JP5979099B2 (ja) ナトリウムイオン電池用負極活物質、ナトリウムイオン電池およびナトリウムイオン電池用負極活物質の製造方法
JP2020145143A (ja) 蓄電デバイス用電極、蓄電デバイス用積層電極、蓄電デバイス用正極、蓄電デバイス、及び炭素材料
JP2020145144A (ja) 蓄電デバイス用電極材料、蓄電デバイス用電極、蓄電デバイス、及び炭素材料
CN110730997A (zh) 复合体、蓄电器件用电极材料以及蓄电器件
WO2020189662A1 (ja) 複合材料、蓄電デバイス用電極材料、及び蓄電デバイス
KR100928224B1 (ko) 에너지 저장 디바이스용 나노 활물질 전극 제조방법
JP6422483B2 (ja) リチウムイオンキャパシタ用正極電極およびリチウムイオンキャパシタ
JP2012235041A (ja) 正極電極およびリチウムイオンキャパシタ
JP2006100163A (ja) 電極材料およびそれを用いた二次電源
JP6981854B2 (ja) 蓄電デバイス用炭素材料、蓄電デバイス用電極、蓄電デバイス、および蓄電デバイス用炭素材料の製造方法
JP2023162796A (ja) 炭素材料-硫黄複合材料、蓄電デバイス用電極材料、及び蓄電デバイス
TW202413276A (zh) 過渡金屬層狀結構氧化物、正極材料以及鈉離子電池
JP2023068548A (ja) リチウムイオン電池用正極活物質及びその製造方法、並びに、リチウムイオン電池

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020530387

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814262

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020814262

Country of ref document: EP

Effective date: 20220103