WO2021223616A1 - 用于多联机空调机组的压缩机频率控制方法 - Google Patents

用于多联机空调机组的压缩机频率控制方法 Download PDF

Info

Publication number
WO2021223616A1
WO2021223616A1 PCT/CN2021/089764 CN2021089764W WO2021223616A1 WO 2021223616 A1 WO2021223616 A1 WO 2021223616A1 CN 2021089764 W CN2021089764 W CN 2021089764W WO 2021223616 A1 WO2021223616 A1 WO 2021223616A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sum
target
value
capacity
Prior art date
Application number
PCT/CN2021/089764
Other languages
English (en)
French (fr)
Inventor
张晓迪
张铭
王海胜
Original Assignee
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调电子有限公司
Publication of WO2021223616A1 publication Critical patent/WO2021223616A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention belongs to the technical field of air conditioners, and in particular relates to a compressor frequency control method for a multi-connected air conditioner unit.
  • the existing multi-line air conditioning units usually first control the inverter compressor to run at a fixed preset initial frequency, and then directly adjust the frequency of the inverter compressor through the outlet water temperature of the air conditioning unit.
  • This control method is conducive to directly controlling the temperature of the outlet water, it does not comprehensively consider the different capacity requirements of each indoor unit; and this control method adopts the same control logic in both cooling and heating conditions. It is not adjusted according to the different operating conditions, so it is difficult to achieve precise control of the inverter compressor, and it is difficult to ensure that the multi-line air conditioning unit can always maintain an efficient operation state.
  • the present invention provides a multi-line air-conditioning unit.
  • the compressor frequency control method of the present invention includes multiple indoor units.
  • the compressor frequency control method includes: obtaining the capacity requirements of all indoor units in operation; calculating the performance of all indoor units in operation The sum of capacity requirements; the target parameter value is determined according to the sum of capacity requirements; the frequency of the compressor is adjusted according to the determined target parameter value; wherein, when the multi-line air conditioning unit is in a cooling condition, the target The parameter value is a target evaporating temperature; when the multi-connected air conditioning unit is in a heating mode, the target parameter value is a target condensing temperature.
  • the step of "determining the target parameter value according to the sum of the capacity requirements" specifically includes: obtaining the outdoor temperature; determining the target parameter according to the outdoor temperature The value range of the value; the target parameter value is determined according to the sum of the value range of the target parameter value and the capability requirement.
  • the steps specifically include: determining a first preset evaporation temperature according to the outdoor temperature; determining the first preset evaporation temperature as the left end of the value range; determining the second preset evaporation temperature as the value of the range Right end point; the value range of the target evaporation temperature is determined according to the determined left end point and right end point.
  • the step of "determining the target parameter value according to the value range of the target parameter value and the sum of the capacity requirement" includes: When the sum of the capacity requirements is greater than or equal to the first preset value and less than or equal to the second preset value, the value of the target evaporation temperature is within the value range of the target parameter value, and the capacity requirement The sum is linearly related to the target evaporation temperature.
  • the step of "determining the target parameter value according to the value range of the target parameter value and the sum of the capacity requirement" further includes: When the sum of the capacity requirements is less than the first preset value, the target evaporation temperature is determined to be the second preset evaporation temperature; and/or when the sum of the capacity requirements is greater than the second preset value Value, the target evaporation temperature is determined to be the first preset evaporation temperature.
  • the value range of the target parameter value is determined according to the outdoor temperature
  • the step specifically includes: determining the first preset condensation temperature according to the outdoor temperature; determining the first preset condensation temperature as the right end of the value range; determining the second preset condensation temperature as the value range Left end point: Determine the value range of the target condensation temperature according to the determined left end point and right end point.
  • the step of "determining the target parameter value according to the value range of the target parameter value and the sum of the capacity requirement" includes: When the sum of the capacity requirements is greater than or equal to the third preset value and less than or equal to the fourth preset value, the value of the target condensation temperature is within the value range of the target parameter value, and the capacity requirement The sum is linearly related to the target condensation temperature.
  • the step of "determining the target parameter value according to the value range of the target parameter value and the sum of the capacity requirement" further includes: When the sum of the capacity requirements is less than the third preset value, the target condensing temperature is determined to be the second preset condensing temperature; and/or when the sum of the capacity requirements is greater than the fourth preset value Value, the target condensation temperature is determined to be the first preset condensation temperature.
  • the step of "obtaining the capacity requirements of all indoor units in operation” specifically includes: obtaining the set temperature of all indoor units in operation And the indoor temperature of the environment in which it is located; calculate the difference between the indoor temperature and the set temperature; determine the capacity requirement coefficient of the indoor unit according to the difference between the indoor temperature and the set temperature; The capacity requirement coefficient and the nominal capacity of the indoor unit determine the capacity requirement of the indoor unit.
  • the compressor frequency control method further includes: acquiring all The nominal capacity of the indoor unit to be operated; calculate the sum of the nominal capacity of all the indoor units to be operated; calculate the ratio of the sum of the nominal capacity of all the indoor units to be operated to the nominal capacity of the outdoor unit; The ratio and the rated initial frequency of the compressor determine the initial operating frequency of the compressor.
  • the multi-connected air conditioning unit of the present invention includes multiple indoor units
  • the compressor frequency control method of the present invention includes: acquiring the capabilities of all indoor units in operation Demand; calculate the sum of the capacity requirements of all indoor units in operation; determine the target parameter value according to the sum of the capacity requirements; adjust the frequency of the compressor according to the determined target parameter value; wherein, in the multi-line When the air-conditioning unit is in the refrigerating operating mode, the target parameter value is the target evaporation temperature; when the multi-line air-conditioning unit is in the heating operating mode, the target parameter value is the target condensing temperature.
  • the present invention adjusts the frequency of the compressor through the sum of the capacity requirements of all indoor units in operation, so as to effectively take into account the heat exchange requirements of all indoor units in operation. Select different target parameter values to achieve more precise control of the compressor, thereby effectively ensuring that the multi-connected air conditioning unit can always maintain an efficient operation state.
  • the present invention also determines the value range of the target parameter value by obtaining the outdoor temperature, and then determines the target parameter value according to the sum of the determined value range and the capacity requirement, so as to effectively combine outdoor environmental factors.
  • the target parameter value is determined more accurately, thereby effectively ensuring more precise control, and further improving the operating efficiency of the multi-connected air conditioning unit to the greatest extent.
  • Figure 1 is a flow chart of the main steps of the compressor frequency control method of the present invention
  • FIG. 2 is a flowchart of specific steps of the first preferred embodiment of the present invention.
  • Figure 3 is a diagram showing the relationship between the difference between the indoor temperature and the set temperature and the capacity demand coefficient in the first preferred embodiment
  • Figure 4 is a diagram showing the relationship between the sum of capacity requirements and the target evaporation temperature in the first preferred embodiment
  • FIG. 5 is a flowchart of specific steps of the second preferred embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between the difference between the indoor temperature and the set temperature and the capacity demand coefficient in the second preferred embodiment
  • Fig. 7 is a diagram showing the relationship between the sum of capacity requirements and the target condensing temperature in the second preferred embodiment.
  • the multi-line air-conditioning unit described in this preferred embodiment includes an outdoor unit and three indoor units connected to the outdoor unit.
  • the outdoor unit is provided with a frequency conversion compressor, and the user can provide the three indoor units separately Set different temperatures.
  • the present invention does not impose any restriction on the specific structure of the multi-connected air conditioning unit, and the technician can set it according to actual use requirements; for example, the technician can set the type and number of indoor units by themselves.
  • the multi-line air conditioning unit also includes a controller, which stores various standard data, such as the nominal capacity of the outdoor unit and each indoor unit, the rated initial frequency of the compressor, etc., and can also obtain each The detection data of the sensor, for example, the outdoor temperature is obtained by the outdoor temperature sensor, and the controller can also control the operation of the multi-connected air conditioning unit, for example, control the operating frequency of the inverter compressor.
  • the controller may be the original controller of the multi-line air conditioning unit, or it may be used to implement the present invention.
  • the invented compressor frequency control method is a separate controller, and technicians can set the specific structure and model of the controller according to actual use requirements.
  • Figure 1 is a flowchart of the main steps of the compressor frequency control method of the present invention.
  • the compressor frequency control method of the present invention mainly includes the following steps:
  • step S1 the controller can obtain the capacity requirements of all indoor units in the running state, and the indoor units in the running state described here are the indoor units that are performing heat exchange.
  • the present invention does not impose any restriction on the initial operating frequency of the inverter compressor, and technicians can set it according to actual use requirements, that is, when the indoor unit is turned on, the inverter compressor can first operate at the initial operating frequency. run. That is to say, the present invention does not impose any restriction on the execution timing of steps S1 to S4, and technicians can set it according to actual usage requirements; for example, it can be executed after the inverter compressor runs at the initial operating frequency for a preset time.
  • the present invention does not impose any restriction on the specific method for the controller to obtain the capability requirements of the indoor unit, and technicians can set it by themselves according to actual use requirements. Then, in step S2, the controller can calculate the sum of the capacity requirements of all indoor units in the running state; of course, this calculation process can be completed by the controller or by other devices. Obtained by the controller.
  • step S3 the controller can determine a target parameter value according to the calculated capacity requirement sum, wherein, when the multi-connected air conditioning unit is in a cooling mode, the target parameter value is the target evaporation temperature ; When the multi-line air conditioning unit is in heating mode, the target parameter value is the target condensing temperature.
  • step S4 the controller can adjust the frequency of the inverter compressor according to the determined target parameter value.
  • the controller can determine the target evaporation temperature according to the calculated capacity requirement sum, and then adjust the frequency of the inverter compressor according to the determined target evaporation temperature;
  • the controller can determine the target condensing temperature according to the calculated capacity requirement sum, and then adjust the frequency of the inverter compressor according to the determined target condensing temperature.
  • the present invention adjusts the frequency of the inverter compressor through the sum of the capacity requirements of all indoor units in operation, so as to effectively take into account the heat exchange requirements of all indoor units in operation. Under the circumstances, different target parameter values are selected to achieve more precise control of the inverter compressor, thereby effectively ensuring that the multi-connected air conditioning unit can always maintain an efficient operation state.
  • the present invention also provides a method for determining the initial operating frequency of the inverter compressor, which specifically includes: the controller obtains the nominal capabilities of all indoor units that are about to run; then, The controller can calculate the sum of the nominal capabilities of all indoor units that will be running; then, the controller can calculate the ratio of the sum of the nominal capabilities of all the indoor units that will be running to the nominal capabilities of the outdoor units, that is Is the capacity output coefficient of the multi-line air conditioning unit; finally, the controller can determine the initial operation of the inverter compressor according to the calculated ratio (ie, the capacity output coefficient) and the rated initial frequency of the inverter compressor The frequency is preferably calculated as the initial operating frequency of the inverter compressor by calculating the product of the aforementioned ratio and the rated initial frequency.
  • this determination method is not restrictive.
  • the technician can set the specific determination method of the initial operating frequency according to actual use requirements; for example, the product of the above ratio and the rated initial frequency can also be multiplied by a proportional coefficient. It is then used as the initial operating frequency of the inverter compressor, and preferably, the proportional coefficient is set between 90% and 110%.
  • FIG. 2 is a flowchart of specific steps of the first preferred embodiment of the present invention.
  • the first preferred embodiment of the compressor frequency control method of the present invention specifically includes The following steps:
  • S101 Obtain the set temperature of all indoor units in operation and the indoor temperature of the environment in which they are located;
  • S103 Determine the capacity requirement coefficient of the indoor unit according to the difference between the indoor temperature and the set temperature
  • S104 Determine the capacity requirement of the indoor unit according to the capacity requirement coefficient and the nominal capacity of the indoor unit;
  • the present invention provides a method for determining the capability requirement of an indoor unit in an operating state.
  • the method specifically includes: the controller obtains the settings of an indoor unit in an operating state. Set the temperature and the indoor temperature of the environment in which it is located, the controller can obtain the indoor temperature of the environment in which the indoor unit is located through a self-configured temperature sensor on the indoor unit, and can also obtain the environment in which the indoor unit is located with the help of an external temperature sensor The indoor temperature is not restrictive, and technicians can set it by themselves. Then, the controller can calculate the difference ⁇ E between the acquired indoor temperature and the set temperature. This calculation process can be completed by the controller itself, or can be completed by other devices.
  • the controller can determine the capacity requirement coefficient of the indoor unit according to the difference ⁇ E calculated in step S102.
  • the relationship between the difference ⁇ E and the capacity requirement coefficient of the indoor unit can be determined by It is determined by the relationship diagram shown in Figure 3, that is, the capacity requirement coefficient k of the indoor unit is set between 0 and 14, and then the capacity requirement coefficient k is selected according to the difference ⁇ E between the indoor temperature and the set temperature Specific value. It should be noted that technicians can also set the capacity requirement coefficient k between 0 and 1. This specific setting method can be changed by themselves, as long as it can represent the proportion.
  • the capacity demand coefficient k is also 0; when the difference ⁇ E between the indoor temperature and the set temperature is greater than 5°C, The capacity requirement coefficient k is 14; when the difference ⁇ E between the indoor temperature and the set temperature is between 0°C and 5°C (including 0°C and 5°C), the capacity requirement coefficient k is set between 0 and 14 ( Including 0 and 14), and the difference ⁇ E between the indoor temperature and the set temperature has a linear positive correlation with the capacity demand coefficient k.
  • the controller can determine the capacity requirement of the indoor unit according to the capacity requirement coefficient of the indoor unit and its nominal capacity.
  • the indoor unit The product of the capacity requirement coefficient of and the nominal capacity of the indoor unit is the capacity requirement of the indoor unit.
  • the controller can determine the capacity requirements of all the indoor units in the running state one by one in the above-mentioned manner. After obtaining the capacity requirements of all the indoor units in the running state, step S105 is executed, that is, the controller calculates Calculate the sum of the capacity requirements of all indoor units in operation for subsequent use.
  • step S106 the controller can obtain the outdoor temperature; it should be noted that the present invention does not impose any restrictions on the specific way the controller obtains the outdoor temperature.
  • the controller can either rely on the setting of the air conditioning unit itself.
  • the temperature sensor is used to obtain the outdoor temperature, and the outdoor temperature can also be obtained through the Internet. This specific method of obtaining is not restrictive.
  • step S107 is executed, that is, the controller can determine the value range of the target evaporation temperature according to the outdoor temperature.
  • the specific determination method is: determining a unique first preset evaporation temperature R according to the outdoor temperature; then determining the first preset evaporation temperature as the left end of the value range; The second preset evaporation temperature is determined as the right end point of the value range; finally, the value range of the target evaporation temperature is determined according to the determined left end point and the right end point.
  • the technician can set the specific value of the second preset evaporation temperature according to the types of different indoor units, and this setting method is not restrictive.
  • step S101 to step S105 and step S106 to step S107 described in the preferred embodiment can be adjusted, and the technician can set the specific order according to actual usage requirements.
  • the order of execution for example, step S106 to step S107 can be executed first, and then step S101 to step S105 are executed.
  • step S106 to step S107 can be executed first, and then step S101 to step S105 are executed.
  • Outdoor temperature Tao (unit: °C)
  • the first preset evaporation temperature R (unit: °C) Tao ⁇ 20°C 0°C 20°C ⁇ Tao ⁇ 43°C 4°C Tao ⁇ 43°C 6°C
  • the compressor frequency control method described in this preferred embodiment determines the value of the first preset evaporation temperature R according to the different ranges of the outdoor temperature, so as to determine the value ranges of different target evaporation temperatures, so that The inverter compressor can be controlled more accurately, thereby effectively improving the heat exchange efficiency of the multi-connected air conditioning unit.
  • the controller can determine the specific value of the target evaporation temperature according to the determined value range of the target evaporation temperature and the sum of the capacity requirements of all indoor units in operation; It should be noted that the present invention does not impose any restriction on the specific determination method, and the technician can set this specific determination method by himself according to actual use requirements.
  • the value of the target evaporation temperature is set to determine Is within the value range of and the sum of the capacity requirements is linearly related to the target evaporation temperature in these two ranges; that is, when the sum of the capacity requirements is between the first preset value and the first
  • the second preset value is within the range
  • the corresponding target evaporation temperature is within the range of the first preset evaporation temperature and the second preset evaporation temperature, and there is a linear negative correlation between the two Relationship, in order to determine a more accurate value in the most concise way, so as to effectively ensure the effect of precise control.
  • the technicians can set specific values of the first preset value and the second preset value by themselves according to the specific conditions of the multi-connected air conditioning unit.
  • the target evaporation temperature is determined to be the second preset evaporation temperature; when the sum of the capacity requirements is greater than the second preset value
  • the target evaporation temperature is determined to be the first preset evaporation temperature.
  • the value of the first preset evaporation temperature R is determined by the table in the above preferred embodiment, and the second preset evaporation temperature is set to 12°C, so The first preset value is set to 1, and the second preset value is set to 42.
  • the target evaporation temperature ET is determined to be 12°C; when the capacity requirement sum S-code is greater than or equal to 1 and less than or equal to 42, the target evaporation temperature ET is set Between the first preset evaporating temperature R and the second preset evaporating temperature (ie, 12° C.), and the capacity requirement sum S-code has a linear negative correlation with the target evaporating temperature ET. After the target evaporating temperature ET is determined, the original target evaporating temperature of the multi-line air conditioning unit is adjusted so that the controller can control the frequency of the inverter compressor according to the determined target evaporating temperature ET .
  • FIG. 5 is a flowchart of specific steps of the second preferred embodiment of the present invention.
  • the second preferred embodiment of the compressor frequency control method of the present invention specifically It includes the following steps:
  • S201 Obtain the set temperature of all indoor units in operation and the indoor temperature of the environment in which they are located;
  • S203 Determine the capacity requirement coefficient of the indoor unit according to the difference between the indoor temperature and the set temperature
  • S204 Determine the capacity requirement of the indoor unit according to the capacity requirement coefficient and the nominal capacity of the indoor unit;
  • S207 Determine the value range of the target condensation temperature according to the outdoor temperature
  • S208 Determine the target condensing temperature according to the sum of the determined value range and capacity requirements
  • the present invention provides a method for determining the capability requirement of an indoor unit in an operating state, and the method specifically includes: the controller obtains the settings of an indoor unit in an operating state. Set the temperature and the indoor temperature of the environment in which it is located, the controller can obtain the indoor temperature of the environment in which the indoor unit is located through a self-configured temperature sensor on the indoor unit, and can also obtain the environment in which the indoor unit is located with the help of an external temperature sensor The indoor temperature is not restrictive, and technicians can set it by themselves. Then, the controller can calculate the difference ⁇ E between the acquired indoor temperature and the set temperature. This calculation process can be completed by the controller itself, or can be completed by other devices.
  • the controller can determine the capacity requirement coefficient of the indoor unit according to the difference ⁇ E calculated in step S202.
  • the relationship between the difference ⁇ E and the capacity requirement coefficient of the indoor unit can be determined by It is determined by the relationship diagram shown in Figure 6, that is, the capacity requirement coefficient k of the indoor unit is set between 0 and 14, and then the capacity requirement coefficient is selected according to the difference ⁇ E between the indoor temperature and the set temperature The specific value of k.
  • the capacity requirement coefficient k when the difference ⁇ E between the indoor temperature and the set temperature is less than -5°C, the capacity requirement coefficient k is set to 14; when the difference ⁇ E between the indoor temperature and the set temperature is greater than 0°C , The capacity requirement coefficient k is set to 0; when the difference ⁇ E between the indoor temperature and the set temperature is between -5°C and 0°C (including -5°C and 0°C), the capacity requirement coefficient k is set to 0 To 14 (including 0 and 14), and the difference ⁇ E between the indoor temperature and the set temperature has a linear negative correlation with the capacity demand coefficient k.
  • the controller can determine the capacity requirement of the indoor unit according to the capacity requirement coefficient of the indoor unit and its nominal capacity. Specifically, the indoor unit The product of the capacity requirement coefficient of and the nominal capacity of the indoor unit is the capacity requirement of the indoor unit. Based on the determination method described in the above-mentioned preferred embodiment, the controller can determine the capacity requirements of all indoor units in operation one by one through this method. After obtaining the capacity requirements of all indoor units in operation, , Step S105 is executed, that is, the controller calculates the sum of the capacity requirements of all indoor units in the running state for subsequent use.
  • step S206 the controller can obtain the outdoor temperature.
  • step S207 is executed, that is, the controller can determine the value range of the target condensation temperature according to the outdoor temperature.
  • the specific determination method is: determining a unique first preset condensation temperature R′ according to the outdoor temperature; and then determining the first preset condensation temperature R′ as the right end of the value range.
  • the second preset condensation temperature is determined as the left end point of the value range; finally, the value range of the target condensation temperature is determined according to the determined left end point and the right end point.
  • technicians can set the specific value of the second preset condensation temperature by themselves according to the types of different indoor units, and this setting method is not restrictive.
  • step S201 to step S205 and step S206 to step S207 described in this preferred embodiment can be adjusted, and the technician can set the specific order according to actual usage requirements.
  • the order of execution for example, step S206 to step S207 may be executed first, and then step S201 to step S205 may be executed.
  • step S206 to step S207 may be executed first, and then step S201 to step S205 may be executed.
  • This change in the specific execution sequence does not deviate from the basic principle of the present invention, and belongs to the protection scope of the present invention.
  • the relationship between the outdoor temperature and the first preset condensation temperature R' is shown in the following table:
  • Outdoor temperature Tao (unit: °C)
  • the compressor frequency control method described in this preferred embodiment determines the value of the first preset condensation temperature R'through the different ranges of the outdoor temperature, so as to determine the value ranges of different target condensation temperatures, so that The inverter compressor can be controlled more accurately, thereby effectively improving the heat exchange efficiency of the multi-connected air conditioning unit.
  • the controller can determine the specific value of the target condensing temperature according to the determined value range of the target condensing temperature and the sum of the capacity requirements of all indoor units in operation; It should be noted that the present invention does not impose any restriction on the specific determination method, and the technician can set this specific determination method by himself according to actual use requirements.
  • the value of the target condensing temperature is set to determine Is within the value range of, and the sum of the capacity requirements is linearly related to the target condensing temperature in these two ranges; that is, when the sum of the capacity requirements is between the third preset value and the first When it is within the range of four preset values, the value of the corresponding target condensing temperature is within the range of the first preset condensing temperature and the second preset condensing temperature, and there is a linear positive correlation between the two Relationship, in order to determine a more accurate value in the most concise way, so as to effectively ensure the effect of precise control.
  • the technicians can set specific values of the third preset value and the fourth preset value by themselves according to the specific conditions of the multi-connected air conditioning unit.
  • the target condensing temperature is determined to be the second preset condensing temperature; when the sum of the capacity requirements is greater than the fourth preset value At this time, the target condensation temperature is determined to be the first preset condensation temperature.
  • the target condensing temperature CT is determined to be 36°C; when the sum of capacity requirements S-code is greater than or equal to 1 and less than or equal to 42, the target condensing temperature CT is set It is set between the second preset condensation temperature (ie 36° C.) and the first preset condensation temperature R', and the sum of capacity requirements S-code has a linear positive correlation with the target condensation temperature CT.
  • the original target condensing temperature of the multi-line air conditioning unit is adjusted so that the controller can control the frequency of the inverter compressor according to the determined target condensing temperature CT .

Abstract

一种用于多联机空调机组的压缩机频率控制方法,包括:获取所有处于运行状态的室内机的能力需求;计算所有处于运行状态的室内机的能力需求之和;根据能力需求之和确定目标参数值;根据确定出的目标参数值调节压缩机的频率;其中,在多联机空调机组处于制冷工况时,目标参数值为目标蒸发温度;在多联机空调机组处于制热工况时,目标参数值为目标冷凝温度。该控制方法根据所有处于运行状态的室内机的能力需求之和来调节压缩机频率,以便有效兼顾所有处于运行状态的室内机的换热需求。

Description

用于多联机空调机组的压缩机频率控制方法 技术领域
本发明属于空调技术领域,具体涉及一种用于多联机空调机组的压缩机频率控制方法。
背景技术
随着人们生活水平的不断提高,空调机组已经成为人们生活中必不可少的一种换热设备,而变频压缩机作为多联机空调机组的核心元件,其控制逻辑往往对整个多联机空调机组的换热效率起着决定性的作用。现有多联机空调机组通常都是先控制变频压缩机以固定的预设初始频率运行,然后再通过空调机组的出水温度直接对变频压缩机的频率进行调节。这种控制方式虽然有利于直接控制出水温度,但却没有综合考虑各个室内机的不同能力需求;并且这种控制方式在制冷工况和制热工况下都是采取的同样的控制逻辑,而并没有结合运行工况的不同进行调整,因而难以实现对变频压缩机的精准控制,进而难以保证多联机空调机组能够始终维持高效运行的状态。
相应地,本领域需要一种新的用于多联机空调机组的压缩机频率控制方法来解决上述问题。
发明内容
为了解决现有技术中的上述问题,即为了解决现有变频压缩机的控制方式不佳而导致多联机空调机组难以始终维持高效运行状态的问题,本发明提供了一种用于多联机空调机组的压缩机频率控制方法,本发明的多联机空调机组包括多个室内机,所述压缩机频率控制方法包括:获取所有处于运行状态的室内机的能力需求;计算所有处于运行状态的室内机的能力需求之和;根据所述能力需求之和确定目标参数值;根据确定出的目标参数值调节所述压缩机的频率;其中,在所述多联机空调机组处于制冷工况时,所述目标参数值为目标 蒸发温度;在所述多联机空调机组处于制热工况时,所述目标参数值为目标冷凝温度。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,“根据所述能力需求之和确定目标参数值”的步骤具体包括:获取室外温度;根据所述室外温度确定目标参数值的取值范围;根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,在所述多联机空调机组处于制冷工况的情况下,“根据所述室外温度确定目标参数值的取值范围”的步骤具体包括:根据所述室外温度确定出第一预设蒸发温度;将所述第一预设蒸发温度确定为取值范围的左端点;将第二预设蒸发温度确定为取值范围的右端点;根据确定出的左端点和右端点确定目标蒸发温度的取值范围。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤包括:当所述能力需求之和大于或等于第一预设值且小于或等于第二预设值时,所述目标蒸发温度的取值在所述目标参数值的取值范围内,并且所述能力需求之和与所述目标蒸发温度呈线性相关。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤还包括:当所述能力需求之和小于所述第一预设值时,所述目标蒸发温度确定为所述第二预设蒸发温度;并且/或者当所述能力需求之和大于所述第二预设值时,所述目标蒸发温度确定为所述第一预设蒸发温度。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,在所述多联机空调机组处于制热工况的情况下,“根据所述室外温度确定目标参数值的取值范围”的步骤具体包括:根据所述室外温度确定第一预设冷凝温度;将所述第一预设冷凝温度确定为取值范围的右端点;将第二预设冷凝温度确定为取值范围的左端点;根据确定出的左端点和右端点确定目标冷凝温度的取值范围。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤包括:当所述能力需求之和大于或等于第三预设值且小于或等于第四预设值时,所述目标冷凝温度的取值在所述目标参数值的取值范围内,并且所述能力需求之和与所述目标冷凝温度呈线性相关。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤还包括:当所述能力需求之和小于所述第三预设值时,所述目标冷凝温度确定为所述第二预设冷凝温度;并且/或者当所述能力需求之和大于所述第四预设值时,所述目标冷凝温度确定为所述第一预设冷凝温度。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,“获取所有处于运行状态的室内机的能力需求”的步骤具体包括:获取所有处于运行状态的室内机的设定温度及其所处环境的室内温度;计算所述室内温度与所述设定温度的差值;根据所述室内温度与所述设定温度的差值确定所述室内机的能力需求系数;根据所述室内机的能力需求系数和标称能力确定所述室内机的能力需求。
在上述用于多联机空调机组的压缩机频率控制方法的优选技术方案中,在“获取所有处于运行状态的室内机的能力需求”的步骤之前,所述压缩机频率控制方法还包括:获取所有即将运行的室内机的标称能力;计算所有即将运行的室内机的标称能力之和;计算所有即将运行的室内机的标称能力之和与室外机的标称能力的比值;根据所述比值和所述压缩机的额定初始频率确定所述压缩机的初始运行频率。
本领域技术人员能够理解的是,在本发明的技术方案中,本发明的多联机空调机组包括多个室内机,本发明的压缩机频率控制方法包括:获取所有处于运行状态的室内机的能力需求;计算所有处于运行状态的室内机的能力需求之和;根据所述能力需求之和确定目标参数值;根据确定出的目标参数值调节所述压缩机的频率;其中, 在所述多联机空调机组处于制冷工况时,所述目标参数值为目标蒸发温度;在所述多联机空调机组处于制热工况时,所述目标参数值为目标冷凝温度。本发明通过所有处于运行状态的室内机的能力需求之和来对所述压缩机的频率进行调节,以便有效兼顾所有处于运行状态的室内机的换热需求,并且本发明还通过在不同工况下选定不同目标参数值来对压缩机实现更加精准的控制,进而有效保证多联机空调机组能够始终维持高效运行的状态。
进一步地,本发明还通过获取室外温度来确定目标参数值的取值范围,再根据确定出的取值范围和所述能力需求之和来确定所述目标参数值,以便有效结合室外环境因素来更加精准地确定所述目标参数值,从而有效保证更加精确的控制,进而最大程度地提升多联机空调机组的运行效率。
附图说明
图1是本发明的压缩机频率控制方法的主要步骤流程图;
图2是本发明的第一优选实施例的具体步骤流程图;
图3是第一优选实施例中室内温度和设定温度的差值与能力需求系数的关系图;
图4是第一优选实施例中能力需求之和与目标蒸发温度的关系图;
图5是本发明的第二优选实施例的具体步骤流程图;
图6是第二优选实施例中室内温度和设定温度的差值与能力需求系数的关系图;
图7是第二优选实施例中能力需求之和与目标冷凝温度的关系图。
具体实施方式
下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非旨在限制本发明的保护范围。本领域技术人员可以根据需要对其作出调整,以便适应具体的应用场合。
需要说明的是,在本发明的描述中,尽管本申请中按照特定顺序描述了本发明的控制方法的各个步骤,但是这些顺序并不是限制性的,在不偏离本发明的基本原理的前提下,本领域技术人员可以按照不同的顺序来执行所述步骤。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。
具体地,本优选实施例中所述的多联机空调机组包括一个室外机以及与该室外机相连的三个室内机,所述室外机中设置有变频压缩机,用户可以给三个室内机分别设定不同温度。需要说明的是,本发明不对所述多联机空调机组的具体结构作任何限制,技术人员可以根据实际使用需求自行设定;例如,技术人员可以自行设定室内机的类型和数量。
此外,所述多联机空调机组还包括控制器,所述控制器中存储有各种标准数据,例如,室外机和各个室内机的标称能力、压缩机的额定初始频率等,还能够获取各个传感器的检测数据,例如,通过室外温度传感器来获取室外温度等,并且所述控制器还能够控制所述多联机空调机组的运行,例如,控制所述变频压缩机的运行频率等。本领域技术人员能够理解的是,本发明不对所述控制器的具体结构和型号作任何限制,并且所述控制器可以是所述多联机空调机组原有的控制器,也可以是为执行本发明的压缩机频率控制方法而单独设置的控制器,技术人员可以根据实际使用需求自行设定所述控制器的具体结构和型号。
首先参阅图1,该图是本发明的压缩机频率控制方法的主要步骤流程图。如图1所示,基于上述实施例中所述的多联机空调机组,本发明的压缩机频率控制方法主要包括下列步骤:
S1:获取所有处于运行状态的室内机的能力需求;
S2:计算所有处于运行状态的室内机的能力需求之和;
S3:根据能力需求之和确定目标参数值;
S4:根据确定出的目标参数值调节压缩机的频率。
在步骤S1中,所述控制器能够获取所有处于运行状态的室内机的能力需求,此处所述的处于运行状态的室内机就是正在进行换热的室内机。需要说明的是,本发明不对所述变频压缩机的初始运行频率作任何限制,技术人员可以根据实际使用需求自行设定,即在室内机开 启时,所述变频压缩机能够先以初始运行频率运行。也就是说,本发明不对步骤S1至S4的执行时机作任何限制,技术人员可以根据实际使用需求自行设定;例如,在所述变频压缩机以初始运行频率运行预设时间后执行。此外,还需要说明的是,本发明不对所述控制器获取室内机的能力需求的具体方式作任何限制,技术人员可以根据实际使用需求自行设定。接着,在步骤S2中,所述控制器能够计算所有处于运行状态的室内机的能力需求之和;当然,这个计算过程既可以由所述控制器完成,也可以由其他装置完成,再由所述控制器获取得到。
进一步地,在步骤S3中,所述控制器能够根据计算出的能力需求之和确定目标参数值,其中,在所述多联机空调机组处于制冷工况时,所述目标参数值为目标蒸发温度;在所述多联机空调机组处于制热工况时,所述目标参数值为目标冷凝温度。接着,在步骤S4中,所述控制器能够根据确定出的目标参数值调节所述变频压缩机的频率。换言之,在所述多联机空调机组处于制冷工况时,所述控制器能够根据计算出的能力需求之和确定目标蒸发温度,然后根据确定出的目标蒸发温度调节所述变频压缩机的频率;在所述多联机空调机组处于制热工况时,所述控制器能够根据计算出的能力需求之和确定目标冷凝温度,然后根据确定出的目标冷凝温度调节所述变频压缩机的频率。本发明通过所有处于运行状态的室内机的能力需求之和来对所述变频压缩机的频率进行调节,以便有效兼顾所有处于运行状态的室内机的换热需求,并且本发明还通过在不同工况下选定不同目标参数值来对变频压缩机实现更加精准的控制,进而有效保证多联机空调机组能够始终维持高效运行的状态。
进一步地,作为一种优选实施例,本发明还提供了一种确定变频压缩机的初始运行频率的方式,其具体包括:所述控制器获取所有即将运行的室内机的标称能力;接着,所述控制器能够计算出所有即将运行的室内机的标称能力之和;然后,所述控制器计算所有即将运行的室内机的标称能力之和与室外机的标称能力的比值,即为所述多联机空调机组的能力输出系数;最后,所述控制器能够根据计算出的上述比值(即能力输出系数)和所述变频压缩机的额定初始频率确定所述变频压缩机的初始运行频率,优选为通过计算上述比值和 额定初始频率的乘积作为所述变频压缩机的初始运行频率。当然,这种确定方式并不是限制性的,技术人员可以根据实际使用需求自行设定所述初始运行频率的具体确定方式;例如,还可以将上述比值和额定初始频率的乘积乘以一个比例系数后再作为所述变频压缩机的初始运行频率,优选地,该比例系数设定在90%至110%之间。
接着参阅图2,该图是本发明的第一优选实施例的具体步骤流程图。如图2所示,基于上述实施例中所述的多联机空调机组,在所述多联机空调机组处于制冷工况的情况下,本发明的压缩机频率控制方法的第一优选实施例具体包括下列步骤:
S101:获取所有处于运行状态的室内机的设定温度及其所处环境的室内温度;
S102:计算室内温度与设定温度的差值;
S103:根据室内温度与设定温度的差值确定室内机的能力需求系数;
S104:根据室内机的能力需求系数和标称能力确定室内机的能力需求;
S105:计算所有处于运行状态的室内机的能力需求之和;
S106:获取室外温度;
S107:根据室外温度确定目标蒸发温度的取值范围;
S108:根据确定出的取值范围和能力需求之和确定目标蒸发温度;
S109:根据确定出的目标蒸发温度调节压缩机的频率。
在本优选实施例的步骤S101至步骤S104中,本发明提供了一种确定处于运行状态的室内机的能力需求的方式,该方式具体包括:所述控制器获取处于运行状态的室内机的设定温度及其所处环境的室内温度,所述控制器可以通过室内机上自行配置的温度传感器来获取该室内机所处环境的室内温度,也可以借助外部温度传感器来获取该室内机所处环境的室内温度,这并不是限制性的,技术人员可以自行设定。接着,所述控制器能够计算出获取到的室内温度与设定温度的差值ΔE,这个计算过程既可以由所述控制器自行完成,也可以借助其他装置完成。
进一步地,所述控制器能够根据步骤S102中计算出的差值ΔE来确定室内机的能力需求系数,作为一种优选实施例,差值ΔE与室内机的能力需求系数之间的关系可以通过如图3所示的关系图进行确定,即将室内机的能力需求系数k设定在0至14之间,再根据室内温度与设定温度的差值ΔE的大小来选定能力需求系数k的具体值。需要说明的是,技术人员也可以将能力需求系数k设定在0至1之间,这种具体设定方式可以自行更改,只要能够代表占比即可。如图3所示,具体而言,当室内温度与设定温度的差值ΔE小于0℃时,能力需求系数k也为0;当室内温度与设定温度的差值ΔE大于5℃时,能力需求系数k为14;当室内温度与设定温度的差值ΔE在0℃到5℃之间(包括0℃和5℃)时,能力需求系数k则设定在0至14之间(包括0和14),并且室内温度与设定温度的差值ΔE与能力需求系数k呈线性正相关关系。在确定出所述室内机的能力需求系数后,所述控制器根据所述室内机的能力需求系数和其标称能力就可以确定出所述室内机的能力需求,具体地,所述室内机的能力需求系数和所述室内机的标称能力的乘积就是所述室内机的能力需求。所述控制器通过上述方式就可以一一确定出所有处于运行状态的室内机的能力需求,在获取到所有处于运行状态的室内机的能力需求之后,执行步骤S105,即,所述控制器计算出所有处于运行状态的室内机的能力需求之和,以便后续使用。
在步骤S106中,所述控制器能够获取室外温度;需要说明的是,本发明不对所述控制器获取室外温度的具体方式作任何限制,所述控制器既可以依靠所述空调机组自身设置的温度传感器来获取室外温度,也可以通过联网方式来获取室外温度,这种具体获取方式并不是限制性的。在获取到室外温度后,执行步骤S107,即,所述控制器能够根据室外温度确定出目标蒸发温度的取值范围。作为一种优选实施例,其具体确定方式为:根据所述室外温度确定出唯一的第一预设蒸发温度R;然后将所述第一预设蒸发温度确定为取值范围的左端点;再将所述第二预设蒸发温度确定为取值范围的右端点;最后根据确定出的左端点和右端点确定目标蒸发温度的取值范围。需要说明的是,技术人员可以根据不同室内机的类型自行设定所述第二预设蒸发 温度的具体取值,这种设定方式并不是限制性的。此外,本领域技术人员能够理解的是,本优选实施例中所述的步骤S101至步骤S105和步骤S106至步骤S107的执行顺序是可以调整的,技术人员可以根据实际使用需求自行设定其具体执行顺序,例如,可以先执行步骤S106至步骤S107,再执行步骤S101至步骤S105。这种具体执行顺序的改变并不偏离本发明的基本原理,属于本发明的保护范围。
作为一种优选确定方式,在所述空调机组处于制冷工况的情况下,室外温度与第一预设蒸发温度R之间的关系如下表所示:
室外温度Tao(单位:℃) 第一预设蒸发温度R(单位:℃)
Tao≤20℃ 0℃
20℃<Tao<43℃ 4℃
Tao≥43℃ 6℃
本优选实施例中所述的压缩机频率控制方法通过室外温度所处的不同范围来确定第一预设蒸发温度R的取值,以便确定出不同的目标蒸发温度的取值范围,以使所述变频压缩机能够得到更加精准的控制,进而有效提升所述多联机空调机组的换热效率。
在确定出目标蒸发温度的取值范围后,所述控制器就能够根据确定出的目标蒸发温度的取值范围和所有处于运行状态的室内机的能力需求之和确定目标蒸发温度的具体值;需要说明的是,本发明不对其具体确定方式作任何限制,技术人员可以根据实际使用需求自行设定这种具体确定方式。
作为一种优选实施例,当所述能力需求之和大于或等于所述第一预设值且小于或等于所述第二预设值时,所述目标蒸发温度的取值设定在确定出的取值范围内,并且所述能力需求之和与所述目标蒸发温度在这两个范围内呈线性相关;即,当所述能力需求之和在所述第一预设值和所述第二预设值的范围内时,与其对应的目标蒸发温度的取值则在所述第一预设蒸发温度和所述第二预设蒸发温度的范围内,并且两者之间呈线性负相关关系,以便通过最简洁的方式确定出更精确的取值,从而有效保证精确控制的效果。需要说明的是,技术人员可以根据多联机空调机组的具体情况自行设定所述第一预设值和所述第二预设值的具体值。此外,当所述能力需求之和小于所述第 一预设值时,所述目标蒸发温度确定为所述第二预设蒸发温度;当所述能力需求之和大于所述第二预设值时,所述目标蒸发温度确定为所述第一预设蒸发温度。
基于上述优选实施例中所述的确定方式,以处于运行状态的室内机的数量为三个,并且每个室内机的标称能力均为1匹的情况为例,作为一种优选确定方式,计算出的能力需求之和S-code与目标蒸发温度ET之间的关系如图4所示。接着参阅图4,在本优选实施例中,所述第一预设蒸发温度R的取值通过上述优选实施例中的表格确定,所述第二预设蒸发温度被设定为12℃,所述第一预设值被设定为1,所述第二预设值被设定为42。基于此,当能力需求之和S-code小于1时,目标蒸发温度ET确定为12℃;当能力需求之和S-code大于或等于1且小于或等于42时,目标蒸发温度ET被设定在第一预设蒸发温度R与所述第二预设蒸发温度(即12℃)之间,并且能力需求之和S-code与目标蒸发温度ET呈线性负相关关系。在确定出目标蒸发温度ET以后,对所述多联机空调机组原有的目标蒸发温度进行调节,以使所述控制器能够根据确定出的目标蒸发温度ET对所述变频压缩机的频率进行控制。
接着参阅图5,该图是本发明的第二优选实施例的具体步骤流程图。如图5所示,基于上述实施例中所述的多联机空调机组,在所述多联机空调机组处于制热工况的情况下,本发明的压缩机频率控制方法的第二优选实施例具体包括下列步骤:
S201:获取所有处于运行状态的室内机的设定温度及其所处环境的室内温度;
S202:计算室内温度与设定温度的差值;
S203:根据室内温度与设定温度的差值确定室内机的能力需求系数;
S204:根据室内机的能力需求系数和标称能力确定室内机的能力需求;
S205:计算所有处于运行状态的室内机的能力需求之和;
S206:获取室外温度;
S207:根据室外温度确定目标冷凝温度的取值范围;
S208:根据确定出的取值范围和能力需求之和确定目标冷凝温度;
S209:根据确定出的目标冷凝温度调节压缩机的频率。
在本优选实施例的步骤S201至步骤S204中,本发明提供了一种确定处于运行状态的室内机的能力需求的方式,该方式具体包括:所述控制器获取处于运行状态的室内机的设定温度及其所处环境的室内温度,所述控制器可以通过室内机上自行配置的温度传感器来获取该室内机所处环境的室内温度,也可以借助外部温度传感器来获取该室内机所处环境的室内温度,这并不是限制性的,技术人员可以自行设定。接着,所述控制器能够计算出获取到的室内温度与设定温度的差值ΔE,这个计算过程既可以由所述控制器自行完成,也可以借助其他装置完成。
进一步地,所述控制器能够根据步骤S202中计算出的差值ΔE来确定室内机的能力需求系数,作为一种优选实施例,差值ΔE与室内机的能力需求系数之间的关系可以通过如图6所示的关系图进行确定,即,将室内机的能力需求系数k设定在0至14之间,再根据室内温度与设定温度的差值ΔE的大小来选定能力需求系数k的具体值。如图5所示,具体地,当室内温度与设定温度的差值ΔE小于﹣5℃时,能力需求系数k设定为14;当室内温度与设定温度的差值ΔE大于0℃时,能力需求系数k设定为0;当室内温度与设定温度的差值ΔE在﹣5℃到0℃之间(包括﹣5℃和0℃)时,能力需求系数k则设定在0至14之间(包括0和14),并且室内温度与设定温度的差值ΔE与能力需求系数k呈线性负相关关系。在确定出所述室内机的能力需求系数后,所述控制器根据所述室内机的能力需求系数和其标称能力就可以确定出所述室内机的能力需求,具体地,所述室内机的能力需求系数和所述室内机的标称能力的乘积就是所述室内机的能力需求。基于上述优选实施例中所述的确定方式,所述控制器通过该方式就可以一一确定出所有处于运行状态的室内机的能力需求,在获取到所有处于运行状态的室内机的能力需求之后,执行步骤S105,即所述控制器计算出所有处于运行状态的室内机的能力需求之和,以便后续使用。
在步骤S206中,所述控制器能够获取室外温度。在获取到室外温度后,执行步骤S207,即,所述控制器能够根据室外温度确定出目标冷凝温度的取值范围。作为一种优选实施例,其具体确定方式为:根据所述室外温度确定出唯一的第一预设冷凝温度R';然后将所述第一预设冷凝温度R'确定为取值范围的右端点;再将所述第二预设冷凝温度确定为取值范围的左端点;最后根据确定出的左端点和右端点确定目标冷凝温度的取值范围。需要说明的是,技术人员可以根据不同室内机的类型自行设定所述第二预设冷凝温度的具体值,这种设定方式并不是限制性的。此外,本领域技术人员能够理解的是,本优选实施例中所述的步骤S201至步骤S205和步骤S206至步骤S207的执行顺序是可以调整的,技术人员可以根据实际使用需求自行设定其具体执行顺序,例如,可以先执行步骤S206至步骤S207,再执行步骤S201至步骤S205。这种具体执行顺序的改变并不偏离本发明的基本原理,属于本发明的保护范围。
作为一种优选确定方式,在所述空调机组处于制热工况的情况下,室外温度与第一预设冷凝温度R'之间的关系如下表所示:
室外温度Tao(单位:℃) 第一预设冷凝温度R'(单位:℃)
Tao≤﹣15℃ 44℃
﹣15℃<Tao<15℃ 48℃
Tao≥15℃ 54℃
本优选实施例中所述的压缩机频率控制方法通过室外温度所处的不同范围来确定第一预设冷凝温度R'的取值,以便确定出不同的目标冷凝温度的取值范围,以使所述变频压缩机能够得到更加精准的控制,进而有效提升所述多联机空调机组的换热效率。
在确定出目标冷凝温度的取值范围后,所述控制器就能够根据确定出的目标冷凝温度的取值范围和所有处于运行状态的室内机的能力需求之和确定目标冷凝温度的具体值;需要说明的是,本发明不对其具体确定方式作任何限制,技术人员可以根据实际使用需求自行设定这种具体确定方式。
作为一种优选实施例,当所述能力需求之和大于或等于所述第三预设值且小于或等于所述第四预设值时,所述目标冷凝温度 的取值设定在确定出的取值范围内,并且所述能力需求之和与所述目标冷凝温度在这两个范围内呈线性相关;即,当所述能力需求之和在所述第三预设值和所述第四预设值的范围内时,与其对应的目标冷凝温度的取值则在所述第一预设冷凝温度和所述第二预设冷凝温度的范围内,并且两者之间呈线性正相关关系,以便通过最简洁的方式确定出更精确的取值,从而有效保证精确控制的效果。需要说明的是,技术人员可以根据多联机空调机组的具体情况自行设定所述第三预设值和所述第四预设值的具体值。此外,当所述能力需求之和小于所述第三预设值时,所述目标冷凝温度确定为所述第二预设冷凝温度;当所述能力需求之和大于所述第四预设值时,所述目标冷凝温度确定为所述第一预设冷凝温度。
基于上述优选实施例中所述的确定方式,以处于运行状态的室内机的数量为三个,并且每个室内机的标称能力均为1匹的情况为例,作为一种优选确定方式,能力需求之和S-code与目标冷凝温度CT之间的关系如图7所示。接着参阅图7,在本优选实施例中,第一预设冷凝温度R'的取值通过上述优选实施例中的表格确定,所述第二预设冷凝温度被设定为36℃,所述第一预设值被设定为1,所述第二预设值被设定为42。基于此,当能力需求之和S-code小于1时,目标冷凝温度CT被确定为36℃;当能力需求之和S-code大于或等于1且小于或等于42时,目标冷凝温度CT被设定在所述第二预设冷凝温度(即36℃)与第一预设冷凝温度R'之间,并且能力需求之和S-code与目标冷凝温度CT呈线性正相关关系。在确定出目标冷凝温度CT以后,对所述多联机空调机组原有的目标冷凝温度进行调节,以使所述控制器能够根据确定出的目标冷凝温度CT对所述变频压缩机的频率进行控制。
至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征作出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。

Claims (10)

  1. 一种用于多联机空调机组的压缩机频率控制方法,其特征在于,所述多联机空调机组包括多个室内机,所述压缩机频率控制方法包括:
    获取所有处于运行状态的室内机的能力需求;
    计算所有处于运行状态的室内机的能力需求之和;
    根据所述能力需求之和确定目标参数值;
    根据确定出的目标参数值调节所述压缩机的频率;
    其中,在所述多联机空调机组处于制冷工况时,所述目标参数值为目标蒸发温度;在所述多联机空调机组处于制热工况时,所述目标参数值为目标冷凝温度。
  2. 根据权利要求1所述的压缩机频率控制方法,其特征在于,“根据所述能力需求之和确定目标参数值”的步骤具体包括:
    获取室外温度;
    根据所述室外温度确定目标参数值的取值范围;
    根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值。
  3. 根据权利要求2所述的压缩机频率控制方法,其特征在于,在所述多联机空调机组处于制冷工况的情况下,“根据所述室外温度确定目标参数值的取值范围”的步骤具体包括:
    根据所述室外温度确定出第一预设蒸发温度;
    将所述第一预设蒸发温度确定为取值范围的左端点;
    将第二预设蒸发温度确定为取值范围的右端点;
    根据确定出的左端点和右端点确定目标蒸发温度的取值范围。
  4. 根据权利要求3所述的压缩机频率控制方法,其特征在于,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤包括:
    当所述能力需求之和大于或等于第一预设值且小于或等于第二预 设值时,所述目标蒸发温度的取值在所述目标参数值的取值范围内,并且所述能力需求之和与所述目标蒸发温度呈线性相关。
  5. 根据权利要求4所述的压缩机频率控制方法,其特征在于,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤还包括:
    当所述能力需求之和小于所述第一预设值时,所述目标蒸发温度确定为所述第二预设蒸发温度;并且/或者
    当所述能力需求之和大于所述第二预设值时,所述目标蒸发温度确定为所述第一预设蒸发温度。
  6. 根据权利要求2所述的压缩机频率控制方法,其特征在于,在所述多联机空调机组处于制热工况的情况下,“根据所述室外温度确定目标参数值的取值范围”的步骤具体包括:
    根据所述室外温度确定第一预设冷凝温度;
    将所述第一预设冷凝温度确定为取值范围的右端点;
    将第二预设冷凝温度确定为取值范围的左端点;
    根据确定出的左端点和右端点确定目标冷凝温度的取值范围。
  7. 根据权利要求6所述的压缩机频率控制方法,其特征在于,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤包括:
    当所述能力需求之和大于或等于第三预设值且小于或等于第四预设值时,所述目标冷凝温度的取值在所述目标参数值的取值范围内,并且所述能力需求之和与所述目标冷凝温度呈线性相关。
  8. 根据权利要求7所述的压缩机频率控制方法,其特征在于,“根据所述目标参数值的取值范围和所述能力需求之和确定所述目标参数值”的步骤还包括:
    当所述能力需求之和小于所述第三预设值时,所述目标冷凝温度确定为所述第二预设冷凝温度;并且/或者
    当所述能力需求之和大于所述第四预设值时,所述目标冷凝温度确定为所述第一预设冷凝温度。
  9. 根据权利要求1至8中任一项所述的压缩机频率控制方法,其特征在于,“获取所有处于运行状态的室内机的能力需求”的步骤具体包括:
    获取所有处于运行状态的室内机的设定温度及其所处环境的室内温度;
    计算所述室内温度与所述设定温度的差值;
    根据所述室内温度与所述设定温度的差值确定所述室内机的能力需求系数;
    根据所述室内机的能力需求系数和标称能力确定所述室内机的能力需求。
  10. 根据权利要求1至8中任一项所述的压缩机频率控制方法,其特征在于,在“获取所有处于运行状态的室内机的能力需求”的步骤之前,所述压缩机频率控制方法还包括:
    获取所有即将运行的室内机的标称能力;
    计算所有即将运行的室内机的标称能力之和;
    计算所有即将运行的室内机的标称能力之和与室外机的标称能力的比值;
    根据所述比值和所述压缩机的额定初始频率确定所述压缩机的初始运行频率。
PCT/CN2021/089764 2020-06-23 2021-04-26 用于多联机空调机组的压缩机频率控制方法 WO2021223616A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010582780.0A CN113834175B (zh) 2020-06-23 2020-06-23 用于多联机空调机组的压缩机频率控制方法
CN202010582780.0 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021223616A1 true WO2021223616A1 (zh) 2021-11-11

Family

ID=78468616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/089764 WO2021223616A1 (zh) 2020-06-23 2021-04-26 用于多联机空调机组的压缩机频率控制方法

Country Status (2)

Country Link
CN (1) CN113834175B (zh)
WO (1) WO2021223616A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739081A (zh) * 2022-03-29 2022-07-12 青岛海尔空调电子有限公司 一种空调机组控制方法、控制系统及空调机组
CN114754532A (zh) * 2022-04-26 2022-07-15 青岛海尔空调电子有限公司 用于冷库冷凝机组控制的方法、装置、设备及存储介质
CN115096025A (zh) * 2022-06-27 2022-09-23 四川长虹空调有限公司 变频风冷谷物冷却机压缩机频率控制方法
CN115217739A (zh) * 2022-07-12 2022-10-21 珠海格力电器股份有限公司 压缩机单双缸切换方法以及空调机组
CN115682395A (zh) * 2022-11-04 2023-02-03 宁波奥克斯电气股份有限公司 多联机蒸发温度控制方法、装置及多联机

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115111825B (zh) * 2022-06-20 2023-10-31 青岛海信日立空调系统有限公司 一种压缩机运行频率的确定方法及装置
CN115143611A (zh) * 2022-07-22 2022-10-04 广东欧科空调制冷有限公司 一种多联式空调器组合模块系统的分配控制方法及系统
CN115307280A (zh) * 2022-08-17 2022-11-08 广东美的制冷设备有限公司 多联机空调系统的控制方法、控制器、空调系统及介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410890A (en) * 1994-01-27 1995-05-02 Fujitsu General Limited Control apparatus of air-conditioner
CN101968249A (zh) * 2010-09-09 2011-02-09 宁波奥克斯电气有限公司 直流变频压缩机正常运行频率调节方法
CN103486692A (zh) * 2013-09-17 2014-01-01 青岛海信日立空调系统有限公司 负荷自适应变频多联式热泵系统及控制压缩机频率的方法
CN103512154A (zh) * 2013-08-19 2014-01-15 南京天加空调设备有限公司 一种模块式多联机控制方法
CN103604199A (zh) * 2013-11-18 2014-02-26 广东美的暖通设备有限公司 多联机空调系统及其节能控制方法、节能控制装置
CN105571067A (zh) * 2016-01-04 2016-05-11 青岛海尔空调电子有限公司 一种多联机控制方法及系统
CN106369757A (zh) * 2016-09-28 2017-02-01 珠海格力电器股份有限公司 一种多联机的压缩机频率控制方法、装置及多联机
CN107166647A (zh) * 2017-05-19 2017-09-15 青岛海尔空调电子有限公司 一种多联机控制方法及系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487857B2 (ja) * 2009-09-30 2014-05-14 ダイキン工業株式会社 空調システム
CN105026846B (zh) * 2013-03-05 2018-03-06 三菱电机株式会社 空调系统
CN106382728B (zh) * 2016-09-30 2019-11-01 广东美的制冷设备有限公司 一种变频空调的控制方法、装置及变频空调
JPWO2019043941A1 (ja) * 2017-09-04 2020-03-26 三菱電機株式会社 空気調和装置
CN107860103B (zh) * 2017-10-27 2020-04-03 广东美的暖通设备有限公司 多联机系统的控制方法、装置及具有其的系统
CN109357374B (zh) * 2018-10-25 2020-12-11 宁波奥克斯电气股份有限公司 一种制热控制方法、装置及多联机空调系统
CN111256335B (zh) * 2020-02-17 2021-08-03 海信(山东)空调有限公司 一种热泵空调中变频压缩机的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410890A (en) * 1994-01-27 1995-05-02 Fujitsu General Limited Control apparatus of air-conditioner
CN101968249A (zh) * 2010-09-09 2011-02-09 宁波奥克斯电气有限公司 直流变频压缩机正常运行频率调节方法
CN103512154A (zh) * 2013-08-19 2014-01-15 南京天加空调设备有限公司 一种模块式多联机控制方法
CN103486692A (zh) * 2013-09-17 2014-01-01 青岛海信日立空调系统有限公司 负荷自适应变频多联式热泵系统及控制压缩机频率的方法
CN103604199A (zh) * 2013-11-18 2014-02-26 广东美的暖通设备有限公司 多联机空调系统及其节能控制方法、节能控制装置
CN105571067A (zh) * 2016-01-04 2016-05-11 青岛海尔空调电子有限公司 一种多联机控制方法及系统
CN106369757A (zh) * 2016-09-28 2017-02-01 珠海格力电器股份有限公司 一种多联机的压缩机频率控制方法、装置及多联机
CN107166647A (zh) * 2017-05-19 2017-09-15 青岛海尔空调电子有限公司 一种多联机控制方法及系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739081A (zh) * 2022-03-29 2022-07-12 青岛海尔空调电子有限公司 一种空调机组控制方法、控制系统及空调机组
CN114754532A (zh) * 2022-04-26 2022-07-15 青岛海尔空调电子有限公司 用于冷库冷凝机组控制的方法、装置、设备及存储介质
CN114754532B (zh) * 2022-04-26 2024-02-20 青岛海尔空调电子有限公司 用于冷库冷凝机组控制的方法、装置、设备及存储介质
CN115096025A (zh) * 2022-06-27 2022-09-23 四川长虹空调有限公司 变频风冷谷物冷却机压缩机频率控制方法
CN115096025B (zh) * 2022-06-27 2024-01-30 四川长虹空调有限公司 变频风冷谷物冷却机压缩机频率控制方法
CN115217739A (zh) * 2022-07-12 2022-10-21 珠海格力电器股份有限公司 压缩机单双缸切换方法以及空调机组
CN115217739B (zh) * 2022-07-12 2023-08-29 珠海格力电器股份有限公司 压缩机单双缸切换方法以及空调机组
CN115682395A (zh) * 2022-11-04 2023-02-03 宁波奥克斯电气股份有限公司 多联机蒸发温度控制方法、装置及多联机

Also Published As

Publication number Publication date
CN113834175A (zh) 2021-12-24
CN113834175B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
WO2021223616A1 (zh) 用于多联机空调机组的压缩机频率控制方法
US11892213B2 (en) Multi-connection air conditioning system and method for calculating heat exchange amount thereof
WO2020119038A1 (zh) 空调器的控制方法及装置和空调器
CN104990222B (zh) 空调控制方法及装置
WO2019153888A1 (zh) 空调机组控制方法和装置、空调机组
JP6739671B1 (ja) 情報処理装置
CN113339947B (zh) 空调器的控制方法、装置、空调器和存储介质
WO2023065755A1 (zh) 空气源热泵机组的控制方法、装置和电子设备
CN108826599B (zh) 用于空调系统的控制方法
CN113883661B (zh) 用于多联机空调系统的除霜控制方法
WO2023279850A1 (zh) 空调器的控制方法、空调器、存储介质及程序产品
JP6972468B2 (ja) 空調装置の評価装置および評価方法
CN113339978A (zh) 全品质空调的基准运行频率确定方法、装置和全品质空调
CN112856748B (zh) 冷量输出控制方法、装置、机房空调和存储介质
Winkler Laboratory test report for Fujitsu 12RLS and Mitsubishi FE12NA mini-split heat pumps
CN113587384B (zh) 空调器的控制方法、装置、空调器和存储介质
WO2014203731A1 (ja) 運転制御装置及び運転制御方法
CN111412624A (zh) 空调机组及其压缩机频率控制方法
KR101955812B1 (ko) Vrf 히트펌프 시스템의 냉·난방 능력의 예측식 산출 방법
JP2015132388A (ja) 空調制御方法および空調制御システム
Shen et al. Multiple-Zone Variable Refrigerant Flow System Modeling and Equipment Performance Mapping.
CN111121242B (zh) 一种空调系统运行参数的调节方法、调节装置和空调系统
CN111271848B (zh) 一种空调器的控制方法及其空调器
CN115435385A (zh) 多联机的空调系统及其控制方法、存储介质
CN112797520A (zh) 一种空调及ahu机组温度的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21800894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21800894

Country of ref document: EP

Kind code of ref document: A1