WO2020240759A1 - 空気調和機の室内機 - Google Patents

空気調和機の室内機 Download PDF

Info

Publication number
WO2020240759A1
WO2020240759A1 PCT/JP2019/021459 JP2019021459W WO2020240759A1 WO 2020240759 A1 WO2020240759 A1 WO 2020240759A1 JP 2019021459 W JP2019021459 W JP 2019021459W WO 2020240759 A1 WO2020240759 A1 WO 2020240759A1
Authority
WO
WIPO (PCT)
Prior art keywords
outlet
air
indoor unit
wind direction
windshield
Prior art date
Application number
PCT/JP2019/021459
Other languages
English (en)
French (fr)
Inventor
晃一 遠原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to AU2019448451A priority Critical patent/AU2019448451B2/en
Priority to PCT/JP2019/021459 priority patent/WO2020240759A1/ja
Priority to JP2021521677A priority patent/JP7146081B2/ja
Priority to US17/437,995 priority patent/US20220178580A1/en
Priority to DE112019007369.9T priority patent/DE112019007369B4/de
Publication of WO2020240759A1 publication Critical patent/WO2020240759A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0011Indoor units, e.g. fan coil units characterised by air outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0043Indoor units, e.g. fan coil units characterised by mounting arrangements
    • F24F1/0057Indoor units, e.g. fan coil units characterised by mounting arrangements mounted in or on a wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • F24F2013/221Means for preventing condensation or evacuating condensate to avoid the formation of condensate, e.g. dew

Definitions

  • the present invention relates to an indoor unit of an air conditioner provided with a vertical wind direction plate.
  • an indoor unit of an air conditioner in which a storage space for accommodating an electrical component box is formed is known.
  • the outlet is formed at a position close to one side of the indoor unit, and the accommodation space is formed at a position close to the other side of the indoor unit.
  • the accommodation space is formed so as to be recessed from the housing and may be connected to the outlet. That is, the accommodation space has an appearance integrated with the outlet.
  • the vertical wind direction plate is arranged over substantially the entire width of the lower part of the housing, and is provided so as to cover the outlet and the accommodation space.
  • the accommodation space is not covered by the vertical wind direction plate unless it is formed so as to be integrated with the outlet.
  • the vertical wind direction plate covers only the outlet, it is arranged close to one side in the width direction of the housing. Therefore, the indoor unit has a higher design than the case where the accommodation space is integrated with the outlet and the accommodation space is not integrated with the outlet.
  • the force of the blown air is weak, and warm air in the room can flow in when the air conditioner is in the cooling operation. Therefore, there is a possibility that dew condensation may occur on the portion of the vertical wind direction plate facing the accommodation space.
  • Patent Document 1 discloses an indoor unit in which a plurality of ribs are provided on a portion of the wind guide surface of the vertical wind direction plate that guides the air blown from the outlet so as to face the accommodation space.
  • Each rib has a substantially rectangular parallelepiped shape, but each has a different height, and is provided at approximately the center of the wind guide surface in the front-rear direction so as to gradually increase toward the outlet. ..
  • the longitudinal direction of the rib is parallel to the front-rear direction of the housing. Therefore, the warm air in the room is prevented from flowing into the place where the dew point temperature is lower than the dew point temperature on the wind guide surface of the vertical wind direction plate. In this way, the indoor unit of Patent Document 1 is intended to suppress the occurrence of dew condensation on the vertical wind direction plate while maintaining the design of the indoor unit.
  • the ribs formed on the vertical wind direction plate of the indoor unit disclosed in Patent Document 1 are provided at substantially the center of the wind guide surface in the front-rear direction so that the longitudinal direction is parallel to the front-rear direction of the housing. ing. Therefore, during the operation of the air conditioner, the blown air flows along the wind guide surface so as to pass between the ribs. That is, since the blown air does not flow on the design surface side of the vertical wind direction plate, the warm air in the room staying on the design surface side cannot be discharged. Therefore, due to the temperature difference between the cold air passing through the wind guide surface of the vertical wind direction plate and the warm air in the room, dew condensation may occur on the design surface of the vertical wind direction plate.
  • the present invention has been made to solve the above problems, and provides an indoor unit of an air conditioner in which dew condensation does not occur on the design surface of the upper and lower wind direction plates while maintaining the design of the indoor unit. Is.
  • a suction port for sucking indoor air, an outlet for blowing out the air sucked from the suction port, and a storage space connected to the outlet for accommodating an electrical component box are formed.
  • the housing is provided with a housing and a vertical air direction plate which is provided in the housing so as to cover the air outlet and the accommodation space and adjusts the direction of the air blown from the air outlet.
  • the vertical air direction plate is provided with air blown from the air outlet.
  • a windshield is provided at the rear edge of the housing in the portion facing the accommodation space to block the air blown out from the air outlet.
  • the air conditioner when the air conditioner is in the cooling operation, a part of the cold air blown out from the outlet collides with the windshield.
  • the cold air that collides with the windshield flows into the design surface side of the vertical wind direction plate, and flows along the design surface of the vertical wind direction plate while pushing out the warm air in the room that has accumulated on the design surface of the vertical wind direction plate. ..
  • the cold air that did not collide with the windshield is blown out from the indoor unit along the wind guide surface. That is, cold air flows on both the wind guide surface and the design surface of the vertical wind direction plate. Therefore, no temperature difference occurs between the wind guide surface and the design surface of the vertical wind direction plate. Therefore, it is possible to prevent dew condensation from occurring on the design surface of the vertical wind direction plate while maintaining the high design of the indoor unit obtained by integrating the accommodation space with the outlet.
  • FIG. 72 It is a perspective view which shows the windshield part 72 which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the windshield part 72 which concerns on Embodiment 1.
  • FIG. 72 It is sectional drawing which shows the windshield part 72 which concerns on Embodiment 1.
  • FIG. 1 is a circuit diagram showing an air conditioner 100 according to the first embodiment.
  • the air conditioner 100 includes an outdoor unit 1, an indoor unit 2, and a refrigerant pipe 3. Although one indoor unit 2 is illustrated in FIG. 1, the number of indoor units 2 may be two or more.
  • the outdoor unit 1 includes a compressor 11, a flow path switching device 12, an outdoor heat exchanger 13, an outdoor blower 14, and an expansion unit 15.
  • the indoor unit 2 has an indoor heat exchanger 21, an indoor blower 22, a housing 23, an electrical component box 24, a vertical wind direction plate 25, and a vertical wind direction plate 25.
  • the refrigerant pipe 3 connects the flow path switching device 12, the outdoor heat exchanger 13, the expansion unit 15, and the indoor heat exchanger 21, and the refrigerant flows inside to form the refrigerant circuit 4.
  • the compressor 11 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant.
  • the flow path switching device 12 switches the flow direction of the refrigerant in the refrigerant circuit 4, and is, for example, a four-way valve.
  • the outdoor heat exchanger 13 exchanges heat between the refrigerant and the outdoor air, and is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 13 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 14 is a device that sends outdoor air to the outdoor heat exchanger 13.
  • the expansion unit 15 is a pressure reducing valve or an expansion valve that decompresses and expands the refrigerant.
  • the indoor heat exchanger 21 exchanges heat between the indoor air and the refrigerant.
  • the outdoor heat exchanger 13 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the indoor blower 22 is a device that sends indoor air to the indoor heat exchanger 21, for example, a cross flow fan.
  • the liquid-state refrigerant flows into the expansion unit 15 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase refrigerant flows into the indoor heat exchanger 21 that acts as an evaporator.
  • the refrigerant flowing into the indoor heat exchanger 21 exchanges heat with the indoor air sent by the indoor blower 22 and evaporates to gasify. At that time, the indoor air is cooled and the indoor cooling is performed. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 12 and is sucked into the compressor 11.
  • Heating operation Next, the heating operation will be described.
  • the refrigerant sucked into the compressor 11 is compressed by the compressor 11 and discharged in a high-temperature and high-pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 11 passes through the flow path switching device 12 and flows into the indoor heat exchanger 21 that acts as a condenser.
  • the refrigerant flowing into the indoor heat exchanger 21 exchanges heat with the indoor air sent by the indoor blower 22, condenses and liquefies. At that time, the indoor air is warmed and the indoor heating is performed.
  • the liquid-state refrigerant flows into the expansion unit 15 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 13 that acts as an evaporator.
  • the refrigerant flowing into the outdoor heat exchanger 13 exchanges heat with the outdoor air sent by the outdoor blower 14, evaporates and gasifies. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching device 12 and is sucked into the compressor 11.
  • FIG. 2 is a front view showing the indoor unit 2 according to the first embodiment.
  • FIG. 3 is a perspective view showing the indoor unit 2 according to the first embodiment.
  • the housing 23 constitutes the outer shell of the indoor unit 2, and is made of, for example, resin.
  • the housing 23 has a casing 31 and a front panel 32.
  • FIG. 4 is a cross-sectional view showing the indoor unit 2 according to the first embodiment, and is a cross-sectional view taken along the line AA of FIG.
  • FIG. 5 is a perspective view showing the indoor unit 2 according to the first embodiment.
  • FIG. 6 is a perspective view showing the indoor unit 2 according to the first embodiment.
  • the casing 31 forms a box body so as to accommodate each device of the indoor unit 2, and is attached to a wall in the room.
  • a suction port 41, an outlet 42, an air passage 43, and a storage space 44 are formed in the casing 31.
  • the casing 31 may be used as a ceiling-embedded indoor unit 2 by being embedded in the ceiling.
  • the suction port 41 is an opening formed in the upper part of the casing 31 and sucks indoor air into the indoor unit 2.
  • the suction port 41 may have a shape that allows indoor air to be sucked into the indoor unit 2. Further, the suction port 41 may be formed on the front panel 32 or only on the front panel 32 in addition to the upper portion of the casing 31.
  • the outlet 42 is an opening formed in the lower part of the casing 31, and blows air into the room from the inside of the indoor unit 2.
  • the outlet 42 has a substantially rectangular shape with the long side in the width direction of the indoor unit 2.
  • the outlet 42 may have a shape other than a substantially rectangular shape as long as air can be blown out from the inside of the indoor unit 2.
  • the air passage 43 is a space connecting the suction port 41 to the outlet 42, and the air sucked from the suction port 41 passes through when the indoor unit 2 is operating.
  • the air passage 43 is provided with an indoor blower 22 arranged in an inverted V shape so as to surround the indoor heat exchanger 21 and the indoor heat exchanger 21 from the front surface to the upper surface.
  • the indoor blower 22 does not have to be arranged in an inverted V shape.
  • the accommodation space 44 is a recess formed in the lower part of the casing 31, and accommodates the electrical component box 24. Further, the accommodation space 44 is connected to the outlet 42 and exhibits an appearance integrated with the outlet 42.
  • the front panel 32 is connected to the casing 31 and constitutes the front surface of the outer shell of the indoor unit 2.
  • the electrical component box 24 is housed inside the housing 23 and houses a motor (not shown), an electronic control device (not shown), and the like.
  • the vertical wind direction plate 25 is a plate-shaped member, and is provided below the casing 31.
  • the vertical wind direction plate 25 is composed of two sheets, an upper wind direction plate 51 and a lower wind direction plate 52, and when the air conditioner 100 is stopped, the upper wind direction plate 51 presses the upper part of the outlet 42 and the accommodation space 44.
  • the downwind direction plate 52 covers the lower part of the outlet 42 and the accommodation space 44.
  • the number of the vertical wind direction plates 25 may be one or three or more, and all the vertical wind direction plates 25 cover the entire outlet 42 and the accommodation space 44.
  • the vertical wind direction plate 25 can be swung in the vertical direction by a motor (not shown) during operation, and is blown out from the outlet 42 by maintaining or changing the opening degree. It adjusts the wind direction of the air up and down. Since the vertical wind direction plate 25 is arranged over substantially the entire width of the lower part of the housing 23, it covers the outlet 42 and the accommodation space 44.
  • the vertical wind direction plate 25 does not cover the accommodation space 44. That is, the vertical wind direction plate 25 is arranged close to one side in the width direction of the housing 23 and covers only the outlet 42.
  • the design is improved as compared with the case where the accommodation space 44 is not integrated with the outlet 42. high.
  • the surface of the lower wind direction plate 52 is composed of two surfaces, a wind guide surface 61 and a design surface 62.
  • the wind guide surface 61 serves as a surface of the downwind direction plate 52 on the air passage 43 side during operation, and guides the conditioned air blown out from the indoor unit 2.
  • the design surface 62 is a surface that is integrated with the housing 23 of the indoor unit 2 when the operation is stopped, and is a surface on the indoor side.
  • a windshield portion 72 is provided on the wind guide surface 61.
  • the number of the vertical wind direction plates 25 may be one or three or more. When the number of the vertical wind direction plates 25 is other than two, the windshield portion 72 is provided on the vertical wind direction plate 25 located at the lowest position among the vertical wind direction plates 25.
  • FIG. 7 is a front view showing the indoor unit 2 according to the first embodiment.
  • FIG. 8 is a front view showing the windshield portion 72 according to the first embodiment.
  • FIG. 9 is a perspective view showing the windshield portion 72 according to the first embodiment.
  • the windshield portion 72 is a plate-shaped rib, and among the portions of the wind guide surface 61 facing the accommodation space 44, the rear edge portion 71 of the housing 23. It is provided in. Further, the windshield portion 72 is provided so as to extend along the edge portion 71 toward the outlet 42 side in the width direction, and extends upward. The windshield portion 72 blocks the air blown out from the outlet 42.
  • FIG. 10 is a cross-sectional view showing the outlet 42 according to the first embodiment.
  • the operation of the indoor unit 2 and the action of the windshield 72 when the air conditioner 100 performs the cooling operation will be described with reference to FIG.
  • the indoor air is sucked into the indoor unit 2 from the suction port 41 of the indoor unit 2.
  • the air sucked into the indoor unit 2 passes through the indoor heat exchanger 21 that acts as an evaporator, and is heat-exchanged with the air sent by the indoor blower 22 to become cold air.
  • the heat-exchanged cold air is blown out from the outlet 42, and cooling is performed indoors.
  • the lower wind direction plate 52 of the upper and lower wind direction plates 25 is provided with the windshield portion 72, a part of the cold air blown out from the outlet 42 collides with the windshield portion 72.
  • the cold air that collided with the windshield 72 flows into the design surface 62 side of the vertical wind direction plate 25, and pushes out the warm air in the room that has accumulated on the design surface 62 of the vertical wind direction plate 25, while pushing the warm air into the design surface 62 of the vertical wind direction plate 25. It flows along.
  • the cold air that did not collide with the windshield 72 is blown out from the indoor unit 2 along the wind guide surface 61. That is, since cold air flows through both the wind guide surface 61 and the design surface 62 of the vertical wind direction plate 25, no temperature difference occurs between the wind guide surface 61 and the design surface 62 of the vertical wind direction plate 25.
  • the left and right wind direction plates 26 are plate-shaped members, and a plurality of left and right wind direction plates 26 are provided on the upstream side of the air passage 43 from the upper and lower wind direction plates 25 at the lower part of the casing 31.
  • Each of the left and right wind direction plates 26 can be swung in the width direction by a motor (not shown), and by maintaining or changing the angle, the left and right wind directions of the air blown from the outdoor unit 1 are left and right. Is to adjust.
  • the air conditioner 100 when the air conditioner 100 is in the cooling operation, a part of the cold air blown out from the outlet 42 collides with the windshield 72. At this time, the cold air that collided with the windshield portion 72 flows into the design surface 62 side of the vertical wind direction plate 25, and while pushing out the warm air in the room that has accumulated on the design surface 62 of the vertical wind direction plate 25, the vertical wind direction plate 25 It flows along the design surface 62. On the other hand, the cold air that did not collide with the windshield 72 is blown out from the indoor unit 2 along the wind guide surface 61. That is, cold air flows on both the wind guide surface 61 and the design surface 62 of the vertical wind direction plate 25.
  • FIG. 11 is a cross-sectional view showing the outlet 142 according to the comparative example.
  • the vertical wind direction plate 125 is composed of two sheets, an upper wind direction plate 151 and a lower wind direction plate 152, and is located below the front panel 132. Since the lower wind direction plate 152 in the comparative example does not have a windshield, almost all of the cold air blown out from the outlet 142 flows along the wind guide surface 161. Therefore, the warm air in the room staying on the design surface 162 cannot be discharged. Therefore, dew condensation may occur on the vertical wind direction plate 125 due to the temperature difference between the warm air staying on the design surface 162 and the cold air flowing through the wind guide surface 161.
  • the vertical wind direction plate 25 of the first embodiment is provided with a windshield portion 72.
  • the air conditioner 100 when the air conditioner 100 is in the cooling operation, a part of the cold air blown out from the outlet 42 collides with the windshield 72.
  • the cold air that collided with the windshield portion 72 flows into the design surface 62 side of the vertical wind direction plate 25, and while pushing out the warm air in the room that has accumulated on the design surface 62 of the vertical wind direction plate 25, the vertical wind direction plate 25 It flows along the design surface 62.
  • the cold air that did not collide with the windshield 72 is blown out from the indoor unit 2 along the wind guide surface 61.
  • the windshield portion 72 may be provided at the rear edge portion 71 of the housing 23 among the portions of the wind guide surface 61 facing the accommodation space 44.
  • the cold air that collides with the windshield portion 72 may generate turbulence in the space behind the wind guide surface 61. There is. Therefore, the cold air blown out from the outlet 42 does not smoothly flow to the design surface 62 side.
  • the windshield portion 72 of the first embodiment is provided on the rear edge portion 71 of the housing 23, the cold air colliding with the windshield portion 72 is smoothly guided to the design surface 62 side. Be taken.
  • the cold air that did not collide with the windshield 72 is blown out from the indoor unit 2 along the wind guide surface 61. That is, cold air flows on both the wind guide surface 61 and the design surface 62 of the vertical wind direction plate 25. Therefore, no temperature difference occurs between the wind guide surface 61 and the design surface 62 of the vertical wind direction plate 25. Therefore, it is possible to suppress the occurrence of dew condensation on the vertical wind direction plate 25 while maintaining the high design of the indoor unit 2 obtained by integrating the accommodation space 44 with the outlet 42.
  • the windshield portion 72 is further provided on the rear edge portion 71 of the housing 23 among the portions of the wind guide surface 61 facing the accommodation space 44 so as to follow the edge portion 71. It spreads in the width direction and extends upward.
  • the air conditioner 100 when the air conditioner 100 is in the cooling operation, a part of the cold air blown out from the outlet 42 surely collides with the windshield 72.
  • the cold air that collided with the windshield portion 72 flows into the design surface 62 side of the vertical wind direction plate 25, and while pushing out the warm air in the room that has accumulated on the design surface 62 of the vertical wind direction plate 25, the vertical wind direction plate 25 It is blown out along the design surface 62.
  • the cold air that did not collide with the windshield 72 is blown out from the indoor unit 2 along the wind guide surface 61. That is, cold air flows on both the wind guide surface 61 and the design surface 62 of the vertical wind direction plate 25. Therefore, no temperature difference occurs between the wind guide surface 61 and the design surface 62 of the vertical wind direction plate 25. Therefore, it is possible to further suppress the occurrence of dew condensation on the vertical wind direction plate 25 while maintaining the high design of the indoor unit 2 obtained by integrating the accommodation space 44 with the outlet 42.
  • the windshield portion 72 is further provided so as to extend toward the outlet 42 side.
  • the cold air that collides with the windshield 72 increases. Therefore, the air staying on the design surface 62 can be pushed out more efficiently. Therefore, it is possible to further suppress the occurrence of dew condensation on the vertical wind direction plate 25.
  • FIG. 12 is a perspective view showing the windshield portion 72 according to the first embodiment.
  • FIG. 13 is a cross-sectional view showing the windshield portion 72 according to the first embodiment.
  • the back surface of the windshield portion 72 may be further formed so as to extend rearward and upward in the housing 23.
  • the windshield portion 72 has a shape substantially orthogonal to the direction in which the cold air blown out from the outlet 42 flows. Therefore, when the cold air blown out from the outlet 42 collides with the windbreak portion 72, the wind pressure drops or turbulence occurs in the vicinity of the windshield portion 72. As a result, the amount of cold air flowing along the wind guide surface 61 is reduced, which may reduce the efficiency of air conditioning.
  • the back surface of the windshield portion 72 is formed so as to extend rearward and upward in the housing 23, the back surface of the windshield portion 72 is in the direction in which the cold air blown out from the outlet 42 flows.
  • the shape is substantially parallel. Therefore, when a part of the cold air blown out from the outlet 42 collides with the windbreak portion 72, it is possible to suppress a decrease in wind pressure or a turbulent flow in the vicinity of the windshield portion 72. Therefore, the amount of cold air flowing along the wind guide surface 61 is not excessively reduced, and the occurrence of dew condensation on the vertical wind direction plate 25 can be suppressed without lowering the efficiency of air conditioning.
  • FIG. 14 is a perspective view showing the windshield portion 72 according to the first embodiment.
  • the height of the windshield portion 72 may be formed so as to be higher toward the outlet 42.
  • the windshield portion 72 can increase the amount of cold air that collides with the windshield portion 72 by increasing the area of the back surface.
  • the effect of increasing the amount of cold air colliding with the windbreak portion 72 is greater as the higher portion of the windshield portion 72 is closer to the outlet 42.
  • the effect of increasing the amount of cold air colliding with the windbreak portion 72 becomes smaller as the higher portion of the windshield portion 72 is farther from the outlet 42. Therefore, the height of the windshield portion 72 is formed so as to be higher toward the outlet 42, so that dew condensation occurs on the vertical wind direction plate 25 while suppressing the amount of the material used for the vertical wind direction plate 25. It can be suppressed.
  • FIG. 15 is a cross-sectional view showing the windshield portion 72 according to the first embodiment.
  • a heat insulating material 81 that suppresses heat transfer may be attached to the front surface of the windshield portion 72.
  • the heat insulating material 81 is, for example, a heat insulating insulator (INS).
  • INS heat insulating insulator
  • the heat insulating material 81 When the heat insulating material 81 is attached to the front surface of the windbreak portion 72, it is possible to prevent the warm air from being cooled and prevent the occurrence of dew condensation on the windshield portion 72. Since the heat insulating material 81 is attached to the front surface of the windshield portion 72, it is hidden inside the housing 23 when the air conditioner 100 is stopped. That is, even if the heat insulating material 81 is attached to the front surface of the windshield portion 72, the design property is not deteriorated.
  • FIG. 16 is a cross-sectional view showing a windshield portion 72 according to the first embodiment.
  • a water absorbing material 82 that absorbs moisture may be attached to the front surface of the windshield portion 72.
  • the water absorbing material 82 is, for example, a water absorbing insulator (INS).
  • INS water absorbing insulator
  • the water absorbing material 82 is attached to the front surface of the windbreak portion 72, it is possible to absorb the moisture contained in the warm air near the windshield portion 72 and suppress the occurrence of dew condensation on the windshield portion 72. ..
  • the water absorbing material 82 is attached to the front surface of the windshield portion 72 like the heat insulating material, it is hidden inside the housing 23 when the air conditioner 100 is stopped. That is, even if the water absorbing material 82 is attached to the front surface of the windshield portion 72, the designability does not deteriorate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Flow Control Members (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)
  • Central Air Conditioning (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

空気調和機の室内機は、室内空気を吸い込む吸込み口と、吸込み口から吸い込まれた空気を吹き出す吹出し口と、吹出し口に接続され電装品箱を収容する収容空間とが形成された筐体と、吹出し口及び収容空間を覆うように筐体に設けられ、吹出し口から吹き出す空気の方向を調整する上下風向板と、を備え、上下風向板は、吹出し口から吹き出される空気を案内する風案内面において、収容空間に対向する部分のうち筐体における後方の縁部に、吹出し口から吹き出された空気を遮る遮風部が設けられている。

Description

空気調和機の室内機
 本発明は、上下風向板を備える空気調和機の室内機に関する。
 従来、電装品箱を収容する収容空間が形成された空気調和機の室内機が知られている。このような室内機において、吹出し口は、室内機の一側部に寄せた位置に形成され、収容空間は、室内機の他側部に寄せた位置に形成されている。更に、収容空間は、筐体から窪むように形成されると共に、吹出し口に接続されることがある。即ち、収容空間は、吹出し口と一体化された外観を呈する。この際、上下風向板は、筐体下部の略全幅にわたって配置され、吹出し口及び収容空間を覆うように設けられる。一方、収容空間は、吹出し口に一体化されるように形成されない場合、上下風向板によって覆われない。即ち、上下風向板は、吹出し口のみを覆うため、筐体の幅方向の一側部に寄せられて配置される。したがって、室内機は、収容空間が吹出し口に一体化されることで、収容空間が吹出し口に一体化されない場合と比べて、意匠性が高い。一方で、上下風向板における収容空間に対向する箇所においては、吹き出される空気の勢いが弱く、空気調和機が冷房運転をしている際に、室内の暖気が流入しうる。したがって、上下風向板における収容空間に対向する部分に、結露が生じる虞があった。
 特許文献1には、吹出し口から吹き出される空気を案内する上下風向板の風案内面のうち、収容空間に対向する部分に、複数のリブが設けられた室内機が開示されている。それぞれのリブは、いずれも略直方体状をなしているが、それぞれの高さが異なり、風案内面における前後方向の略中央に、吹出し口に向かって段階的に高くなるように設けられている。また、リブの長手方向は、筐体の前後方向と平行となる。したがって、室内の暖気は、上下風向板の風案内面において、露点温度以下となる箇所に流入することが妨げられる。このようにして、特許文献1の室内機は、室内機の意匠性を維持しつつ、上下風向板に結露が生じることを抑制しようとするものである。
特開2011-133158号公報
 しかしながら、特許文献1に開示された室内機の上下風向板に形成されているリブは、風案内面における前後方向の略中央に、長手方向が筐体の前後方向と平行になるように設けられている。このため、空気調和機の運転時において、吹き出された空気は、リブ同士の間を通り抜けるように、風案内面に沿って流れる。即ち、吹き出された空気は、上下風向板の意匠面側を流れないため、意匠面側に滞留した室内の暖気を排出することが出来ない。したがって、上下風向板の風案内面を通る冷気と室内の暖気との温度差によって、上下風向板の意匠面で結露が生じる可能性がある。
 本発明は、上記のような課題を解決するためになされたもので、室内機の意匠性を維持しつつ、上下風向板の意匠面に結露が生じない空気調和機の室内機を提供するものである。
 本発明に係る空気調和機の室内機は、室内空気を吸い込む吸込み口と、吸込み口から吸い込まれた空気を吹き出す吹出し口と、吹出し口に接続され電装品箱を収容する収容空間とが形成された筐体と、吹出し口及び収容空間を覆うように筐体に設けられ、吹出し口から吹き出す空気の方向を調整する上下風向板と、を備え、上下風向板は、吹出し口から吹き出される空気を案内する風案内面において、収容空間に対向する部分のうち筐体における後方の縁部に、吹出し口から吹き出された空気を遮る遮風部が設けられている。
 本発明によれば、空気調和機が冷房運転をしている際に、吹出し口から吹き出された冷気の一部が遮風部に衝突する。この際に、遮風部に衝突した冷気は、上下風向板の意匠面側に流入し、上下風向板の意匠面に滞留した室内の暖気を押し出しながら、上下風向板の意匠面に沿って流れる。一方、遮風部に衝突しなかった冷気は、風案内面に沿って室内機から吹き出される。即ち、上下風向板の風案内面と意匠面とのいずれにも冷気が流れる。このため、上下風向板の風案内面と意匠面との間に温度差が発生しない。したがって、収容空間を吹出し口に一体化したことによって得られる室内機の意匠性の高さを維持しつつ、上下風向板の意匠面に結露が生じないようにすることが出来る。
実施の形態1に係る空気調和機100を示す回路図である。 実施の形態1に係る室内機2を示す正面図である。 実施の形態1に係る室内機2を示す斜視図である。 実施の形態1に係る室内機2を示す断面図である。 実施の形態1に係る室内機2を示す斜視図である。 実施の形態1に係る室内機2を示す斜視図である。 実施の形態1に係る室内機2を示す正面図である。 実施の形態1に係る遮風部72を示す正面図である。 実施の形態1に係る遮風部72を示す斜視図である。 実施の形態1に係る吹出し口42を示す断面図である。 比較例に係る吹出し口42を示す断面図である。 実施の形態1に係る遮風部72を示す斜視図である。 実施の形態1に係る遮風部72を示す断面図である。 実施の形態1に係る遮風部72を示す斜視図である。 実施の形態1に係る遮風部72を示す断面図である。 実施の形態1に係る遮風部72を示す断面図である。
実施の形態1.
 以下、実施の形態1に係る空気調和機100の室内機2について、図面を参照しながら説明する。図1は、実施の形態1に係る空気調和機100を示す回路図である。図1に示すように、空気調和機100は、室外機1、室内機2及び冷媒配管3を有している。なお、図1では、1台の室内機2を例示しているが、室内機2の台数は、2台以上でもよい。
 (室外機1、室内機2、冷媒配管3)
 室外機1は、圧縮機11、流路切替装置12、室外熱交換器13、室外送風機14及び膨張部15を有している。室内機2は、室内熱交換器21、室内送風機22、筐体23、電装品箱24、上下風向板25及び上下風向板25を有している。冷媒配管3は、流路切替装置12、室外熱交換器13、膨張部15及び室内熱交換器21を接続すると共に、内部に冷媒が流れることで冷媒回路4を構成するものである。
 (圧縮機11、流路切替装置12、室外熱交換器13、室外送風機14、膨張部15)
 圧縮機11は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替装置12は、冷媒回路4において、冷媒の流通方向を切り替えるものであり、例えば四方弁である。室外熱交換器13は、冷媒と室外空気との間で熱交換を行うものであり、例えばフィンアンドチューブ型熱交換器である。室外熱交換器13は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機14は、室外熱交換器13に室外空気を送る機器である。膨張部15は、冷媒を減圧して膨張させる減圧弁又は膨張弁である。
 (室内熱交換器21、室内送風機22)
 室内熱交換器21は、室内空気と冷媒との間で熱交換を行うものである。室外熱交換器13は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。室内送風機22は、室内熱交換器21に室内空気を送る機器であり、例えば、クロスフローファンである。
 (冷房運転)
 ここで、空気調和機100の動作について説明する。先ず、冷房運転について説明する。冷房運転において、圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置12を通過して、凝縮器として作用する室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外送風機14によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、膨張部15に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室内熱交換器21に流入する。室内熱交換器21に流入した冷媒は、室内送風機22によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置12を通過して、圧縮機11に吸入される。
 (暖房運転)
 次に、暖房運転について説明する。暖房運転において、圧縮機11に吸入された冷媒は、圧縮機11によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機11から吐出された高温且つ高圧のガス状態の冷媒は、流路切替装置12を通過して、凝縮器として作用する室内熱交換器21に流入する。室内熱交換器21に流入した冷媒は、室内送風機22によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、膨張部15に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室外熱交換器13に流入する。室外熱交換器13に流入した冷媒は、室外送風機14によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替装置12を通過して、圧縮機11に吸入される。
 (筐体23)
 図2は、実施の形態1に係る室内機2を示す正面図である。図3は、実施の形態1に係る室内機2を示す斜視図である。図2及び図3に示すように、筐体23は、室内機2の外殻を構成するものであり、例えば、樹脂製である。筐体23は、ケーシング31及び正面パネル32を有する。
 (ケーシング31)
 図4は、実施の形態1に係る室内機2を示す断面図であり、図2のA-A断面である。図5は、実施の形態1に係る室内機2を示す斜視図である。そして、図6は、実施の形態1に係る室内機2を示す斜視図である。図4~図6に示すように、ケーシング31は、室内機2の各機器が収容されるように箱体をなすものであり、室内の壁に取りつけられる。ケーシング31には、吸込み口41、吹出し口42、風路43及び収容空間44が形成されている。なお、ケーシング31は、天井に埋め込まれることで、天井埋め込み型の室内機2として用いられてもよい。
 (吸込み口41、吹出し口42)
 吸込み口41は、ケーシング31の上部に形成された開口であり、室内空気を室内機2の内部に吸い込む。なお、吸込み口41は、室内機2の内部に室内空気を吸い込むことが出来る形状であればよい。また、吸込み口41は、ケーシング31の上部に加えて、正面パネル32に形成されていたり、正面パネル32にのみ形成されていたりしてもよい。吹出し口42は、ケーシング31下部に形成された開口であり、室内機2の内部から室内に空気を吹き出す。吹出し口42は、室内機2の幅方向を長辺とする略長方形をなしている。なお、吹出し口42は、室内機2の内部から空気を吹き出すことが出来ればよく、略長方形の形状以外でもよい。
 (風路43、収容空間44)
 風路43は、吸込み口41から吹出し口42までを接続する空間であり、室内機2が運転している際に、吸込み口41から吸い込まれた空気が通る。風路43には、室内熱交換器21及び室内熱交換器21を前面から上面にかけて取り囲むようにV字を逆さにした形状に配置された室内送風機22が設けられている。なお、室内送風機22は、V字を逆さにした形状に配置されなくともよい。収容空間44は、ケーシング31下部に形成された窪みであり、電装品箱24が収容される。また、収容空間44は、吹出し口42に接続され、吹出し口42と一体化された外観を呈する。
 (正面パネル32、電装品箱24)
 正面パネル32は、ケーシング31に接続され、室内機2における外殻の正面を構成するものである。電装品箱24は、筐体23内部に格納され、モーター(図示せず)及び電子制御装置(図示せず)等を収めるものである。
 (上下風向板25)
 上下風向板25は、板状の部材であり、ケーシング31の下部に設けられる。上下風向板25は、上風向板51及び下風向板52の2枚からなり、空気調和機100が運転を停止している際に、上風向板51が吹出し口42及び収容空間44の上部を覆うと共に、下風向板52が吹出し口42及び収容空間44の下部を覆う。なお、上下風向板25の枚数は、1枚又は3枚以上であってもよく、全ての上下風向板25によって、吹出し口42及び収容空間44の全体が覆われる。上下風向板25は、運転をしている際に、モーター(図示せず)によって上下方向に搖動が可能であり、開度を維持したり、変化したりすることで吹出し口42から吹き出される空気の風向の上下を調整するものである。上下風向板25は、筐体23下部の略全幅にわたって配置されているため、吹出し口42及び収容空間44を覆う。
 なお、本実施の形態1と異なり、収容空間44が吹出し口42に一体化されるように形成されない場合、上下風向板25は、収容空間44を覆わない。即ち、上下風向板25は、筐体23の幅方向の一側部に寄せられて配置され、吹出し口42のみを覆う。これに対して、本実施の形態1の室内機2は、収容空間44が吹出し口42に一体化されることで、収容空間44が吹出し口42に一体化されない場合と比べて、意匠性が高い。
 下風向板52の表面は、風案内面61及び意匠面62の2面からなる。風案内面61は、運転を行う際に下風向板52の風路43側の面となり、室内機2から吹き出される空調空気を案内する。意匠面62は、運転を停止している際に、室内機2の筐体23と一体をなす面であり、室内側の面である。風案内面61には、遮風部72が設けられている。なお、前述のように、上下風向板25は、1枚又は3枚以上でもよい。上下風向板25が2枚以外であった場合、遮風部72は、上下風向板25のうち最も低い箇所に位置する上下風向板25に設けられる。
 (遮風部72)
 図7は、実施の形態1に係る室内機2を示す正面図である。図8は、実施の形態1に係る遮風部72を示す正面図である。図9は、実施の形態1に係る遮風部72を示す斜視図である。図7、図8及び図9に示すように、遮風部72は、板状のリブであり、風案内面61の収容空間44に対向する部分のうち、筐体23における後方の縁部71に設けられている。また、遮風部72は、縁部71に沿って吹出し口42側に延びるように幅方向に広がって設けられると共に、上方に延びている。遮風部72は、吹出し口42から吹き出された空気を遮る。
 図10は、実施の形態1に係る吹出し口42を示す断面図である。図10を用いて、空気調和機100が冷房運転をする際における室内機2の動作及び遮風部72の作用について、説明する。室内空気は、室内機2の吸込み口41から室内機2の内部に吸い込まれる。次に、室内機2の内部に吸い込まれた空気は、蒸発器として作用する室内熱交換器21を通過して、室内送風機22によって送られた空気と熱交換され、冷気となる。そして、熱交換された冷気は、吹出し口42から吹き出され、室内において冷房が実施される。この際に、上下風向板25の下風向板52には、遮風部72が設けられているため、吹出し口42から吹き出された冷気の一部は、遮風部72に衝突する。遮風部72に衝突した冷気は、上下風向板25の意匠面62側に流入し、上下風向板25の意匠面62に滞留した室内の暖気を押し出しながら、上下風向板25の意匠面62に沿って流れる。一方、遮風部72に衝突しなかった冷気は、風案内面61に沿って室内機2から吹き出される。即ち、上下風向板25の風案内面61と意匠面62とのいずれにも冷気が流れるため、上下風向板25の風案内面61と意匠面62との間に温度差が発生しない。
 (左右風向板26)
 左右風向板26は、板状の部材であり、複数の左右風向板26がケーシング31の下部における上下風向板25より風路43の上流側に設けられる。それぞれの左右風向板26は、モーター(図示せず)によって幅方向に揺動が可能であり、角度を維持したり、変化したりすることで、室外機1から吹き出される空気の風向の左右を調整するものである。
 本実施の形態1によれば、空気調和機100が冷房運転をしている際に、吹出し口42から吹き出された冷気の一部が遮風部72に衝突する。この際に、遮風部72に衝突した冷気は、上下風向板25の意匠面62側に流入し、上下風向板25の意匠面62に滞留した室内の暖気を押し出しながら、上下風向板25の意匠面62に沿って流れる。一方、遮風部72に衝突しなかった冷気は、風案内面61に沿って室内機2から吹き出される。即ち、上下風向板25の風案内面61と意匠面62とのいずれにも冷気が流れる。このため、上下風向板25の風案内面61と意匠面62との間に温度差が発生しない。したがって、収容空間44を吹出し口42に一体化したことによって得られる室内機2の意匠性の高さを維持しつつ、上下風向板25の意匠面62に結露が生じないようにすることが出来る。
 図11は、比較例に係る吹出し口142を示す断面図である。本実施の形態1の効果について、図11の比較例と比較することで詳細に説明する。図11に示すように、上下風向板125は、上風向板151及び下風向板152の2枚からなり、正面パネル132の下方に位置している。比較例における下風向板152には、遮風部が存在しないため、吹出し口142から吹き出された冷気のほぼ全ては、風案内面161に沿って流れる。したがって、意匠面162に滞留している室内の暖気を排出することが出来ない。このため、意匠面162に滞留した暖気と風案内面161を流れる冷気との温度差によって、上下風向板125に結露が発生する虞がある。
 これに対して、本実施の形態1の上下風向板25には、遮風部72が設けられている。これにより、空気調和機100が冷房運転をしている際に、吹出し口42から吹き出された冷気の一部が遮風部72に衝突する。この際に、遮風部72に衝突した冷気は、上下風向板25の意匠面62側に流入し、上下風向板25の意匠面62に滞留した室内の暖気を押し出しながら、上下風向板25の意匠面62に沿って流れる。一方、遮風部72に衝突しなかった冷気は、風案内面61に沿って室内機2から吹き出される。即ち、上下風向板25の風案内面61と意匠面62とのいずれにも冷気が流れる。このため、上下風向板25の風案内面61と意匠面62との間に温度差が発生しない。したがって、収容空間44を吹出し口42に一体化したことによって得られる室内機2の意匠性の高さを維持しつつ、上下風向板25に結露が発生することが抑制出来る。
 なお、遮風部72は、風案内面61の収容空間44に対向する部分のうち、筐体23における後方の縁部71に設けられていればよい。ここで、遮風部72が上下風向板25の前後方向の中央に設けられていた場合、遮風部72に衝突した冷気は、風案内面61の後方の空間で乱流を発生させる可能性がある。このため、吹出し口42から吹き出された冷気がスムーズに意匠面62側に流れない。これに対して、本実施の形態1の遮風部72は、筐体23における後方の縁部71に設けられているため、遮風部72に衝突した冷気がスムーズに意匠面62側に導かれる。一方、遮風部72に衝突しなかった冷気は、風案内面61に沿って室内機2から吹き出される。即ち、上下風向板25の風案内面61と意匠面62とのいずれにも冷気が流れる。このため、上下風向板25の風案内面61と意匠面62との間に温度差が発生しない。したがって、収容空間44を吹出し口42に一体化したことによって得られる室内機2の意匠性の高さを維持しつつ、上下風向板25に結露が発生することを抑制出来る。
 本実施の形態1によると、更に、遮風部72は、風案内面61の収容空間44に対向する部分のうち、筐体23における後方の縁部71に設けられ、縁部71に沿うように幅方向に広がると共に、上方に延びている。これにより、空気調和機100が冷房運転をしている際に、吹出し口42から吹き出された冷気の一部は、遮風部72に確実に衝突する。この際に、遮風部72に衝突した冷気は、上下風向板25の意匠面62側に流入し、上下風向板25の意匠面62に滞留した室内の暖気を押し出しながら、上下風向板25の意匠面62に沿って吹き出される。一方、遮風部72に衝突しなかった冷気は、風案内面61に沿って室内機2から吹き出される。即ち、上下風向板25の風案内面61と意匠面62とのいずれにも冷気が流れる。このため、上下風向板25の風案内面61と意匠面62との間に温度差が発生しない。したがって、収容空間44を吹出し口42に一体化したことによって得られる室内機2の意匠性の高さを維持しつつ、上下風向板25に結露が発生することをより抑制出来る。
 本実施の形態1によると、更に、遮風部72は、吹出し口42側に延びるように設けられている。これにより、吹出し口42から吹き出される冷気のうち、遮風部72に衝突する冷気が増加する。このため、意匠面62に滞留した空気をより効率的に押し出すことが出来る。したがって、上下風向板25に結露が発生することをより抑制出来る。
 図12は、実施の形態1に係る遮風部72を示す斜視図である。図13は、実施の形態1に係る遮風部72を示す断面図である。図12及び図13に示すように、遮風部72の背面は、更に、筐体23における後方且つ上方に延びるように形成されていてもよい。概して、遮風部72の背面が上方にのみ延びるように形成されている場合、遮風部72は、吹出し口42から吹き出される冷気の流れる方向に対して略直交するような形状となる。このため、吹出し口42から吹き出された冷気が遮風部72に衝突する際に、風圧が低下したり、遮風部72の付近で乱流が発生したりする。その結果、風案内面61に沿って流れる冷気の量が少なくなり、空気調和の効率を低下させる虞がある。
 これに対して、遮風部72の背面が、筐体23における後方且つ上方に延びるように形成されている場合、遮風部72の背面は、吹出し口42から吹き出される冷気の流れる方向に対して略平行な形状となる。このため、吹出し口42から吹き出される冷気の一部が遮風部72に衝突する際に、風圧が低下したり、遮風部72の付近で乱流が発生したりすることを抑制出来る。したがって、風案内面61に沿って流れる冷気の量が過度に少なくならず、空気調和の効率を低下させずに、上下風向板25に結露が発生することを抑制出来る。
 図14は、実施の形態1に係る遮風部72を示す斜視図である。図14に示すように、遮風部72の高さは、吹出し口42に向かい高くなるように形成されていてもよい。概して、遮風部72は、背面の面積が大きくなることにより、遮風部72に衝突する冷気の量を増加させることが出来る。この際に、遮風部72に衝突する冷気の量を増加させる効果は、遮風部72の高くなる部分が吹出し口42に近い部分であるにしたがって、大きい。逆に、遮風部72に衝突する冷気の量を増加させる効果は、遮風部72の高くなる部分が吹出し口42から遠い部分であるにしたがって、小さい。このため、遮風部72の高さは、吹出し口42に向かい高くなるように形成されることで、上下風向板25に使用する材料の量を抑えつつ、上下風向板25に結露が発生することを抑制出来る。
 図15は、実施の形態1に係る遮風部72を示す断面図である。図15に示すように、遮風部72の前面には、熱移動を抑制する断熱材81が貼り付けられていてもよい。断熱材81は、例えば、断熱インシュレータ(INS)である。概して、空気調和機100が冷房運転をしている際には、遮風部72の前面には、室内の暖気が流入しうる。このとき、遮風部72の背面に吹出し口42から吹き付けられる冷気と遮風部72の前面に流入した暖気との温度差により、遮風部72に結露が生じる虞がある。遮風部72の前面に断熱材81が貼り付けられた場合には、暖気が冷却されることを妨げ、遮風部72に結露が発生することを抑制することが出来る。なお、断熱材81は、遮風部72の前面に貼り付けられるため、空気調和機100が運転を停止している際には、筐体23の内部に隠れる。即ち、遮風部72の前面に断熱材81が貼り付けられていても、意匠性は低下しない。
 図16は、実施の形態1に係る遮風部72を示す断面図である。図16に示すように、遮風部72の前面には、水分を吸収する吸水材82が貼り付けられていてもよい。吸水材82は、例えば、吸水インシュレータ(INS)である。前述のとおり、遮風部72の背面に吹出し口42から吹き付けられる冷気と遮風部72の前面に流入した暖気との温度差により、遮風部72に結露が生じる虞がある。遮風部72の前面に吸水材82が貼り付けられた場合には、遮風部72付近の暖気に含まれる水分を吸収し、遮風部72に結露が発生することを抑制することが出来る。なお、吸水材82は、断熱材と同様に、遮風部72の前面に貼り付けられるため、空気調和機100が運転を停止している際には、筐体23の内部に隠れる。即ち、遮風部72の前面に吸水材82が貼り付けられていても、意匠性は低下しない。
 1 室外機、2 室内機、3 冷媒配管、4 冷媒回路、11 圧縮機、12 流路切替装置、13 室外熱交換器、14 室外送風機、15 膨張部、21 室内熱交換器、22 室内送風機、23 筐体、24 電装品箱、25 上下風向板、26 左右風向板、31 ケーシング、32 正面パネル、41 吸込み口、42 吹出し口、43 風路、44 収容空間、51 上風向板、52 下風向板、61 風案内面、62 意匠面、71 縁部、72 遮風部、81 断熱材、82 吸水材、100 空気調和機、125 上下風向板、142 吹出し口、161 風案内面、162 意匠面。

Claims (6)

  1.  室内空気を吸い込む吸込み口と、前記吸込み口から吸い込まれた空気を吹き出す吹出し口と、前記吹出し口に接続され電装品箱を収容する収容空間とが形成された筐体と、
     前記吹出し口及び前記収容空間を覆うように前記筐体に設けられ、前記吹出し口から吹き出す空気の方向を調整する上下風向板と、を備え、
     前記上下風向板は、
     前記吹出し口から吹き出される空気を案内する風案内面において、前記収容空間に対向する部分のうち前記筐体における後方の縁部に、前記吹出し口から吹き出された空気を遮る遮風部が設けられている
     空気調和機の室内機。
  2.  前記遮風部は、
     前記上下風向板の後方の縁部に沿うと共に、上方に延びるように設けられている
     請求項1記載の空気調和機の室内機。
  3.  前記遮風部は、
     前記吹出し口側に延びるように設けられている
     請求項1又は請求項2に記載の空気調和機の室内機。
  4.  前記遮風部の背面は、
     前記筐体における後方且つ上方に延びるように形成されている
     請求項1~請求項3のいずれか1項に記載の空気調和機の室内機。
  5.  前記遮風部の高さは、
     前記吹出し口に向かい高くなる
     請求項1~請求項4のいずれか1項に記載の空気調和機の室内機。
  6.  前記遮風部には、
     熱移動を抑制する断熱材又は水分を吸収する吸水材が貼り付けられている
     請求項1~請求項5のいずれか1項に記載の空気調和機の室内機。
PCT/JP2019/021459 2019-05-30 2019-05-30 空気調和機の室内機 WO2020240759A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2019448451A AU2019448451B2 (en) 2019-05-30 2019-05-30 Indoor unit of air-conditioning apparatus
PCT/JP2019/021459 WO2020240759A1 (ja) 2019-05-30 2019-05-30 空気調和機の室内機
JP2021521677A JP7146081B2 (ja) 2019-05-30 2019-05-30 空気調和機の室内機
US17/437,995 US20220178580A1 (en) 2019-05-30 2019-05-30 Indoor unit of air-conditioning apparatus
DE112019007369.9T DE112019007369B4 (de) 2019-05-30 2019-05-30 Inneneinheit einer Klimaanlage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/021459 WO2020240759A1 (ja) 2019-05-30 2019-05-30 空気調和機の室内機

Publications (1)

Publication Number Publication Date
WO2020240759A1 true WO2020240759A1 (ja) 2020-12-03

Family

ID=73553597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021459 WO2020240759A1 (ja) 2019-05-30 2019-05-30 空気調和機の室内機

Country Status (5)

Country Link
US (1) US20220178580A1 (ja)
JP (1) JP7146081B2 (ja)
AU (1) AU2019448451B2 (ja)
DE (1) DE112019007369B4 (ja)
WO (1) WO2020240759A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237107A (ja) * 1998-02-24 1999-08-31 Fujitsu General Ltd 空気調和機
JP2003090592A (ja) * 2001-09-20 2003-03-28 Fujitsu General Ltd 空気調和機
JP2009144979A (ja) * 2007-12-14 2009-07-02 Panasonic Corp 空気調和機

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07190470A (ja) 1993-12-24 1995-07-28 Matsushita Electric Ind Co Ltd 空気調和機の室内ユニット
JP5402616B2 (ja) 2009-12-24 2014-01-29 株式会社富士通ゼネラル 空気調和機
JP5402871B2 (ja) 2010-08-06 2014-01-29 ダイキン工業株式会社 室内機
JP6767688B2 (ja) 2015-05-20 2020-10-14 パナソニックIpマネジメント株式会社 室内空調システム
JP6956794B2 (ja) 2017-08-08 2021-11-02 三菱電機株式会社 空気調和機の室内機
CN208025631U (zh) 2017-12-28 2018-10-30 奥克斯空调股份有限公司 一种空调柜机出风组件及空调器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237107A (ja) * 1998-02-24 1999-08-31 Fujitsu General Ltd 空気調和機
JP2003090592A (ja) * 2001-09-20 2003-03-28 Fujitsu General Ltd 空気調和機
JP2009144979A (ja) * 2007-12-14 2009-07-02 Panasonic Corp 空気調和機

Also Published As

Publication number Publication date
AU2019448451A1 (en) 2021-11-18
DE112019007369B4 (de) 2023-04-06
US20220178580A1 (en) 2022-06-09
JP7146081B2 (ja) 2022-10-03
DE112019007369T5 (de) 2022-02-17
AU2019448451B2 (en) 2023-01-12
JPWO2020240759A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
US9568221B2 (en) Indoor unit for air conditioning device
US20160054010A1 (en) Indoor unit for air conditioning devices
JP5523822B2 (ja) 空気調和装置の室外ユニット
WO2013094082A1 (ja) 室外機及びこの室外機を備えた冷凍サイクル装置
US10352582B2 (en) Decorative panel and air-conditioner indoor unit provided with same
US20210041115A1 (en) Indoor heat exchanger and air conditioning apparatus
KR102171872B1 (ko) 일체형 공기조화기
CN107278256B (zh) 空调的室内机
EP3040631B1 (en) Outdoor device of air conditioner
CN210772705U (zh) 室内机以及空调机
US10731873B2 (en) Indoor unit for air-conditioning apparatus
WO2020240759A1 (ja) 空気調和機の室内機
JP2015021676A (ja) 室内熱交換器、室内機、室外熱交換器、室外機、及び空気調和機
CN214949389U (zh) 空调室内机
WO2021255916A1 (ja) 空気調和機の室内機
WO2021014562A1 (ja) 空気調和機の室内機
KR100768165B1 (ko) 천정형 에어컨의 드레인패널
KR100829133B1 (ko) 천정형 에어컨의 냉기누설 방지구조
US20220042715A1 (en) Indoor unit for air-conditioning apparatus
CN104713168A (zh) 低温环境中制冷运行的方舱空调装置
JP7086269B2 (ja) 室内機
WO2024105775A1 (ja) 空気調和機の室内機
CN212657791U (zh) 空调器室内机
CN212274107U (zh) 天花板悬吊型空调装置室内机
JP4946331B2 (ja) 空気調和装置の室外ユニット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19930434

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021521677

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019448451

Country of ref document: AU

Date of ref document: 20190530

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19930434

Country of ref document: EP

Kind code of ref document: A1