WO2020235181A1 - 制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラム - Google Patents

制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラム Download PDF

Info

Publication number
WO2020235181A1
WO2020235181A1 PCT/JP2020/010244 JP2020010244W WO2020235181A1 WO 2020235181 A1 WO2020235181 A1 WO 2020235181A1 JP 2020010244 W JP2020010244 W JP 2020010244W WO 2020235181 A1 WO2020235181 A1 WO 2020235181A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
unit
communication cable
failure
failure diagnosis
Prior art date
Application number
PCT/JP2020/010244
Other languages
English (en)
French (fr)
Inventor
宏章 ▲高▼木
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to US17/605,240 priority Critical patent/US20220311659A1/en
Priority to CN202080028023.7A priority patent/CN113692730A/zh
Priority to EP20808891.4A priority patent/EP3975509B1/en
Publication of WO2020235181A1 publication Critical patent/WO2020235181A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • G05B19/0423Input/output
    • G05B19/0425Safety, monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0677Localisation of faults
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0706Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation the processing taking place on a specific hardware platform or in a specific software environment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0751Error or fault detection not based on redundancy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/07Responding to the occurrence of a fault, e.g. fault tolerance
    • G06F11/0703Error or fault processing not based on redundancy, i.e. by taking additional measures to deal with the error or fault not making use of redundancy in operation, in hardware, or in data representation
    • G06F11/0766Error or fault reporting or storing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0631Management of faults, events, alarms or notifications using root cause analysis; using analysis of correlation between notifications, alarms or events based on decision criteria, e.g. hierarchy, tree or time analysis
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/06Management of faults, events, alarms or notifications
    • H04L41/0654Management of faults, events, alarms or notifications using network fault recovery
    • H04L41/0659Management of faults, events, alarms or notifications using network fault recovery by isolating or reconfiguring faulty entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0811Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking connectivity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/40Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass for recovering from a failure of a protocol instance or entity, e.g. service redundancy protocols, protocol state redundancy or protocol service redirection
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/22Pc multi processor system
    • G05B2219/2231Master slave
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a control device, a network system, a control method and a control program of the network system.
  • FA factory automation
  • a master-slave network consisting of various slave devices and a master device is used.
  • a slave device is a device that controls equipment installed in a factory or collects data.
  • the master device is a device that centrally manages these slaves, for example, a device called (PLC: Programmable Logic Controller).
  • EtherCAT® or Ethernet / IP is an example of such an industrial network system scheme (ETHERNET: Registered Trademark).
  • ETHERNET Registered Trademark
  • the slave device can notify the master device of the link-off information notifying the communication blackout between the slave devices. Therefore, the administrator can know through the master device that some kind of communication abnormality has occurred between specific slave devices. However, it is not possible to know whether the cause of the communication interruption is a failure of the communication cable. Also, it is not possible to know where the failure point is on the communication cable.
  • Patent Document 1 a technique is disclosed in which a communication terminal is provided with a function of determining a failure state of a communication cable. However, it is only possible to determine the failure state of the communication cable connected to the specific communication terminal from the specific communication terminal.
  • the present invention has been made in view of the above problems, and an administrator can easily identify a faulty part of a communication cable in an industrial network system, thereby performing maintenance work on the communication cable.
  • the purpose is to realize a master device that enables efficient execution.
  • the present invention adopts the following configuration in order to solve the above-mentioned problems.
  • the control device is a control device that is the master device used in a network system including a master device and a plurality of slave devices, and the slave device is a first device on the master device side.
  • the first communication unit connected to the other unit of 1 by the first communication cable, and the second communication unit connected to the second other unit on the opposite side of the master device by the second communication cable.
  • a first detection unit provided in the first communication unit which performs a failure diagnosis including detection of a failure location of the first communication cable, and a first detection unit which holds the result of the failure diagnosis by the first detection unit.
  • a second detection unit provided in the recording unit and the second communication unit for performing a failure diagnosis including detection of a failure location of the second communication cable, and a second detecting unit for holding the result of the failure diagnosis by the second detection unit.
  • a communication instruction unit that has a recording unit and instructs the slave device to execute / stop communication with the first other device or the second other device, and the slave device.
  • the result of the failure diagnosis is obtained from the diagnosis instruction unit for instructing the execution of the failure diagnosis of the first communication cable or the second communication cable, and the first recording unit or the second recording unit of the slave device.
  • a unit for reading the diagnosis result to be read and a unit for calculating the length of the first communication cable or the second communication cable from the slave device to the failure location from the read result of the failure diagnosis are provided. ing.
  • the network system is a network system including a master device and a plurality of slave devices, and the slave device is a first communication cable with a first other device on the master device side.
  • the first communication unit is provided with a first communication unit connected by a device, a second communication unit connected to a second other device on the opposite side of the master device by a second communication cable, and further to the first communication unit.
  • the first detection unit that performs failure diagnosis including detection of the failure location of the first communication cable, the first recording unit that holds the result of the failure diagnosis by the first detection unit, and the second communication unit are provided.
  • the master device has a second detection unit for performing a failure diagnosis including detection of a failure location of the second communication cable and a second recording unit for holding the result of the failure diagnosis by the second detection unit.
  • a communication instruction unit that instructs the slave device to execute / stop communication with the first other device or the second other device, and the first communication cable or the said slave device.
  • a diagnostic instruction unit that instructs the execution of the failure diagnosis of the second communication cable, and a diagnostic result reading unit that reads the result of the failure diagnosis from the first recording unit or the second recording unit of the slave device.
  • a calculation unit for calculating the length of the first communication cable or the second communication cable from the slave device to the failure location from the result of the failure diagnosis is provided.
  • the method for controlling a network system is a method for controlling a network system used in a network system including a master device and a plurality of slave devices, wherein the slave device is a first device on the master device side.
  • the first communication unit connected to the other unit of 1 by the first communication cable, and the second communication unit connected to the second other unit on the opposite side of the master device by the second communication cable.
  • a first detection unit provided in the first communication unit, which performs a failure diagnosis including detection of a failure location of the first communication cable, and a first detection unit which holds the result of the failure diagnosis by the first detection unit.
  • the administrator can communicate in the industrial network system. It becomes possible to easily identify the faulty part of the cable, and thus it is possible to efficiently carry out the maintenance work of the communication cable.
  • the control device is the master device used in a network system including a master device and a plurality of slave devices.
  • the slave device includes a first communication unit connected to the first other device on the master device side by a first communication cable, and a second other device on the opposite side of the master device. It includes a second communication unit connected by a second communication cable.
  • the slave device further holds the results of the failure diagnosis by the first detection unit and the first detection unit, which are provided in the first communication unit and perform the failure diagnosis including the detection of the failure location of the first communication cable. Holds the results of the failure diagnosis by the first recording unit, the second detection unit provided in the second communication unit, the second detection unit that performs the failure diagnosis including the detection of the failure location of the second communication cable, and the second detection unit. It has a second recording unit and a second recording unit.
  • the control device includes a communication instruction unit, a diagnosis instruction unit, a diagnosis result reading unit, and a calculation unit.
  • the communication instruction unit instructs the slave device to execute / stop communication with the first other device or the second other device.
  • the diagnostic instruction unit instructs the slave device to perform a failure diagnosis of the first communication cable or the second communication cable.
  • the diagnosis result reading unit reads the result of the failure diagnosis from the first recording unit or the second recording unit of the slave device.
  • the calculation unit calculates the length of the first communication cable or the second communication cable from the slave device to the failure location from the read result of the failure diagnosis.
  • the control device which is a master device, instructs a required slave device to stop communication, and causes a failure diagnosis including detection of a failure location of a communication cable connected to the slave device. Can be done.
  • the result of the failure diagnosis can be read from the slave device, and the location of the failure in the required communication cable can be identified. Therefore, the administrator of the network system can easily identify the faulty part in the communication cable stretched in the network system. Therefore, the network system administrator can efficiently carry out maintenance work such as removal and replacement of the location where the cable failure occurs in the field network, identification of the location where the cable abnormality frequently occurs, and countermeasures.
  • FIG. 1 is a schematic configuration diagram showing a network system 1 including a master device 10 (control device) according to the first embodiment.
  • the network system 1 includes a master device 10 and a plurality of slave devices 20.
  • EtherCAT registered trademark
  • Ethernet / IP is applied to the network system 1 (ETHERNET: registered trademark).
  • the slave device 20 has a communication unit (not shown in FIG. 1) on the master side (upstream side) and a communication unit (not shown) on the opposite side (downstream side), and each of them is another device (master device). It is connected to 10 or the slave device 20) by a communication cable 30.
  • a display device 11 may be connected to the master device 10.
  • a communication network such as Ethernet (registered trademark) or Ethernet / IP can be applied to the connection between the master device 10 and the display device 11.
  • a computer 12 also called a tool may be connected to the master device 10.
  • USB Universal Serial Bus
  • FIG. 2 is a block diagram showing the network system 1 together with the configuration of the master device 10 according to the first embodiment.
  • the master device 10 (control device) includes a master control unit 110, a master communication unit 120, a master recording unit 130, a master output unit 140, and a master input unit 150.
  • the master communication unit 120 is a functional block that communicates with a plurality of slave devices 20 (20a to 20d, etc.).
  • the master recording unit 130 is a functional block that records, reads, and holds data.
  • the master output unit 140 is an interface that causes the display device 11 to display information. Although the display device 11 is shown in FIG. 2 as a device for displaying information, it may be a computer 12.
  • the master input unit 150 is provided with a user interface such as a switch and a touch panel, and accepts operation instructions and selections operated by the administrator.
  • the master input unit 150 does not necessarily have to be provided, and in that case, the master device 10 is instructed by another device such as the computer 12 to instruct and select the operation by the operation of the administrator. It may be a thing.
  • the master control unit 110 controls these functional blocks including the master communication unit 120.
  • the master control unit 110 may execute processing of data acquired through the master communication unit 120, the master input unit 150, or the master recording unit 130, and adjust the control according to the result. Further, the master control unit 110 may execute the processing of these data and display the result on the display device 11 through the master output unit 140.
  • the master control unit 110 has at least functional blocks of a selection unit 111, a communication instruction unit 112, a diagnosis instruction unit 113, a diagnosis result reading unit 114, a calculation unit 115, and an output instruction unit 116. The functions of these functional blocks will be described later.
  • FIG. 2 shows, as an example, that the slave devices 20a to 20d are sequentially connected by communication cables 30a to 30d in order from the side of the master device 10.
  • Each of the slave devices 20a to 20d has a similar configuration for communication, but in FIG. 2, the configuration is shown only for the slave device 20c.
  • the slave device 20c includes a slave control unit 210, a first communication unit 220, and a second communication unit 230.
  • the first communication unit 220 is connected to the slave device 20b, which is another device, through the communication cable 30c.
  • the second communication unit 230 is connected to the slave device 20d, which is another device, through the communication cable 30d. That is, the first communication unit 220 is a communication unit on the master side (upstream side, IN side), and the second communication unit is a communication unit on the opposite side (downstream side, OUT side).
  • the first communication unit 220 and the second communication unit 230 are circuits also called PHY, respectively.
  • the slave control unit 210 is a functional block that can control a functional block including the first communication unit 220 and the second communication unit 230. Further, the slave control unit 210 controls various controls in the slave device 20c and executes information processing.
  • the first communication unit 220 is provided with each functional block of the first communication control unit 221 and the first communication execution unit 222, the first detection unit 223, and the first recording unit 224.
  • the first communication control unit 221 is a functional block that controls the entire first communication unit 220 and controls the communication by the first communication unit 220.
  • the first communication execution unit 222 is a functional block that executes communication packet exchange with another device 20b through the communication cable 30c based on the instruction of the first communication control unit 221.
  • the first detection unit 223 is a functional block that executes a failure diagnosis of the communication cable 30c based on the instruction of the first communication control unit 221.
  • the first recording unit 224 is a register that records the result of the failure diagnosis acquired by the first detection unit 223. In the failure diagnosis, at least the presence or absence of a failure and the distance information that correlates with the length from the first communication unit 220 to the failure point in the communication cable 30c when there is a failure are detected.
  • the first detection unit 223 sends out a specific signal waveform to the connected communication cable 30c and detects the reflected signal when executing the failure diagnosis. As a result, the first detection unit 223 detects the distance information that correlates with the length of the communication cable 30c to the failure location. Further, a failure determination may be performed to determine the state of the communication cable 30c, that is, whether it is normal, disconnection failure, or short-circuit failure. When the first detection unit 223 executes the failure diagnosis, the first detection unit 223 records the result in the first recording unit 224.
  • the second communication unit 230 is provided with each functional block of the second communication control unit 231 and the second communication execution unit 232, the second detection unit 233, and the second recording unit 234.
  • the second communication control unit 231 is a functional block that controls the entire second communication unit 230 and controls the communication by the second communication unit 230.
  • the second communication execution unit 232 is a functional block that executes communication packet exchange with another device 20d through the communication cable 30d based on the instruction of the second communication control unit 231.
  • the second detection unit 233 is a functional block that executes a failure diagnosis of the communication cable 30d based on the instruction of the second communication control unit 231.
  • the second recording unit 234 is a register that records the result of the failure diagnosis acquired by the second detection unit 233. In the failure diagnosis, at least the distance information correlating with the length from the second communication unit 230 to the failure point in the communication cable 30d is detected.
  • the second detection unit 233 sends out a specific signal waveform to the connected communication cable 30d when executing the failure diagnosis, and detects the reflected signal. As a result, the second detection unit 233 detects the distance information that correlates with the length of the communication cable 30d to the failure location. Further, a failure determination may be performed to determine the state of the communication cable 30d, that is, whether it is normal, disconnection failure, or short-circuit failure. When the second detection unit 233 executes the failure diagnosis, the second detection unit 233 records the result in the second recording unit 234.
  • the master device 10 communicates with each slave device 20 regarding control of each device, data collection, and the like. Further, in the first embodiment, the master device 10 repeatedly executes the following characteristic operations for monitoring the communication cable 30.
  • FIG. 3 is a flowchart illustrating a characteristic operation for monitoring the communication cable 30 executed by the master device 10.
  • the master device 10 repeatedly executes the following flows from step S101 to step S109 while the network system 1 is in operation.
  • Step S101 The selection unit 111 monitors whether or not the slave device 20 (20a to 20d, etc.) has notified the link-off information indicating that the communication with the other device has been interrupted through the master communication unit 120.
  • the link-off information to the master device 10 is usually notified from the slave device 20 located on the master side (upstream side) among the slave devices 20 directly connected to each other. This is because the information from the slave device 20 on the downstream side does not go up to the master device 10 due to the interruption of communication. If the link-off information is detected (YES in S101), the process proceeds to step S102, and in other cases (NO in S101), the flow ends.
  • Step S102 The selection unit 111 selects the slave device 20 that has notified the link-off information.
  • the slave device 20 will be referred to as the slave device 20c in FIG. 2, and the link-off will be described on the second communication unit 230 side (OUT side) thereof.
  • the communication instruction unit 112 instructs the selected slave device 20c to stop the communication in the second communication unit 230.
  • the second communication control unit 231 stops the communication (communication trial) with the slave device 20d by the second communication execution unit 232.
  • Step S103 Subsequently, the diagnostic instruction unit 113 instructs the selected slave device 20c to execute the cable diagnosis from the second communication unit 230.
  • Step S104 Subsequently, the master control unit 110 waits for a predetermined time.
  • the second communication control unit 231 causes the second detection unit 233 to execute the failure diagnosis of the communication cable 30d.
  • the second detection unit 233 stores the result of the failure diagnosis of the communication cable 30d in the second recording unit 234.
  • Step S105 Subsequently, the diagnosis result reading unit 114 reads the result of the failure diagnosis of the communication cable 30d from the second recording unit 234 of the selected slave device 20c.
  • Step S106 Subsequently, the calculation unit 115 analyzes the result of the failure diagnosis. Acquires the state of the communication cable 30d, that is, whether it is normal, disconnection failure, or short-circuit failure. Further, the calculation unit 115 refers to the distance information as a result of the failure diagnosis and converts it into the actual distance on the communication cable 30d.
  • Step S107 Subsequently, the calculation unit 115 records the calculated abnormality information in the master recording unit 130.
  • the abnormality information includes the information of the selected slave device 20c, the information of the communication unit (first communication unit or the second communication unit) for which the cable diagnosis is performed, the disconnection failure / short circuit failure / normal state information, and the failure location. It may include information on the actual distance, time information, and the like.
  • Step S108 Subsequently, the output instruction unit 116 causes the display device 11 to display the abnormality information through the master output unit 140.
  • Step S109 Subsequently, the communication instruction unit 112 instructs the selected slave device 20c to start communication in the second communication unit 230. If the interruption of communication is temporary, communication can actually be resumed, but if the interruption continues, communication cannot actually be resumed. In addition, prior to step S109, the instruction to start the communication may be issued after receiving the operation of the restart instruction by the administrator. Then the flow ends.
  • the master device 10 reads the result of the failure diagnosis of the communication cable 30d from the slave device 20c and notifies the result, so that the administrator of the network system 1 confirms each slave device 20. It is possible to easily recognize the occurrence of a cable abnormality without doing so.
  • the faulty part of the communication cable 30d in which the abnormality has occurred is shown as the distance from the slave device 20, the faulty part of the cable abnormality can be easily known.
  • the length of the communication cable 30 for connecting devices may sometimes reach as much as 100 m, but in such a case, it is uneconomical to replace the entire communication cable in which a failure occurs. .. Therefore, for example, a 20 m communication cable is connected with a connector and used as a longer communication cable.
  • the master device 10 according to the first embodiment since the location where the abnormality occurs is specified, it is sufficient to replace only the communication cable for, for example, 20 m including the fault location, and the maintenance of the network system 1 can be performed. It can be done economically.
  • Communication cables are provided along moving parts such as robot arms and moving stages, and exercise causes stress. It should be installed in a place subject to vibration or pressure. Be installed in a place exposed to temperature changes. Exposure to sparks and high or low temperatures. Exposure to chemicals such as chemicals and gases.
  • the network system administrator can efficiently carry out maintenance work such as removing and replacing the location where the cable abnormality occurs in the field network, identifying the location where the cable abnormality is likely to occur, and taking countermeasures.
  • the master device 10 automatically performs a cable diagnosis when there is a fear that a failure of the communication cable has occurred, and notifies the result. Therefore, the administrator of the network system 1 does not leave the communication cable without noticing the failure, and can immediately know where in the network system 1 the failure has occurred, so that the repair can be performed quickly. It becomes possible to carry out the correspondence of.
  • step S101 when the master device 10 receives the link-off information (YES in step S101), the administrator is notified of the link-off information, and after receiving the administrator's instruction, the process proceeds to step S102 and subsequent steps for cable diagnosis. May be configured to carry out. Whether or not to automatically perform the diagnosis when the link-off information from the slave device 20 is received can be arbitrarily set in the master device 10 at the option of the administrator.
  • the master device 10 causes the slave device to stop the communication and then executes the cable diagnosis. Therefore, when the slave device executes the cable diagnosis, it interferes with the communication and the result of the cable diagnosis is incorrect. It is possible to prevent it from becoming a problem. Further, after instructing the execution of the cable diagnosis and waiting for a predetermined time for the cable diagnosis to be completed, the information in the recording unit of the slave device is read, so that the communication from the master device 10 interferes with the cable diagnosis and the cable diagnosis is performed. It is possible to prevent the result of the above from being incorrect.
  • the administrator manages the computer 12 (tool) equipped with the program for executing the operation to the slave device 20. It can also be configured to be directly connected to and run. In this case, the display of the abnormality information in step S108 can be performed on the display provided in the computer 12.
  • the configuration of the master device 10 (control device) according to the second embodiment is the same as that of the first embodiment shown in FIG.
  • the configuration of the network system 1 to which the master device 10 according to the second embodiment is applied is the same as that of the first embodiment shown in FIGS. 1 and 2.
  • the master device 10 repeatedly executes the following flow from step S201 to step S210 while the network system 1 is in operation.
  • Step S201 The master input unit 150 receives an instruction for cable diagnosis by the administrator. If the cable diagnosis instruction is detected (YES in S201), the process proceeds to step S202, and in other cases (NO in S201), the flow ends.
  • Step S202 The selection unit 111 selects the slave device 20 in the range in which the cable diagnosis is performed according to the administrator's instruction received by the master input unit 150 in step S201.
  • the slave device 20 is all the slave devices 20 below the slave device 20a in FIG. 2 (downstream from the slave device 20a).
  • the communication instruction unit 112 stops communication with the selected slave device 20 (20a or less) in the first communication unit 220 (communication unit on the IN side) and the second communication unit 230 (communication unit on the OUT side). Instruct. Then, in the selected slave device 20, communication with other devices connected by the first communication unit 220 and the second communication unit 230 is stopped.
  • Step S203 Subsequently, the selection unit 111 selects one slave device that has not yet been selected in step S203 from the slave devices 20 selected in step S202.
  • the diagnosis instruction unit 113 instructs the slave device 20 selected here to execute the cable diagnosis from the first communication unit 220 and the second communication unit 230.
  • Step S204 Subsequently, the master control unit 110 waits for a predetermined time.
  • the failure diagnosis of the communication cable 30 is executed by the first detection unit 223 (detection unit of the communication unit on the IN side) and the second detection unit 233 (detection unit of the communication unit on the OUT side). Let me.
  • the first detection unit 223 stores the result of the failure diagnosis of the connected communication cable 30 in the first recording unit 224.
  • the second detection unit 233 stores the result of the failure diagnosis of the connected communication cable 30 in the second recording unit 234.
  • Step S205 Subsequently, the diagnosis result reading unit 114 reads the result of the failure diagnosis of the communication cable 30 from the first recording unit 224 and the second recording unit 234 of the selected slave device 20.
  • Step S206 Subsequently, the calculation unit 115 analyzes the results of the failure diagnosis by the first detection unit 223 and the second detection unit 233, respectively.
  • the state of the communication cable 30, that is, whether it is normal, disconnection failure, or short-circuit failure is acquired. Further, the calculation unit 115 refers to the distance information as a result of the failure diagnosis and converts it into the actual distance on the communication cable 30.
  • Step S207 Subsequently, the calculation unit 115 records the calculated abnormality information in the master recording unit 130.
  • the abnormality information includes information on the selected slave device 20, information on the communication unit (first communication unit 220 or second communication unit 230) for which cable diagnosis has been performed, disconnection abnormality / short circuit abnormality / normal state information, and failure. It may include information on the actual distance to a location, time information, and the like.
  • Step S208 Subsequently, the selection unit 111 determines whether or not there is a slave device 20 selected in step S202 that has not yet been selected in step S203. If it is determined that there is remaining (YES in S208), the process proceeds to step S203, and in other cases (NO in S208), the process proceeds to step S209.
  • Step S209 Subsequently, the output instruction unit 116 causes the display device 11 to display the abnormality information through the master output unit 140.
  • Step S210 Subsequently, the communication instruction unit 112 instructs the slave device 20 selected in step S202 to resume communication in each communication unit (first communication unit 220, second communication unit 230). Then, in each of the slave devices 20, communication with the other connected devices by the first communication execution unit 222 and the second communication execution unit 232 is resumed. Then the flow ends.
  • a means such as a switch provided in the master device 10 may be used. Alternatively, it may be instructed through a computer 12 (tool) or other device.
  • the target slave device 20 instructed by the administrator in step S201.
  • it may be the slave device 20c or less in FIG. 2 (slave device on the downstream side from the slave device 20c).
  • it may be the slave device 20 on one branch of the network system 1 in FIG.
  • the slave device 20 selected in step S203 may be selected in chronological order from the master side, such as 20a, 20b, 20c, or vice versa.
  • the failure diagnosis of the communication cable 30 executed in step S204 is performed on the IN side (first communication unit 220) and the OUT side (second communication unit 230) of each slave device 20. However, it may be performed only on the IN side or may be performed only on the OUT side.
  • the second embodiment is the same as that of the first embodiment except that the effect of the master device 10 automatically performing the cable diagnosis when there is a fear that a cable failure has occurred in the first embodiment. The effect can be obtained.
  • the cable diagnosis for the required range of the network system 1 can be executed at the initiative of the administrator. Therefore, the cable diagnosis can be arbitrarily executed while the network system 1 is in operation. In particular, the administrator can easily confirm whether or not a problem has occurred in the communication cable by executing the cable diagnosis when the network system 1 is installed or changed.
  • the slave device 20 executes the cable diagnosis one by one in order, so that a plurality of slave devices simultaneously perform the cable diagnosis. It prevents them from being executed and interfering with each other, resulting in incorrect cable diagnostic results.
  • the master device 10 repeatedly executes the following flows from step S301 to step S308 while the network system 1 is in operation.
  • Step S301 The master input unit 150 receives an instruction for cable diagnosis by the administrator. If the cable diagnosis instruction is detected (YES in S301), the process proceeds to step S302, and in other cases (NO in S301), the flow ends.
  • Step S302 The selection unit 111 selects the slave device 20 in the range in which the cable diagnosis is performed according to the administrator's instruction received by the master input unit 150 in step S301.
  • the slave device 20 is all the slave devices 20 below the slave device 20a in FIG. 2 (downstream from the slave device 20a).
  • the communication instruction unit 112 instructs the selected slave device 20 (20a or less) to stop the communication in each communication unit. Then, in the selected slave device 20, communication with other devices connected by the first communication unit 220 and the second communication unit 230 is stopped.
  • Step S303 Subsequently, the diagnostic instruction unit 113 instructs the selected slave device 20 to execute the cable diagnosis from the first communication unit 220 (communication unit on the IN side).
  • Step S304 Subsequently, the master control unit 110 waits for a predetermined time.
  • each first detection unit 223 (detection unit of the communication unit on the IN side).
  • Each first detection unit 223 stores the result of failure diagnosis of the communication cable 30 in each first recording unit 224.
  • Step S305 Subsequently, the diagnosis result reading unit 114 reads the result of the failure diagnosis of the communication cable 30 from the first recording unit 224 of the selected slave device 20.
  • Step S306 Subsequently, the calculation unit 115 analyzes the result of the failure diagnosis.
  • the state of the communication cable 30, that is, whether it is normal, disconnection failure, or short-circuit failure is acquired. Further, in the case of a disconnection failure or a short-circuit failure, the calculation unit 115 refers to the distance information as a result of the failure diagnosis and converts it into the actual distance on the communication cable 30.
  • Step S307 Subsequently, the calculation unit 115 records the calculated abnormality information in the master recording unit 130.
  • the abnormality information includes information on the selected slave device 20, information on the communication unit (first communication unit) for which cable diagnosis has been performed, information on disconnection abnormality / short circuit abnormality / normal state, and information on the actual distance to the abnormal location. , Time information, etc. may be included.
  • Step S308 Subsequently, the output instruction unit 116 causes the display device 11 to display the abnormality information through the master output unit 140.
  • Step S309 Subsequently, the communication instruction unit 112 causes the selected slave device 20 selected in step S302 to perform communication in each communication unit (first communication unit 220, second communication unit 230). Instruct. Then, in each of the slave devices 20, communication with the other connected devices by the first communication execution unit 222 and the second communication execution unit 232 is resumed. Then the flow ends.
  • a means such as a switch provided in the master device 10 may be used. Alternatively, it may be instructed through a computer 12 (tool) or other device.
  • the target slave device 20 instructed by the administrator in step S301.
  • it may be the slave device 20c or less in FIG. 2 (slave device on the downstream side of the slave device 20b).
  • it may be the slave device 20 on one branch of the network system 1 in FIG.
  • the failure diagnosis of the communication cable 30 executed in step S304 is assumed to be performed on the IN side (first communication unit 220) of each slave device 20. However, it may be performed on the OUT side (second communication unit).
  • the third embodiment is the same as that of the first embodiment except for the effect of automatically performing the cable diagnosis when the master device 10 is afraid that a cable failure has occurred in the first embodiment. The effect can be obtained.
  • the cable diagnosis for the required range of the network system 1 can be executed at the initiative of the administrator. Therefore, the cable diagnosis can be arbitrarily executed while the network system 1 is in operation. In particular, the administrator can easily confirm whether or not a problem has occurred in the communication cable 30 by executing the cable diagnosis when the network system 1 is installed or changed.
  • step S304 of the flow the cable diagnosis is executed only on the IN side (upstream side) (or only the OUT side) of each slave device according to the instruction of the master device 10, so that a plurality of slaves are used. Even if the devices 20 simultaneously perform the cable diagnosis, it is possible to prevent the devices 20 from interfering with each other and making the result of the cable diagnosis incorrect.
  • the functional block (particularly, the master control unit 110) of the control device (master device 10) may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like, or may be realized by software. May be good.
  • control device is equipped with a computer that executes the instructions of a program that is software that realizes each function.
  • the computer includes, for example, one or more processors and a computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • a CPU Central Processing Unit
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM Random Access Memory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • One aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the program is embodied by electronic transmission.
  • the control device is a control device that is the master device used in a network system including a master device and a plurality of slave devices, and the slave device is a first device on the master device side.
  • the first communication unit connected to the other unit of 1 by the first communication cable, and the second communication unit connected to the second other unit on the opposite side of the master device by the second communication cable.
  • a first detection unit provided in the first communication unit which performs a failure diagnosis including detection of a failure location of the first communication cable, and a first detection unit which holds the result of the failure diagnosis by the first detection unit.
  • a second detection unit provided in the recording unit and the second communication unit that performs a failure diagnosis including detection of a failure location of the second communication cable, and a second detection unit that holds the results of the failure diagnosis by the second detection unit.
  • a communication instruction unit that has a recording unit and instructs the slave device to execute / stop communication with the first other device or the second other device, and the slave device.
  • the result of the failure diagnosis is obtained from the diagnosis instruction unit for instructing the execution of the failure diagnosis of the first communication cable or the second communication cable, and the first recording unit or the second recording unit of the slave device.
  • a unit for reading the diagnosis result to be read and a unit for calculating the length of the first communication cable or the second communication cable from the slave device to the failure location from the read result of the failure diagnosis are provided. ing.
  • the administrator can easily identify the faulty part of the communication cable in the industrial network system, and thus can efficiently carry out the maintenance work of the communication cable.
  • a master device can be realized.
  • the diagnosis instruction unit causes the slave device to fail in the second communication cable. It may have a configuration for instructing the execution of the diagnosis.
  • the administrator does not leave the cable failure unnoticed, and can immediately know where in the network system the failure is occurring, so quick repairs can be taken. It becomes possible to execute.
  • the instruction of the failure diagnosis of the first communication cable or the second communication cable by the diagnosis instruction unit is the instruction of the first other machine using the communication cable or the said.
  • a configuration may be provided in which communication with the second other device is performed after the stop instruction is given by the communication instruction unit.
  • the failure diagnosis of the communication cable by the detection unit of the slave device can be executed in the network system without causing interference with the communication.
  • the control device may be configured to read the result of the failure diagnosis by the diagnosis result reading unit after a predetermined time from the time when the communication indicating unit instructs the execution of the failure diagnosis. ..
  • the failure diagnosis of the communication cable by the detection unit of the slave device can be executed in the network system without causing interference with the communication.
  • the failure diagnosis performed by the first detection unit further executes determination of whether the first communication cable is a disconnection failure, a short-circuit failure, or a normal state, and further executes the second detection.
  • the failure diagnosis performed by the unit may further include a configuration for further determining whether the second communication cable is a disconnection failure, a short-circuit failure, or a normal state.
  • the administrator can identify the location of the failure of the communication cable in the industrial network system, and can recognize the type of failure that has occurred, and can take measures for the maintenance of the communication cable. It will be possible to do it accurately.
  • the network system is a network system including a master device and a plurality of slave devices, and the slave device is a first communication cable with a first other device on the master device side.
  • the first communication unit is provided with a first communication unit connected by a device, a second communication unit connected to a second other device on the opposite side of the master device by a second communication cable, and further to the first communication unit.
  • the first detection unit that performs failure diagnosis including the detection of the failure location of the first communication cable, the first recording unit that holds the result of the failure diagnosis by the first detection unit, and the second communication unit are provided.
  • the master device is provided with a second detection unit for performing a failure diagnosis including detection of a failure location of the second communication cable and a second recording unit for holding the result of the failure diagnosis by the second detection unit.
  • a communication instruction unit that instructs the slave device to execute / stop communication with the first other device or the second other device, and the first communication cable or the said slave device.
  • a diagnostic instruction unit that instructs the execution of the failure diagnosis of the second communication cable, and a diagnostic result reading unit that reads the result of the failure diagnosis from the first recording unit or the second recording unit of the slave device.
  • a calculation unit for calculating the length of the first communication cable or the second communication cable from the slave device to the failure location from the result of the failure diagnosis is provided.
  • the administrator can easily identify the faulty part of the communication cable in the industrial network system, and thus can efficiently carry out the maintenance work of the communication cable.
  • a network system can be realized.
  • the method for controlling a network system is a method for controlling a network system used in a network system including a master device and a plurality of slave devices, wherein the slave device is a first device on the master device side.
  • the first communication unit connected to the other unit of 1 by the first communication cable, and the second communication unit connected to the second other unit on the opposite side of the master device by the second communication cable.
  • a first detection unit provided in the first communication unit, which performs a failure diagnosis including detection of a failure location of the first communication cable, and a first detection unit which holds the result of the failure diagnosis by the first detection unit.
  • the administrator can easily identify the faulty part of the communication cable in the industrial network system, and thus can efficiently carry out the maintenance work of the communication cable.
  • a control device can be realized.
  • the control program according to one aspect of the present invention has a configuration in which the control device functions by causing the control device to execute each step described in the control method according to the above one aspect.
  • the administrator can easily identify the faulty part of the communication cable in the industrial network system, and thus can efficiently carry out the maintenance work of the communication cable.
  • a control device can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Security & Cryptography (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Small-Scale Networks (AREA)
  • Programmable Controllers (AREA)
  • Maintenance And Management Of Digital Transmission (AREA)

Abstract

制御装置(マスタ装置10)は、スレーブ装置(20c)に対して、他機との通信の実行/停止を指示する通信指示部(112)と、故障個所探知を含む故障診断の実施を指示する診断指示部(113)と、スレーブ装置から、故障診断の結果を読出す診断結果読出部(114)と、故障診断の結果から、スレーブ装置から故障個所までの通信ケーブルの長さを算出する算出部(115)とを備える。

Description

制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラム
 本発明は、制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラムに関する。
 ファクトリーオートメーション(Factory Automation:FA)の分野においては、作業の工程を分担する様々な種類の装置の制御が行われる。工場施設等一定の領域において作業に用いられる各種のコントローラ、リモートI/O、および製造装置を連携して動作させるために、これらの装置を接続する、フィールドネットワークとも呼ばれる産業用ネットワークシステムが構築されている。
 一般的な産業用ネットワークシステムでは、各種のスレーブ装置と、マスタ装置などから構成されるマスタスレーブ方式のネットワークが用いられる。スレーブ装置は、工場内に設置される設備の制御あるいはデータ収集を行う装置である。マスタ装置は、これらのスレーブを集中管理する、例えば(PLC:Programmable Logic Controller)と呼ばれる装置である。EtherCAT(登録商標)あるいはEthernet/IPはそうした産業用ネットワークシステムの方式の例である(ETHERNET:登録商標)。このような産業用ネットワークシステムにおいては、通信用ケーブルが各装置間に張り巡らされ、ネットワークが構築されている。
日本国公開特許公報「特開2013-236162号公報」
 スレーブ装置間を接続する通信用ケーブルに断線等の故障が発生すると、当該スレーブ装置間での通信が遮断される。上記のような産業用ネットワークシステムにおいては、スレーブ装置間での通信途絶を知らせるリンクオフ情報を、スレーブ装置からマスタ装置に報知するようにすることができる。よって管理者はマスタ装置を通じて、特定のスレーブ装置間で何らかの通信の異常が発生していることを知ることができる。しかし、通信途絶の原因が通信ケーブルの故障によるものか否かを知ることはできない。また故障の個所が、通信ケーブルのどの位置にあるかを知ることもできない。
 一方、特許文献1によれば、通信端末に通信ケーブルの故障状態を判別する機能を備える技術が開示されている。しかし、特定の通信端末から、その端末に接続された通信ケーブルの故障状態が判別できるに留まる。
 本発明は上記の問題点を鑑みてなされたものであり、管理者が、産業用ネットワークシステム中の通信ケーブルの故障個所を容易に特定することができるようになり、よって通信ケーブルの保全作業を効率的に実行することを可能とさせるマスタ装置を実現することを目的とする。
 本発明は、上述の課題を解決するために、以下の構成を採用する。
 本発明の一側面に係る制御装置は、マスタ装置と、複数のスレーブ装置とを備えたネットワークシステムに用いる、前記マスタ装置である制御装置であって、前記スレーブ装置は、前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部と、を有するものであって、前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の実行/停止を指示する通信指示部と、前記スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施を指示する診断指示部と、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読出す診断結果読出部と、読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出する算出部と、を備えている。
 本発明の一側面に係るネットワークシステムは、マスタ装置と、複数のスレーブ装置とを備えたネットワークシステムであって、前記スレーブ装置は、前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部とを有し、前記マスタ装置は、前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の実行/停止を指示する通信指示部と、前記スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施を指示する診断指示部と、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読み出す診断結果読出部と、読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出する算出部と、を備える。
 本発明の一側面に係るネットワークシステムの制御方法は、マスタ装置と、複数のスレーブ装置を備えたネットワークシステムに用いる、ネットワークシステムの制御方法であって、前記スレーブ装置は、前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部と、を有するものであって、前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の停止を指示するステップと、当該スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルのうちの通信を停止した通信ケーブルの故障診断の実施を指示するステップと、前記故障診断の実施を指示するステップから所定時間後に、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読出すステップと、読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出するステップと、を備える。
 本発明の一側面に係る制御装置、本発明の一側面に係るネットワークシステム、本発明の一側面に係るネットワークシステムの制御方法のいずれかによれば、管理者が、産業用ネットワークシステム中の通信ケーブルの故障個所を容易に特定することができるようになり、よって通信ケーブルの保全作業を効率的に実行することを可能とさせることができる。
本発明の実施形態1に係る制御装置を適用したネットワークシステムを示す図である。 本発明の実施形態1に係る制御装置及びネットワークシステムを示すブロック図である。 本発明の実施形態1に係る制御装置の動作を示すフローチャートである。 本発明の実施形態2に係る制御装置の動作を示すフローチャートである。 本発明の実施形態3に係る制御装置の動作を示すフローチャートである。
 〔実施形態1〕
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)が、図面に基づいて説明される。
 §1 適用例
 まず、本発明が適用される場面の一例が述べられる。本実施形態に係る制御装置は、マスタ装置と、複数のスレーブ装置を備えたネットワークシステムに用いる、前記マスタ装置である。
 前記ネットワークシステムにおいて、前記スレーブ装置は、前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備えるものである。前記スレーブ装置は、更に、前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部と、を有するものである。
 本実施形態に係る制御装置は、通信指示部、診断指示部、診断結果読出部と算出部とを備える。前記通信指示部は、前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の実行/停止を指示する。前記診断指示部は、前記スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施を指示する。
 前記診断結果読出部は、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読出す。前記算出部は、読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出する。
 本実施形態によれば、マスタ装置である制御装置は、所要のスレーブ装置に対し、通信の停止を指示し、当該スレーブ装置に接続された通信ケーブルの故障個所探知を含む故障診断を実行させることができる。また、当該スレーブ装置から故障診断の結果を読み出し、所要の通信ケーブルにおける故障個所を特定することができる。よってネットワークシステムの管理者は、ネットワークシステム中に張り巡らされた通信ケーブルにおける故障個所を容易に特定することができる。従ってネットワークシステムの管理者が、フィールドネットワークにおけるケーブル故障の発生個所の除去と交換、ケーブル異常の頻発個所の特定と対策などの保全作業を効率的に実行することが可能となる。
 §2 構成例
 (ネットワークシステムの全体概要)
 図1は、実施形態1に係るマスタ装置10(制御装置)を備えたネットワークシステム1を示す概略構成図である。ネットワークシステム1は、マスタ装置10と、複数のスレーブ装置20を含んで構成されている。ネットワークシステム1には、具体例として、EtherCAT(登録商標)あるいはEthernet/IPが適用される(ETHERNET:登録商標)。
 スレーブ装置20は、マスタ側(上流側)の通信部(図1で不図示)とその反対側(下流側)の通信部(図1で不図示)を有し、それぞれが他機(マスタ装置10またはスレーブ装置20)と通信ケーブル30によって接続されている。
 マスタ装置10には、表示装置11が接続されてもよい。マスタ装置10と表示装置11との接続には例示としてイーサネット(登録商標)や、Ethernet/IPのような通信ネットワークが適用され得る。また、マスタ装置10には、ツールとも称されるコンピュータ12が接続されてもよい。マスタ装置10とコンピュータ12との接続には例示としてUSB(Universal Serial Bus)が適用され得る。
 (マスタ装置の構成)
 図2は、実施形態1に係るマスタ装置10の構成とともに、ネットワークシステム1を示すブロック図である。マスタ装置10(制御装置)は、マスタ制御部110、マスタ通信部120、マスタ記録部130、マスタ出力部140と、マスタ入力部150とを備える。
 マスタ通信部120は、複数のスレーブ装置20(20a~20d等)との間で通信を行う機能ブロックである。マスタ記録部130は、データの記録、読出し、保持を行う機能ブロックである。マスタ出力部140は、表示装置11に情報の表示を行わせるインターフェースである。なお、図2においては情報の表示を行わせる装置として表示装置11が示されているが、コンピュータ12であってもよい。
 マスタ入力部150は、スイッチやタッチパネル等のユーザインターフェースを備えており、管理者の操作による動作の指示や選択を受け付ける。なお、マスタ入力部150は必ずしも設けられていなくてもよく、その場合に、管理者の操作による動作の指示や選択は、マスタ装置10が、コンピュータ12等の他の機器から指示されてする行うものであってもよい。
 マスタ制御部110は、マスタ通信部120を含むこれらの機能ブロックを制御する。マスタ制御部110は、マスタ通信部120、マスタ入力部150を通じて、あるいはマスタ記録部130、から取得したデータの処理を実行し、その結果により上記制御を調整し得る。また、マスタ制御部110は、これらデータの処理を実行し、その結果をマスタ出力部140を通じて表示装置11に表示させ得る。
 マスタ制御部110は、少なくとも選択部111、通信指示部112、診断指示部113、診断結果読出部114、算出部115、出力指示部116の各機能ブロックを有する。これら機能ブロックの働きについては後述される。
 (スレーブ装置の構成)
 図2には、例示として、マスタ装置10の側から順に、スレーブ装置20a~20dが順次通信ケーブル30a~30dによって接続されていることが示されている。各スレーブ装置20a~20dは通信に関して同様の構成を備えるが、図2においては、スレーブ装置20cについてのみ構成が示される。
 スレーブ装置20cは、スレーブ制御部210、第1通信部220と、第2通信部230とを備えている。第1通信部220は、通信ケーブル30cを通じて他機であるスレーブ装置20bと接続されている。第2通信部230は、通信ケーブル30dを通じて他機であるスレーブ装置20dと接続されている。つまり、第1通信部220は、マスタ側(上流側、IN側)の通信部であり、第2通信部はその反対側(下流側、OUT側)の通信部である。第1通信部220、第2通信部230は、それぞれPHYとも称される回路である。
 スレーブ制御部210は、第1通信部220及び第2通信部230を含む機能ブロックを制御し得る機能ブロックである。またスレーブ制御部210は、スレーブ装置20cにおける各種制御の統括や情報処理の実行を行う。
 第1通信部220には、第1通信制御部221、第1通信実行部222、第1検知部223、第1記録部224の各機能ブロックが設けられている。第1通信制御部221は、第1通信部220全体を統括し、第1通信部220による通信を制御する機能ブロックである。第1通信実行部222は、第1通信制御部221の指示に基づき、通信ケーブル30cを通じて他機20bとの通信パケットの交換を実行する機能ブロックである。
 第1検知部223は、第1通信制御部221の指示に基づき、通信ケーブル30cの故障診断を実行する機能ブロックである。第1記録部224は、第1検知部223の取得した故障診断の結果を記録するレジスタである。故障診断では、少なくとも故障の有無と、故障があった場合に通信ケーブル30cにおける故障個所までの第1通信部220からの長さと相関する距離情報を検知する。
 第1検知部223は、故障診断を実行する際に、接続された通信ケーブル30cに対して特定の信号波形を送出し、その反射信号を検出する。これにより第1検知部223は、故障個所までの通信ケーブル30cの長さと相関する距離情報を検知する。更に、通信ケーブル30cの状態、すなわち、正常、断線故障、またはショート故障のいずれにあるかを判断する故障判定を行ってもよい。第1検知部223は故障診断を実行すると、第1記録部224にその結果を記録する。
 第2通信部230には、第2通信制御部231、第2通信実行部232、第2検知部233、第2記録部234の各機能ブロックが設けられている。第2通信制御部231は、第2通信部230全体を統括し、第2通信部230による通信を制御する機能ブロックである。第2通信実行部232は、第2通信制御部231の指示に基づき、通信ケーブル30dを通じて他機20dとの通信パケットの交換を実行する機能ブロックである。
 第2検知部233は、第2通信制御部231の指示に基づき、通信ケーブル30dの故障診断を実行する機能ブロックである。第2記録部234は、第2検知部233の取得した故障診断の結果を記録するレジスタである。故障診断では、少なくとも、通信ケーブル30dにおける故障個所までの第2通信部230からの長さと相関する距離情報を検知する。
 第2検知部233は、故障診断を実行する際に、接続された通信ケーブル30dに対して特定の信号波形を送出し、その反射信号を検出する。これにより第2検知部233は、故障個所までの通信ケーブル30dの長さと相関する距離情報を検知する。更に、通信ケーブル30dの状態、すなわち、正常、断線故障、またはショート故障のいずれにあるかを判断する故障判定を行ってもよい。第2検知部233は故障診断を実行すると、第2記録部234に結果を記録する。
 §3 動作例
 FAシステムであるネットワークシステム1が稼働中、マスタ装置10は、各スレーブ装置20と、各機器の制御及びデータ収集等に関する通信を行う。更に実施形態1においては、マスタ装置10は通信ケーブル30の監視のための以下の特徴的な動作を繰り返し実行する。
 図3は、マスタ装置10が実行する通信ケーブル30の監視のための特徴的な動作を説明するフローチャートである。マスタ装置10はネットワークシステム1が稼働中に、以下のステップS101からステップS109までのフローを繰り返し実行する。
 ステップS101:選択部111は、マスタ通信部120を通じ、スレーブ装置20(20a~20d等)から他機との通信が途絶したことを示すリンクオフ情報が通知されていないかを監視する。マスタ装置10へのリンクオフ情報は、互いに直接接続されたスレーブ装置20間のうち、通常、マスタ側(上流側)に位置するスレーブ装置20から報知される。通信の途絶により下流側のスレーブ装置20からの情報はマスタ装置10に上がらないからである。リンクオフ情報が検出された場合(S101でYES)、ステップS102に進み、それ以外の場合(S101でNO)、フローは終了する。
 ステップS102:選択部111は、リンクオフ情報を通知したスレーブ装置20を選択する。本動作例では、当該スレーブ装置20を図2におけるスレーブ装置20cとし、その第2通信部230側(OUT側)でリンクオフが発生したものとして説明する。通信指示部112が、選択されたスレーブ装置20cに対し、第2通信部230での通信を停止するように指示する。
 するとスレーブ装置20cでは、第2通信制御部231が第2通信実行部232によるスレーブ装置20dとの通信(通信の試行)を停止させる。
 ステップS103:続いて診断指示部113が、選択されたスレーブ装置20cに対し、第2通信部230からケーブル診断を実行することを指示する。
 ステップS104:続いてマスタ制御部110は、所定時間待機する。
 この間にスレーブ装置20cでは、第2通信制御部231が第2検知部233による通信ケーブル30dの故障診断を実行させる。第2検知部233は通信ケーブル30dの故障診断の結果を第2記録部234に保存する。
 ステップS105:続いて診断結果読出部114が、選択されたスレーブ装置20cの第2記録部234から、通信ケーブル30dの故障診断の結果を読み出す。
 ステップS106:続いて算出部115が、故障診断の結果を解析する。通信ケーブル30dについてその状態、すなわち正常、断線故障、ショート故障のいずれかであるかを取得する。更に算出部115は、故障診断の結果の距離情報を参照し、それを通信ケーブル30d上の実距離に変換する。
 ステップS107:続いて算出部115は、マスタ記録部130に、算出した異常情報を記録する。ここで異常情報は、選択したスレーブ装置20cの情報、ケーブル診断を実施した通信部(第1通信部または第2通信部)の情報、断線故障/ショート故障/正常の状態の情報、故障個所までの実距離の情報、時刻情報等を含み得る。
 ステップS108:続いて出力指示部116が、マスタ出力部140を通じて表示装置11に異常情報を表示させる。
 ステップS109:続いて通信指示部112が、選択されたスレーブ装置20cに対し、第2通信部230での通信を開始するように指示する。通信の途絶が一時的なものであれば、実際に通信が再開し得るが、途絶が継続する場合には、実際には通信は再開し得ない。なお、ステップS109に先だって、管理者による再開指示の操作を受け付けてから、当該通信の開始の指示を発するようにしてもよい。次にフローは終了する。
 §4 作用、効果
 実施形態1によれば、マスタ装置10はスレーブ装置20cから通信ケーブル30dの故障診断の結果を読み出して報知するため、ネットワークシステム1の管理者が、各スレーブ装置20をそれぞれ確認することなく、容易にケーブル異常の発生を認識することができる。
 しかも、異常の生じた通信ケーブル30dの故障個所が、スレーブ装置20からの距離として示されるため、容易にケーブル異常の発生個所を知ることができる。産業用ネットワークにおいて機器間を接続する通信ケーブル30の長さは、時として100m程度にも及ぶことがあるが、このような場合に故障の生じた通信ケーブル全体を交換することは不経済である。そのため例えば20mの通信ケーブルをコネクタで接続してより長い一本の通信ケーブルとして用いることが行われる。このような場合に、実施形態1に係るマスタ装置10によれば、異常の発生個所が特定されるから、故障箇所を含む例えば20m分の通信ケーブルのみ交換すればよく、ネットワークシステム1のメンテナンスが経済的に行える。
 更に、故障個所が一意に特定されるから、工場内のどの場所において通信ケーブルの故障が発生したのかを、管理者は容易に知ることができる。通信ケーブルにダメージを及ぼす怖れのある状態は、工場内においては例えば次のように多様に発生し得る。通信ケーブルがロボットアームや移動ステージなどの可動部分に沿って設けられ、運動によってストレスが生じること。振動や圧迫を受ける箇所に設置されること。温度変化にさらされる箇所に設置されること。火花や高温あるいは低温にさらされること。薬品やガス等の化学物質にさらされること。
 通信ケーブルの特定の位置において故障が発生したことが判明すれば、工場内におけるこれらケーブル異常を引き起こす要因のいずれが実際に故障を発生させたのかを、管理者は現場にて容易に調べることができる。よって、次に同様の故障を発生させないように対策を取ることが容易となる。
 従ってネットワークシステムの管理者が、フィールドネットワークにおけるケーブル異常の発生個所の除去と交換、ケーブル異常の発生しやすい個所の特定と対策などの保全作業を効率的に実行することが可能となる。
 また、実施形態1によれば、マスタ装置10は、通信ケーブルの故障が発生した怖れのあるときに、自動的にケーブル診断を実施し、その結果を報知する。よって、ネットワークシステム1の管理者が、通信ケーブルの故障に気付かずに放置してしまうことが無く、またネットワークシステム1のどの箇所で故障が生じているかも直ちに知ることができるから、迅速な修理の対応を実行することが可能となる。
 しかし、本発明において、スレーブ装置20からのリンクオフ情報を受信した際に自動的にケーブル診断を実施する構成と必ずしもしなくともよい。図3のフローチャートにおいて、マスタ装置10がリンクオフ情報を受信する(ステップS101でYES)と、そのことを管理者に報知し、管理者の指示を受けてから、ステップS102以降に進み、ケーブル診断を実施するような構成としてもよい。スレーブ装置20からのリンクオフ情報を受信した際に自動的に診断を実施するか否かは、管理者の選択により、マスタ装置10において任意に設定し得るものである。
 実施形態1によれば、マスタ装置10は、スレーブ装置に通信を停止させてから、ケーブル診断を実行させるから、スレーブ装置によるケーブル診断の実行時において、通信と干渉してケーブル診断の結果が誤ったものとなることを防止できる。また、ケーブル診断の実行を指示してから、ケーブル診断が完了する所定の時間待機した後に、スレーブ装置の記録部の情報を読み出すから、マスタ装置10からの通信がケーブル診断と干渉してケーブル診断の結果が誤ったものとなることを防止できる。
 なお、実施形態1において、マスタ装置10が実行する動作のフローチャートのステップS102からステップS109までの一連の動作は、当該動作を実行させるプログラムを搭載したコンピュータ12(ツール)を管理者がスレーブ装置20に直接接続して実行できるように構成することも可能である。この場合ステップS108における異常情報の表示は、コンピュータ12が備えるディスプレイ上に行い得る。
 〔実施形態2〕
 本発明の他の実施形態が、以下に説明される。なお、説明の便宜上、上記実施形態にて説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を繰り返さない。
 実施形態2に係るマスタ装置10(制御装置)の構成は、図2に示された実施形態1の場合と同様である。また実施形態2に係るマスタ装置10が適用されるネットワークシステム1の構成は、図1及び図2に示された実施形態1の場合と同様である。
 図5のフローチャートに示される、マスタ装置10が実行し得る別の特徴的な動作が、実施形態2では説明される。マスタ装置10はネットワークシステム1が稼働中に、以下のステップS201からステップS210までのフローを繰り返し実行する。
 ステップS201:マスタ入力部150は、管理者によるケーブル診断の指示を受け付ける。ケーブル診断の指示が検出された場合(S201でYES)、ステップS202に進み、それ以外の場合(S201でNO)、フローは終了する。
 ステップS202:選択部111は、ステップS201においてマスタ入力部150が受け付けた管理者の指示によるケーブル診断を行う範囲のスレーブ装置20を選択する。ここで例として、当該スレーブ装置20は図2におけるスレーブ装置20a以下(スレーブ装置20aから下流側)の全てのスレーブ装置20であるものとする。通信指示部112が、選択されたスレーブ装置20(20a以下)に対し、第1通信部220(IN側の通信部)及び第2通信部230(OUT側の通信部)での通信を停止するように指示する。すると選択されたスレーブ装置20では、第1通信部220及び第2通信部230において接続された他機との通信を停止させる。
 ステップS203:続いて選択部111は、ステップS202で選択したスレーブ装置20のうちから未だステップS203で選択していない一つのスレーブ装置を選択する。診断指示部113が、ここで選択されたスレーブ装置20に対し、第1通信部220及び第2通信部230からケーブル診断を実行することを指示する。
 ステップS204:続いてマスタ制御部110は、所定時間待機する。この間に選択されたスレーブ装置20では、第1検知部223(IN側の通信部の検知部)及び第2検知部233(OUT側の通信部の検知部)による通信ケーブル30の故障診断を実行させる。第1検知部223は接続された通信ケーブル30の故障診断の結果を第1記録部224に保存する。第2検知部233は接続された通信ケーブル30の故障診断の結果を第2記録部234に保存する。
 ステップS205:続いて診断結果読出部114が、選択されたスレーブ装置20の第1記録部224及び第2記録部234から、通信ケーブル30の故障診断の結果を読み出す。
 ステップS206:続いて算出部115が、第1検知部223及び第2検知部233による故障診断の結果をそれぞれ解析する。通信ケーブル30について、その状態、すなわち正常、断線故障、ショート故障のいずれかであるかを取得する。更に算出部115は、故障診断の結果の距離情報を参照し、それを通信ケーブル30上の実距離に変換する。
 ステップS207:続いて算出部115は、マスタ記録部130に、算出した異常情報を記録する。ここで異常情報は、選択したスレーブ装置20の情報、ケーブル診断を実施した通信部(第1通信部220または第2通信部230)の情報、断線異常/ショート異常/正常の状態の情報、故障個所までの実距離の情報、時刻情報等を含み得る。
 ステップS208:続いて選択部111は、ステップS202で選択したスレーブ装置20のうちから未だステップS203で選択していないスレーブ装置が残っているか否かを判断する。残っていると判断される場合(S208でYES)、ステップS203に進み、それ以外の場合(S208でNO)、ステップS209に進む。
 ステップS209:続いて出力指示部116が、マスタ出力部140を通じて表示装置11に異常情報を表示させる。
 ステップS210:続いて通信指示部112が、ステップS202で選択されたスレーブ装置20に対し、各通信部(第1通信部220、第2通信部230)での通信を再開するように指示する。すると、各々のスレーブ装置20において、第1通信実行部222及び第2通信実行部232による接続された他機との通信が再開する。次にフローは終了する。
 上記フローにおいて、ステップS201で管理者によりケーブル診断の実行を指示される方法として、マスタ装置10が備えるスイッチ等の手段によってもよい。あるいは、コンピュータ12(ツール)やその他の機器を通じて、指示されるものであってもよい。
 上記フローにおいて、ステップS201で管理者により指示される対象のスレーブ装置20の範囲としては、様々なケースがあり得る。例えば、図2におけるスレーブ装置20c以下(スレーブ装置20cから下流側のスレーブ装置)であってもよい。あるいは図1におけるネットワークシステム1の一分岐上のスレーブ装置20であってもよい。
 上記フローにおいて、ステップS203で選択されるスレーブ装置20は、マスタ側から時系列で20a、20b、20cのような順に選択されてよいし、またその逆の順に選択されてもよい。
 上記フローにおいて、ステップS204で実行される通信ケーブル30の故障診断は、各スレーブ装置20のIN側(第1通信部220)及びOUT側(第2通信部230)で行われるものとした。しかし、IN側でのみ行われるものであってもよいし、OUT側のみ行われるものであってもよい。
 実施形態2においても、実施形態1における、ケーブル故障が発生した怖れのあるときに、マスタ装置10が自動的にケーブル診断を実施することによる効果を除いて、実施形態1の場合と同様の効果を得ることができる。
 更に実施形態2によれば、管理者の発意によりネットワークシステム1の所要の範囲についてのケーブル診断を実行することができる。従って、ネットワークシステム1の稼動中に任意にケーブル診断を実行することができるようになる。特に、管理者はネットワークシステム1の設置時や変更時にケーブル診断を実行することで、通信ケーブルに不具合が発生していないかを容易に確認することができるようになる。
 実施形態2によれば、マスタ装置10の指示により、上述のフローのステップS203からS208の繰り返しにおいて、一台ずつ順にスレーブ装置20がケーブル診断を実行するから、複数のスレーブ装置が同時にケーブル診断を実行してしまって互いに干渉し、ケーブル診断の結果が誤ったものとなってしまうことが防止される。
 〔実施形態3〕
 実施形態3に係るマスタ装置10(制御装置)の構成は、図2に示された実施形態1の場合と同様である。また実施形態2に係るマスタ装置10が適用されるネットワークシステム1の構成は、図1及び図2に示された実施形態1の場合と同様である。
 図5のフローチャートに示される、マスタ装置10が実行し得る別の特徴的な動作が、実施形態3では説明される。マスタ装置10はネットワークシステム1が稼働中に、以下のステップS301からステップS308までのフローを繰り返し実行する。
 ステップS301:マスタ入力部150は、管理者によるケーブル診断の指示を受け付ける。ケーブル診断の指示が検出された場合(S301でYES)、ステップS302に進み、それ以外の場合(S301でNO)、フローは終了する。
 ステップS302:選択部111は、ステップS301においてマスタ入力部150が受け付けた管理者の指示によるケーブル診断を行う範囲のスレーブ装置20を選択する。ここで例として、当該スレーブ装置20は図2におけるスレーブ装置20a以下(スレーブ装置20aから下流側)の全てのスレーブ装置20であるものとする。通信指示部112が、選択されたスレーブ装置20(20a以下)に対し、各通信部での通信を停止するように指示する。すると選択されたスレーブ装置20では、第1通信部220及び第2通信部230において接続された他機との通信を停止させる。
 ステップS303:続いて診断指示部113が、選択されたスレーブ装置20に対し、第1通信部220(IN側の通信部)からケーブル診断を実行することを指示する。
 ステップS304:続いてマスタ制御部110は、所定時間待機する。
 この間に選択されたスレーブ装置20cでは、各々の第1検知部223(IN側の通信部の検知部)による通信ケーブル30の故障診断を実行させる。各々の第1検知部223は通信ケーブル30の故障診断の結果を各々の第1記録部224に保存する。
 ステップS305:続いて診断結果読出部114が、選択されたスレーブ装置20の第1記録部224から、通信ケーブル30の故障診断の結果を読み出す。
 ステップS306:続いて算出部115が、故障診断の結果を解析する。通信ケーブル30について、その状態、すなわち正常、断線故障、ショート故障のいずれかであるかを取得する。更に算出部115は、断線故障またはショート故障であった場合に、故障診断の結果の距離情報を参照し、それを通信ケーブル30上の実距離に変換する。
 ステップS307:続いて算出部115は、マスタ記録部130に、算出した異常情報を記録する。ここで異常情報は、選択したスレーブ装置20の情報、ケーブル診断を実施した通信部(第1通信部)の情報、断線異常/ショート異常/正常の状態の情報、異常個所までの実距離の情報、時刻情報等を含み得る。
 ステップS308:続いて出力指示部116が、マスタ出力部140を通じて表示装置11に異常情報を表示させる。
 ステップS309:続いて通信指示部112が、ステップS302で選択された選択されたスレーブ装置20に対し、各通信部(第1通信部220、第2通信部230)での通信を実行するように指示する。すると、各々のスレーブ装置20において、第1通信実行部222及び第2通信実行部232による接続された他機との通信が再開する。次にフローは終了する。
 上記フローにおいて、ステップS301で管理者によりケーブル診断の実行を指示される方法として、マスタ装置10が備えるスイッチ等の手段によってもよい。あるいは、コンピュータ12(ツール)やその他の機器を通じて、指示されるものであってもよい。
 上記フローにおいて、ステップS301で管理者により指示される対象のスレーブ装置20の範囲としては、様々なケースがあり得る。例えば、図2におけるスレーブ装置20c以下(スレーブ装置20bより下流側のスレーブ装置)であってもよい。あるいは図1におけるネットワークシステム1の一分岐上のスレーブ装置20であってもよい。
 上記フローにおいて、ステップS304で実行される通信ケーブル30の故障診断は、各スレーブ装置20のIN側(第1通信部220)で行われるものとした。しかし、OUT側(第2通信部)で行われるものであってもよい。
 実施形態3においても、実施形態1における、マスタ装置10がケーブル故障が発生した怖れのあるときに、自動的にケーブル診断を実施することによる効果を除いて、実施形態1の場合と同様の効果を得ることができる。
 更に実施形態3によれば、管理者の発意によりネットワークシステム1の所要の範囲についてのケーブル診断を実行することができる。従って、ネットワークシステム1の稼動中に任意にケーブル診断を実行することができるようになる。特に、管理者はネットワークシステム1の設置時や変更時にケーブル診断を実行することで、通信ケーブル30に不具合が発生していないかを容易に確認することができるようになる。
 実施形態3によれば、フローのステップS304において、マスタ装置10の指示により、各々のスレーブ装置のIN側(上流側)のみ(あるいはOUT側のみ)でケーブル診断が実行されるから、複数のスレーブ装置20が同時にケーブル診断を実行しても互いに干渉してケーブル診断の結果が誤ったものとなってしまうことが防止される。
 〔ソフトウェアによる実現例〕
 制御装置(マスタ装置10)の機能ブロック(特に、マスタ制御部110)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
 後者の場合、制御装置は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば1つ以上のプロセッサを備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。
 上記プロセッサとしては、例えばCPU(Central Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などを更に備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。
 〔まとめ〕
 本発明の一側面に係る制御装置は、マスタ装置と、複数のスレーブ装置とを備えたネットワークシステムに用いる、前記マスタ装置である制御装置であって、前記スレーブ装置は、前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部と、を有するものであって、前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の実行/停止を指示する通信指示部と、前記スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施を指示する診断指示部と、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読出す診断結果読出部と、読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出する算出部と、を備えている。
 上記構成によれば、管理者が、産業用ネットワークシステム中の通信ケーブルの故障個所を容易に特定することができるようになり、よって通信ケーブルの保全作業を効率的に実行することを可能とさせるマスタ装置を実現することができる。
 上記一側面に係る制御装置において、前記スレーブ装置から、前記第2の他機との通信のリンクオフ情報を受信すると、当該スレーブ装置に対し、前記診断指示部により前記第2の通信ケーブルの故障診断の実施を指示する構成を備えていてもよい。
 上記構成によれば、管理者が、ケーブル故障を気付かずに放置してしまうことが無く、またネットワークシステムのどの箇所で故障が生じているかも直ちに知ることができるから、迅速な修理の対応を実行することが可能となる。
 上記一側面に係る制御装置において、前記診断指示部による前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施の指示は、当該通信ケーブルを用いた前記第1の他機または前記第2の他機との通信の、前記通信指示部による停止の指示後に行う構成を備えていてもよい。
 上記構成によれば、スレーブ装置の検知部による通信ケーブルの故障診断を、ネットワークシステムにおいて通信との干渉を起こすことなく実行させることができるようになる。
 上記一側面に係る制御装置において、前記診断結果読出部による前記故障診断の結果の読出しは、前記通信指示部により当該故障診断の実施を指示したときから所定時間後に行う構成を備えていてもよい。
 上記構成によれば、スレーブ装置の検知部による通信ケーブルの故障診断を、ネットワークシステムにおいて通信との干渉を起こすことなく実行させることができるようになる。
 上記一側面に係る制御装置において、前記第1検知部の行う故障診断は、前記第1の通信ケーブルが断線故障、ショート故障、正常のいずれであるかの判別を更に実行し、前記第2検知部の行う故障診断は、前記第2の通信ケーブルが断線故障、ショート故障、正常のいずれであるかの判別を更に実行する構成を備えていてもよい。
 上記構成によれば、管理者は、産業用ネットワークシステム中の通信ケーブルの故障個所の特定に加えて、生じている故障の種類を認知することができ、通信ケーブルの保全のための対策をより的確に行うことが可能となる。
 本発明の一側面に係るネットワークシステムは、マスタ装置と、複数のスレーブ装置とを備えたネットワークシステムであって、前記スレーブ装置は、前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部とを有し、前記マスタ装置は、前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の実行/停止を指示する通信指示部と、前記スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施を指示する診断指示部と、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読み出す診断結果読出部と、読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出する算出部と、を備える。
 上記構成によれば、管理者が、産業用ネットワークシステム中の通信ケーブルの故障個所を容易に特定することができるようになり、よって通信ケーブルの保全作業を効率的に実行することを可能とさせるネットワークシステムを実現することができる。
 本発明の一側面に係るネットワークシステムの制御方法は、マスタ装置と、複数のスレーブ装置を備えたネットワークシステムに用いる、ネットワークシステムの制御方法であって、前記スレーブ装置は、前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部と、を有するものであって、前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の停止を指示するステップと、当該スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルのうちの通信を停止した通信ケーブルの故障診断の実施を指示するステップと、前記故障診断の実施を指示するステップから所定時間後に、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読出すステップと、読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出するステップと、を備える。
 上記構成によれば、管理者が、産業用ネットワークシステム中の通信ケーブルの故障個所を容易に特定することができるようになり、よって通信ケーブルの保全作業を効率的に実行することを可能とさせる制御装置を実現することができる。
 本発明の一側面に係る制御プログラムは、上記一側面に係る制御方法に記載の各ステップを制御装置に実行させることにより当該制御装置を機能させる構成を備える。
 上記構成によれば、管理者が、産業用ネットワークシステム中の通信ケーブルの故障個所を容易に特定することができるようになり、よって通信ケーブルの保全作業を効率的に実行することを可能とさせる制御装置を実現することができる。
 本発明は上述した各実施形態、実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態、実施例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 1 ネットワークシステム
 10 マスタ装置(制御装置)
 110 マスタ制御部
 111 選択部
 112 通信指示部
 113 診断指示部
 114 診断結果読出部
 115 算出部
 116 出力指示部
 120 マスタ通信部
 130 マスタ記録部
 140 マスタ出力部
 150 マスタ入力部
 11 表示装置
 12 コンピュータ
 20、20a、20b、20c、20d スレーブ装置
 210 スレーブ制御部
 220 第1通信部
 221 第1通信制御部
 222 第1通信実行部
 223 第1検知部
 224 第1記録部
 230 第2通信部
 231 第2通信制御部
 232 第2通信実行部
 233 第2検知部
 234 第2記録部
 30、30a、30b、30c、30d、30e 通信ケーブル

Claims (8)

  1.  マスタ装置と、複数のスレーブ装置とを備えたネットワークシステムに用いる、前記マスタ装置である制御装置であって、
     前記スレーブ装置は、
     前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、
     前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、
     前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部と、を有するものであって、
     前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の実行/停止を指示する通信指示部と、
     前記スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施を指示する診断指示部と、
     前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読出す診断結果読出部と、
     読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出する算出部と、を備えた制御装置。
  2.  前記スレーブ装置から、前記第2の他機との通信のリンクオフ情報を受信すると、
     当該スレーブ装置に対し、前記診断指示部により前記第2の通信ケーブルの故障診断の実施を指示する、請求項1に記載の制御装置。
  3.  前記診断指示部による前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施の指示は、当該通信ケーブルを用いた前記第1の他機または前記第2の他機との通信の、前記通信指示部による停止の指示後に行う、請求項1または2に記載の制御装置。
  4.  前記診断結果読出部による前記故障診断の結果の読出しは、前記通信指示部により当該故障診断の実施を指示したときから所定時間後に行う、請求項1から3のいずれか1項に記載の制御装置。
  5.  前記第1検知部の行う故障診断は、前記第1の通信ケーブルが断線故障、ショート故障、正常のいずれであるかの判別を更に実行し、
     前記第2検知部の行う故障診断は、前記第2の通信ケーブルが断線故障、ショート故障、正常のいずれであるかの判別を更に実行する、請求項1から4のいずれか1項に記載の制御装置。
  6.  マスタ装置と、複数のスレーブ装置とを備えたネットワークシステムであって、
     前記スレーブ装置は、
     前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、
     前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、
     前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部とを有し、
     前記マスタ装置は、
     前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の実行/停止を指示する通信指示部と、
     前記スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルの故障診断の実施を指示する診断指示部と、
     前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読み出す診断結果読出部と、
     読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出する算出部と、を備える、ネットワークシステム。
  7.  マスタ装置と、複数のスレーブ装置を備えたネットワークシステムに用いる、ネットワークシステムの制御方法であって、
     前記スレーブ装置は、
     前記マスタ装置側の第1の他機と第1の通信ケーブルで接続される第1通信部と、前記マスタ装置とは反対側の第2の他機と第2の通信ケーブルで接続される第2通信部と、を備え、更に、
     前記第1通信部に設けられた、前記第1の通信ケーブルの故障個所探知を含む故障診断を行う第1検知部及び前記第1検知部による故障診断の結果を保持する第1記録部と、
     前記第2通信部に設けられた、前記第2の通信ケーブルの故障個所探知を含む故障診断を行う第2検知部及び前記第2検知部による故障診断の結果を保持する第2記録部と、を有するものであって、
     前記スレーブ装置に対し、前記第1の他機または前記第2の他機との通信の停止を指示するステップと、
     当該スレーブ装置に対し、前記第1の通信ケーブルまたは前記第2の通信ケーブルのうちの通信を停止した通信ケーブルの故障診断の実施を指示するステップと、
     前記故障診断の実施を指示するステップから所定時間後に、前記スレーブ装置の前記第1記録部または前記第2記録部から、前記故障診断の結果を読出すステップと、
     読み出した前記故障診断の結果から、前記スレーブ装置から故障個所までの前記第1の通信ケーブルまたは前記第2の通信ケーブルの長さを算出するステップと、を備えたネットワークシステムの制御方法。
  8.  請求項7に記載の各ステップを制御装置に実行させることにより当該制御装置を機能させる制御プログラム。
PCT/JP2020/010244 2019-05-22 2020-03-10 制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラム WO2020235181A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/605,240 US20220311659A1 (en) 2019-05-22 2020-03-10 Control device, network system, and network system control method and non-transitory computer readable medium
CN202080028023.7A CN113692730A (zh) 2019-05-22 2020-03-10 控制装置、网络系统、网络系统的控制方法以及控制程序
EP20808891.4A EP3975509B1 (en) 2019-05-22 2020-03-10 Control device, network system, and network system control method and control program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019096213A JP7172853B2 (ja) 2019-05-22 2019-05-22 制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラム
JP2019-096213 2019-05-22

Publications (1)

Publication Number Publication Date
WO2020235181A1 true WO2020235181A1 (ja) 2020-11-26

Family

ID=73453728

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010244 WO2020235181A1 (ja) 2019-05-22 2020-03-10 制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラム

Country Status (5)

Country Link
US (1) US20220311659A1 (ja)
EP (1) EP3975509B1 (ja)
JP (1) JP7172853B2 (ja)
CN (1) CN113692730A (ja)
WO (1) WO2020235181A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176972A1 (ja) * 2020-03-06 2021-09-10 オムロン株式会社 ケーブル異常判定システム、スレーブ装置、及びケーブル異常判定方法
WO2022107347A1 (ja) * 2020-11-20 2022-05-27 オムロン株式会社 スレーブ装置、ネットワークシステム、スレーブ装置の制御方法および制御プログラム
WO2022157991A1 (ja) * 2021-01-20 2022-07-28 オムロン株式会社 マスタ装置、スレーブ装置、通信ケーブル評価システム、通信ケーブル評価方法およびコンピュータプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022138061A (ja) * 2021-03-09 2022-09-22 オムロン株式会社 ネットワーク機器、及びネットワークシステム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006325121A (ja) * 2005-05-20 2006-11-30 Mitsubishi Electric Corp プログラマブルコントロール装置
US20080013457A1 (en) * 2003-07-02 2008-01-17 Broadcom Corporation Full channel-swap
JP2013236162A (ja) 2012-05-07 2013-11-21 Mitsubishi Electric Corp ケーブル故障診断装置およびケーブル故障診断方法
JP2014171025A (ja) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp ケーブル診断装置及びケーブル診断方法
JP2015220547A (ja) * 2014-05-15 2015-12-07 西部電機株式会社 故障診断方法、管理装置及びプログラム

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100588273C (zh) * 2007-09-11 2010-02-03 电子科技大学 用于网络线缆故障测试的方法及其装置
JP2010245589A (ja) * 2009-04-01 2010-10-28 Nec Corp 通信システム、通信装置、被疑箇所の特定方法及びプログラム
JP2011117738A (ja) * 2009-11-30 2011-06-16 Fujitsu Ten Ltd 故障診断装置、故障診断用プログラム、および故障データ収集装置
EP2660670A4 (en) * 2010-12-28 2018-03-07 Hitachi, Ltd. Motion controller
JP5229343B2 (ja) * 2011-03-15 2013-07-03 オムロン株式会社 接続異常検出方法、ネットワークシステムおよびマスター装置
ES2664573T3 (es) * 2013-06-12 2018-04-20 Bosch Corporation Aparato de control para un dispositivo de protección de pasajeros de vehículos o peatones y un sistema de control
KR101721814B1 (ko) * 2013-06-26 2017-03-30 미쓰비시덴키 가부시키가이샤 리모트 유닛 및 리모트 유닛의 이상 판정 방법
JP7107262B2 (ja) * 2019-03-14 2022-07-27 オムロン株式会社 制御システムおよび制御装置
JP7476579B2 (ja) * 2020-03-06 2024-05-01 オムロン株式会社 ケーブル異常判定システム、スレーブ装置、及びケーブル異常判定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080013457A1 (en) * 2003-07-02 2008-01-17 Broadcom Corporation Full channel-swap
JP2006325121A (ja) * 2005-05-20 2006-11-30 Mitsubishi Electric Corp プログラマブルコントロール装置
JP2013236162A (ja) 2012-05-07 2013-11-21 Mitsubishi Electric Corp ケーブル故障診断装置およびケーブル故障診断方法
JP2014171025A (ja) * 2013-03-01 2014-09-18 Mitsubishi Electric Corp ケーブル診断装置及びケーブル診断方法
JP2015220547A (ja) * 2014-05-15 2015-12-07 西部電機株式会社 故障診断方法、管理装置及びプログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3975509A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176972A1 (ja) * 2020-03-06 2021-09-10 オムロン株式会社 ケーブル異常判定システム、スレーブ装置、及びケーブル異常判定方法
WO2022107347A1 (ja) * 2020-11-20 2022-05-27 オムロン株式会社 スレーブ装置、ネットワークシステム、スレーブ装置の制御方法および制御プログラム
WO2022157991A1 (ja) * 2021-01-20 2022-07-28 オムロン株式会社 マスタ装置、スレーブ装置、通信ケーブル評価システム、通信ケーブル評価方法およびコンピュータプログラム

Also Published As

Publication number Publication date
JP2020190952A (ja) 2020-11-26
US20220311659A1 (en) 2022-09-29
CN113692730A (zh) 2021-11-23
EP3975509B1 (en) 2024-03-06
EP3975509A1 (en) 2022-03-30
EP3975509A4 (en) 2023-06-28
JP7172853B2 (ja) 2022-11-16

Similar Documents

Publication Publication Date Title
WO2020235181A1 (ja) 制御装置、ネットワークシステム、ネットワークシステムの制御方法及び制御プログラム
US20070293951A1 (en) Monitoring apparatus
JP2012195653A (ja) 接続異常検出方法、ネットワークシステムおよびマスター装置
CA2785558C (en) Distributed control system
JP5954338B2 (ja) 計装システム及びその保守方法
CN106610712B (zh) 基板管理控制器复位系统及方法
US20140012398A1 (en) Process control device, process control system, and process control method
US20230064446A1 (en) Cable abnormality assessment system, slave device, and cable abnormality assessment method
US20150185723A1 (en) Facility controlling system and history recording method
JP2008152543A (ja) 外部信号入出力ユニットの診断方法及びシステム
JP5029778B1 (ja) 接続監視装置および接続監視方法
WO2022107347A1 (ja) スレーブ装置、ネットワークシステム、スレーブ装置の制御方法および制御プログラム
JP4061489B2 (ja) フィールドバスシステムの通信速度制御方法
CN112983932A (zh) 液压试验台设备及其数据采集系统、测控系统和测控方法
JP2006195780A (ja) コントローラおよびリモートi/o通信方法
JP5758356B2 (ja) 通信システム
KR101021981B1 (ko) 반도체 제조 설비의 알람 처리 장치 및 알람 설정 방법
JP4774029B2 (ja) 計装制御システム
KR100483432B1 (ko) 핫백업을이용한반도체제조설비관리시스템
JPH09200975A (ja) 遠方監視制御装置の異常検出方法
KR20090086731A (ko) 전원 공급 장치 및 방법
JP6015521B2 (ja) 伝送路試験装置および伝送路試験方法
CN117811958A (zh) 基于宽带现场总线的健康监测系统和健康监测方法
KR20030069268A (ko) 반도체 제조용 컴퓨터 네트워크 시스템 및 그 제어 방법
JPH11121318A (ja) 半導体製造システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20808891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020808891

Country of ref document: EP

Effective date: 20211222