WO2020238690A1 - 一种硼基非晶合金及其制备方法 - Google Patents

一种硼基非晶合金及其制备方法 Download PDF

Info

Publication number
WO2020238690A1
WO2020238690A1 PCT/CN2020/090938 CN2020090938W WO2020238690A1 WO 2020238690 A1 WO2020238690 A1 WO 2020238690A1 CN 2020090938 W CN2020090938 W CN 2020090938W WO 2020238690 A1 WO2020238690 A1 WO 2020238690A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
amorphous alloy
boron
amorphous
preparation
Prior art date
Application number
PCT/CN2020/090938
Other languages
English (en)
French (fr)
Inventor
张伟
李艳辉
赖磊强
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US17/053,293 priority Critical patent/US11840751B2/en
Publication of WO2020238690A1 publication Critical patent/WO2020238690A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/14Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on borides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/04Amorphous alloys with nickel or cobalt as the major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/008Rapid solidification processing

Definitions

  • the invention relates to the technical field of new materials and their preparation, in particular, to a boron-based amorphous alloy with high thermal stability, high hardness and high resistivity and a preparation method thereof.
  • Amorphous alloy refers to a metal alloy with short-range order and long-range disorder in the arrangement of atoms in the solid state. Its unique structure makes this type of alloy have mechanical and functional properties that are unmatched by ordinary crystalline metal materials, such as high strength, high hardness, high elastic limit, high resistivity, excellent soft magnetic properties and high corrosion resistance.
  • amorphous alloys with excellent properties have been developed. They can be divided into two main categories: one is metal-metal amorphous alloys represented by Cu-, Mg-, La-, Ca-, Zr-, Ti-based, etc., which usually have high amorphous forming ability And good stability of the supercooled liquid; the other is the metal-type metal-like amorphous alloys represented by Fe-, Co-, Ni-, Pd-, Pt-based, which have extremely high strength, Hardness, and excellent soft magnetic properties.
  • Non (quasi) metal elements B, C, Si, P are often added to metal-quasi-metal amorphous alloys as elements that improve the ability of amorphous formation.
  • Amorphous alloys with high non-(quasi) metal content are expected to be used as structural materials and functional materials in automobiles. , Energy, electronics and other fields are widely used.
  • the currently developed amorphous alloy systems are basically based on metal elements, and there are few reports of non-metal-based amorphous alloys.
  • DV Louzguine et al. [Materials Transactions, JIM 38(1997) 1095] on the basis of high Si content Al-based Al-Si-Fe amorphous alloys by adding transition group elements (TM) and using rapid quenching method to synthesize a series of Si-based non-(like) metal-based amorphous alloy strips, and the mechanical properties (such as strength, hardness, etc.) and resistivity of the alloy are higher than the same type of Al-based amorphous alloys, and with non-(like) The metal content increases gradually.
  • TM transition group elements
  • the Young's modulus of Co and B is much higher than that of Al and Si, and the absolute value of the negative mixing enthalpy of Co-B atom pair is greater than that of Al-Si atom pair, that is, the stronger one is formed between Co-B atoms Bonding bonds, which will help improve the strength and hardness of the alloy, and obtain better thermal stability. Therefore, inventing a new type of amorphous alloy based on non-(quasi) metal B is expected to obtain functional properties that traditional metal-based amorphous alloys do not have, and it is of great significance.
  • the present invention also provides a method for preparing the above-mentioned boron-based amorphous alloy, which comprises the following steps:
  • step one Place the weighed mixture in step one in a water-cooled copper mold of a non-consumable arc smelting furnace, and smelt it in an argon or nitrogen atmosphere to obtain a master alloy ingot.
  • the alloy is smelted 4 times to ensure uniform composition; Or put the mixture in the crucible of the induction melting furnace and smelt it under argon or nitrogen atmosphere to obtain a master alloy ingot with uniform composition;
  • Step 3 Preparation of amorphous ribbon
  • the master alloy ingot is crushed and packed into a quartz tube, and the single-roll ribbon spinning process is adopted, that is, in an argon or nitrogen atmosphere, the master alloy ingot is heated by induction melting to a molten state, and then the master alloy ingot is melted by high-pressure gas
  • the obtained alloy liquid is sprayed onto a high-speed rotating copper roller, and the strip is spun at a surface linear speed of 20-40 m/s to obtain an amorphous alloy strip with a width of 1.5 mm and a thickness of 25-40 ⁇ m.
  • the present invention has the following advantages:
  • the amorphous alloy provided by the present invention has high thermal stability, its crystallization temperature reaches 700°C or higher, and at the same time it has high hardness ( ⁇ 1582HV) and high resistivity ( ⁇ 4.28 ⁇ m), which can be used as abrasion resistance Corrosion coating materials or specific functional materials have application prospects in engineering or electronic fields.
  • the amorphous alloy strip provided by the present invention can be obtained by a single-roller spinning method, which can realize continuous production with high production efficiency and is beneficial to industrialization.
  • the amorphous alloy provided by the present invention fills the technical gap in preparing non-metal B-based amorphous alloy strips.
  • the application of the present invention provides a boron-based B-Co-RE (RE refers to rare earth) amorphous alloy with high thermal stability, high hardness, and high resistivity and a preparation method thereof. Therefore, the present invention fills the technical gap of the current non-metal B-based amorphous alloy.
  • RE refers to rare earth
  • the present invention can be widely promoted in the fields of new materials and their preparation.
  • Figure 1 is an X-ray diffraction pattern of a B 50 Co 40 Sm 10 amorphous alloy strip with a thickness of 35 ⁇ m and a width of 1.5 mm prepared by a single-roller spinning.
  • Figure 2 is a high-resolution transmission electron microscope bright-field image and selected area electron diffraction spectrum of a B 50 Co 40 Sm 10 amorphous alloy strip with a thickness of 35 ⁇ m and a width of 1.5 mm prepared by single-roller spinning.
  • Fig. 3 is a differential scanning calorimetry (DSC) curve of B 50 Co 40 Sm 10 amorphous alloy strip.
  • test methods described in the following examples are conventional methods unless otherwise specified; the reagents and materials, unless otherwise specified, can be obtained from commercial sources.
  • the boron-based amorphous alloy provided by the present invention has high thermal stability, high hardness, high resistivity, and strong amorphous forming ability, and can be prepared by a single-roll spinning method to obtain a critical thickness of not less than 25 microns Of amorphous alloy strips.
  • the boron-based amorphous alloy provided by the present invention has the following characteristics:
  • the initial crystallization temperature is 707 ⁇ 820°C
  • Vickers hardness Hv 1362 ⁇ 1582
  • the resistivity is 2.56 ⁇ 4.28 ⁇ m.
  • the present invention also provides a method for preparing the above-mentioned boron-based amorphous alloy, which comprises the following steps:
  • step one Place the weighed mixture in step one in a water-cooled copper mold of a non-consumable arc smelting furnace, and smelt in an argon or nitrogen atmosphere to obtain a master alloy ingot.
  • the alloy is smelted 4 times to ensure uniform composition; Or place the mixture in a crucible of an induction melting furnace and smelt it under an argon or nitrogen atmosphere to obtain a master alloy ingot with a uniform composition;
  • Step 3 Preparation of amorphous ribbon
  • the master alloy ingot is crushed and packed into a quartz tube, and the single-roll ribbon spinning process is adopted, that is, in an argon or nitrogen atmosphere, the master alloy ingot is heated by induction melting to a molten state, and then the master alloy ingot is melted by high-pressure gas
  • the obtained alloy liquid is sprayed onto a high-speed rotating copper roller, and the strip is spun at a surface linear speed of 20-40 m/s to obtain an amorphous alloy strip with a width of 1.5 mm and a thickness of 25-40 ⁇ m.
  • Co, B and Sm raw materials with a purity greater than 99wt% are used for weighing and batching according to their nominal components; considering the volatilization and burning of Sm, an additional 5wt.% of Sm is added during the batching process.
  • Step 2 Master alloy ingot smelting
  • Step 3 Preparation of amorphous ribbon
  • Step 4 Structural characterization of the alloy
  • X-ray diffraction Cu K ⁇
  • TEM transmission electron microscope
  • Figure 1 is the XRD pattern of the alloy. It can be seen from the figure that the prepared alloy has a completely amorphous structure
  • Figure 2 is the high resolution transmission electron image (HRTEM) and selected area electron diffraction (SAED) pattern of the alloy, without crystals The appearance of grains and diffraction showed a characteristic amorphous halo, which further proved the completely amorphous structure of the alloy.
  • HRTEM transmission electron image
  • SAED selected area electron diffraction
  • DSC Differential scanning calorimeter
  • Step 2 Using the weighed raw materials in an induction melting furnace in an Ar atmosphere to prepare a master alloy ingot with a uniform composition.
  • Steps three, four, and five are the same as in Example 1, and finally an amorphous alloy strip with a thickness of 35 ⁇ m is prepared.
  • the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • the steps are basically the same as in Example 1, only changing the inert protective gas atmosphere to nitrogen.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • the final prepared amorphous alloy strip with a thickness of 35 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Step 1 Use Co, B, C and Sm raw materials with a purity greater than 99wt% to weigh the ingredients according to their nominal composition;
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Step 1 Use Co, B, Si and Sm raw materials with a purity greater than 99wt% to weigh the ingredients according to the nominal composition;
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 40 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Step 1 Use Co, B, Al and Sm raw materials with a purity greater than 99wt% to weigh the ingredients according to their nominal composition;
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, C, Si and Sm raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 32 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, Fe, B and Sm raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 28 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, Ni, B and Sm raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 32 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Example 12 B 50 Co 20 Fe 10 Ni 10 Sm 10
  • Co, Fe, Ni, B and Sm raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B and Er raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 25 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B and Gd raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 35 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B and La raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 40 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Example 16 B 50 Co 40 Y 10
  • Co, B and Y raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 35 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, Sm and La raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition;
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 35 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, Sm, Er and La raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition;
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, La and Nb raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 28 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, Sm and Ta raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, Sm and Zr raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition;
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 32 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, Gd and W raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 35 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Co, B, Gd and Mo raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition;
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • Example 24 B 50 Co 20 Fe 10 Ni 10 Sm 7 Hf 3
  • Co, Fe, Ni, B, Sm and Hf raw materials with a purity greater than 99wt% are used for weighing and batching according to the nominal composition
  • Steps 2, 3, 4, and 5 are the same as implementation case 1.
  • the final prepared amorphous alloy strip with a thickness of 30 ⁇ m, the crystallization temperature T x , the Vickers hardness and the resistivity ⁇ are listed in Table 1.
  • the above three alloys are selected from Fe-based soft magnetic amorphous strip Fe 78 Si 9 B 13 with industrial number 1K101, Co-based amorphous alloy Co 70.3 Fe 4.7 Si 15 B 10 with high permeability and high supercooled liquid
  • the phase-stable Cu-Zr-based bulk amorphous alloy Cu 50 Zr 45 Al 5 has its crystallization temperature, hardness and resistivity values listed in Table 1. It can be seen that the crystallization temperature, hardness and resistivity values of these amorphous alloys are far lower than the B-based amorphous alloys with high B content of the present invention.
  • the above two amorphous alloys are selected from the paper published by D.V. Louzguine et al. [Materials Transactions, JIM 38 (1997) 1095].
  • the crystallization temperature, hardness and resistivity of the two alloys are listed in Table 1. It can be seen that, except for its resistivity higher than the B-based amorphous alloy of the present invention, the thermal stability and hardness value are much lower than the amorphous alloy of the present invention.
  • Table 1 The crystallization temperature (T x ), Vickers hardness (H v ) and room temperature resistivity ( ⁇ ) of the B-Co-RE amorphous alloy of the embodiment of the present invention and the comparative example

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Continuous Casting (AREA)

Abstract

一种硼基非晶合金及其制备方法,合金的成分式为合金的成分式为B aCo bRE cX1 dX2 eX3 f,其中RE为La、Ce、Pr、Nd、Sm、Gd、Dy、Er和Y中的至少一种,X1为C、Si、Al中的任意一种或多种,X2为Fe、Ni中的任意一种或两种,X3为Zr、Nb、Mo、Hf、Ta、W中的任意一种或多种;a、b、c、d、e和f表示原子百分比含量,满足:45≤a≤55,25≤b≤40,10≤c≤20,0≤d≤10,45≤a+d≤55,0≤e≤20,25≤b+e≤40,0≤f≤3,10≤c+f≤20,a+b+c+d+e+f=100;该硼基非晶合金的制备方法:采用电弧炉或感应熔炼炉制备母合金锭,之后采用单辊甩带法获得不同厚度的非晶条带。填补了硼基非晶合金的技术空白,提供的非晶合金含硼量为目前所有非晶合金中最大,并具有高热稳定性,高硬度和高电阻率的特性,可作为特定电子功能材料或耐磨、耐蚀涂层材料实现应用。

Description

一种硼基非晶合金及其制备方法 技术领域
本发明涉及新材料及其制备技术领域,具体而言,尤其涉及一种具有高热稳定性、高硬度、高电阻率的硼基非晶合金及其制备方法。
背景技术
非晶合金是指固态下原子排列具有短程有序而长程无序的金属合金。其独特的结构使得该类合金具有通常晶态金属材料无法比拟的力学和功能特性,例如高强度、高硬度、高弹性极限、高电阻率、优异的软磁性能和高耐蚀性能等。
过去几十年中,一系列具有优异性能的非晶合金相继被开发出发。它们主要可分为两大类:一是以Cu-,Mg-,La-,Ca-,Zr-,Ti-基等为代表的金属-金属型非晶合金,通常具有高的非晶形成能力及良好的过冷液体稳定性等特点;另一类是主要以Fe-,Co-,Ni-,Pd-,Pt-基为代表的金属-类金属型非晶合金,具有极高的强度、硬度,以及优异的软磁性能。非(类)金属元素B,C,Si,P常作为提高非晶形成能力元素添加于金属-类金属型非晶合金中。人们研究发现,提高非(类)金属元素含量还对非晶合金的力学性能和电子输运特性有着显著的影响,高非(类)金属含量的非晶合金有望作为结构材料和功能材料在汽车、能源、电子等领域得到广泛应用。
目前开发的非晶合金系基本都以金属元素为基,鲜有非(类)金属基非晶合金的报道。D.V.Louzguine等人[Materials Transactions,JIM 38(1997)1095]在高Si含量的Al基Al-Si-Fe非晶合金的基础上通过添加过渡族元素(TM)利用快淬法合成了一系列以Si为基的非(类)金属基非晶合金条带,并且合金的力学性能(如强度、硬度等)和电阻率都高于同类型的Al基非晶合金,且随着非(类)金属含量升高而逐渐增大。但目 前还未有以B为基的非晶合金的报道。Co-B二元合金可形成非晶的成分范围很宽,其中B含量最高可达40at.%[J.Therm.Anal.38(1992)1585]。在此基础上,通过多元合金化等合金成分设计手段,有望使B含量高于50%的合金也形成非晶结构,即获得B基非晶合金。此外,Co、B元素的杨氏模量远高于Al、Si,且Co-B原子对的负混合焓绝对值要大于Al-Si原子对,即Co-B原子间会形成强度更高的结合键,这将有利于提高合金的强度和硬度,获得更好的热稳定性。因此,发明一种以非(类)金属B为基的新型非晶合金,有望获得传统金属基非晶合金所不具备的功能特性,意义重大。
发明内容
针对目前非(类)金属B基非晶合金的技术空白,而提供一种硼基非晶合金及其制备方法。
本发明采用的技术手段如下:
本发明提供了一种硼基非晶合金,合金的成分式为合金的成分式为B aCo bRE cX1 dX2 eX3 f,其中RE为La、Ce、Pr、Nd、Sm、Gd、Dy、Er和Y中的至少一种,X1为C、Si、Al中的任意一种或多种,X2为Fe、Ni中的任意一种或两种,X3为Zr、Nb、Mo、Hf、Ta、W中的任意一种或多种;a、b、c、d、e和f表示原子百分比含量,满足:45≤a≤55,25≤b≤40,10≤c≤20,0≤d≤10,45≤a+d≤55,0≤e≤20,25≤b+e≤40,0≤f≤3,10≤c+f≤20,a+b+c+d+e+f=100。
本发明还提供了一种上述硼基非晶合金的制备方法,包含以下步骤:
步骤一:配料
选取纯度高于99%的B、C、Si、Al、Co、Fe、Ni、La、Ce、Pr、Nd、Sm、Gd、Dy、Er、Y、Zr、Nb、Mo、Hf、Ta、W原料按合金名义组分称重配料,配料过程中加入5wt.%的易挥发稀土元素;
步骤二:合金锭熔炼
将步骤一中称量好的混合料放置在非自耗电弧熔炼炉的水冷铜模内, 在氩气或氮气氛围下进行熔炼获得母合金锭,合金反复熔炼4遍,以保证成分均匀;或将混合料置于感应熔炼炉的坩埚内,在氩气或氮气氛围下进行熔炼,得到成分均匀的母合金锭;
步骤三:非晶条带制备
将母合金锭破碎后装入石英管中,采用单辊甩带工艺,即在氩气或氮气氛围下,先通过感应熔炼加热母合金锭至熔化状态,而后利用高压气体将母合金锭熔化后得到的合金液体喷到高速旋转的铜辊上,以20~40m/s的铜辊面线速度甩带,制得宽度为1.5mm、厚度为25~40μm的非晶合金条带。
较现有技术相比,本发明具有以下优点:
1、本发明提供的非晶合金具有高的热稳定性,其结晶化温度达700℃以上,同时具有高的硬度(~1582HV)和高的电阻率(~4.28μΩm),可作为耐磨耐蚀涂层材料或特定功能材料在工程或电子领域有应用前景。
2、本发明提供的非晶合金带材可通过单辊甩带法获得,可实现率连续生产,生产效率高,利于工业化。
3、本发明提供的非晶合金填补了制备非(类)金属B基非晶合金条带的技术空白。
综上,应用本发明提供了一种具有高热稳定性、高硬度、高电阻率的硼基B-Co-RE(RE指稀土)系非晶合金及其制备方法。因此,本发明填补了目前非(类)金属B基非晶合金的技术空白。
基于上述理由本发明可在新材料及其制备等领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是通过单辊甩带制备的厚度为35μm、宽度为1.5mm的 B 50Co 40Sm 10非晶合金带材的X射线衍射图谱。
图2是通过单辊甩带制备的厚度为35μm、宽度为1.5mm的B 50Co 40Sm 10非晶合金带材的高分辨透射电镜明场像及选区电子衍射谱。
图3是B 50Co 40Sm 10非晶合金带材的差示扫描量热(DSC)曲线。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下述非限制性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
下述实施例中所述试验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从商业途径获得。
本发明提供了本发明提供了一种硼基非晶合金,合金的成分式为B aCo bRE cX1 dX2 eX3 f,其中RE为La、Ce、Pr、Nd、Sm、Gd、Dy、Er和Y中的至少一种,X1为C、Si、Al中的任意一种或多种,X2为Fe、Ni中的任意一种或两种,X3为Zr、Nb、Mo、Hf、Ta、W中的任意一种或多种;a、b、c、d、e和f表示原子百分比含量,满足:45≤a≤55,25≤b≤40,10≤c≤20,0≤d≤10,45≤a+d≤55,0≤e≤20,25≤b+e≤40,0≤f≤3,10≤c+f≤20,a+b+c+d+e+f=100。
进一步地,本发明提供的硼基非晶合金,具有高热稳定性、高硬度、高电阻率,且具有较强非晶形成能力,可采用单辊甩带法制备得到临界厚 度不低于25微米的非晶合金带材。
进一步地,本发明提供的硼基非晶合金具有如下特性:
初始结晶化温度为707~820℃;
维氏硬度Hv为1362~1582;
电阻率为2.56~4.28μΩm。
本发明还提供了一种上述硼基非晶合金的制备方法,包含以下步骤:
步骤一:配料
选取纯度高于99%的B、C、Si、Al、Co、Fe、Ni、La、Ce、Pr、Nd、Sm、Gd、Dy、Er、Y、Zr、Nb、Mo、Hf、Ta、W原料按合金名义组分称重配料,考虑部分稀土元素在熔炼过程中会发生挥发烧损,配料过程中额外加入5wt.%的易挥发稀土元素;
步骤二:合金锭熔炼
将步骤一中称量好的混合料放置在非自耗电弧熔炼炉的水冷铜模内,在氩气或氮气氛围下进行熔炼获得母合金锭,合金反复熔炼4遍,以保证成分均匀;或将混合料置于感应熔炼炉的坩埚内,在氩气或氮气氛围下进行熔炼,得到成分均匀的母合金锭;
步骤三:非晶条带制备
将母合金锭破碎后装入石英管中,采用单辊甩带工艺,即在氩气或氮气氛围下,先通过感应熔炼加热母合金锭至熔化状态,而后利用高压气体将母合金锭熔化后得到的合金液体喷到高速旋转的铜辊上,以20~40m/s的铜辊面线速度甩带,制得宽度为1.5mm、厚度为25~40μm的非晶合金条带。
实施例1:B 50Co 40Sm 10
步骤一:配料
采用纯度大于99wt%的Co、B和Sm原料按名义成分进行称重配料;考虑到Sm的挥发烧损,配料过程额外添加5wt.%的Sm。
步骤二:母合金锭熔炼
将称量好的金属原料混合放入非自耗电弧熔炼炉的水冷铜坩埚中,在Ar气氛围下反复熔炼4次,获得成分均匀的母合金锭;
步骤三:非晶条带制备
将母合金锭破碎后放入喷嘴直径大约为0.5mm的石英管中,在Ar气氛围下先通过感应熔炼加热母合金至熔化状态,而后利用高压气体将合金液体喷到高速旋转的铜辊上,以30m/s的铜辊表面线速度甩带,制得宽度为1.5mm、厚度为35μm的非晶合金条带;
步骤四:合金的结构表征
采用X射线衍射(XRD)(Cu Kα)和透射电子显微镜(TEM)检测合金条带的结构。图1为该合金的XRD图谱,由图中可以看出制备的合金为完全非晶态结构;图2为该合金的高分辨透射电子图像(HRTEM)及选区电子衍射(SAED)图谱,无晶粒出现且衍射呈非晶特有晕环,进一步证明了该合金的完全非晶态结构。
步骤五:合金的性能检测
采用差示扫描量热仪(DSC)评价评价合金的热性能,图3为制备的合金的DSC曲线,通过曲线可标定其结晶化温度T x为756℃;通过显微硬度仪(加载力100g保持时间10s)测试合金的硬度为1518,采用四探针法测试合金的电阻率为3.76μΩm。详细数据列在表1中。
实施例2:B 50Co 35Sm 15
步骤一同实施例1
步骤二:将称量好的原料采用感应熔炼炉在Ar气氛围下制备得到成分均匀的母合金锭。
步骤三、四、五同实施例1,最终制备得到厚度为35μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例3:B 55Co 30Sm 15
步骤基本同实施案例1,仅改变惰性保护气体氛围为氮气。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度 及电阻率ρ值列在表1中。
实施例4:B 45Co 40Sm 15
步骤同实施案例1
最终制备得到厚度为35μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例5:B 55Co 25Sm 20
步骤同实施案例1
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例6:B 45C 5Co 40Sm 10
步骤一:采用纯度大于99wt%的Co、B、C和Sm原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例7:B 45Si 5Co 40Sm 10
步骤一:采用纯度大于99wt%的Co、B、Si和Sm原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为40μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例8:B 45Al 5Co 40Sm 10
步骤一:采用纯度大于99wt%的Co、B、Al和Sm原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度 及电阻率ρ值列在表1中。
实施例9:B 45C 5Si 5Co 35Sm 10
步骤一:配料
采用纯度大于99wt%的Co、B、C、Si和Sm原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为32μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例10:B 50Co 20Fe 20Sm 10
步骤一:配料
采用纯度大于99wt%的Co、Fe、B和Sm原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为28μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例11:B 50Co 30Ni 10Sm 10
步骤一:配料
采用纯度大于99wt%的Co、Ni、B和Sm原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为32μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例12:B 50Co 20Fe 10Ni 10Sm 10
步骤一:配料
采用纯度大于99wt%的Co、Fe、Ni、B和Sm原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例13:B 50Co 40Er 10
步骤一:配料
采用纯度大于99wt%的Co、B和Er原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为25μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例14:B 50Co 40Gd 10
步骤一:配料
采用纯度大于99wt%的Co、B和Gd原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为35μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例15:B 50Co 40La 10
步骤一:配料
采用纯度大于99wt%的Co、B和La原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为40μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例16:B 50Co 40Y 10
步骤一:配料
采用纯度大于99wt%的Co、B和Y原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为35μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例17:B 50Co 40Sm 5La 5
步骤一:配料
采用纯度大于99wt%的Co、B、Sm和La原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为35μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例18:B 55Co 30Sm 5Er 5La 5
步骤一:配料
采用纯度大于99wt%的Co、B、Sm、Er和La原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例19:B 50Co 40La 7Nb 3
步骤一:配料
采用纯度大于99wt%的Co、B、La和Nb原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为28μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例20:B 50Co 40Sm 8Ta 2
步骤一:配料
采用纯度大于99wt%的Co、B、Sm和Ta原料按名义成分进行称重 配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例21:B 50Co 40Sm 7Zr 3
步骤一:配料
采用纯度大于99wt%的Co、B、Sm和Zr原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为32μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例22:B 50Co 40Gd 9W 1
步骤一:配料
采用纯度大于99wt%的Co、B、Gd和W原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为35μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例23:B 50Co 40Gd 8Mo 2
步骤一:配料
采用纯度大于99wt%的Co、B、Gd和Mo原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
实施例24:B 50Co 20Fe 10Ni 10Sm 7Hf 3
步骤一:配料
采用纯度大于99wt%的Co、Fe、Ni、B、Sm和Hf原料按名义成分进行称重配料;
步骤二、三、四、五同实施案例1。
最终制备得到厚度为30μm非晶合金条带,结晶化温度T x,维氏硬度及电阻率ρ值列在表1中。
比较例1:Co 65Sm 10B 25
选取合金组成组元相同的低B含量的Co 65Sm 10B 25合金,采用实施例1中的制备和性能测试方法,获得厚度为30μm的非晶合金条带,其结晶化温度,硬度及电阻率值列在表1中,可以看出,高B含量的B基非晶合金具有更高的热稳定性、硬度及电阻率。
比较例2:Fe 78Si 9B 13
比较例3:Co 70.3Fe 4.7Si 15B 10
比较例4:Cu 50Zr 45Al 5
以上三个合金分别选自工业编号为1K101的Fe基软磁非晶带材Fe 78Si 9B 13、高磁导率的Co基非晶合金Co 70.3Fe 4.7Si 15B 10和高过冷液相稳定性的Cu-Zr基块体非晶合金Cu 50Zr 45Al 5,其结晶化温度,硬度及电阻率值列在表1中。可以看出,这些非晶合金的结晶化温度、硬度和电阻率值远低于本发明的高B含量的B基非晶合金。
比较例5:Si 50Al 26Fe 10Ni 7Cr 7
比较例6:Si 55Al 20Fe 10Cr 5Ni 5Zr 5
以上两个非晶合金选自D.V.Louzguine等人发表的论文[Materials Transactions,JIM 38(1997)1095]。两个合金的晶化温度,硬度及电阻率列在表1中。可以看出,除其电阻率高于本发明的B基非晶合金外,热稳定性及硬度值远低于本发明的非晶合金。
表1本发明所述实施例的B-Co-RE非晶合金和比较例的结晶化温度(T x)、维氏硬度(H v)和室温电阻率(ρ)
Figure PCTCN2020090938-appb-000001
Figure PCTCN2020090938-appb-000002
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (2)

  1. 一种硼基非晶合金,其特征在于:
    合金的成分式为B aCo bRE cX1 dX2 eX3 f,其中RE为La、Ce、Pr、Nd、Sm、Gd、Dy、Er和Y中的至少一种,X1为C、Si、Al中的至少一种,X2为Fe、Ni中的任意一种或两种,X3为Zr、Nb、Mo、Hf、Ta、W中的至少一种;
    a、b、c、d、e和f表示原子百分比含量,满足:45≤a≤55,25≤b≤40,10≤c≤20,0≤d≤10,45≤a+d≤55,0≤e≤20,25≤b+e≤40,0≤f≤3,10≤c+f≤20,a+b+c+d+e+f=100。
  2. 根据权利要求1所述的硼基非晶合金的制备方法,其特征在于包含以下步骤:
    步骤一:配料
    选取纯度高于99%的B、C、Si、Al、Co、Fe、Ni、La、Ce、Pr、Nd、Sm、Gd、Dy、Er、Y、Zr、Nb、Mo、Hf、Ta、W原料按合金名义组分称重配料,配料过程中加入5wt.%的易挥发稀土元素;
    步骤二:合金锭熔炼
    将步骤一中称量好的混合料放置在非自耗电弧熔炼炉的水冷铜模内,在氩气或氮气氛围下进行熔炼获得母合金锭,合金反复熔炼4遍,以保证成分均匀;或将混合料置于感应熔炼炉的坩埚内,在氩气或氮气氛围下进行熔炼,得到成分均匀的母合金锭;
    步骤三:非晶条带制备
    将母合金锭破碎后装入石英管中,采用单辊甩带工艺,即在氩气或氮气氛围下,先通过感应熔炼加热母合金锭至熔化状态,而后利用高压气体将母合金锭熔化后得到的合金液体喷到高速旋转的铜辊上,以20~40m/s的铜辊面线速度甩带,制得宽度为1.5mm、厚度为25~40μm的非晶合金条带。
PCT/CN2020/090938 2019-05-27 2020-05-19 一种硼基非晶合金及其制备方法 WO2020238690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/053,293 US11840751B2 (en) 2019-05-27 2020-05-19 Boron-based amorphous alloys and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910447946.5 2019-05-27
CN201910447946.5A CN110106454B (zh) 2019-05-27 2019-05-27 一种硼基非晶合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2020238690A1 true WO2020238690A1 (zh) 2020-12-03

Family

ID=67492460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090938 WO2020238690A1 (zh) 2019-05-27 2020-05-19 一种硼基非晶合金及其制备方法

Country Status (3)

Country Link
US (1) US11840751B2 (zh)
CN (1) CN110106454B (zh)
WO (1) WO2020238690A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110106454B (zh) 2019-05-27 2021-05-07 大连理工大学 一种硼基非晶合金及其制备方法
CN112442616A (zh) * 2019-09-03 2021-03-05 天津大学 一种高硬度铝基纳米晶合金及其制备方法
CN113140383B (zh) * 2021-04-23 2024-01-30 阜阳师范大学 一种铈基非晶软磁合金材料的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1566394A (zh) * 2003-06-25 2005-01-19 中国科学院金属研究所 一类具有等原子比成分特征的多组元非晶态合金
JP2014127700A (ja) * 2012-12-27 2014-07-07 Daihatsu Motor Co Ltd アモルファス金属および磁性材料
CN109402530A (zh) * 2018-12-28 2019-03-01 北京航空航天大学 一种硼基非晶合金材料及其制备方法
CN109499574A (zh) * 2018-12-10 2019-03-22 怀化学院 非晶态合金催化剂及其制备方法
CN110106454A (zh) * 2019-05-27 2019-08-09 大连理工大学 一种硼基非晶合金及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067732A (en) * 1975-06-26 1978-01-10 Allied Chemical Corporation Amorphous alloys which include iron group elements and boron
JP4821128B2 (ja) * 2005-02-10 2011-11-24 Tdk株式会社 R−Fe−B系希土類永久磁石
CN101847483A (zh) * 2010-05-19 2010-09-29 铜陵晶德创电子材料科技有限公司 一种利用稀土元素改性的铁硅硼非晶软磁合金
CN103081035A (zh) * 2010-09-06 2013-05-01 大发工业株式会社 磁性材料及其制造方法
CN104372266B (zh) * 2014-11-17 2016-07-06 北京航空航天大学 一种铂系块体非晶合金及其制备方法
CN104451463B (zh) * 2014-12-15 2016-05-18 郑州大学 一种具有高硬度的Re-B-M非晶合金及其制备方法
JP6693392B2 (ja) * 2015-11-18 2020-05-13 信越化学工業株式会社 R−(Fe,Co)−B系焼結磁石及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1566394A (zh) * 2003-06-25 2005-01-19 中国科学院金属研究所 一类具有等原子比成分特征的多组元非晶态合金
JP2014127700A (ja) * 2012-12-27 2014-07-07 Daihatsu Motor Co Ltd アモルファス金属および磁性材料
CN109499574A (zh) * 2018-12-10 2019-03-22 怀化学院 非晶态合金催化剂及其制备方法
CN109402530A (zh) * 2018-12-28 2019-03-01 北京航空航天大学 一种硼基非晶合金材料及其制备方法
CN110106454A (zh) * 2019-05-27 2019-08-09 大连理工大学 一种硼基非晶合金及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LAI, LEIQIANG: "Preparation and Properties of Co-Sm-B Amorphous Alloys", SCIENCE-ENGINEERING (A), CHINA MASTER’S THESES FULL-TEXT DATABASE, no. 02, 15 February 2020 (2020-02-15), ISSN: 1674-0246 *

Also Published As

Publication number Publication date
CN110106454B (zh) 2021-05-07
US20210254198A1 (en) 2021-08-19
CN110106454A (zh) 2019-08-09
US11840751B2 (en) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2020238690A1 (zh) 一种硼基非晶合金及其制备方法
CN108220742B (zh) 一种微合金化Ti-Zr-Hf-V-Nb-Ta难熔高熵合金及其制备方法
CN107739956B (zh) 一种Nb微合金化Ni-Co-Fe-Cr-Al高熵合金
CN114058981B (zh) 一种难熔高熵非晶合金材料及其制备方法和应用
EP0018096B1 (en) Boron containing transistion metal alloys comprising a dispersion of an ultrafine crystalline metallic phase and method for making said alloys, method of making an article from a metallic glass body
US7052561B2 (en) Bulk amorphous steels based on Fe alloys
EP3441497B1 (en) Lightweight steel sheet with enhanced elastic modulus, and manufacturing method thereof
JP2001303218A (ja) 高耐蝕性・高強度Fe−Cr基バルクアモルファス合金
Inoue Preparation and novel properties of nanocrystalline and nanoquasicrystalline alloys
CN1168928A (zh) 五元金属非晶态合金
WO2006054822A1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
WO2021012820A1 (zh) 非晶纳米晶软磁材料及其制备方法和用途、非晶带材、非晶纳米晶带材及非晶纳米晶磁片
CN105039850A (zh) 高强度低膨胀的热轧因瓦合金
Fang et al. Effect of Cr content on microstructure characteristics and mechanical properties of ZrNbTaHf0. 2Crx refractory high entropy alloy
Park et al. Formation of Mg–Cu–Ni–Ag–Zn–Y–Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere
US11214854B2 (en) Copper-based alloy for the production of bulk metallic glasses
JP2015504483A (ja) Zr基非晶質合金
US11242585B2 (en) Iron-based superalloy for high temperature 700 ° C. with coherent precipitation of cuboidal B2 nanoparticles
CN114807718A (zh) 一种优异热稳定性共格纳米相强化中熵合金及制备方法
Kato et al. Influence of nanoprecipitation on strength of Cu60Zr30Ti10 glass containing μm-ZrC particle reinforcements
CN101538693A (zh) 一种铁基非晶合金及其制备方法
JP7326777B2 (ja) 軟磁性合金および磁性部品
Xie et al. Formation, magnetic properties and bending deformation of Fe-based amorphous alloy without metalloids
JP2003239051A (ja) 高強度Zr基金属ガラス
CN109778082B (zh) 一种高低温退火韧性的铁基非晶合金及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814237

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814237

Country of ref document: EP

Kind code of ref document: A1