WO2020238183A1 - 多联机空调系统及其换热量计算方法 - Google Patents

多联机空调系统及其换热量计算方法 Download PDF

Info

Publication number
WO2020238183A1
WO2020238183A1 PCT/CN2019/127941 CN2019127941W WO2020238183A1 WO 2020238183 A1 WO2020238183 A1 WO 2020238183A1 CN 2019127941 W CN2019127941 W CN 2019127941W WO 2020238183 A1 WO2020238183 A1 WO 2020238183A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
conditioning system
indoor unit
air conditioning
compressor
Prior art date
Application number
PCT/CN2019/127941
Other languages
English (en)
French (fr)
Inventor
任滔
宋强
李银银
刘景升
王冰
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Priority to US16/970,441 priority Critical patent/US11892213B2/en
Publication of WO2020238183A1 publication Critical patent/WO2020238183A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • F24F3/065Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units with a plurality of evaporators or condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/10Pressure
    • F24F2140/12Heat-exchange fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/19Calculation of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator

Definitions

  • the invention belongs to the technical field of air conditioning, and specifically relates to a multi-connected air conditioning system and a heat exchange calculation method thereof.
  • the multi-line air conditioning system has become an indispensable heat exchange device.
  • most of the existing multi-line air-conditioning systems are composed of one outdoor unit and multiple indoor units.
  • multi-line air-conditioning systems often need to separately monitor each indoor unit.
  • the heat exchange of the machine is monitored.
  • most of these methods for calculating heat exchange are only applicable to air conditioners composed of an indoor unit and an outdoor unit, and cannot be used in a multi-connected air conditioning system. The heat exchange of each indoor unit is calculated separately.
  • the calculation method of partial heat exchange can also calculate the heat exchange of each indoor unit in a multi-connected air conditioning system; however, these calculation methods all rely on measuring the temperature change of the heat exchange water to realize the heat exchange.
  • the calculation of heat that is, these calculation methods are only applicable to water-cooled multi-connected air conditioning systems, and cannot calculate the heat exchange amount of each indoor unit in the air-cooled multi-connected air conditioning system.
  • the art needs a new multi-connected air conditioning system and its heat exchange calculation method to solve the above problems.
  • the present invention provides a A calculation method for heat exchange of a multi-line air-conditioning system.
  • the multi-line air-conditioning system includes a plurality of indoor units.
  • the calculation method for heat exchange includes: obtaining the total heat exchange of the multi-line air-conditioning system; The inlet air temperature of each indoor unit; obtain the two-phase saturation temperature of each indoor unit; obtain the air supply volume of each indoor unit; obtain the heat exchange area of each indoor unit; according to the total heat exchange of the multi-line air conditioning system Calculate the heat exchange amount of each indoor unit, calculate the heat exchange amount of each indoor unit, the inlet air temperature of each indoor unit, the two-phase saturation temperature of each indoor unit, the air supply volume of each indoor unit, and the heat exchange area of each indoor unit.
  • the steps of calculating the heat exchange amount of each indoor unit include: according to the inlet air temperature of each indoor unit, each indoor unit Calculate the weight coefficient of each indoor unit according to the two-phase saturation temperature of the two-phase saturation temperature, the air supply volume of each indoor unit and the heat exchange area of each indoor unit; Calculate the heat exchange amount of each indoor unit.
  • Tain is the indoor unit Inlet air temperature
  • T e is the two-phase saturation temperature of the indoor unit
  • Q a is the air supply volume of the indoor unit
  • A is the heat exchange area of the indoor unit
  • a 1 is the first correction coefficient
  • a 3 is the third correction coefficient
  • a 4 is the
  • the step of "obtaining the total heat exchange of the multi-connected air conditioning system” is specifically Including: obtaining the flow rate of the compressor of the multi-line air conditioning system; obtaining the specific enthalpy of the heat exchange medium at the outlet of the outdoor unit of the multi-line air conditioning system and the suction port of the compressor of the multi-line air conditioning system Specific enthalpy of the heat exchange medium; according to the flow rate of the compressor of the multi-line air conditioning system, the specific enthalpy of the heat exchange medium at the outlet of the outdoor unit of the multi-line air conditioning system, and the suction of the compressor of the multi-line air conditioning system The specific enthalpy of the heat exchange medium at the port is used to calculate the total heat exchange amount of the multi-unit air conditioning system.
  • the total heat exchange amount of the multi-line air-conditioning system is equal to the flow rate of the compressor of the multi-line air conditioning system multiplied by the multi-line air conditioner The difference between the specific enthalpy of the heat exchange medium at the outlet of the outdoor unit of the system and the specific enthalpy of the heat exchange medium at the suction port of the compressor of the multi-line air conditioning system.
  • the step of "obtaining the total heat exchange of the multi-connected air conditioning system” includes: acquiring the flow rate of the compressor of the multi-line air conditioning system; acquiring the specific enthalpy of the heat exchange medium at the exhaust port of the compressor of the multi-line air conditioning system and the inlet of the electronic expansion valve of the multi-line air conditioning system According to the specific enthalpy of the heat exchange medium at the multi-line air conditioning system, the specific enthalpy of the heat exchange medium at the exhaust port of the compressor of the multi-line air conditioning system, and the electronics of the multi-line air conditioning system The specific enthalpy of the heat exchange medium at the inlet of the expansion valve is used to calculate the total heat exchange amount of the multi-unit air conditioning system.
  • the total heat exchange amount of the multi-line air-conditioning system is equal to the flow rate of the compressor of the multi-line air conditioning system multiplied by the multi-line air conditioner The difference between the specific enthalpy of the heat exchange medium at the exhaust port of the compressor of the system and the specific enthalpy of the heat exchange medium at the inlet of the electronic expansion valve of the multi-line air conditioning system.
  • the present invention also provides a multi-line air-conditioning system.
  • the multi-line air-conditioning system includes a controller capable of executing the heat exchange calculation method described in any of the above-mentioned preferred technical solutions.
  • the multi-line air conditioning system of the present invention includes multiple indoor units
  • the heat exchange calculation method of the present invention includes: obtaining the total number of the multi-line air conditioning system Heat exchange; obtain the inlet air temperature of each indoor unit; obtain the two-phase saturation temperature of each indoor unit; obtain the air supply volume of each indoor unit; obtain the heat exchange area of each indoor unit; The total heat exchange of the air conditioning system, the inlet air temperature of each indoor unit, the two-phase saturation temperature of each indoor unit, the air supply volume of each indoor unit and the heat exchange area of each indoor unit, calculate each indoor unit Of heat exchange.
  • the heat exchange calculation method of the present invention can calculate each indoor unit according to the inlet air temperature of each indoor unit, the two-phase saturation temperature of each indoor unit, the air supply volume of each indoor unit and the heat exchange area of each indoor unit.
  • the weight of the heat exchange capacity of each indoor unit in the entire multi-line air-conditioning system; the total weight of the entire multi-line air-conditioning system can be obtained by adding the weights of all indoor units, and the weight of each indoor unit is the same as all indoor units
  • the ratio of the total weight can represent the proportion of the heat exchange of each indoor unit in the total heat exchange of the entire multi-line air conditioning system; the product of this proportion and the total heat exchange of the multi-line air conditioning system is the result Describe the heat exchange of the indoor unit.
  • the present invention can determine the exchange rate of each indoor unit through the inlet air temperature of each indoor unit, the two-phase saturation temperature of each indoor unit, the air supply volume of each indoor unit, and the heat exchange area of each indoor unit.
  • the proportion of heat in the total heat exchange and then calculate each indoor unit by the total heat exchange of the multi-line air conditioning system and the proportion of the heat exchange of each indoor unit in the total heat exchange
  • the heat exchange calculation method of the present invention can be used to calculate the heat exchange of each indoor unit in the air-cooled multi-connected air conditioning system, so that the user can separately calculate the heat exchange of each indoor unit Monitoring, in turn, enables users to manage their operation according to the heat exchange of each indoor unit.
  • the heat exchange calculation method of the present invention can be based on the flow rate of the compressor of the multi-line air conditioning system and the multi-line air conditioning system.
  • the specific enthalpy of the heat exchange medium at the outlet of the outdoor unit of the online air conditioning system and the specific enthalpy of the heat exchange medium at the suction port of the compressor of the multi-line air conditioning system are used to calculate the total heat exchange amount of the multi-line air conditioning system. It can be understood that a multi-line air conditioning system usually has only one outdoor unit, that is, it has only one compressor.
  • the present invention uses the flow rate of the compressor and the exchange at the outlet of the outdoor unit of the multi-line air conditioning system.
  • the specific enthalpy of the heat medium and the specific enthalpy of the heat exchange medium at the suction port of the compressor of the multi-connected air conditioning system are used to calculate the total heat exchange of the multi-connected air conditioning system, which not only can effectively simplify the multi-connected air conditioning system
  • the calculation process of the total heat exchange amount, and the total heat exchange amount obtained by the calculation method has high accuracy, and the accuracy of the calculation results of the heat exchange amount of each indoor unit is also effectively improved.
  • the heat exchange calculation method of the present invention can be based on the flow rate of the compressor of the multi-line air-conditioning system, the The specific enthalpy of the heat exchange medium at the exhaust port of the compressor of the multi-line air conditioning system and the specific enthalpy of the heat exchange medium at the inlet of the electronic expansion valve of the multi-line air conditioning system are used to calculate the total heat exchange of the multi-line air conditioning system the amount. It is understandable that a multi-line air conditioning system usually has only one outdoor unit, that is, it has only one compressor. Therefore, the present invention uses the flow rate of the compressor and the exhaust port of the compressor of the multi-line air conditioning system.
  • the specific enthalpy of the heat exchange medium and the specific enthalpy of the heat exchange medium at the entrance of the electronic expansion valve of the multi-line air conditioning system are used to calculate the total heat exchange amount of the multi-line air conditioning system, which not only can effectively simplify the multi-line air conditioning system
  • the calculation process of the total heat exchange amount, and the total heat exchange amount obtained by the calculation method has high accuracy, which in turn enables the accuracy of the calculation results of the heat exchange amount of each indoor unit to be effectively improved.
  • Figure 1 is a flow chart of the main steps of the heat exchange calculation method of the present invention.
  • Fig. 2 is a flowchart of specific steps of a preferred embodiment of the present invention.
  • connection and “connected” should be interpreted broadly, for example, it can be a fixed connection, a detachable connection, or an integral Ground connection; it can be directly connected or indirectly connected through an intermediate medium, and it can be the internal communication between two components.
  • the specific meaning of the above-mentioned terms in the present invention can be understood according to specific circumstances.
  • the terms “first”, “second”, “third” and “fourth” are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance.
  • the multi-line air-conditioning system includes one outdoor unit and multiple indoor units; of course, the multi-line air-conditioning system may also include multiple outdoor units.
  • the personnel can set the specific number of indoor units and outdoor units according to actual needs.
  • each indoor unit is provided with an inlet air temperature sensor, and the inlet air temperature sensor can measure the inlet air temperature of the indoor unit; of course, the present invention does not control the inlet air temperature sensor.
  • the specific structure and installation location of the, the technical personnel can set according to actual needs, as long as the multi-line air conditioning system can detect the inlet air temperature of each indoor unit through the inlet air temperature sensor.
  • the multi-line air conditioning system further includes a first pressure sensor, a second pressure sensor, and a third pressure sensor, as well as a first temperature sensor, a second temperature sensor, a third temperature sensor, and a fourth temperature sensor; wherein, the first pressure The sensor is used to measure the suction pressure of the compressor, the first temperature sensor is used to measure the suction temperature of the compressor; the second pressure sensor is used to measure the discharge pressure of the compressor, and the second temperature sensor is used For measuring the exhaust temperature of the compressor; the third pressure sensor is used to measure the pressure at the outlet of the outdoor unit, the third temperature sensor is used to measure the temperature at the outlet of the outdoor unit; the fourth temperature sensor is used For measuring the temperature at the entrance of the electronic expansion valve.
  • the present invention does not impose any restrictions on the specific structure of the multi-line air-conditioning system.
  • the multi-line air-conditioning system can rely on its own sensors to obtain various basic data, or it can use external sensors to obtain various basic data. Data, as long as the multi-line air-conditioning system can obtain the basic data needed in the heat exchange calculation method.
  • the amount of heat exchange described in the present invention is the amount of heat exchange per unit time, that is, when the air conditioning system is in a cooling mode, the heat exchange refers to the cooling of the air conditioning system. When the air conditioning system is in heating mode, the heat exchange rate refers to the heating capacity of the air conditioning system.
  • the multi-line air conditioning system further includes a controller that can obtain data detected by each sensor, and the controller can also control the operation of each element, thereby controlling the multi-line air conditioning system
  • the operating status of the Those skilled in the art can understand that the present invention does not impose any restrictions on the specific structure and model of the controller, and the controller can be the original controller of the multi-line air conditioning system, or it can be used to implement this
  • the invented heat exchange calculation method has a separate controller, and technicians can set the structure and model of the controller according to actual usage requirements.
  • Figure 1 is a flow chart of the main steps of the heat exchange calculation method of the present invention.
  • the heat exchange calculation method of the present invention mainly includes the following steps:
  • S6 Calculate the heat exchange of each indoor unit based on the total heat exchange of the multi-line air conditioning system, the inlet air temperature of each indoor unit, the two-phase saturation temperature, the air supply volume and the heat exchange area.
  • step S1 the controller can obtain the total heat exchange amount of the multi-line air conditioning system; it should be noted that the present invention does not make any calculation methods for the total heat exchange amount of the multi-line air conditioning system.
  • the technician can calculate the total heat exchange amount of the multi-connected air conditioning system according to any calculation method in the prior art, that is, the technician can choose the calculation method of the total heat exchange amount according to the actual situation.
  • step S2 the controller can separately obtain the inlet air temperature of each indoor unit through the inlet air temperature sensor; of course, this method of obtaining the inlet air temperature is not restrictive, and technicians can also Obtain the inlet air temperature of each indoor unit by other means.
  • the controller can obtain the two-phase saturation temperature of each indoor unit; it should be noted that the two-phase saturation temperature refers to the gas-liquid two-phase refrigerant reaching the vaporization speed under a certain pressure The temperature equal to the condensing speed.
  • the two-phase saturation temperature can be calculated from the suction pressure of the compressor.
  • the two-phase saturation temperature can be calculated from the discharge pressure of the compressor.
  • technicians can also calculate or obtain the two-phase saturation temperature in other ways, as long as the controller can obtain It is sufficient to reach the two-phase saturation temperature.
  • step S4 the controller can obtain the air supply volume of each indoor unit. It can be understood that the air supply volume of the indoor unit can be calculated from the rotation speed of the fan of the indoor unit. Of course The air supply volume of the indoor unit can also be obtained by querying the corresponding table of working conditions and air supply volume provided by the manufacturer, that is, the present invention does not impose any restriction on the manner in which the controller obtains the air supply volume of each indoor unit. Technicians can set it according to actual needs.
  • step S5 the controller can obtain the heat exchange area of each indoor unit. It should be noted that the heat exchange area of the indoor unit can directly use the data provided by the manufacturer. Of course, the technician can also use Other methods are used to measure or calculate the heat exchange area of the heat exchanger of each indoor unit. The change of the specific data acquisition method does not deviate from the basic principle of the present invention and belongs to the protection scope of the present invention.
  • the controller can calculate the total heat exchange amount of the multi-line air conditioning system, the inlet air temperature of each indoor unit, the two-phase saturation temperature, the air supply volume, and the heat exchange area The heat exchange of each indoor unit. It should be noted that the present invention does not impose any restrictions on the specific calculation formula for calculating the heat exchange of each indoor unit, as long as the calculation formula uses the total heat exchange of the multi-connected air conditioning system when calculating the heat exchange of the indoor unit.
  • the calculation of heat, the inlet air temperature of each indoor unit, the two-phase saturation temperature of each indoor unit, the air supply volume of each indoor unit, and the heat exchange area of each indoor unit as the basic parameters belong to the present invention.
  • the protection range that is, the technician can set the calculation formula by himself according to the actual situation of the multi-connected air conditioning system.
  • FIG. 2 is a flowchart of specific steps in a preferred embodiment of the present invention. As shown in Fig. 2, based on the multi-connected air conditioning system described in the foregoing embodiment, the preferred embodiment of the present invention specifically includes the following steps:
  • S107 Calculate the weight coefficient of each indoor unit according to the inlet air temperature, two-phase saturation temperature, air supply volume and heat exchange area of each indoor unit;
  • S108 Calculate the heat exchange of each indoor unit according to the total heat exchange of the multi-connected air conditioning system and the weight coefficient of each indoor unit.
  • the controller can obtain the frequency fr , the suction volume V, the suction density ⁇ c, and the volume efficiency ⁇ of the compressor; where the frequency fr and the suction volume V can be obtained from Acquired from the factory information of the compressor, the controller can acquire the suction pressure of the compressor through the first pressure sensor, and acquire the suction temperature of the compressor through the first temperature sensor, The controller can calculate the suction density ⁇ c of the compressor through the suction pressure and suction temperature of the compressor, and the volumetric efficiency ⁇ of the compressor can be fitted automatically according to experimental data.
  • the volumetric efficiency ⁇ of the compressor is usually different. Therefore, the technician needs to set the calculation method of the volumetric efficiency ⁇ according to the specific situation of the compressor.
  • step S102 the controller is capable accordance with the frequency f r of the compressor, the suction volume V, and the intake density ⁇ c of the volumetric efficiency ⁇ calculated compressor flow rate m c, wherein Flow rate of the compressor:
  • the flow rate m c is in units of kg / s; frequency f r in units of Hz; V is the volume of the suction unit m 3; density ⁇ c of the suction unit is kg / m 3.
  • this calculation method is only exemplary, and the technician can also set other calculation formulas according to the actual situation; for example, the technician can also add some correction coefficients to the above calculation formula.
  • the change of this specific calculation method does not deviate from the basic principle of the present invention and belongs to the protection scope of the present invention.
  • step S103 when the multi-line air conditioning system is in a cooling mode, the controller can obtain the specific enthalpy hcout of the heat exchange medium at the outlet of the outdoor unit of the multi-line air conditioning system and the The specific enthalpy hsuc of the heat exchange medium at the suction port of the compressor of the multi-line air conditioning system; it should be noted that the outlet of the outdoor unit can be on the main pipe used when the outdoor unit is connected to multiple indoor units Any point, that is, as long as the heat exchange medium flowing out of the outdoor unit has not been split.
  • step S105 the controller can determine the specific enthalpy hcout of the heat exchange medium at the outlet of the outdoor unit of the multi-unit air conditioning system and the compression of the multi-unit air conditioning system according to the flow rate m c of the compressor.
  • the specific enthalpy hsuc of the heat exchange medium at the suction port of the machine is used to calculate the refrigeration capacity when the multi-connected air-conditioning system is in the cooling mode:
  • the unit of refrigeration capacity Q c is W
  • the unit of heat exchange medium specific enthalpy hcout at the outlet of the outdoor unit is kj/kg
  • the unit of heat exchange medium specific enthalpy hsuc at the suction port of the compressor is kj/kg .
  • this method of calculating the refrigeration capacity is only exemplary, and the technician can also set other calculation formulas according to the actual situation; for example, the technician can also add some correction coefficients to the above calculation formula.
  • the change of this specific calculation method does not deviate from the basic principle of the present invention and belongs to the protection scope of the present invention.
  • step S104 when the multi-line air-conditioning system is in heating mode, the controller can obtain the specific enthalpy hdis of the heat exchange medium at the exhaust port of the compressor of the multi-line air-conditioning system And the specific enthalpy hval of the heat exchange medium at the entrance of the electronic expansion valve of the multi-line air conditioning system; it should be noted that the entrance of the electronic expansion valve in this preferred embodiment may be the entrance of the electronic expansion valve Any point nearby, as long as the specific enthalpy of the heat exchange medium at that point is close to the specific enthalpy of the heat exchange medium at the entrance of the electronic expansion valve.
  • step S105 the controller can determine the specific enthalpy hdis of the heat exchange medium at the exhaust port of the compressor of the multi-line air-conditioning system according to the flow rate m c of the compressor, and The specific enthalpy hval of the heat exchange medium at the entrance of the electronic expansion valve is calculated to calculate the heating capacity of the multi-connected air conditioning system when it is in heating mode:
  • the unit of heating capacity Q h is W
  • the unit of heat exchange medium specific enthalpy hdis at the compressor exhaust port is kj/kg
  • the unit of heat exchange medium specific enthalpy hval at the entrance of the electronic expansion valve is kj/ kg.
  • this method of calculating the heating capacity is only exemplary, and the technician can also set other calculation formulas according to the actual situation; for example, the technician can also add some correction coefficients to the above calculation formula.
  • the change of this specific calculation method does not deviate from the basic principle of the present invention and belongs to the protection scope of the present invention.
  • Ts is the saturated gas temperature corresponding to the pressure P:
  • the unit of h is kj/kg; the unit of Ps is kPa; the unit of T is °C.
  • this method of calculating the specific enthalpy of the heat exchange medium is only exemplary, and the technicians can also fit other calculation formulas by themselves according to the actual experimental data; this change of the calculation formula about the specific enthalpy of the heat exchange medium It does not deviate from the basic principle of the present invention, and belongs to the protection scope of the present invention.
  • step S106 the controller can obtain the inlet air temperature Tain of each indoor unit, the two-phase saturation temperature Te of each indoor unit, the air supply volume Q a of each indoor unit, and each indoor unit For the heat exchange area A of the indoor unit, the method of obtaining these parameters is the same as that of the previous embodiment, and will not be repeated here.
  • the controller can be based on the inlet air temperature Tain of each indoor unit, the two-phase saturation temperature Te of each indoor unit, the air supply volume Q a of each indoor unit, and each indoor unit For the heat exchange area A of the indoor unit, calculate the weight coefficient of each indoor unit separately.
  • the calculation formula of the weight wcal, i of each indoor unit is as follows:
  • the unit of the inlet air temperature Tain is °C; the unit of the two-phase saturation temperature T e is °C; the unit of the air supply Q a is m 3 /s; the unit of the heat exchange area A is m 2 .
  • a 1 is the first correction coefficient
  • a 2 is the second correction coefficient
  • a 3 is the third correction coefficient
  • a 4 is the fourth correction coefficient
  • a 5 is the fifth correction coefficient
  • a 6 is the sixth correction coefficient.
  • a 7 is the seventh correction coefficient
  • a 8 is the eighth correction coefficient
  • a 9 is the ninth correction coefficient
  • a 1 0.0897
  • a 4 -0.0013
  • a 5 -0.0018
  • a 6 0.0029
  • this set of specific data is only exemplary. Since the specific structure of each air-conditioning system is different, each correction factor may be different for different air-conditioning systems, in other words The technicians need to set the specific value of each correction coefficient according to the actual situation of different air-conditioning systems. The technician can obtain these correction coefficients through experimental data fitting, or determine these correction coefficients through computer modeling. After determining these correction coefficients, the controller can separately calculate the weight of each indoor unit in the multi-connected air conditioning system according to the above formula.
  • is the heat transfer coefficient
  • A is the heat transfer area
  • ⁇ T is the heat transfer temperature difference
  • Q a is the air supply volume
  • a and b are empirical coefficients
  • T aout is an unknown term and obeys the equation:
  • is the air density
  • hair, out are the specific enthalpy of the outlet air
  • hair, in are the specific enthalpy of the inlet air
  • T aout is an implicit entry
  • the value of T aout may be derived from the calculated T ain, T e and the Q a linear equation, the above kinds, and omit some negligible terms, the weight wcal, i can be approximated infinitely by a linear equation, namely:
  • the weight coefficient of each indoor unit is:
  • n is the total number of indoor units.
  • step S108 when the multi-line air conditioning system is in a cooling mode, the cooling capacity of each indoor unit:
  • the unit of Q ci is W.
  • step S108 when the multi-line air-conditioning system is in heating mode, the heating capacity of each indoor unit:
  • the unit of Q hi is W.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种多联机空调系统及其换热量计算方法。旨在解决现有计算方法无法对风冷式多联机空调系统的每个室内机的换热量分别进行计算的问题。该多联机空调系统包括多个室内机,其换热量计算方法包括:获取多联机空调系统的总换热量;获取每个室内机的进风温度;获取每个室内机的两相饱和温度;获取每个室内机的送风量;获取每个室内机的换热面积;根据多联机空调系统的总换热量、每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的换热量,以使用户能够监测每个室内机的换热量,以便针对性地对各个室内机进行管理。

Description

多联机空调系统及其换热量计算方法 技术领域
本发明属于空调技术领域,具体涉及一种多联机空调系统及其换热量计算方法。
背景技术
随着人们生活水平的不断提高,人们对生活环境也提出了越来越高的要求。为了使中大型场所维持舒适的环境温度,多联机空调系统已经成为一种必不可少的换热设备。具体地,现有大部分多联机空调系统都是由一个室外机和多个室内机组成的,为了方便用户对多个室内机的运行情况进行管理,多联机空调系统往往需要分别对每个室内机的换热量进行监测。现有技术中已经有很多计算换热量的方法,但是,这些计算换热量的方法大部分都仅适用于由一个室内机和一个室外机组成的空调器,而无法对多联机空调系统中每个室内机的换热量进行分别计算。近年来,部分换热量的计算方法也能够对多联机空调系统中每个室内机的换热量进行分别计算;但是,这些计算方法都是依赖于测量换热用水的温度改变量来实现换热量的计算,即这些计算方法仅适用于水冷式多联机空调系统,而无法对风冷式多联机空调系统中的每个室内机的换热量进行计算。
相应地,本领域需要一种新的多联机空调系统及其换热量计算方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有换热量的计算方法无法对风冷式多联机空调系统的每个室内机的换热量进行分别计算的问题,本发明提供了一种用于多联机空调系统的换热量计算方法,所述多联机空调系统包括多个室内机,所述换热量计算方法包括:获取所述多联机空调系统的总换热量;获取每个室内机的进风温度;获取每个室内机的两相饱和温度;获取每个室内机的送风量;获取每个室内机 的换热面积;根据所述多联机空调系统的总换热量、每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的换热量。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,“根据所述多联机空调系统的总换热量、每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的换热量”的步骤具体包括:根据每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的权重系数;根据所述多联机空调系统的总换热量以及每个室内机的权重系数,计算每个室内机的换热量。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,“根据每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的权重系数”的步骤具体包括:采用下述公式计算每个室内机的权重:wcal,i=a 1T ain+a 2T e+a 3T ainQ a+a 4T eQ a+a 5AT ainQ a+a 6AT eQ a+a 7A+a 8T eA+a 9;其中,T ain为所述室内机的进风温度,T e为所述室内机的两相饱和温度,Q a为所述室内机的送风量,A为所述室内机的换热面积,a 1为第一修正系数,a 2为第二修正系数,a 3为第三修正系数,a 4为第四修正系数,a 5为第五修正系数,a 6为第六修正系数,a 7为第七修正系数,a 8为第八修正系数,a 9为第九修正系数;用每个室内机的权重除以所有室内机的权重的总和得到每个室内机的权重系数。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,当所述多联机空调系统处于制冷工况时,“获取所述多联机空调系统的总换热量”的步骤具体包括:获取所述多联机空调系统的压缩机的流量;获取所述多联机空调系统的室外机的出口处的换热介质比焓以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓;根据所述多联机空调系统的压缩机的流量、所述多联机空调系统的室外机的出口处的换热介质比焓以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓,计算所述多联机空调系统的总换热量。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,所述多联机空调系统的总换热量等于所述多联机空调系统的压缩机的流量乘以所述多联机空调系统的室外机的出口处的换热介质比焓与所述多联机空调系统的压缩机的吸气口处的换热介质比焓的差值。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,所述多联机空调系统的压缩机的流量m c=f rcη;其中,f r为所述压缩机的频率,V为所述压缩机的吸气容积;ρ c为所述压缩机的吸气密度,η为所述压缩机的容积效率。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,当所述多联机空调系统处于制热工况时,“获取所述多联机空调系统的总换热量”的步骤具体包括:获取所述多联机空调系统的压缩机的流量;获取所述多联机空调系统的压缩机的排气口处的换热介质比焓以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓;根据所述多联机空调系统的压缩机的流量、所述多联机空调系统的压缩机的排气口处的换热介质比焓以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓,计算所述多联机空调系统的总换热量。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,所述多联机空调系统的总换热量等于所述多联机空调系统的压缩机的流量乘以所述多联机空调系统的压缩机的排气口处的换热介质比焓与所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓的差值。
在上述用于多联机空调系统的换热量计算方法的优选技术方案中,所述多联机空调系统的压缩机的流量m c=f rcη;其中,f r为所述压缩机的频率,V为所述压缩机的吸气容积;ρ c为所述压缩机的吸气密度,η为所述压缩机的容积效率。
本发明还提供了一种多联机空调系统,所述多联机空调系统包括控制器,所述控制器能够执行上述任一项优选技术方案中所述的换热量计算方法。
本领域技术人员能够理解的是,在本发明的优选技术方案中,本发明的多联机空调系统包括多个室内机,本发明的换热量计算方法包括:获取所述多联机空调系统的总换热量;获取每个室内机的进风温度;获取每个室内机的两相饱和温度;获取每个室内机的送风量;获取每个 室内机的换热面积;根据所述多联机空调系统的总换热量、每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的换热量。本发明的换热量计算方法能够根据每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算出每个室内机的换热能力在整个多联机空调系统中所占的权重;将所有室内机的权重相加即可得到整个多联机空调系统的总权重,而每个室内机的权重与所有室内机的总权重的比值能够代表每个室内机的换热量在整个多联机空调系统的总换热量中的占比;这个占比与所述多联机空调系统的总换热量的乘积就是所述室内机的换热量。换言之,本发明能够通过每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积来确定每个室内机的换热量在总换热量中的占比,然后通过所述多联机空调系统的总换热量以及各个所述室内机的换热量在总换热量中的占比来计算每个室内机的换热量,即,本发明的换热量计算方法能够用于计算风冷式多联机空调系统中的各个室内机的换热量,以便用户能够分别对每个室内机的换热量进行监测,进而使得用户能够根据各个室内机的换热量来对其运行情况进行管理。此外,可以理解的是,关于多联机空调系统的总换热量的计算方式有很多,并且本发明中所采用的其他基础参数均是实际检测过程中十分容易获得的,以便有效克服空调系统中的气体流量难以借助仪器实现测量而导致每个室内机的换热量无法分别计算的问题,从而有效保证基础数据的准确性,并且本发明的换热量计算方法通过这些基础参数来推算每个室内机的换热量在总换热量中的占比,进而有效提高各个室内机的换热量的计算结果的准确性。
进一步地,在本发明的优选技术方案中,当所述多联机空调系统处于制冷工况时,本发明的换热量计算方法能够根据所述多联机空调系统的压缩机的流量、所述多联机空调系统的室外机的出口处的换热介质比焓以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓来计算所述多联机空调系统的总换热量。可以理解的是,多联机空调系统通常仅具有一个室外机,即其仅具有一个压缩机,因此,本发明通过所述压缩机的流量、所述多联机空调系统的室外机的出口处的换热介质 比焓以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓来计算所述多联机空调系统的总换热量,不仅能够有效简化所述多联机空调系统的总换热量的计算过程,而且这种通过计算方式得到的总换热量具有较高的准确性,进而使得各个室内机的换热量的计算结果的准确性也得到有效提高。
进一步地,在本发明的优选技术方案中,当所述多联机空调系统处于制热工况时,本发明的换热量计算方法能够根据所述多联机空调系统的压缩机的流量、所述多联机空调系统的压缩机的排气口处的换热介质比焓以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓来计算所述多联机空调系统的总换热量。可以理解的是,多联机空调系统通常仅具有一个室外机,即其仅具有一个压缩机,因此,本发明通过所述压缩机的流量、所述多联机空调系统的压缩机的排气口处的换热介质比焓以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓来计算所述多联机空调系统的总换热量,不仅能够有效简化所述多联机空调系统的总换热量的计算过程,而且这种通过计算方式得到的总换热量具有较高的准确性,进而使得各个室内机的换热量的计算结果的准确性也得到有效提高。
附图说明
图1是本发明的换热量计算方法的主要步骤流程图;
图2是本发明的优选实施例的具体步骤流程图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。例如,尽管本申请中按照特定顺序描述了本发明的方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。
需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“相连”和“连接”应做广义理解,例如,可以是固定 连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。此外,术语“第一”、“第二”、“第三”和“第四”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
首先,需要说明的是,作为本发明的一种优选实施例,所述多联机空调系统包括一个室外机和多个室内机;当然,所述多联机空调系统也可以包括多个室外机,技术人员可以根据实际使用需求自行设定室内机和室外机的具体数量。具体地,在本优选实施例中,每个室内机上均设置有进风温度传感器,所述进风温度传感器能够测量所述室内机的进风温度;当然,本发明不对所述进风温度传感器的具体结构和设置位置作任何限制,技术人员可以根据实际使用需求自行设定,只要所述多联机空调系统能够通过所述进风温度传感器检测每个室内机的进风温度即可。所述多联机空调系统还包括第一压力传感器、第二压力传感器和第三压力传感器以及第一温度传感器、第二温度传感器、第三温度传感器和第四温度传感器;其中,所述第一压力传感器用于测量压缩机的吸气压力,所述第一温度传感器用于测量压缩机的吸气温度;所述第二压力传感器用于测量压缩机的排气压力,所述第二温度传感器用于测量压缩机的排气温度;所述第三压力传感器用于测量室外机的出口处的压力,所述第三温度传感器用于测量室外机的出口处的温度;所述第四温度传感器用于测量电子膨胀阀的入口处的温度。需要说明的是,本发明不对所述多联机空调系统的具体结构作任何限制,所述多联机空调系统可以依靠自身的传感器来获取各种基础数据,也可以借助外部的传感器来获取各种基础数据,只要所述多联机空调系统能够获取到所述换热量计算方法中所需要使用的基础数据即可。此外,还需要说明的是,本发明中所述的换热量为单位时间的换热量,即当所述空调系统处于制冷工况时,所述换热量是指所述空调系统的制冷量;当所述空调系统处于制热工况时,所述换热量是指所述空调系统的制热量。
更进一步地,所述多联机空调系统还包括控制器,所述控制器能够获取各个传感器检测到的数据,并且所述控制器还能够控制各个元件的运行情况,从而控制所述多联机空调系统的运行状态。本领域技 术人员能够理解的是,本发明不对所述控制器的具体结构和型号作任何限制,并且所述控制器可以是所述多联机空调系统原有的控制器,也可以是为执行本发明的换热量计算方法单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的结构和型号。
首先参阅图1,该图是本发明的换热量计算方法的主要步骤流程图。如图1所示,基于上述实施例中所述的多联机空调系统,本发明的换热量计算方法主要包括下列步骤:
S1:获取多联机空调系统的总换热量;
S2:获取每个室内机的进风温度;
S3:获取每个室内机的两相饱和温度;
S4:获取每个室内机的送风量;
S5:获取每个室内机的换热面积;
S6:根据多联机空调系统的总换热量、每个室内机的进风温度、两相饱和温度、送风量和换热面积,计算每个室内机的换热量。
进一步地,在步骤S1中,所述控制器能够获取所述多联机空调系统的总换热量;需要说明的是,本发明不对所述多联机空调系统的总换热量的计算方式作任何限制,技术人员可以根据现有技术中的任一种计算方式计算出所述多联机空调系统的总换热量,即技术人员可以根据实际情况自行选定总换热量的计算方式。接着,在步骤S2中,所述控制器能够通过所述进风温度传感器分别获取每个室内机的进风温度;当然,这种获取进风温度的方式并不是限制性的,技术人员也可以通过其他方式获取每个室内机的进风温度。此外,在步骤S3中,所述控制器能够获取每个室内机的两相饱和温度;需要说明的是,所述两相饱和温度指的是气液两相冷媒在一定压力下达到气化速度和冷凝速度相等的温度,在所述多联机空调系统处于制冷工况时,所述两相饱和温度可以由所述压缩机的吸气压力计算得出,在所述多联机空调系统处于制热工况时,所述两相饱和温度可以由所述压缩机的排气压力计算得出,当然,技术人员也可以通过其他方式计算或得到所述两相饱和温度,只要所述控制器能够获取到所述两相饱和温度即可。
进一步地,在步骤S4中,所述控制器能够获取每个室内机的送风量,可以理解的是,所述室内机的送风量可以由该室内机的风机 的转速计算得出,当然,所述室内机的送风量也可以由厂家提供的工况与送风量的对应表格查询得出,即本发明不对所述控制器获取各个室内机的送风量的方式作任何限制,技术人员可以根据实际使用需求自行设定。接着,在步骤S5中,所述控制器能够获取每个室内机的换热面积,需要说明的是,所述室内机的换热面积可以直接使用厂家提供的数据,当然,技术人员也可以通过其他方式自行对每个室内机的换热器的换热面积进行测量或计算,这种具体数据获取方式的改变并不偏离本发明的基本原理,属于本发明的保护范围。
更进一步地,在步骤S6中,所述控制器能够根据所述多联机空调系统的总换热量、每个室内机的进风温度、两相饱和温度、送风量以及换热面积,计算每个室内机的换热量。需要说明的是,本发明不对计算每个室内机的换热量的具体计算式作任何限制,只要该计算式在计算所述室内机的换热量时采用所述多联机空调系统的总换热量、每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积作为基础参数来进行计算就属于本发明的保护范围,即技术人员可以根据所述多联机空调系统的实际情况自行设定该计算式。
下面参阅图2,该图是本发明的优选实施例的具体步骤流程图。如图2所示,基于上述实施例中所述的多联机空调系统,本发明的优选实施例具体包括下列步骤:
S101:获取压缩机的频率、吸气容积、吸气密度和容积效率;
S102:计算压缩机的流量;
S103:当多联机空调系统处于制冷工况时,获取室外机的出口处的换热介质比焓以及压缩机的吸气口处的换热介质比焓;
S104:当多联机空调系统处于制热工况时,获取压缩机的排气口处的换热介质比焓以及电子膨胀阀的入口处的换热介质比焓;
S105:计算多联机空调系统的总换热量;
S106:获取每个室内机的进风温度、两相饱和温度、送风量和换热面积;
S107:根据每个室内机的进风温度、两相饱和温度、送风量和换热面积,计算每个室内机的权重系数;
S108:根据多联机空调系统的总换热量以及每个室内机的权重系数,计算每个室内机的换热量。
进一步地,在步骤S101中,所述控制器能够获取所述压缩机的频率f r、吸气容积V、吸气密度ρ c和容积效率η;其中,频率f r和吸气容积V可以从所述压缩机的出厂信息中获取,所述控制器能够通过所述第一压力传感器获取所述压缩机的吸气压力,且通过所述第一温度传感器获取所述压缩机的吸气温度,所述控制器通过所述压缩机的吸气压力和吸气温度就可以计算出所述压缩机的吸气密度ρ c,所述压缩机的容积效率η能够根据实验数据自行拟合,由于不同压缩机的容积效率η通常是不同的,因此,技术人员需要根据所述压缩机的具体情况自行设定容积效率η的计算方式。此外,本领域技术人员能够理解的是,本实施例中所述的获取方式仅作为一种优选实施方式,而并非限制性的描述,技术人员也可以通过其他方式来获取所述压缩机的频率f r、吸气容积V、吸气密度ρ c和容积效率η。
进一步地,在步骤S102中,所述控制器能够根据所述压缩机的频率f r、吸气容积V、吸气密度ρ c和容积效率η计算出所述压缩机的流量m c,其中,所述压缩机的流量:
m c=f rcη。
其中,流量m c的单位为kg/s;频率f r的单位为Hz;吸气容积V的单位为m 3;吸气密度ρ c的单位为kg/m 3
需要说明的是,这种计算方式仅是示例性的,技术人员也可以根据实际情况自行设定其他计算式;例如,技术人员还可以在上述计算式中加入一些修正系数等。这种具体计算方式的改变并不偏离本发明的基本原理,属于本发明的保护范围。
更进一步地,在步骤S103中,当所述多联机空调系统处于制冷工况时,所述控制器能够获取所述多联机空调系统的室外机的出口处的换热介质比焓hcout以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓hsuc;需要说明的是,所述室外机的出口处可以是所述室外机与多个室内机连通时所使用的主管道上的任一点,即只要从所述室外机流出的换热介质还没有进行分流的点均可。接着,在步骤S105中,所述控制器能够根据所述压缩机的流量m c、所述多联机空调系统的室外 机的出口处的换热介质比焓hcout以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓hsuc,计算出所述多联机空调系统处于制冷工况时的制冷量:
Q c=m c(hcout-hsuc)
其中,制冷量Q c的单位为W,室外机的出口处的换热介质比焓hcout的单位为kj/kg;压缩机的吸气口处的换热介质比焓hsuc的单位为kj/kg。
需要说明的是,这种计算制冷量的方式仅是示例性的,技术人员也可以根据实际情况自行设定其他计算式;例如,技术人员还可以在上述计算式中加入一些修正系数等。这种具体计算方式的改变并不偏离本发明的基本原理,属于本发明的保护范围。
更进一步地,在步骤S104中,当所述多联机空调系统处于制热工况时,所述控制器能够获取所述多联机空调系统的压缩机的排气口处的换热介质比焓hdis以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓hval;需要说明的是,本优选实施例中所述的电子膨胀阀的入口处可以是所述电子膨胀阀的入口附近的任一点,只要该点处的换热介质比焓与所述电子膨胀阀的入口处的换热介质比焓相近即可。接着,在步骤S105中,所述控制器能够根据所述压缩机的流量m c、所述多联机空调系统的压缩机的排气口处的换热介质比焓hdis以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓hval,计算出所述多联机空调系统处于制热工况时的制热量:
Q h=m c(hdis-hval)
其中,制热量Q h的单位为W,压缩机的排气口处的换热介质比焓hdis的单位为kj/kg;电子膨胀阀的入口处的换热介质比焓hval的单位为kj/kg。
需要说明的是,这种计算制热量的方式仅是示例性的,技术人员也可以根据实际情况自行设定其他计算式;例如,技术人员还可以在上述计算式中加入一些修正系数等。这种具体计算方式的改变并不偏离本发明的基本原理,属于本发明的保护范围。
作为一种计算气体比焓的方式,对于压力为P、温度为T的气体而言,其比焓:
h=hvs+a0+a1*(T+273.15)/(Ts+273.15)+a2*P/1000+a3*(P/1000)^2 +a4*(T+273.15)/(Ts+273.15)*P/1000+a5*(T+273.15)/(Ts+273.15)^2+a6*(T+273.15)/(Ts+273.15)^3
其中,h的单位kj/kg;T和Ts的单位℃;P的单位为kPa;a0=-7193.961732;a1=19622.709195;a2=-94.704450;a3=0.389046;a4=94.665122;a5=-17960.594235;a6=5530.407319;hvs为与压力P相对应的饱和气体比焓:
hvs=1.1968310788*10 -9*P^3-1.1117338854*10 -5*P^2+2.8248788070*10 -2*P+4.0484133760*10 2
Ts为与压力P相对应的饱和气体温度:
Ts=-6.45972*10 -6*p^2+4.76583*10 -2*p-3.58652*10
作为一种计算液体比焓的方式,对于温度为T的液体而言,其比焓:
h=3.52875*10 -9*Ps^3-2.69764*10 -5*Ps^2+9.82272*10 -2*Ps+1.35940*10 2
Ps=0.39047T^2+25.98066T+779.73127;
其中,h的单位kj/kg;Ps的单位为kPa;T的单位℃。
需要说明的是,这种计算换热介质比焓的方式仅是示例性的,技术人员也可以根据实际实验数据自行拟合出其他计算式;这种有关换热介质比焓的计算式的改变并不偏离本发明的基本原理,属于本发明的保护范围。
进一步地,在步骤S106中,所述控制器能够获取每个室内机的进风温度T ain、每个室内机的两相饱和温度T e、每个室内机的送风量Q a以及每个室内机的换热面积A,这些参数的获取方式与上一个实施例的获取方式相同,在此就不再赘述。
进一步地,在步骤S107中,所述控制器能够根据每个室内机的进风温度T ain、每个室内机的两相饱和温度T e、每个室内机的送风量Q a以及每个室内机的换热面积A,分别计算每个室内机的权重系数。具体地,每个室内机的权重wcal,i的计算公式如下:
wcal,i=a 1T ain+a 2T e+a 3T ainQ a+a 4T eQ a+a 5AT ainQ a+a 6AT eQa+a 7A+a 8T eA+a 9
其中,进风温度T ain的单位为℃;两相饱和温度T e的单位为℃;送风量Q a的单位为m 3/s;换热面积A的单位为m 2。同时,a 1为第一修正 系数,a 2为第二修正系数,a 3为第三修正系数,a 4为第四修正系数,a 5为第五修正系数,a 6为第六修正系数,a 7为第七修正系数,a 8为第八修正系数,a 9为第九修正系数;经过多组实验数据拟合得出如下一组示例性的修正系数:a 1=0.0897,a 2=0.0273,a 3=0.0172,a 4=﹣0.0013,a 5=﹣0.0018,a 6=0.0029,a 7=0.7745,a 8=﹣2.2052,a 9=0.0500。需要说明的是,这组具体数据仅是示例性的,由于每个空调系统的具体结构都是不同的,因此,对于不同的空调系统而言,其每个修正系数可能都是不同的,换言之,技术人员需要根据不同空调系统的实际情况自行设定每个修正系数的具体值,技术人员可以通过实验数据拟合得出这些修正系数,也可以通过计算机建模来确定出这些修正系数。在确定出这些修正系数后,所述控制器就能够根据上式分别计算出所述多联机空调系统中的每个室内机的权重。
以下将对每个室内机的权重wcal,i的计算公式的由来进行说明,由于换热器的单体换热量
Q=αAΔT
其中,α为换热系数,A为换热面积,ΔT为换热温差;并且
α=f(Q a)≈(aQ a+b)
其中,Q a为送风量,a、b均为经验系数;并且
Figure PCTCN2019127941-appb-000001
其中,T e为换热介质的两相饱和温度,T ain为室内机的进风温度,T aout为室内机的出风温度;
综上可知:
Figure PCTCN2019127941-appb-000002
其中,T aout是一个未知项,并且服从于方程:
Q=ρQ a(hair,out-hair,in)
其中,ρ为空气密度,hair,out为出风空气比焓,hair,in为进风空气比焓;并且
hair,out=f(T aout)
hair,in=f(T ain)
综上可知,每个室内机的权重wcal,i可以表示为:
Figure PCTCN2019127941-appb-000003
其中,Q t为多联机空调系统的总换热量,T aout是一个隐式项,并且T aout的值可以由T ain、T e和Q a的线性方程计算得出,综合以上各式,并且省去一些可以忽略不计的项式,权重wcal,i就可以用一个线性方程无限逼近,即:
wcal,i=a 1T ain+a 2T e+a 3T ainQ a+a 4T eQ a+a 5AT ainQ a+a 6AT eQ a+a 7A+a 8TeA+a 9
在计算出每个室内机的权重之后,将所有室内机的权重相加即可得到整个多联机空调系统的总权重,每个室内机的权重系数为:
Figure PCTCN2019127941-appb-000004
其中,n为室内机的总个数。
进一步地,在步骤S108中,当所述多联机空调系统处于制冷工况时,每个室内机的制冷量:
Figure PCTCN2019127941-appb-000005
其中,Q ci的单位为W。
进一步地,在步骤S108中,当所述多联机空调系统处于制热工况时,每个室内机的制热量:
Figure PCTCN2019127941-appb-000006
其中,Q hi的单位为W。
最后需要说明的是,上述实施例均是本发明的优选实施方案,并不作为对本发明保护范围的限制。本领域技术人员在实际使用本发明时,可以根据需要适当添加或删减一部分步骤,或者调换不同步骤之间的顺序。这种改变并没有超出本发明的基本原理,属于本发明的保护范围。
至此,已经结合附图描述了本发明的优选实施方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于多联机空调系统的换热量计算方法,其特征在于,所述多联机空调系统包括多个室内机,所述换热量计算方法包括:
    获取所述多联机空调系统的总换热量;
    获取每个室内机的进风温度;
    获取每个室内机的两相饱和温度;
    获取每个室内机的送风量;
    获取每个室内机的换热面积;
    根据所述多联机空调系统的总换热量、每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的换热量。
  2. 根据权利要求1所述的换热量计算方法,其特征在于,“根据所述多联机空调系统的总换热量、每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的换热量”的步骤具体包括:
    根据每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的权重系数;
    根据所述多联机空调系统的总换热量以及每个室内机的权重系数,计算每个室内机的换热量。
  3. 根据权利要求2所述的换热量计算方法,其特征在于,“根据每个室内机的进风温度、每个室内机的两相饱和温度、每个室内机的送风量以及每个室内机的换热面积,计算每个室内机的权重系数”的步骤具体包括:
    采用下述公式计算每个室内机的权重:wcal,i=a 1T ain+a 2T e+a 3T ainQ a+a 4T eQ a+a 5AT ainQ a+a 6AT eQ a+a 7A+a 8T eA+a 9
    其中,T ain为所述室内机的进风温度,T e为所述室内机的两相饱和温度,Q a为所述室内机的送风量,A为所述室内机的换热面积,a 1为第一修正系数,a 2为第二修正系数,a 3为第三修正系数,a 4为第四修正系数,a 5为 第五修正系数,a 6为第六修正系数,a 7为第七修正系数,a 8为第八修正系数,a 9为第九修正系数;
    用每个室内机的权重除以所有室内机的权重的总和得到每个室内机的权重系数。
  4. 根据权利要求1至3中任一项所述的换热量计算方法,其特征在于,当所述多联机空调系统处于制冷工况时,“获取所述多联机空调系统的总换热量”的步骤具体包括:
    获取所述多联机空调系统的压缩机的流量;
    获取所述多联机空调系统的室外机的出口处的换热介质比焓以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓;
    根据所述多联机空调系统的压缩机的流量、所述多联机空调系统的室外机的出口处的换热介质比焓以及所述多联机空调系统的压缩机的吸气口处的换热介质比焓,计算所述多联机空调系统的总换热量。
  5. 根据权利要求4所述的换热量计算方法,其特征在于,所述多联机空调系统的总换热量等于所述多联机空调系统的压缩机的流量乘以所述多联机空调系统的室外机的出口处的换热介质比焓与所述多联机空调系统的压缩机的吸气口处的换热介质比焓的差值。
  6. 根据权利要求5所述的换热量计算方法,其特征在于,所述多联机空调系统的压缩机的流量m c=f rcη;其中,f r为所述压缩机的频率,V为所述压缩机的吸气容积;ρ c为所述压缩机的吸气密度,η为所述压缩机的容积效率。
  7. 根据权利要求1至3中任一项所述的换热量计算方法,其特征在于,当所述多联机空调系统处于制热工况时,“获取所述多联机空调系统的总换热量”的步骤具体包括:
    获取所述多联机空调系统的压缩机的流量;
    获取所述多联机空调系统的压缩机的排气口处的换热介质比焓以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓;
    根据所述多联机空调系统的压缩机的流量、所述多联机空调系统的压缩机的排气口处的换热介质比焓以及所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓,计算所述多联机空调系统的总换热量。
  8. 根据权利要求7所述的换热量计算方法,其特征在于,所述多联机空调系统的总换热量等于所述多联机空调系统的压缩机的流量乘以所述多联机空调系统的压缩机的排气口处的换热介质比焓与所述多联机空调系统的电子膨胀阀的入口处的换热介质比焓的差值。
  9. 根据权利要求8所述的换热量计算方法,其特征在于,所述多联机空调系统的压缩机的流量m c=f rcη;其中,f r为所述压缩机的频率,V为所述压缩机的吸气容积;ρ c为所述压缩机的吸气密度,η为所述压缩机的容积效率。
  10. 一种多联机空调系统,其特征在于,所述多联机空调系统包括控制器,所述控制器能够执行权利要求1至9中任一项所述的换热量计算方法。
PCT/CN2019/127941 2019-05-24 2019-12-24 多联机空调系统及其换热量计算方法 WO2020238183A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/970,441 US11892213B2 (en) 2019-05-24 2019-12-24 Multi-connection air conditioning system and method for calculating heat exchange amount thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910441905.5A CN110260452B (zh) 2019-05-24 2019-05-24 多联机空调系统及其换热量计算方法
CN201910441905.5 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020238183A1 true WO2020238183A1 (zh) 2020-12-03

Family

ID=67915366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127941 WO2020238183A1 (zh) 2019-05-24 2019-12-24 多联机空调系统及其换热量计算方法

Country Status (3)

Country Link
US (1) US11892213B2 (zh)
CN (1) CN110260452B (zh)
WO (1) WO2020238183A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114282345A (zh) * 2021-11-12 2022-04-05 宁夏神耀科技有限责任公司 烧嘴用水夹套的换热计算方法、换热方法及换热系统

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109855245B (zh) * 2019-02-13 2021-09-21 青岛海尔空调电子有限公司 多联机空调系统及其换热量计算方法
CN110260452B (zh) 2019-05-24 2022-01-04 青岛海尔空调电子有限公司 多联机空调系统及其换热量计算方法
CN111337280B (zh) * 2020-02-29 2021-09-03 同济大学 一种用于vrf空调系统变工况下的冷热量测试系统及方法
CN112050972B (zh) * 2020-09-04 2022-10-04 广州地铁集团有限公司 一种地铁设备机房的发热量近似计算方法
CN112432323B (zh) * 2020-11-03 2022-10-28 青岛海尔空调器有限总公司 空调的控制方法、装置、计算机存储介质和电子设备
CN112362197A (zh) * 2020-11-11 2021-02-12 清华大学 基于节流装置的多联机空调换热量计量方法及装置
CN112728712B (zh) * 2021-01-21 2022-05-06 广东美的暖通设备有限公司 多联机运行能力检测方法、多联机、存储介质及装置
CN113531811B (zh) * 2021-07-09 2022-11-18 青岛海尔空调器有限总公司 空调器的控制方法、空调器、存储介质及程序产品
CN115183398B (zh) * 2022-07-29 2023-10-20 青岛海尔空调电子有限公司 一种空调控制方法、装置、设备和介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344921A (zh) * 2001-10-20 2002-04-17 卢忠 中央空调分户计量方法及中央空调分户计量系统
US20150027147A1 (en) * 2013-07-26 2015-01-29 Whirlpool Corporation Air conditioning systems with multiple temperature zones from independent ducting systems and a single outdoor unit
JP6004228B2 (ja) * 2013-04-11 2016-10-05 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN107143979A (zh) * 2017-05-22 2017-09-08 青岛海尔空调器有限总公司 一拖多空调器的控制方法、控制装置和空调器
CN107514759A (zh) * 2017-08-31 2017-12-26 广东美的制冷设备有限公司 空调器及其能效计算方法
CN107702292A (zh) * 2017-11-08 2018-02-16 绵阳美菱软件技术有限公司 一种确定多联机空调动态制冷量的方法及室外主机
CN108050645A (zh) * 2017-10-31 2018-05-18 青岛海尔空调电子有限公司 一种多联机制热运行分户计量方法及系统
CN108344528A (zh) * 2018-01-26 2018-07-31 清华大学 一种多联式空调系统换热量测量方法及装置
CN110260452A (zh) * 2019-05-24 2019-09-20 青岛海尔空调电子有限公司 多联机空调系统及其换热量计算方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5369597A (en) * 1992-12-21 1994-11-29 Bujak, Jr.; Walter E. System for controlling heating or cooling capacity in heating or air conditioning systems
JP4947221B2 (ja) * 2010-05-11 2012-06-06 ダイキン工業株式会社 空気調和装置の運転制御装置及びそれを備えた空気調和装置
CN102305451B (zh) * 2011-07-04 2013-08-07 徐坚 基于健康评估技术的混合式地源热泵监控系统及方法
EP2833086B1 (en) * 2012-03-27 2017-06-21 Mitsubishi Electric Corporation Air-conditioning apparatus
WO2016009487A1 (ja) * 2014-07-14 2016-01-21 三菱電機株式会社 空気調和装置
CN105674402B (zh) * 2016-03-23 2018-10-16 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN106529021B (zh) * 2016-11-09 2019-07-26 东南大学 一种基于特征识别的空调系统仿真模拟方法
JP6925455B2 (ja) * 2018-02-07 2021-08-25 三菱電機株式会社 空調システム及び空調制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344921A (zh) * 2001-10-20 2002-04-17 卢忠 中央空调分户计量方法及中央空调分户计量系统
JP6004228B2 (ja) * 2013-04-11 2016-10-05 日立ジョンソンコントロールズ空調株式会社 空気調和機
US20150027147A1 (en) * 2013-07-26 2015-01-29 Whirlpool Corporation Air conditioning systems with multiple temperature zones from independent ducting systems and a single outdoor unit
CN107143979A (zh) * 2017-05-22 2017-09-08 青岛海尔空调器有限总公司 一拖多空调器的控制方法、控制装置和空调器
CN107514759A (zh) * 2017-08-31 2017-12-26 广东美的制冷设备有限公司 空调器及其能效计算方法
CN108050645A (zh) * 2017-10-31 2018-05-18 青岛海尔空调电子有限公司 一种多联机制热运行分户计量方法及系统
CN107702292A (zh) * 2017-11-08 2018-02-16 绵阳美菱软件技术有限公司 一种确定多联机空调动态制冷量的方法及室外主机
CN108344528A (zh) * 2018-01-26 2018-07-31 清华大学 一种多联式空调系统换热量测量方法及装置
CN110260452A (zh) * 2019-05-24 2019-09-20 青岛海尔空调电子有限公司 多联机空调系统及其换热量计算方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114282345A (zh) * 2021-11-12 2022-04-05 宁夏神耀科技有限责任公司 烧嘴用水夹套的换热计算方法、换热方法及换热系统
CN114282345B (zh) * 2021-11-12 2024-04-19 宁夏神耀科技有限责任公司 烧嘴用水夹套的换热计算方法、换热方法及换热系统

Also Published As

Publication number Publication date
CN110260452A (zh) 2019-09-20
US20230089608A1 (en) 2023-03-23
US11892213B2 (en) 2024-02-06
CN110260452B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
WO2020238183A1 (zh) 多联机空调系统及其换热量计算方法
WO2020164228A1 (zh) 多联机空调系统及其换热量计算方法
WO2021223616A1 (zh) 用于多联机空调机组的压缩机频率控制方法
WO2019109959A1 (zh) 空调装置及用于判断其运行状态是否正常的方法
CN106322603A (zh) 单冷型空调器及控制方法
WO2021036402A1 (zh) 空调器及其送风控制方法
CN103759961A (zh) 一种电制冷冷水机组中央空调系统能效评估方法
WO2023029653A1 (zh) 空调器室外机的除霜控制方法及空调器
WO2021057469A1 (zh) 空调器的滤尘网的堵塞程度的判定方法及空调器
CN102353403B (zh) 中央空调主机冷冻水流量及冷却介质流量测量方法
CN110192069A (zh) 空调控制装置及空调控制方法
CN109000948A (zh) 基于冷水机热力学模型的多台冷水机组节能空间评估方法
JP7072398B2 (ja) 一体型空気調和装置の管理装置および管理プログラム
JP2019020070A (ja) 空調装置の評価装置および評価方法
CN113175735B (zh) 计算空调器能力能效的方法、计算机存储介质和空调器
KR20100108056A (ko) 지열 열펌프 시스템의 실시간 성능평가방법 및 이를 구현한평가기기
CN107992662A (zh) 重力热管空调系统优化设计及变工况参数的反向计算方法
CN113586640B (zh) 压缩机缓冲器设计方法、压缩机缓冲器和压缩机
Cheung et al. Virtual power consumption and cooling capacity virtual sensors for rooftop units
EP4027069A1 (en) Refrigeration capacity determination method, refrigeration energy efficiency ratio determination method, and failure notification method
JP3877955B2 (ja) 可変制御システムの運用評価装置
CN109579215B (zh) 一种空调设备积灰确定方法与装置
CN112396763A (zh) 一种多联机空调分户计量与计费方法及装置
JP4036719B2 (ja) 空調機の給気温度制御装置
CN114996864B (zh) 一种制冷循环回路中流量和节流管长径比计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19931204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19931204

Country of ref document: EP

Kind code of ref document: A1