WO2020234974A1 - 変速制御方法及び変速制御システム - Google Patents

変速制御方法及び変速制御システム Download PDF

Info

Publication number
WO2020234974A1
WO2020234974A1 PCT/JP2019/019932 JP2019019932W WO2020234974A1 WO 2020234974 A1 WO2020234974 A1 WO 2020234974A1 JP 2019019932 W JP2019019932 W JP 2019019932W WO 2020234974 A1 WO2020234974 A1 WO 2020234974A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation speed
input shaft
shaft rotation
shift control
target
Prior art date
Application number
PCT/JP2019/019932
Other languages
English (en)
French (fr)
Inventor
広樹 下山
上野 宗利
健文 鈴木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2019/019932 priority Critical patent/WO2020234974A1/ja
Priority to JP2021519918A priority patent/JP7231019B2/ja
Priority to EP19929201.2A priority patent/EP3974683B1/en
Priority to US17/612,332 priority patent/US11680638B2/en
Priority to CN201980096516.1A priority patent/CN113874639B/zh
Publication of WO2020234974A1 publication Critical patent/WO2020234974A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/50Inputs being a function of the status of the machine, e.g. position of doors or safety belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/023Fluid clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • B60W2050/0052Filtering, filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/104Output speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • B60W2540/103Accelerator thresholds, e.g. kickdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0605Throttle position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/24Energy storage means
    • B60W2710/242Energy storage means for electrical energy
    • B60W2710/248Current for loading or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/14Inputs being a function of torque or torque demand
    • F16H59/18Inputs being a function of torque or torque demand dependent on the position of the accelerator pedal
    • F16H2059/186Coasting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/0403Synchronisation before shifting
    • F16H2061/0422Synchronisation before shifting by an electric machine, e.g. by accelerating or braking the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H2061/0496Smoothing ratio shift for low engine torque, e.g. during coasting, sailing or engine braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/42Input shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/48Inputs being a function of acceleration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a shift control method and a shift control system.
  • the target input shaft rotation speed is set by reducing and correcting the basic target synchronous rotation speed, which is the basic target value of the input shaft rotation speed during shifting.
  • the input shaft rotation speed may exceed the final target output shaft rotation speed, and a shift shock may occur when the clutch is engaged. there were.
  • an object of the present invention is to provide a shift control method and a shift control system capable of suppressing a shift shock at the time of coast downshift.
  • a shift control method for controlling the input shaft rotation speed of the automatic transmission to a predetermined target input shaft rotation speed at the time of shifting is provided.
  • the basic target synchronous rotation speed which is the basic target value of the input shaft rotation speed during shift, is set, and when the shift is downshift and there is no driving force requirement for the vehicle, the basic target
  • the correction target input shaft rotation speed corrected by reducing the synchronous rotation speed is set as the target input shaft rotation speed, and the reduction correction amount with respect to the basic target synchronous rotation speed is set so as to increase as the deceleration of the vehicle increases.
  • FIG. 1 is a diagram illustrating a configuration of a vehicle to which the shift control method according to the embodiment of the present invention is applied.
  • FIG. 2 is a block diagram illustrating a vehicle control system.
  • FIG. 3 is a flowchart illustrating the shift control of the present embodiment.
  • FIG. 4 is a diagram showing an example of a shift map.
  • FIG. 5 is a time chart showing the time-dependent change of the target input shaft rotation speed during the coast downshift by the shift control of the present embodiment.
  • FIG. 1 is a diagram illustrating a power train configuration in a vehicle 100 to which the shift control method according to the present embodiment is applied.
  • the vehicle 100 of the present embodiment includes an internal combustion engine 1, a motor generator 2, an automatic transmission 3, and a transfer 19.
  • the shift control system S is configured by the automatic transmission 3 and the integrated controller 21 which will be described later and functions as a shift control device.
  • the internal combustion engine 1, the motor generator 2, and the automatic transmission 3 are arranged in order from the front (front of the vehicle) in the forward direction.
  • the internal combustion engine 1, the motor generator 2, and the automatic transmission 3 are coupled to each other via the input shaft ax_in. That is, the vehicle 100 of the present embodiment is configured as a hybrid vehicle including an internal combustion engine 1 and a motor generator 2 as a traveling drive source.
  • a first clutch 4 is provided at a position between the internal combustion engine 1 and the motor generator 2 on the input shaft ax_in. Therefore, by engaging and disengaging the first clutch 4, it is possible to switch between power transmission and interruption between the internal combustion engine 1 and the motor generator 2.
  • the first clutch 4 is composed of a wet multi-plate clutch whose transmission torque capacity Tc1 can be changed by continuously or stepwise controlling the clutch hydraulic oil flow rate and the clutch hydraulic pressure by the first solenoid valve 16.
  • the automatic transmission 3 is a device for automatically shifting gears between the input shaft ax_in and the output shaft ax_out. Specifically, the automatic transmission 3 has a second clutch 5, an input rotation sensor 12, an output rotation sensor 13, and a mechanical oil pump 15.
  • the second clutch 5 may be composed of a wet multi-plate clutch in which the transmission torque capacity Tc2 can be changed by continuously or stepwise controlling the clutch hydraulic oil flow rate and the clutch hydraulic pressure by the second solenoid valve 17. it can.
  • the solenoid current is supplied to the second solenoid valve 17 so that the transmission torque capacity Tc2 becomes the desired target transmission torque capacity tTc2 based on the command from the integrated controller 21 as the shift control device.
  • the input rotation sensor 12 detects the rotation speed of the input shaft ax_in (hereinafter, also simply referred to as “input shaft rotation speed N_in”).
  • the input rotation sensor 12 transmits the detected value of the input shaft rotation speed N_in (hereinafter, also referred to as “actual input shaft rotation speed Nd_in”) to the integrated controller 21.
  • the output rotation sensor 13 detects the rotation speed of the output shaft ax_out (hereinafter, also simply referred to as “output shaft rotation speed N_out”).
  • the output rotation sensor 13 transmits the detected value of the output shaft rotation speed N_out (hereinafter, also referred to as “actual output shaft rotation speed Nd_out”) to the integrated controller 21.
  • the mechanical oil pump 15 is a pump that is driven by the internal combustion engine 1 and supplies hydraulic oil to the second clutch 5.
  • An electric sub-oil pump 14 driven by the motor generator 2 may be used as an auxiliary for supplying hydraulic oil to the second clutch 5.
  • the transfer 19 is arranged on the output side of the automatic transmission 3.
  • the transfer 19 is a power distribution mechanism that distributes the rotation of the output shaft ax_out to the front wheels 7f and the rear wheels 7r via the front final drive 6f and the rear final drive 6r, respectively.
  • EV mode electric driving mode
  • HEV mode hybrid driving mode
  • both the first clutch 4 and the second clutch 5 are engaged.
  • both the output from the internal combustion engine 1 and the output from the motor generator 2 are transmitted to the output shaft ax_out via the input shaft ax_in and the automatic transmission 3.
  • the surplus energy is converted into electric power by operating the motor generator 2 as a generator and stored in the battery 9 described later.
  • the fuel consumption of the internal combustion engine 1 can be improved by using the electric power stored in the battery during high-load traveling to drive the motor generator 2.
  • FIG. 2 is a block diagram for explaining the control system of the vehicle 100.
  • the control system of the vehicle 100 includes an integrated controller 21, an engine controller 22, a motor controller 23, and an inverter 8.
  • the integrated controller 21 is a device that controls the operating points of the power train in an integrated manner.
  • the integrated controller 21 has an engine rotation speed Ne detected by the engine rotation sensor 11, an actual input shaft rotation speed Nd_in detected by the input rotation sensor 12, and an actual output shaft rotation speed Nd_out detected by the output rotation sensor 13.
  • the operating point of the power train is controlled based on the accelerator opening ⁇ (required load) detected by the accelerator opening sensor 20 and the electricity storage state (SOC) of the battery 9 detected by the SOC sensor 18.
  • the integrated controller 21 acquires the vehicle speed V as input information by a detection value of a vehicle speed sensor (not shown) or a predetermined calculation.
  • the integrated controller 21 uses the motor generator 2 to set the input shaft rotation speed N_in to the final target value after the shift (hereinafter, also referred to as "final target synchronous rotation speed tN_in * ") as the shift control of the present embodiment. ) Is executed.
  • the integrated controller 21 of the present embodiment sets the target motor rotation speed tNm so that the actual input shaft rotation speed Nd_in approaches the target input shaft rotation speed tN_in during shifting.
  • the integrated controller 21 calculates the target motor rotation speed tNm by removing the rotation speed due to the rotation of the internal combustion engine 1 from the target input shaft rotation speed tN_in.
  • the rotation speed due to the rotation of the internal combustion engine 1 is a value obtained by correcting the engine rotation speed Ne by the reduction ratio of the power transmission path from the internal combustion engine 1 to the motor generator 2 (net rotation speed transmitted to the motor generator 2). It is decided.
  • the engine controller 22 is a device that controls the internal combustion engine 1 to a desired operating point (target engine torque tTe). More specifically, the engine controller 22 includes an pneumatic actuator (not shown) provided as an auxiliary machine of the internal combustion engine 1 so as to realize an operating point (target engine torque tTe, etc.) of the power train defined by the integrated controller 21. Operate the fuel system actuator.
  • the motor controller 23 operates the inverter 8 from the battery 9 to the motor generator 2 so as to realize the operating point of the power train (target motor torque tTm, target motor rotation speed tNm, etc.) defined by the integrated controller 21. Adjust the power supply.
  • the motor controller 23 of the present embodiment operates the inverter 8 so that the motor rotation speed Nm matches the target motor rotation speed tNm calculated by the integrated controller 21.
  • the integrated controller 21, engine controller 22, and motor controller 23 described above include a central computing device (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface). It consists of computers, especially microcomputers.
  • FIG. 3 is a flowchart illustrating the shift control of the present embodiment.
  • the integrated controller 21 repeatedly executes the process shown in FIG. 3 at a predetermined calculation cycle.
  • step S10 the integrated controller 21 refers to a predetermined shift map (FIG. 4) based on the accelerator opening ⁇ and the vehicle speed V, and whether or not it is the timing when the vehicle 100 should execute the downshift. To judge.
  • At least one of the accelerator opening ⁇ and the vehicle speed V changes during a predetermined control cycle so that the operating point of the vehicle 100 crosses the downshift line (broken line in FIG. 4). If it changes, decide that a downshift should be performed.
  • step S10 determines whether the determination result in step S10 is negative. If the determination result in step S10 is negative, the integrated controller 21 ends this routine. On the other hand, if it is positive, the integrated controller 21 executes the processes after step S20.
  • step S20 the integrated controller 21 calculates the basic target synchronous rotation speed tbN_in.
  • the integrated controller 21 calculates the basic target synchronous rotation speed tbN_in by multiplying the actual output shaft rotation speed Nd_out by the target gear ratio ⁇ with the filtered value for removing noise and high-frequency vibration components. To do.
  • the target gear ratio ⁇ in the shift control of the present embodiment is determined as the ratio of the actual input shaft rotation speed Nd_in to the actual output shaft rotation speed Nd_out.
  • the basic target synchronous rotation speed tbN_in is calculated based on the following equation (1).
  • step S30 the integrated controller 21 determines whether or not the vehicle 100 is traveling on the coast.
  • the coastal running means running in a state where the accelerator opening ⁇ is substantially 0 (a state in which the required driving force for the vehicle 100 is substantially 0).
  • the integrated controller 21 determines whether or not the shift is substantially a coast downshift by determining whether or not the accelerator opening ⁇ is substantially 0 in this step S30 on the premise of the above step S10. There is.
  • step S40 the process proceeds to step S40, and the basic target synchronous rotation speed tbN_in of the equation (1) is set to the target input shaft rotation speed tN_in.
  • step S50 when the integrated controller 21 determines that the shift is a coast downshift, the integrated controller 21 shifts to the process of step S50.
  • step S50 the integrated controller 21 calculates the deceleration a d of the vehicle 100. Specifically, the integrated controller 21 calculates the deceleration a d by calculating the vehicle speed V with respect to time and taking an absolute value.
  • step S60 the integrated controller 21 executes the rotation speed reduction correction process. Specifically, the integrated controller 21 obtains the correction target input shaft rotation speed tN_inC by subtracting the reduction correction amount ⁇ N ⁇ from the basic target synchronization rotation speed tbN_in obtained in step S20.
  • the integrated controller 21 determines the reduction correction amount ⁇ N ⁇ based on the deceleration a d calculated in step S50.
  • the integrated controller 21 sets the reduction correction amount ⁇ N ⁇ so that the larger the deceleration a d , the larger the reduction correction amount ⁇ N ⁇ .
  • the decrease correction amount ⁇ N ⁇ is set as a narrowly defined monotonous increase function ⁇ N ⁇ (ad) with respect to the deceleration a d .
  • the integrated controller 21 changes the reduction correction amount ⁇ N ⁇ according to the progress of the shift.
  • the integrated controller 21 sets a relatively large first reduction correction amount ⁇ N1 ⁇ as the reduction correction amount ⁇ N ⁇ in the first half of the shift, while setting a relatively small second reduction correction amount ⁇ N2 ⁇ in the latter half of the shift.
  • the first decrease correction amount .DELTA.N1 - and the second reduction correction amount .DELTA.N2 - also respectively, narrowly monotonically increasing function .DELTA.N1 for deceleration a d - are set as (ad) - (ad) and .DELTA.N2. Therefore, the first reduction correction amount ⁇ N1 in this embodiment - and second reduction correction amount .DELTA.N2 - relative magnitude relationships are those determined by the magnitude relationship when the deceleration a d is assumed to be the same value is there.
  • the correction target input shaft rotation speed tN_inC (hereinafter, also referred to as “first correction target input shaft rotation speed tN_inC1”) set in the first half of the shift and the correction target input shaft rotation speed tN_inC set in the second half of the shift (hereinafter, also referred to as “first correction target input shaft rotation speed tN_inC1").
  • first correction target input shaft rotation speed tN_inC1 the correction target input shaft rotation speed set in the first half of the shift
  • first correction target input shaft rotation speed tN_inC1 set in the second half of the shift
  • the second correction target input shaft rotation speed tN_inC2 is obtained by the following equations (2) and (3), respectively.
  • the integrated controller 21 sets the correction target input shaft rotation speed tN_inC as the target input shaft rotation speed tN_in and outputs it to the motor controller 23.
  • FIG. 5 is a time chart showing the time course of the target input shaft rotation speed tN_in during the coast downshift by the shift control of the present embodiment.
  • the vehicle speed during the coast downshift is constant.
  • the alternate long and short dash line L1 indicates the final value of the first correction target input shaft rotation speed tN_inC1. Further, the alternate long and short dash line L2 shows the final value of the second correction target input shaft rotation speed tN_inC2. Further, the broken line L3 indicates the final target synchronous rotation speed tN_in * .
  • the shift phase of the present embodiment is composed of a first phase, a second phase, and a third phase after the preparatory phase before the shift.
  • the first phase and the second phase are defined as the first half of the shift
  • the third phase is defined as the second half of the shift.
  • control opening the second clutch 5, etc. is performed in preparation for the shift operation.
  • the shift phase shifts from the preparation phase to the first phase, and the control of the input shaft rotation speed N_in is started.
  • the target input shaft rotation speed tN_in is set according to the processes of steps S50 and S60.
  • the target input shaft rotational speed tN_in during the first phase and second phase the basic target synchronous speed tbN_in the first reduction correction amount .DELTA.N1 - is the first correction target input shaft rotation speed tN_inC1 offset corrected to the minus side Set.
  • the input shaft rotation speed N_in increases so as to approach the first correction target input shaft rotation speed tN_inC1.
  • the shift phase shifts from the first phase to the second phase.
  • the target input shaft rotation speed tN_in is first corrected for a predetermined time in order to stably converge the input shaft rotation speed N_in to the first correction target input shaft rotation speed tN_inC1 set at the time of entering the first phase.
  • the target input shaft rotation speed is maintained at tN_inC1.
  • the shift phase shifts from the second phase to the third phase.
  • the target input shaft rotation speed tN_in is set to the second correction target input shaft rotation speed tN_inC2.
  • the input shaft rotation speed N_in converges from the first correction target input shaft rotation speed tN_inC1 set in the first phase and the second phase to the second correction target input shaft rotation speed tN_inC2.
  • the target input shaft rotation speed tN_in is switched to the final target synchronous rotation speed tN_in * . Then, at the timing when the input shaft rotation speed N_in converges to the final target synchronous rotation speed tN_in * , the second clutch 5 is engaged and the shift control is completed.
  • the reduction rate of the actual output shaft rotation speed Nd_out is larger than that when there is a driving force requirement.
  • the basic target synchronous rotation speed tbN_in (see equation (1)) obtained by filtering the actual output shaft rotation speed Nd_out follows the decrease in the actual output shaft rotation speed Nd_out with a delay.
  • the value obtained by performing a certain amount of reduction correction on the basic target synchronous rotation speed tbN_in is used as the target input shaft rotation speed tN_in. Was set to.
  • the input shaft rotation speed N_in can be adjusted more preferably during the coast downshift, and the actual input shaft rotation speed Nd_in overshoots the final target synchronous rotation speed tN_in * when the second clutch 5 is engaged. It is possible to suppress the occurrence of an event and prevent the occurrence of a shift shock.
  • a shift control method for controlling the input shaft rotation speed N_in of the automatic transmission 3 to a predetermined target input shaft rotation speed tN_in during shifting is provided.
  • the basic target synchronous rotation speed tbN_in which is the basic target value of the input shaft rotation speed N_in during shift, is set (step S20 in FIG. 3), and the shift is downshift to drive the vehicle 100.
  • the corrected target input shaft rotation speed tN_inC obtained by reducing and correcting the basic target synchronous rotation speed tbN_in is set as the target input shaft rotation speed tN_in (steps S30 and S50 in FIG. 3). And step S60).
  • the reduction correction amount ⁇ N ⁇ with respect to the basic target synchronous rotation speed tbN_in is set so as to increase as the deceleration a d of the vehicle 100 increases.
  • the basic target synchronous rotation speed tbN_in can be reduced and corrected according to the magnitude of the deceleration a d of the vehicle 100.
  • the input shaft rotation speed N_in can be more preferably adjusted according to the magnitude of the deceleration a d that causes the delay of the basic target synchronous rotation speed tbN_in described above during the coast downshift.
  • the basic target synchronous rotation speed tbN_in is filtered by the actual output shaft rotation speed Nd_out of the automatic transmission 3 during shifting, and the target gear ratio ⁇ after shifting is multiplied. Calculated by (see equation (1) above).
  • the adjusted correction target input shaft rotational speed tN_inC is set to be smaller than the basic target synchronous speed tbN_in higher deceleration a d of the vehicle 100 is large.
  • the deceleration a d during the coast downshift is also increased above a certain, overshoot is prevented relative to the final target synchronization of the actual input shaft speed Nd_in described above rpm tN_in *.
  • the shift shock at the time of fastening due to this overshoot can be suitably suppressed.
  • the correction target input shaft rotational speed tN_inC is relatively decreased correction amount .DELTA.N - (first decrease correction amount .DELTA.N1 -) is larger first correction target input shaft rotational speed tN_inC1 relative decreasing correction amount .DELTA.N - and a smaller second correction target input shaft rotational speed tN_inC2 - (second decrease correction amount .DELTA.N2).
  • the first correction target input shaft rotation speed tN_inC1 is set as the target input shaft rotation speed tN_in
  • the second correction target is set.
  • the input shaft rotation speed tN_inC2 is set as the target input shaft rotation speed tN_in.
  • the target input shaft rotation speed tN_in is set smaller than the basic target synchronous rotation speed tbN_in. Therefore, it is possible to prevent the overshoot component of the actual input shaft speed Nd_in due to deceleration a d of the vehicle 100 described above is accumulated for a long time until the shift end timing.
  • the target input shaft rotation speed tN_in is set to a value closer to the basic target synchronous rotation speed tbN_in than in the first half of the shift.
  • the accumulation time of the overshoot component is shorter than in the first half of the shift. Therefore, by setting the target input shaft rotation speed tN_in relatively close to the basic target synchronous rotation speed tbN_in in the latter half of the shift, the effect of suppressing the occurrence of the overshoot can be maintained, and the actual input can be maintained.
  • the shaft rotation speed Nd_in can be brought close to the basic target synchronous rotation speed tbN_in relatively quickly, and the shift progress can be facilitated.
  • the input shaft rotation speed N_in is controlled by the motor generator 2 as an electric motor mounted on the vehicle 100 as a drive source.
  • rotational synchronous shifting can be realized by electrical control using the motor generator 2.
  • the present embodiment includes an automatic transmission 3 and an integrated controller 21 as a speed change control device that controls the input shaft rotation speed N_in of the automatic transmission 3 to a predetermined target input shaft rotation speed tN_in during shifting.
  • a speed change control system S for a vehicle is provided.
  • the integrated controller 21 as a shift control device is a basic target synchronous rotation speed setting unit (step S20 in FIG. 3) for calculating the basic target synchronous rotation speed tbN_in, which is a basic target value of the input shaft rotation speed N_in during gear shifting. ), And when there is no driving force request for the vehicle 100 (Yes in step S30), the correction target input shaft rotation speed tN_inC corrected by reducing the basic target synchronous rotation speed tbN_in is set as the target input shaft rotation speed. It has a rotation speed reduction correction unit set as tN_in (step S30, step S50, and step S60 in FIG. 3).
  • the rotation speed reduction correction unit is set so that the reduction correction amount ⁇ N ⁇ with respect to the basic target synchronous rotation speed tbN_in increases as the deceleration a d of the vehicle 100 increases.
  • a wheel speed sensor for detecting the wheel speed of the driven wheel is provided for the configuration of the vehicle 100 already described.
  • the driven wheel in the vehicle 100 means a wheel (rear wheel 7r in FIG. 1) in which the internal combustion engine 1 as a power source is not arranged directly above and the load of the internal combustion engine 1 does not act directly. To do.
  • the integrated controller 21 calculates the vehicle speed V for obtaining the deceleration a d based on the wheel speed detected by the wheel speed sensor. More specifically, the integrated controller 21 calculates the vehicle speed V by applying a filter that determines the wheel speed detection value according to the vehicle model suitable for the vehicle 100.
  • the vehicle speed V which is usually used as input information in the control for determining the operating point of the internal combustion engine 1 and the motor generator 2 of the vehicle 100, is a drive wheel (front wheel) having a relatively large load from the viewpoint of eliminating an error due to wheel slip as much as possible. It is preferable to use the wheel speed of 7f).
  • the vehicle speed V for determining the deceleration a d that defines the reduction correction amount ⁇ N ⁇ at the time of coast downshift has little influence on the control due to the error due to the slip. ..
  • the wheel speed of the drive wheels may include a resonance component as an error due to the operation of the power train actuator such as the internal combustion engine 1. Then, regarding the vehicle speed V for determining the deceleration a d , the error has a greater influence than the error due to slip.
  • the actuator for adjusting the input shaft rotation speed N_in is not limited to the motor generator 2.
  • the input shaft rotation speed N_in in the shift control of the above embodiment may be adjusted by engaging the first clutch 4 and appropriately controlling the output of the internal combustion engine 1.
  • an example of estimating that there is no required driving force for the vehicle 100 is estimated based on whether or not the accelerator opening ⁇ is 0 has been described.
  • the method of estimating that there is no required driving force for the vehicle 100 is not limited to this.
  • the vehicle 100 is equipped with a so-called automatic driving function or driving assistance function

Abstract

自動変速機を搭載した車両において、変速中に自動変速機の入力軸回転数を所定の目標入力軸回転数に制御する変速制御方法であって、変速中の前記入力軸回転数の基本的な目標値である基本目標同期回転数を算出し、変速がダウンシフトであって車両に対する駆動力要求がある場合に、車両の加速意図の有無を判定し、加速意図が有ると判定した場合には、基本目標同期回転数を増加補正した第1目標入力軸回転数を目標入力軸回転数として設定し、加速意図が無いと判定した場合には、基本目標同期回転数を維持するか又は減少補正した第2目標入力軸回転数を目標入力軸回転数として設定する変速制御方法を提供する。

Description

変速制御方法及び変速制御システム
 本発明は、変速制御方法及び変速制御システムに関する。
 JP2007-112350Aに記載の従来の変速制御方法では、変速がコーストダウンシフトであるか否かを判定する。そして、コーストダウンシフトであると判定された場合には、変速中における入力軸回転数の基本的な目標値である基本目標同期回転数を減少補正して目標入力軸回転数を設定する。
 しかしながら、変速中の走行状況によっては、上述した目標入力軸回転数の減少補正を行っても、入力軸回転数が最終的な目標出力軸回転数を超え、クラッチ締結時に変速ショックが生じる恐れがあった。
 このような事情に鑑み、本発明の目的は、コーストダウンシフト時における変速ショックを抑制し得る変速制御方法及び変速制御システムを提供することにある。
 本発明のある態様によれば、自動変速機を搭載した車両において、変速時に自動変速機の入力軸回転数を所定の目標入力軸回転数に制御する変速制御方法が提供される。この変速制御方法では、変速中の前記入力軸回転数の基本的な目標値である基本目標同期回転数を設定し、変速がダウンシフトであって車両に対する駆動力要求が無い場合に、基本目標同期回転数を減少補正した補正目標入力軸回転数を目標入力軸回転数として設定し、基本目標同期回転数に対する減少補正量は、車両の減速度が大きいほど大きくなるように設定される。
図1は、本発明の実施形態による変速制御方法が適用される車両の構成を説明する図である。 図2は、車両の制御系を説明するブロック図である。 図3は、本実施形態の変速制御を説明するフローチャートである。 図4は、変速マップの一例を示す図である。 図5は、本実施形態の変速制御によるコーストダウンシフト中の目標入力軸回転数の経時変化を示すタイムチャートである。
 以下、本発明の実施形態を、図面を参照して詳細に説明する。
 図1は、本実施形態による変速制御方法が適用される車両100におけるパワートレーン構成を説明する図である。
 図示のように、本実施形態の車両100は、内燃エンジン1と、モータジェネレータ2と、自動変速機3と、トランスファ19と、を備えている。なお、本実施形態では、自動変速機3、及び変速制御装置として機能する後述する統合コントローラ21により変速制御システムSが構成される。
 本実施形態の車両100では、前進方向における前方(車両前方)から順に内燃エンジン1、モータジェネレータ2、及び自動変速機3が配置されている。そして、内燃エンジン1、モータジェネレータ2、及び自動変速機3は、入力軸ax_inを介して相互に結合されている。すなわち、本実施形態の車両100は、内燃エンジン1及びモータジェネレータ2を走行駆動源として備えるハイブリッド車両として構成されている。
 入力軸ax_inの内燃エンジン1とモータジェネレータ2の間の位置には、第1クラッチ4が設けられている。したがって、この第1クラッチ4の締結及び開放により内燃エンジン1とモータジェネレータ2の間の動力の伝達及び遮断の切替が可能である。
 第1クラッチ4は、第1ソレノイドバルブ16によりクラッチ作動油流量、及びクラッチ作動油圧を連続的、若しくは段階的に制御することで伝達トルク容量Tc1を変更可能な湿式多板クラッチで構成される。
 自動変速機3は、入力軸ax_inから出力軸ax_outの間において変速を自動で行うための装置である。具体的に、自動変速機3は、第2クラッチ5と、入力回転センサ12と、出力回転センサ13と、機械式オイルポンプ15と、を有している。
 第2クラッチ5は、第2ソレノイドバルブ17によりクラッチ作動油流量、及びクラッチ作動油圧を連続的、若しくは段階的に制御することで伝達トルク容量Tc2を変更可能な湿式多板クラッチで構成することができる。
 第2ソレノイドバルブ17には、変速制御装置としての統合コントローラ21からの指令に基づき、伝達トルク容量Tc2が所望の目標伝達トルク容量tTc2となるようにソレノイド電流が供給される。
 入力回転センサ12は、入力軸ax_inの回転数(以下、単に「入力軸回転数N_in」とも称する)を検出する。なお、入力回転センサ12は、入力軸回転数N_inの検出値(以下、「実入力軸回転数Nd_in」とも称する)を統合コントローラ21に送信する。
 出力回転センサ13は、出力軸ax_outの回転数(以下、単に「出力軸回転数N_out」とも称する)を検出する。なお、出力回転センサ13は、出力軸回転数N_outの検出値(以下、「実出力軸回転数Nd_out」とも称する)を統合コントローラ21に送信する。
 機械式オイルポンプ15は、内燃エンジン1により駆動され、第2クラッチ5に作動油を供給するポンプである。なお、第2クラッチ5へ作動油の供給のために、モータジェネレータ2により駆動される電動式サブオイルポンプ14を補助的に用いても良い。
 トランスファ19は、自動変速機3の出力側に配置される。トランスファ19は、出力軸ax_outの回転を、フロントファイナルドライブ6f及びリアファイナルドライブ6rを介して前輪7fと後輪7rにそれぞれ分配する動力分配機構である。
 なお、上記構成を有する車両100では、主として、電気走行モード(以下、「EVモード」と称する)とハイブリッド走行モード(以下、「HEVモード」と称する)の2つの動力伝達モードを選択可能である。
 EVモードでは、第1クラッチ4を解放し且つ第2クラッチ5を締結する。これにより、モータジェネレータ2からの出力のみが、入力軸ax_in及び自動変速機3を介して出力軸ax_outに伝達される。
 また、HEVモードでは、第1クラッチ4及び第2クラッチ5の双方を締結する。これにより、内燃エンジン1からの出力及びモータジェネレータ2からの出力の双方が、入力軸ax_in及び自動変速機3を介して出力軸ax_outに伝達される。
 なお、HEVモードにおいて、内燃エンジン1の運転により生成されるエネルギーが余剰となる場合、モータジェネレータ2を発電機として作動させることでこの余剰エネルギーを電力に変換して後述するバッテリ9に蓄電する。これにより、高負荷走行時に当該バッテリに蓄電された電力をモータジェネレータ2の駆動に用いることで内燃エンジン1の燃費を向上させることができる。
 次に、車両100の制御系について説明する。
 図2は、車両100の制御系を説明するためのブロック図である。図示のように、車両100の制御系は、統合コントローラ21と、エンジンコントローラ22と、モータコントローラ23と、インバータ8と、を有する。
 統合コントローラ21は、パワートレーンの動作点を統合制御する装置である。特に、統合コントローラ21は、エンジン回転センサ11により検出されるエンジン回転数Ne、入力回転センサ12により検出される実入力軸回転数Nd_in、出力回転センサ13により検出される実出力軸回転数Nd_out、アクセル開度センサ20により検出されるアクセル開度α(要求負荷)、及びSOCセンサ18により検出されるバッテリ9の蓄電状態(SOC)に基づいてパワートレーンの動作点を制御する。また、統合コントローラ21は、図示しない車速センサの検出値又は所定の演算により車速Vを入力情報として取得する。
 特に、統合コントローラ21は、本実施形態の変速制御として、モータジェネレータ2を用いて入力軸回転数N_inを、変速後における最終的な目標値(以下、「最終目標同期回転数tN_in*」とも称する)に近づける回転同期変速を実行する。
 具体的に、本実施形態の統合コントローラ21は、実入力軸回転数Nd_inが変速中の目標入力軸回転数tN_inに近づくように、目標モータ回転数tNmを設定する。特に、統合コントローラ21は、目標入力軸回転数tN_inから内燃エンジン1の回転による回転数を除去して目標モータ回転数tNmを演算する。なお、内燃エンジン1の回転による回転数は、エンジン回転数Neを当該内燃エンジン1からモータジェネレータ2までの動力伝達経路の減速比で補正した値(モータジェネレータ2に伝達する正味の回転数)として定まる。
 エンジンコントローラ22は、内燃エンジン1の所望の動作点(目標エンジントルクtTe)に制御する装置である。より詳細には、エンジンコントローラ22は、統合コントローラ21で規定されるパワートレーンの動作点(目標エンジントルクtTe等)を実現するように、内燃エンジン1の補機として設けられる図示しない空気系アクチュエータ及び燃料系アクチュエータを操作する。
 モータコントローラ23は、統合コントローラ21で規定されるパワートレーンの動作点(目標モータトルクtTm又は目標モータ回転数tNm等)を実現するように、インバータ8を操作してバッテリ9からモータジェネレータ2への供給電力を調節する。特に、本実施形態のモータコントローラ23は、モータ回転数Nmを統合コントローラ21で演算された目標モータ回転数tNmに一致させるようにインバータ8を操作する。
 上述の統合コントローラ21、エンジンコントローラ22、及びモータコントローラ23は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたコンピュータ、特にマイクロコンピュータで構成される。
 以下、本実施形態による統合コントローラ21の変速制御についてより詳細に説明する。
 図3は、本実施形態の変速制御を説明するフローチャートである。なお、本実施形態において、統合コントローラ21は、図3に示す処理を所定の演算周期で繰り返し実行する。
 先ず、ステップS10において、統合コントローラ21は、アクセル開度α及び車速Vに基づき、予め定められる変速マップ(図4)を参照して、車両100がダウンシフトを実行すべきタイミングであるか否かを判定する。
 具体的に、統合コントローラ21は、アクセル開度α及び車速Vの少なくとも一方が所定の制御周期の間に変化して、車両100の動作点がダウンシフト線(図4の破線)を跨ぐように変化した場合に、ダウンシフトを実行すべきと判断する。
 なお、統合コントローラ21は、ステップS10の判定結果が否定的である場合には、本ルーチンを終了する。一方、肯定的である場合には、統合コントローラ21はステップS20以降の処理を実行する。
 ステップS20において、統合コントローラ21は、基本目標同期回転数tbN_inを演算する。
 より詳細には、統合コントローラ21は、実出力軸回転数Nd_outにノイズや高周波振動成分を除去するフィルタ処理を施した値に対して目標変速比γを乗じることで基本目標同期回転数tbN_inを演算する。
 また、本実施形態の変速制御における目標変速比γは、実出力軸回転数Nd_outに対する実入力軸回転数Nd_inの比として定められる。
 具体的に、基本目標同期回転数tbN_inは、下記の式(1)に基づいて演算される。
Figure JPOXMLDOC01-appb-M000001
 ステップS30において、統合コントローラ21は、車両100がコースト走行中であるか否かを判定する。ここで、コースト走行とは、アクセル開度αが略0の状態(車両100に対する要求駆動力が略0の状態)における走行を意味する。
 したがって、統合コントローラ21は、上記ステップS10を前提として本ステップS30においてアクセル開度αが略0であるかを判定することによって、実質的に変速がコーストダウンシフトであるか否かを判定している。
 統合コントローラ21は、変速がコーストダウンシフトでないと判断した場合には、ステップS40に進み、式(1)の基本目標同期回転数tbN_inを目標入力軸回転数tN_inに設定する。
 一方、統合コントローラ21は、変速がコーストダウンシフトであると判断した場合、ステップS50の処理に移行する。
 ステップS50において、統合コントローラ21は、車両100の減速度adを算出する。具体的に、統合コントローラ21は、車速Vを時間微分して絶対値をとる演算によって減速度adを算出する。
 そして、ステップS60において、統合コントローラ21は、回転数減少補正処理を実行する。具体的に、統合コントローラ21は、ステップS20で求めた基本目標同期回転数tbN_inに減少補正量ΔN-を減算して補正目標入力軸回転数tN_inCを求める。
 ここで、統合コントローラ21は、減少補正量ΔN-をステップS50で算出した減速度adに基づいて定める。本実施形態では、統合コントローラ21は、減少補正量ΔN-を減速度adが大きいほど大きくなるように設定する。特に、減少補正量ΔN-は、減速度adに対する狭義単調増加関数ΔN-(ad)として設定される。
 より詳細には、本実施形態では、統合コントローラ21は、変速の進行に応じて減少補正量ΔN-を変更する。特に、統合コントローラ21は、減少補正量ΔN-として、変速の前半では相対的に大きい第1減少補正量ΔN1-を設定する一方、変速の後半では相対的に小さい第2減少補正量ΔN2-を設定する。
 ここで、第1減少補正量ΔN1-及び第2減少補正量ΔN2-もそれぞれ、減速度adに対する狭義単調増加関数ΔN1-(ad)及びΔN2-(ad)として設定される。したがって、本実施形態における第1減少補正量ΔN1-及び第2減少補正量ΔN2-の相対的な大小関係は、減速度adが同一の値であると仮定した場合の大小関係により定まるものである。
 したがって、変速の前半に設定される補正目標入力軸回転数tN_inC(以下、「第1補正目標入力軸回転数tN_inC1」とも称する)、及び変速の後半に設定される補正目標入力軸回転数tN_inC(以下、「第2補正目標入力軸回転数tN_inC2」とも称する)は、それぞれ、以下の式(2)及び式(3)により得られる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 そして、統合コントローラ21は、補正目標入力軸回転数tN_inCを目標入力軸回転数tN_inとして設定し、モータコントローラ23に出力する。
 以上説明した図3の変速制御によれば、コーストダウンシフト時には、基本目標同期回転数tbN_inを車両100の減速度adに応じてマイナス側にオフセット補正した補正目標入力軸回転数tN_inCが目標入力軸回転数tN_inとして設定される。
 次に、本実施形態におけるコーストダウンシフト中の入力軸回転数N_inの挙動について説明する。
 図5は、本実施形態の変速制御によるコーストダウンシフト中の目標入力軸回転数tN_inの経時変化を示すタイムチャートである。なお、ここでは、本実施形態の変速制御の理解を容易化するために、コーストダウンシフト中の車速は一定とする。
 なお、二点鎖線L1は最終的な第1補正目標入力軸回転数tN_inC1の値を示している。さらに、一点鎖線L2は最終的な第2補正目標入力軸回転数tN_inC2の値を示している。さらに、破線L3は最終目標同期回転数tN_in*を示したものである。
 図5に示すように、本実施形態の変速フェーズは、変速前の準備フェーズを経た後の第1フェーズ、第2フェーズ、及び第3フェーズにより構成される。特に、本実施形態では、第1フェーズ及び第2フェーズが変速の前半であり、第3フェーズが変速の後半として規定される。
 具体的に、変速制御が開始(図3のステップS10のYes)されてから時刻t0までの準備フェーズでは、変速動作の準備のため制御(第2クラッチ5を開放等)が行われる。
 そして、時刻t0において、変速フェーズが準備フェーズから第1フェーズに移行して入力軸回転数N_inの制御が開始される。この第1フェーズに移行するタイミングにおいて上記ステップS50及びステップS60の処理にしたがう目標入力軸回転数tN_inが設定される。
 すなわち、第1フェーズ及び第2フェーズ中における目標入力軸回転数tN_inとして、基本目標同期回転数tbN_inを第1減少補正量ΔN1-でマイナス側にオフセット補正した第1補正目標入力軸回転数tN_inC1が設定される。
 このため、入力軸回転数N_inは、第1補正目標入力軸回転数tN_inC1に近づくように増大する。
 次に、時刻t1において、変速フェーズが第1フェーズから第2フェーズに移行する。第2フェーズでは、入力軸回転数N_inを第1フェーズの突入時に設定された第1補正目標入力軸回転数tN_inC1に安定的に収束させるために所定時間、目標入力軸回転数tN_inを第1補正目標入力軸回転数tN_inC1に維持する。
 そして、時刻t2において、変速フェーズが第2フェーズから第3フェーズに移行する。
 第3フェーズでは、目標入力軸回転数tN_inを第2補正目標入力軸回転数tN_inC2に設定する。これにより、入力軸回転数N_inは、第1フェーズ及び第2フェーズで設定されていた第1補正目標入力軸回転数tN_inC1から第2補正目標入力軸回転数tN_inC2に収束する。
 なお、第3フェーズが終了した後(時刻t3以降)においては、目標入力軸回転数tN_inが最終目標同期回転数tN_in*に切り替えられる。そして、入力軸回転数N_inを最終目標同期回転数tN_in*に収束したタイミングで、第2クラッチ5が締結されて変速制御が完了する。
 以下、本実施形態の前提となる背景技術について説明する。なお、説明の簡略化のため、背景技術の説明においても本実施形態と同様の要素には同一の符号を付す。
 車両100に対する駆動力要求が略0であるコーストダウンシフト時は、駆動力要求がある場合と比べて実出力軸回転数Nd_outの減少率が大きい。これにより、実出力軸回転数Nd_outをフィルタ処理して得られる基本目標同期回転数tbN_in(式(1)参照)は、実出力軸回転数Nd_outの減少に遅れて追従する。
 したがって、背景技術では、コーストダウンシフト時には、基本目標同期回転数tbN_inの遅れを補償する観点から、基本目標同期回転数tbN_inに対して一定量の減少補正を行った値を目標入力軸回転数tN_inに設定していた。
 しかしながら、変速中に車両100の減速度adが一定以上に大きくなると、実出力軸回転数Nd_outの減少量がより急激になり、上記基本目標同期回転数tbN_inの実出力軸回転数Nd_outの減少に対する遅れの影響がより顕著になる。その結果、実入力軸回転数Nd_inが最終目標同期回転数tN_in*をオーバーシュートするタイミングで第2クラッチ5が締結されて変速ショックが生じるという問題が生じていた。
 このような背景技術の問題に対して、本実施形態では、コーストダウンシフト時において、車両100の減速度adが大きいほど、基本目標同期回転数tbN_inに対する減少補正量ΔN-を大きく設定するという変速制御が提供される。
 これにより、コーストダウンシフト中において入力軸回転数N_inをより好適に調節することができ、第2クラッチ5の締結時において実入力軸回転数Nd_inが最終目標同期回転数tN_in*をオーバーシュートするという事象の発生を抑制、変速ショックの発生を防止することができる。
 以下、上述した本実施形態の構成による作用効果についてより詳細に説明する。
 本実施形態では、自動変速機3を搭載した車両100において、変速中に自動変速機3の入力軸回転数N_inを所定の目標入力軸回転数tN_inに制御する変速制御方法が提供される。
 この変速制御方法では、変速中の入力軸回転数N_inの基本的な目標値である基本目標同期回転数tbN_inを設定し(図3のステップS20)、変速がダウンシフトであって車両100に対する駆動力要求が無い場合(ステップS30のYes)に、基本目標同期回転数tbN_inを減少補正した補正目標入力軸回転数tN_inCを目標入力軸回転数tN_inとして設定する(図3のステップS30、ステップS50、及びステップS60)。
 そして、基本目標同期回転数tbN_inに対する減少補正量ΔN-は、車両100の減速度adが大きいほど大きくなるように設定される。
 これにより、コーストダウンシフト時において、車両100の減速度adの大きさに応じて基本目標同期回転数tbN_inを減少補正することができる。結果として、コーストダウンシフト中に、上述した基本目標同期回転数tbN_inの遅れをもたらす減速度adの大きさに応じて、入力軸回転数N_inをより好適に調節することができる。
 特に、本実施形態の変速制御方法においては、基本目標同期回転数tbN_inを、変速中の自動変速機3の実出力軸回転数Nd_outにフィルタ処理を施して変速後の目標変速比γを乗じることで算出する(上記式(1)参照)。
 このように定められる基本目標同期回転数tbN_inは、一定以上の減速度adを伴うコーストダウンシフト時には、フィルタ処理の作用で実出力軸回転数Nd_outの減少に対して遅れて追従する。このようなシーンにおいて、本実施形態では、車両100の減速度adが大きいほど基本目標同期回転数tbN_inより小さくなるように調節された補正目標入力軸回転数tN_inCが設定される。
 したがって、コーストダウンシフト時において減速度adが一定以上に大きくなっても、上述した実入力軸回転数Nd_inの最終目標同期回転数tN_in*に対するオーバーシュートの発生が妨げられる。結果として、このオーバーシュートに起因した締結時の変速ショックを好適に抑制することができる。
 また、本実施形態における変速制御方法では、補正目標入力軸回転数tN_inCは、相対的に減少補正量ΔN-(第1減少補正量ΔN1-)が大きい第1補正目標入力軸回転数tN_inC1と相対的に減少補正量ΔN-(第2減少補正量ΔN2-)が小さい第2補正目標入力軸回転数tN_inC2とを含む。
 そして、変速の前半(第1フェーズ及び第2フェーズ)では、第1補正目標入力軸回転数tN_inC1を目標入力軸回転数tN_inとして設定し、変速の後半(第3フェーズ)では、第2補正目標入力軸回転数tN_inC2を目標入力軸回転数tN_inとして設定する。
 これにより、相対的に変速終了タイミング(図5の時刻t3)から遠い変速の前半においては、目標入力軸回転数tN_inが基本目標同期回転数tbN_inに対してより小さく設定される。したがって、上述した車両100の減速度adに起因した実入力軸回転数Nd_inのオーバーシュート成分が変速終了タイミングまでの長い時間に亘って累積することが防止される。
 一方、相対的に変速終了タイミングに近い変速の後半においては、変速の前半に比べて目標入力軸回転数tN_inが基本目標同期回転数tbN_inに対してより近い値に設定される。ここで、変速終了タイミングに近い変速の後半においては、変速の前半によりもオーバーシュート成分の蓄積時間が短い。そのため、当該変速の後半において目標入力軸回転数tN_inを基本目標同期回転数tbN_inに相対的に近く設定することで、上記オーバーシュートの発生を抑制する効果を維持することができる上で、実入力軸回転数Nd_inを基本目標同期回転数tbN_inに比較的早く近づけることができ、変速進行の円滑化を図ることができる。
 また、入力軸回転数N_inを、車両100に駆動源として搭載された電動モータとしてのモータジェネレータ2により制御する。
 これにより、回転同期変速を、モータジェネレータ2を用いた電気的制御により実現することができる。
 さらに、本実施形態では、自動変速機3と、変速中に自動変速機3の入力軸回転数N_inを所定の目標入力軸回転数tN_inに制御する変速制御装置としての統合コントローラ21と、を備える車両用の変速制御システムSが提供される。
 そして、変速制御装置としての統合コントローラ21は、変速中の入力軸回転数N_inの基本的な目標値である基本目標同期回転数tbN_inを算出する基本目標同期回転数設定部(図3のステップS20)と、変速がダウンシフトであって車両100に対する駆動力要求が無い場合(ステップS30のYes)に、基本目標同期回転数tbN_inを減少補正した補正目標入力軸回転数tN_inCを目標入力軸回転数tN_inとして設定する回転数減少補正部と(図3のステップS30、ステップS50、及びステップS60)、を有する。
 そして、回転数減少補正部は、基本目標同期回転数tbN_inに対する減少補正量ΔN-は、車両100の減速度adが大きいほど大きくなるように設定される。
 これにより、上記変速制御方法を実行するために好適なシステム構成が実現されることとなる。
 (他の実施形態)
 本発明に係る他の実施形態について説明する。なお、この実施形態では、既に説明した車両100の構成に対し、従動輪の車輪速を検出するための車輪速センサを設ける。ここで、車両100における従動輪とは、動力源としての内燃エンジン1が直上に配置されておらず、当該内燃エンジン1の荷重が直接的に作用しない車輪(図1の後輪7r)を意味する。
 そして、統合コントローラ21は、この車輪速センサで検出される車輪速に基づいて、減速度adを求めるための車速Vを演算する。より具体的には、統合コントローラ21は、この車輪速検出値を車両100に適合する車両モデルに応じて定めるフィルタを施すことで車速Vを演算する。
 このように、従動輪の車輪速を用いて車速Vを演算することで、パワートレーン系の共振などの影響により、減速度adがより高い側に誤検出されることを避けることができる。特に、通常、車両100の内燃エンジン1やモータジェネレータ2の動作点を定める制御において入力情報として用いる車速Vは、車輪のスリップによる誤差をできるだけ排除する観点から相対的に荷重の大きい駆動輪(前輪7f)の車輪速を用いることが好ましい。
 これに対して、本実施形態の変速制御方法において、コーストダウンシフト時の減少補正量ΔN-を規定する減速度adを定めるための車速Vは、上記スリップによる誤差による制御への影響は少ない。さらに、駆動輪の車輪速には、内燃エンジン1等のパワートレーン系アクチェータの動作にともなう共振成分が誤差として含まれる可能性がある。そして、減速度adを定めるための車速Vに関しては、当該誤差の方がスリップによる誤差よりも影響が大きい。
 このような事情から、従動輪の車輪速を用いて車速Vを演算することで、コーストダウンシフト時の減少補正量ΔN-を規定する減速度adをより好適に求めることができる。
 以上、本発明の実施形態について説明したが、上記各実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 例えば、上記実施形態では、変速時にモータジェネレータ2を用いて入力軸回転数N_inを調節する例を説明した。しかしながら、入力軸回転数N_inを調節するためのアクチュエータはモータジェネレータ2に限られるものではない。例えば、第1クラッチ4を締結して内燃エンジン1の出力を適宜制御することで、上記実施形態の変速制御における入力軸回転数N_inの調節を行うようにしても良い。
 また、上記実施形態では、車両100に対する要求駆動力が無いこと(すなわち、コースト走行中であること)を、アクセル開度αが0であるか否かに基づいて推定する例を説明した。しかしながら、車両100に対する要求駆動力が無いことを推定する方法はこれに限られるものではない。例えば、車両100にいわゆる自動運転機能又は運転補助機能が搭載される場合には、車両100のユーザの指定或いは走行条件に基づいて自動運転コントローラ又は運転補助コントローラが演算する要求駆動力相当のパラメータに基づいて、車両100に対する要求駆動力が無いことを推定しても良い。

Claims (6)

  1.  自動変速機を搭載した車両において、変速時に前記自動変速機の入力軸回転数を所定の目標入力軸回転数に制御する変速制御方法であって、
     変速中の前記入力軸回転数の基本的な目標値である基本目標同期回転数を設定し、
     変速がダウンシフトであって前記車両に対する駆動力要求が無い場合に、前記基本目標同期回転数を減少補正した補正目標入力軸回転数を前記目標入力軸回転数として設定し、
     前記基本目標同期回転数に対する減少補正量は、前記車両の減速度が大きいほど大きくなるように設定される、
     変速制御方法。
  2.  請求項1に記載の変速制御方法であって、
     前記基本目標同期回転数を、変速中の前記自動変速機の実出力軸回転数に対してフィルタ処理を施して変速後の目標変速比を乗じることで算出する、
     変速制御方法。
  3.  請求項1又は2に記載の変速制御方法であって、
     前記補正目標入力軸回転数は、相対的に前記減少補正量が大きい第1補正目標入力軸回転数と相対的に前記減少補正量が小さい第2補正目標入力軸回転数とを含み、
     変速の前半では、前記第1補正目標入力軸回転数を前記目標入力軸回転数として設定し、
     変速の後半では、前記第2補正目標入力軸回転数を前記目標入力軸回転数として設定する、
     変速制御方法。
  4.  請求項1~3の何れか1項に記載の変速制御方法であって、
     前記減速度を、前記車両の従動車の車輪速に基づいて演算する、
     変速制御方法。
  5.  請求項1~4の何れか1項に記載の変速制御方法であって、
     前記入力軸回転数を、前記車両に駆動源として搭載された電動モータにより制御する、
     変速制御方法。
  6.  自動変速機と、変速時に前記自動変速機の入力軸回転数を所定の目標入力軸回転数に制御する変速制御装置と、を備える車両用の変速制御システムであって、
     前記変速制御装置は、
     変速中の前記入力軸回転数の基本的な目標値である基本目標同期回転数を算出する基本目標同期回転数設定部と、
     変速がダウンシフトであって車両に対する駆動力要求が無い場合に、前記基本目標同期回転数を減少補正した補正目標入力軸回転数を前記目標入力軸回転数として設定する回転数減少補正部と、を備え、
     前記回転数減少補正部は、前記基本目標同期回転数に対する減少補正量を前記車両の減速度が大きいほど大きく設定する、
     変速制御システム。
PCT/JP2019/019932 2019-05-20 2019-05-20 変速制御方法及び変速制御システム WO2020234974A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2019/019932 WO2020234974A1 (ja) 2019-05-20 2019-05-20 変速制御方法及び変速制御システム
JP2021519918A JP7231019B2 (ja) 2019-05-20 2019-05-20 変速制御方法及び変速制御システム
EP19929201.2A EP3974683B1 (en) 2019-05-20 2019-05-20 Gear shift control method and gear shift control system
US17/612,332 US11680638B2 (en) 2019-05-20 2019-05-20 Shift control method and shift control system
CN201980096516.1A CN113874639B (zh) 2019-05-20 2019-05-20 变速控制方法以及变速控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/019932 WO2020234974A1 (ja) 2019-05-20 2019-05-20 変速制御方法及び変速制御システム

Publications (1)

Publication Number Publication Date
WO2020234974A1 true WO2020234974A1 (ja) 2020-11-26

Family

ID=73459071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019932 WO2020234974A1 (ja) 2019-05-20 2019-05-20 変速制御方法及び変速制御システム

Country Status (5)

Country Link
US (1) US11680638B2 (ja)
EP (1) EP3974683B1 (ja)
JP (1) JP7231019B2 (ja)
CN (1) CN113874639B (ja)
WO (1) WO2020234974A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114439924A (zh) * 2022-02-15 2022-05-06 一汽解放汽车有限公司 车辆变速器转速控制方法、装置、计算机设备和存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023153579A (ja) * 2022-04-05 2023-10-18 マツダ株式会社 車両の変速制御装置
JP2023153581A (ja) * 2022-04-05 2023-10-18 マツダ株式会社 車両の変速制御装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191396A (ja) * 1997-09-19 1999-04-06 Honda Motor Co Ltd 車両の走行制御装置
JP2007112350A (ja) 2005-10-21 2007-05-10 Toyota Motor Corp 変速機制御装置
JP2008075718A (ja) * 2006-09-20 2008-04-03 Mitsubishi Fuso Truck & Bus Corp 車両用変速制御装置
JP2010007491A (ja) * 2008-06-24 2010-01-14 Toyota Motor Corp 車両の制御装置および制御方法
WO2010146677A1 (ja) * 2009-06-17 2010-12-23 トヨタ自動車 株式会社 車両の変速制御装置
JP2011133069A (ja) * 2009-12-25 2011-07-07 Honda Motor Co Ltd 自動変速機の制御装置
WO2017057757A1 (ja) * 2015-09-30 2017-04-06 アイシン・エィ・ダブリュ株式会社 制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676313B2 (en) * 2006-10-12 2010-03-09 Ford Global Technologies, Llc Target speed control strategy for power-off shifts in a hybrid electric vehicle
JP4793331B2 (ja) * 2007-06-13 2011-10-12 日産自動車株式会社 車両変速時の制御装置
JP4783838B2 (ja) * 2009-03-25 2011-09-28 ジヤトコ株式会社 自動変速機の制御装置
JP5772237B2 (ja) * 2011-06-01 2015-09-02 日産自動車株式会社 有段自動変速機の制御装置
US8788166B1 (en) * 2013-02-28 2014-07-22 Ford Global Technologies, Llc Downshift controls using measured output torque
US10480647B2 (en) * 2018-02-21 2019-11-19 Fca Us Llc Techniques for controlling pedal-off downshifts of a vehicle transmission
JP7294416B2 (ja) * 2019-05-20 2023-06-20 日産自動車株式会社 変速制御方法及び変速制御システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1191396A (ja) * 1997-09-19 1999-04-06 Honda Motor Co Ltd 車両の走行制御装置
JP2007112350A (ja) 2005-10-21 2007-05-10 Toyota Motor Corp 変速機制御装置
JP2008075718A (ja) * 2006-09-20 2008-04-03 Mitsubishi Fuso Truck & Bus Corp 車両用変速制御装置
JP2010007491A (ja) * 2008-06-24 2010-01-14 Toyota Motor Corp 車両の制御装置および制御方法
WO2010146677A1 (ja) * 2009-06-17 2010-12-23 トヨタ自動車 株式会社 車両の変速制御装置
JP2011133069A (ja) * 2009-12-25 2011-07-07 Honda Motor Co Ltd 自動変速機の制御装置
WO2017057757A1 (ja) * 2015-09-30 2017-04-06 アイシン・エィ・ダブリュ株式会社 制御装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114439924A (zh) * 2022-02-15 2022-05-06 一汽解放汽车有限公司 车辆变速器转速控制方法、装置、计算机设备和存储介质
CN114439924B (zh) * 2022-02-15 2023-08-18 一汽解放汽车有限公司 车辆变速器转速控制方法、装置、计算机设备和存储介质

Also Published As

Publication number Publication date
CN113874639A (zh) 2021-12-31
CN113874639B (zh) 2022-12-13
US11680638B2 (en) 2023-06-20
EP3974683B1 (en) 2023-06-28
JPWO2020234974A1 (ja) 2020-11-26
EP3974683A4 (en) 2022-08-17
EP3974683A1 (en) 2022-03-30
US20220260154A1 (en) 2022-08-18
JP7231019B2 (ja) 2023-03-01

Similar Documents

Publication Publication Date Title
JP4862624B2 (ja) ハイブリッド車両の制御装置
US8140205B2 (en) Driving system for hybrid vehicle
JP4179290B2 (ja) ハイブリッド車両の電動オイルポンプ駆動制御装置
WO2012053590A1 (ja) 車両および制御方法、並びにプログラム
WO2013118255A1 (ja) ハイブリッド車の変速制御装置および変速制御方法
WO2020234974A1 (ja) 変速制御方法及び変速制御システム
JP2006335197A (ja) 動力出力装置およびこれを搭載する車両並びに動力出力装置の制御方法
EP3272606A1 (en) Damping control device for hybrid vehicle
KR20070113996A (ko) 하이브리드 차량의 엔진 시동 제어 장치 및 하이브리드차량의 엔진 시동 제어 방법
JP6241424B2 (ja) 車両制御装置
EP2873576B1 (en) Hybrid vehicle control device and hybrid vehicle control method
JP3454172B2 (ja) ハイブリッド車両の制御方法
JP2018030507A (ja) ハイブリッド車両の駆動制御装置
WO2018168389A1 (ja) 車両制御装置
JP6350318B2 (ja) 電子制御装置
JP2004215402A (ja) 車輌の制御装置
JP7294416B2 (ja) 変速制御方法及び変速制御システム
JP6829770B2 (ja) 車両の制御装置及び制御方法
JP2021031005A (ja) ハイブリッド車両の制御装置
JP6812704B2 (ja) ハイブリッド車両の駆動制御装置
JP3861850B2 (ja) ハイブリッド自動車の制御装置
JP2012067898A (ja) 制御装置
JP7238576B2 (ja) ハイブリッド車両のエンジン始動制御装置
JP2018030504A (ja) ハイブリッド車両の駆動制御装置
JP2018030505A (ja) ハイブリッド車両の駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519918

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019929201

Country of ref document: EP

Effective date: 20211220