WO2020233550A1 - 基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物 - Google Patents

基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物 Download PDF

Info

Publication number
WO2020233550A1
WO2020233550A1 PCT/CN2020/090907 CN2020090907W WO2020233550A1 WO 2020233550 A1 WO2020233550 A1 WO 2020233550A1 CN 2020090907 W CN2020090907 W CN 2020090907W WO 2020233550 A1 WO2020233550 A1 WO 2020233550A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
alkyl
photoresist
group
formula
Prior art date
Application number
PCT/CN2020/090907
Other languages
English (en)
French (fr)
Inventor
陈金平
李嫕
张卫杰
于天君
曾毅
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Publication of WO2020233550A1 publication Critical patent/WO2020233550A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials

Definitions

  • the invention belongs to the technical field of materials, and specifically relates to a type of monomolecular resin acid generator based on sulfonium salt and a photoresist composition thereof.
  • Photoresist also known as photoresist, is a kind of etch-resistant thin film material whose solubility changes after being irradiated with energy such as light beam, electron beam, ion beam or x-ray. It is widely used in integrated circuits and semiconductor discrete devices. Micro processing. By coating the photoresist on the surface of semiconductor, conductor or insulator, the part left after exposure and development protects the bottom layer, and then etching with etchant can transfer the required fine patterns from the mask to the substrate Therefore, photoresist is a key material in device microfabrication technology. With the rapid development of the semiconductor industry, the resolution required by photolithography technology is getting higher and higher, and the requirements for edge roughness are getting smaller and smaller, which puts forward higher requirements for the comprehensive performance that photoresist materials can achieve.
  • Monomolecular resin not only retains the film-forming characteristics and easy processing properties of the resin itself, but also has a definite molecular structure, which is easy to synthesize and modify.
  • Photoresist materials based on monomolecular resins are expected to meet the requirements of high-resolution lithography .
  • photo acid generator Photo Acid Generator, PAG
  • PAG Photo Acid Generator
  • the so-called “chemical amplification” means that PAG decomposes to produce acid after illumination, and the acid initiates a series of chemical reactions, which makes the solubility of photoresist materials in illuminated and non-illuminated areas change significantly, and then pattern transfer can be achieved through development.
  • the acid production efficiency of the photoacid generator and the distribution of the photoacid generator in the material play an important role in the quality of the pattern.
  • photoresist is a mixture composed of resin host material, PAG and various trace additives.
  • This simple physical mixing can easily cause the acid generator to form unevenly distributed tiny areas in the host material, which will affect the photolithography pattern The edge roughness.
  • this physical mixing makes it difficult to control the diffusion rate of the generated acid in the host material, and adversely affects the edge roughness of the pattern.
  • One of the traditional methods to solve the above problems is to covalently attach the acid generator to the main chain of the polymer resin (J.Vac.Sci.Technol.B 2007, 25, 2136), so that the acid generator and the host material become one
  • it can make the distribution of the acid generator in the host material more uniform, and on the other hand, it can control the range of acid diffusion to occur in the host material adjacent to the PAG, thereby greatly reducing the edge roughness.
  • Combining monomolecular resin and PAG can not only use monomolecular resin to achieve high-resolution lithography requirements, but also can effectively control the distribution of photoacid generators and acid diffusion, and achieve an effective reduction in edge roughness.
  • Some single-component photoresists have been disclosed in the prior art, but the film-forming properties, solubility, glass transition temperature, and etching resistance of these materials need to be further improved.
  • the present invention provides a sulfonium salt-based monomolecular resin, which can be used as an acid generator and/or a photoresist host material in a photoresist.
  • R 0 and R a1 to R a12 are the same or different, and each independently represents H, hydroxyl, C 1-15 alkoxy or -OR b , and R b is an acid-sensitive group ;
  • R is selected from unsubstituted or optionally substituted with one, two or more Rs1 groups as follows: C 1-15 alkyl, C 3-20 cycloalkyl, C 6-20 aryl, 5-20 Member heteroaryl, 3-20 member heterocyclyl, -C 1-15 alkyl-C 6-20 aryl, -C 1-15 alkyl-5-20 member heteroaryl, -C 1-15 alkane Group -CO-C 6-20 aryl, -C 1-15 alkyl-CO-5-20 membered heteroaryl, -C 1-15 alkyl-CO-C 1-15 alkyl, -C 1- 15 alkyl-CO-C 3-20 cycloalkyl;
  • Rs1 is selected from NO 2 , halogen, C 1-15 alkyl, C 1-15 alkoxy, C 3-20 cycloalkyl, C 6-20 aryl, 5-20 membered heteroaryl;
  • X - is an anion, such as halide, alkylsulfonate, haloalkylsulfonate (such as trifluoromethanesulfonate, perfluoropropylsulfonate, perfluorobutanesulfonate), p-toluenesulfonate, tetrafluoroborate , Hexafluorophosphate, bistrifluoromethanesulfonimide ion.
  • anion such as halide, alkylsulfonate, haloalkylsulfonate (such as trifluoromethanesulfonate, perfluoropropylsulfonate, perfluorobutanesulfonate), p-toluenesulfonate, tetrafluoroborate , Hexafluorophosphate, bistrifluoromethanesulfonimide ion.
  • the acid-sensitive group R b refers to a group that can react under acidic conditions to be removed from the host.
  • the acid-sensitive group R b is -CR 1 -OR 1 , -CO-OR 1 , -CH 2 -CO-OR 1 ,
  • R 1 is the same or different and is independently selected from the following groups that are unsubstituted or optionally substituted with one, two or more Rs2: C 1-15 alkyl, C 3-20 cycloalkyl;
  • the ring of is optionally substituted with one, two or more Rs2;
  • n is any integer from 1 to 4, Indicates the bond between the group and the main structure;
  • Rs2 are the same or different, and are independently selected from the following groups: NO 2 , halogen, C 1-15 alkyl, C 1-15 alkoxy, C 3-20 cycloalkyl.
  • the R 1 is a substituted or unsubstituted C 1-6 alkyl groups as follows: C 1-6 alkyl, C 3-8 monocyclic cycloalkyl, C 7-12 bridged ring Cycloalkyl.
  • R is selected from the following groups that are unsubstituted or optionally substituted with one, two or more Rs1: C 1-6 alkyl, C 3-6 cycloalkyl, C 6- 12 aryl, -C 1-6 alkyl-C 6-12 aryl, -C 1-6 alkyl-5-12-membered heteroaryl, -C 1-6 alkyl-CO-C 6-12 aryl Group, -C 1-6 alkyl-CO-C 1-6 alkyl;
  • Rs1 is selected from C 1-6 alkyl, NO 2 , and C 1-6 alkoxy.
  • R 0 and R a1 to R a12 are the same or different, and each independently represents a hydrogen atom, a hydroxyl group, a C 1-6 alkoxy group, or -OR b .
  • the acid-sensitive group R b is selected from the following:
  • the group R is specifically selected from one of the following structures:
  • R 0 is hydroxyl or -OR b .
  • At least one of Ra1 to Ra12 and R 0 is a hydroxyl group or -OR b .
  • At least one-third of the groups in Ra1 to Ra12 are hydroxyl groups or -OR b .
  • each benzene ring of R a1 to R a12 is a hydroxyl group or -OR b .
  • each benzene ring has one, two, or three -OR b .
  • the compound represented by formula I can be selected from the following:
  • the present invention also provides a preparation method of the compound represented by formula I, which comprises the following steps:
  • R a1 ⁇ R a12 , R 0 , R and X have the above definitions;
  • M is selected from alkali metals, L is selected from leaving groups, such as chlorine, bromine, etc.;
  • Z is alkylsulfonic acid group, halogenated alkyl group Sulfonic acid group (such as trifluoromethanesulfonic acid group, perfluoropropylsulfonic acid group, perfluorobutylsulfonic acid group), p-toluenesulfonic acid group.
  • the compound II is prepared by the following method, including:
  • R 0 and R a1 to R a12 are as defined above, and R 0 ', R a1 'to R a12 ' are the same or different, and each independently represents a hydrogen atom or a hydroxyl group;
  • the compound of formula III is reacted with a reducing agent to prepare a compound of formula II independently selected from H or -OH for R 0 and R a1 to R a12 ;
  • R 0 , R a1 to R a12 independently selected from the formula II compound of H or -OH are reacted with compound C 1-15 alkyl-L or compound R b -L to prepare R 0 , R a1 to R a12 are independently selected from H, C 1-15 alkoxy or -OR b compounds of formula II; wherein L is a leaving group or L and R b form an anhydride containing R b .
  • L is selected from leaving groups such as halogen.
  • the reducing agent is selected from phosphorus trichloride.
  • M is selected from potassium or sodium.
  • the compound III is prepared by the following method, including:
  • R 1 ', R 2 ', R 3 ', R 0 ”, R 1 to R 12 are the same or different, and are each independently selected from a hydrogen atom or a methoxy group, R 0 ', R a1 'to R a12 ' Same or different, each independently represents a hydrogen atom or a hydroxyl group;
  • the present invention also provides the application of the above compound I in photoresist.
  • the compound is used as an acid generator in the photoresist and/or a photoresist host material.
  • the compound I of the present invention is used both as a photoresist host material (ie film-forming resin) and as an acid generator.
  • the compound I of the present invention is used as an acid generator.
  • the present invention also provides a photoresist composition, which includes the compound represented by formula I above.
  • the photoresist composition further includes a solvent.
  • the solvent is selected from one, two or more of the following substances: ethyl lactate, butyl acetate, propylene glycol monomethyl ether acetate (PGMEA), propylene glycol dimethyl ether, ethylene glycol Monomethyl ether, cyclohexanone, methyl n-pentanone, methyl isopentanone.
  • PGMEA propylene glycol monomethyl ether acetate
  • PEGMA propylene glycol dimethyl ether
  • ethylene glycol Monomethyl ether cyclohexanone
  • methyl n-pentanone methyl isopentanone.
  • the photoresist composition is a one-component photoresist, that is, the photoresist composition includes only one component, namely the compound represented by formula I, except for the solvent.
  • the single-component photoresist at least one of R a1 to R a12 and R 0 is -OR b .
  • at least one third of the groups in R a1 to R a12 in formula I are -OR b .
  • at least one group on each benzene ring in R a1 to R a12 is -OR b .
  • the content of the compound represented by formula I is 1%-10% of the total mass of the photoresist, and the rest are photoresist solvents.
  • the photoresist composition further includes one or more other photoresist host materials.
  • the other photoresist body material may be any photoresist body material known in the prior art. For example, the materials reported in ZL201380000139.X.
  • the photoresist composition includes a compound represented by formula I and a crosslinking agent.
  • the compound represented by formula I at least one group on each benzene ring of Ra1 to Ra12 is a hydroxyl group.
  • the present invention also provides a photoresist film, which includes the compound represented by formula I of the present invention.
  • the photoresist film of the present invention is composed of the compound represented by formula I of the present invention.
  • the present invention also provides a method for preparing a photoresist film, which includes spin coating the photoresist composition on a substrate to form a film.
  • the substrate may be a silicon wafer or the like.
  • the present invention also provides the application of the above-mentioned photoresist composition and photoresist film in photolithography.
  • the lithography is 248 nm lithography, 193 nm lithography, extreme ultraviolet lithography, nanoimprint lithography, or electron beam lithography.
  • the photoresist composition and photoresist film are used in electron beam lithography and extreme ultraviolet (EUV) lithography.
  • the present invention provides a series of new monomolecular resins based on sulfonium salts, namely the compounds represented by formula I. It can be used as an acid generator for photoresist, mixed with other host materials, for example, with known monomolecular resin (molecular glass). Since the structure of the compound of the present invention is similar to the structure of a conventional photoresist main body material, the mixing is more uniform, thereby reducing the edge roughness of photolithography.
  • the structure of the compound shown in formula I contains both a sulfonium salt and a hydroxyl group or an acid-sensitive group. Therefore, the compound of the present invention can have the dual functions of acid generation and acid crosslinking or acid sensitivity at the same time.
  • the compound of the present invention can form a single-component photoresist alone, which can be used in various types of photolithography.
  • the compound of the present invention has good solubility in various polar solvents, and a good film can be prepared by spin coating.
  • the skeletal structure substituted by the polyphenyl ring hydroxyl group in the compound can effectively inhibit molecular crystallization and facilitate film formation.
  • the compound has a very high glass transition temperature (greater than 100°C), which is suitable for the requirements of the photolithography process.
  • the compound of the present invention has high thermal stability and etching resistance.
  • the ratio of the acid generator group (sulfonium salt group) and the acid sensitive group can be adjusted as needed, and the molar ratio is preferably 1:4-1:14.
  • the compound of the present invention has a simple synthesis process, the reaction intermediates and final products can be separated from the system through recrystallization or precipitation, which is suitable for industrial production.
  • halogen includes F, Cl, Br or I.
  • C 1-15 alkyl should be understood to mean a linear or branched saturated monovalent hydrocarbon group having 1 to 15 carbon atoms.
  • C 1-6 alkyl refers to straight and branched chain alkyl groups having 1, 2, 3, 4, 5, or 6 carbon atoms.
  • the alkyl group is, for example, methyl, ethyl, propyl, butyl, pentyl, hexyl, isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, 2-methylbutyl, 1-methylbutyl, 1-ethylpropyl, 1,2-dimethylpropyl, neopentyl, 1,1-dimethylpropyl, 4-methylpentyl, 3-methylpentyl Group, 2-methylpentyl, 1-methylpentyl, 2-ethylbutyl, 1-ethylbutyl, 3,3-dimethylbutyl, 2,2-dimethylbutyl, 1,1-dimethylbutyl, 2,3-dimethylbutyl, 1,3-dimethylbutyl, 1,2-dimethylbutyl, etc. or their isomers.
  • C 1-15 alkoxy should be understood as -OC 1-15 alkyl, wherein C 1-15 alkyl has the above definition.
  • C 3-20 cycloalkyl should be understood to mean a saturated monovalent monocyclic, bicyclic hydrocarbon ring or polycyclic hydrocarbon ring (also called a fused-ring hydrocarbon ring), which has 3-20 carbon atoms.
  • Bicyclic or polycyclic cycloalkyl groups include fused cycloalkyls, bridged cycloalkyls, and spirocycloalkyls; the fused ring refers to two or more cyclic structures sharing two adjacent ring atoms. (That is, share a bond) the fused ring structure formed.
  • the bridged ring refers to a condensed ring structure formed by two or more ring-mounted structures sharing two non-adjacent ring atoms.
  • the spiro ring refers to a condensed ring structure formed by two or more ring structures sharing one ring atom with each other.
  • the C 3-20 cycloalkyl group may be a C 3-8 monocyclic cycloalkyl group, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, or C 7 -12 and cyclocycloalkyl, such as decalin ring; can also be C 7-12 bridged cyclocycloalkyl , such as norbornane, adamantane, bicyclo[2,2,2]octane.
  • 3-20 membered heterocyclic group means a saturated or unsaturated monovalent monocyclic or bicyclic hydrocarbon ring containing 1-5 heteroatoms independently selected from N, O and S, preferably “3-10 membered Heterocyclyl".
  • 3-10 membered heterocyclic group means a saturated monovalent monocyclic or bicyclic hydrocarbon ring containing 1-5, preferably 1-3 heteroatoms selected from N, O and S.
  • the heterocyclic group may be connected to the rest of the molecule through any one of the carbon atoms or the nitrogen atom (if present).
  • the heterocyclic group may include but is not limited to: 4-membered ring, such as azetidinyl, oxetanyl; 5-membered ring, such as tetrahydrofuranyl, dioxolyl, pyrrole Alkyl, imidazolidinyl, pyrazolidinyl, pyrrolinyl; or 6-membered ring, such as tetrahydropyranyl, piperidinyl, morpholinyl, dithiaalkyl, thiomorpholinyl, piperazinyl Or trithiaalkyl; or 7-membered ring, such as diazeppanyl.
  • 4-membered ring such as azetidinyl, oxetanyl
  • 5-membered ring such as tetrahydrofuranyl, dioxolyl, pyrrole Alkyl, imidazolidinyl, pyrazolidinyl, pyrrol
  • the heterocyclic group may be benzo-fused.
  • the heterocyclic group may be bicyclic, such as but not limited to a 5, 5-membered ring, such as hexahydrocyclopenta[c]pyrrole-2(1H)-yl ring, or a 5, 6-membered bicyclic ring, such as hexahydropyrrole And [1,2-a]pyrazine-2(1H)-yl ring.
  • the ring containing nitrogen atoms may be partially unsaturated, that is, it may contain one, two or more double bonds, such as but not limited to 2,5-dihydro-1H-pyrrolyl, 4H-[1,3, 4]thiadiazinyl, 4,5-dihydrooxazolyl or 4H-[1,4]thiazinyl, or it may be benzo-fused, such as but not limited to dihydroisoquinolinyl, 1,3-Benzoxazolyl, 1,3-benzodioxolyl.
  • the heterocyclic group is non-aromatic.
  • C 6-20 aryl should be understood to preferably mean a monovalent aromatic or partially aromatic monocyclic, bicyclic or tricyclic hydrocarbon ring having 6 to 20 carbon atoms, preferably “C 6-14 aryl” .
  • C 6-14 aryl should be understood to preferably mean a monocyclic, bicyclic, or partially aromatic monocyclic or partially aromatic monocyclic ring having 6, 7, 8, 9, 10, 11, 12, 13 or 14 carbon atoms.
  • Tricyclic hydrocarbon ring (“C 6-14 aryl”), especially a ring with 6 carbon atoms (“C 6 aryl”), such as phenyl; or biphenyl, or one with 9 carbon atoms
  • a ring (“C 9 aryl”), such as indanyl or indenyl, or a ring with 10 carbon atoms (“C 10 aryl”), such as tetrahydronaphthyl, dihydronaphthyl or naphthyl, Either a ring having 13 carbon atoms (“C 13 aryl”), such as fluorenyl, or a ring having 14 carbon atoms (“C 14 aryl”), such as anthracenyl.
  • the C 6-20 aryl group When the C 6-20 aryl group is substituted, it may be mono-substituted or multi-substituted.
  • there is no restriction on the substitution site for example, ortho, para, or meta substitution can be adopted.
  • 5-20 membered heteroaryl should be understood to include such a monovalent monocyclic, bicyclic or tricyclic aromatic ring system which has 5-20 ring atoms and contains 1-5 independently selected from N, O And S heteroatoms, for example "5-14 membered heteroaryl”.
  • the term “5-14 membered heteroaryl” should be understood to include monovalent monocyclic, bicyclic or tricyclic aromatic ring systems having 5, 6, 7, 8, 9, 10, 11, 12, 13 or 14 ring atoms, especially 5 or 6 or 9 or 10 carbon atoms, and it contains 1-5, preferably 1-3 heteroatoms each independently selected from N, O and S and, in addition, in each case The bottom can be benzo-fused.
  • the heteroaryl group is selected from thienyl, furyl, pyrrolyl, oxazolyl, thiazolyl, imidazolyl, pyrazolyl, isoxazolyl, isothiazolyl, oxadiazolyl, triazolyl, thio Diazolyl, thio-4H-pyrazolyl, etc.
  • C 1-15 alkyl also applies to other C 1-15 alkyl-containing groups, such as -C 1-15 alkyl-C 6-20 aryl, -C 1-15 alkyl -5-20-membered heteroaryl, -C 1-15 alkyl-CO-C 6-20 aryl, -C 1-15 alkyl-CO-5-20-membered heteroaryl, -C 1-15 alkane Group -CO-C 1-15 alkyl, -C 1-15 alkyl-CO-C 3-20 cycloalkyl, etc.
  • C 6-20 aryl, 5-20 membered heteroaryl, and C 3-20 cycloalkyl have the same definition throughout the text.
  • Figure 1 is a differential scanning calorimetry curve and a thermal weight loss curve of compound I-1 in Example 7 of the present invention.
  • Figure 2 is a differential scanning calorimetry curve and thermal weight loss curve of compound I-3 in Example 14 of the present invention.
  • Figure 3 is an atomic force scanning probe microscope (AFM) plan view of compound I-1 film formation.
  • Figure 4 is an atomic force scanning probe microscope (AFM) three-dimensional view of compound I-1 film formation.
  • Figure 5 is a scanning electron microscope (SEM) image of extreme ultraviolet lithography stripe of compound I-1 single-component photoresist.
  • Fig. 6 is a scanning electron microscope (SEM) image of electron beam lithography stripes of compound I-1 as an acid generator and other host materials to form a photoresist.
  • the reaction solution was extracted with ethyl acetate/water, and the organic phase was washed three times with saturated sodium bisulfate aqueous solution and water respectively, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure to obtain a solid that was recrystallized in anhydrous ethanol/n-hexane mixture ,
  • the obtained white solid is 5.2 g, and the yield is 81%.
  • reaction solution was extracted with ethyl acetate/water, and the organic phase was washed three times with saturated aqueous sodium hydrogen sulfate and water respectively, dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure to obtain a semi-solid in ethyl acetate/n-hexane mixture Medium recrystallization, 2.6 g of white solid obtained, yield 82%.
  • reaction solution is extracted with ethyl acetate/water, the organic phase is washed once with 3 wt% oxalic acid solution and water respectively, the organic layers are combined, dried over anhydrous magnesium sulfate, and the solvent is removed under reduced pressure. It was recrystallized with ethyl acetate/n-hexane mixed solvent to obtain 3.27 g of white solid with a yield of 63%.
  • Example 7 The specific steps are the same as in Example 7, except that ethyl perfluorobutanesulfonate is used instead of methyl triflate, and the compound II-2 obtained in Example 11 is used instead of 3,5-bis(3,4- Di-tert-butyl carbonate phenyl)-4-tert-butyl carbonate phenyl-sulfide, the reaction yield is 78%.
  • AD means
  • AD means
  • Boc means
  • Boc means
  • Boc means
  • Boc means
  • Boc means
  • Example 7 The specific steps are the same as in Example 7. The difference is that 3,5-bis(3,4,5-tri-tert-butyl carbonate phenyl)-4-tert-butyl carbonate phenyl-sulfide is used instead of 3 , 5-bis(3,4-di-tert-butyl carbonate phenyl)-4-tert-butyl carbonate phenyl-sulfide, the yield is 65%.
  • Example 7 The compound I-1 in Example 7 was dissolved in propylene glycol monomethyl ether acetate (PGMEA) to prepare a 30 mg/ml solution, which was filtered with a microporous filter with a pore size of 0.22 ⁇ m to obtain a spin coating solution.
  • PGMEA propylene glycol monomethyl ether acetate
  • Spin-coating film was performed on the alkali-treated silicon substrate, and the uniformity of the film was analyzed by atomic force microscope AFM. The plane and three-dimensional views are shown in Figures 3 and 4 respectively. It can be seen from the figure that the obtained film is very uniform.
  • a one-component photoresist and photolithography The compound I-1 in Example 7 is dissolved in propylene glycol monomethyl ether acetate (PGMEA) to prepare a solution with a mass concentration of 3%, and a micro-pore size 0.22 ⁇ m is used.
  • the spin-coating liquid is obtained by filtering with a pore filter.
  • the spin-coating film is formed on a silicon substrate that has been treated with acid and alkali.
  • the film is baked at 100°C for 3 minutes.
  • the prepared film is subjected to the soft X-ray interference light of the Shanghai Synchrotron Radiation Light Source.
  • the exposure experiment was carried out on the engraving station (BL08U1B), the exposure period was 140nm, and very uniform lithography stripes were obtained, as shown in Figure 5.
  • the width of the lithography stripe is about 53nm, and the image software processing analysis shows that the edge roughness of the lithography stripe is only 2.8nm.
  • a composite component photoresist and photolithography The compound I-1 in Example 7 is used as an acid generator and the 2,7,2',7'-tetra-(3,4) reported in the patent ZL201380000139.
  • X -Di-tert-butyl carbonate-based phenyl)-9,9'-spirofluorene monomolecular resin is mixed and dissolved in propylene glycol monomethyl ether acetate (PGMEA), wherein the content of the monomolecular resin main material is 30mg/ml ,
  • the acid generator content is 1.5mg/ml
  • the photoresist solution is filtered with a microporous filter with a pore size of 0.22 ⁇ m to obtain a spin coating solution, which is spin-coated on a silicon substrate treated with acid and alkali, and baked at 100 °C After baking for 3 minutes, the prepared film was subjected to an electron beam exposure experiment with an exposure period of 150 nm to obtain very uniform lithography stripes, as shown

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明涉及式(I)所示的化合物及其光刻胶组合物。本发明所述化合物同时具有产酸和酸敏感双重功能,既可以作为光刻胶的产酸剂,又可以作为光刻胶的主体材料。有助于实现对酸扩散的调控和边缘粗糙度的有效降低。

Description

基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物
本申请要求2019年5月22日向中国国家知识产权局提交的,专利申请号为201910430516.2,发明名称为“基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物”的在先申请的优先权。该申请的全文通过引用的方式结合于本申请中。
技术领域
本发明属于材料技术领域,具体涉及一类基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物。
背景技术
光刻胶又称为光致抗蚀剂,是一类通过光束、电子束、离子束或x射线等能量辐射后,溶解度发生变化的耐蚀刻薄膜材料,广泛用于集成电路和半导体分立器件的微细加工。通过将光刻胶涂覆在半导体、导体或绝缘体表面,经曝光、显影后留下的部分对底层起保护作用,然后采用蚀刻剂进行蚀刻就可将所需要的微细图形从掩模版转移到待加工的衬底上,因此光刻胶是器件微细加工技术中的关键性材料。随着半导体工业的迅速发展,光刻技术要求达到的分辨率越来越高,边缘粗糙度要求也越来越小,对光刻胶材料所能达到的综合性能提出了更高的要求。
传统的光刻胶主体材料采用分子量5000~15000道尔顿的聚合物树脂,这类聚合物树脂通常由于分子体积太大、分子量多分散以及分子链的缠绕等原因影响光刻图案的分辨率和边缘粗糙度,无法满足更为精细的刻线要求。通过化学合成控制的方法,来降低光刻胶主体树脂材料的分子量到一定大小,使其达到单一分子状态,形成单分子树脂(也称分子玻璃),是实现高分辨光刻的一种重要方法。单分子树脂既保留有树脂本身所具有的成膜特性和易于加工的性能,同时还具有确定的分子结构,易于合成和修饰,基于单分子树脂的光刻胶材料有望满足高分辨光刻的要求。
自从1982年IBM公司提出“化学放大”的概念以来,光酸产生剂(Photo Acid Generator,PAG)(也称产酸剂)就成为光刻胶组分中的关键组成部分。所谓“化学放大”是指PAG在光照后分解产生酸,酸引发一系列化学反应,使得光照区域和非光照区域的光刻胶材料溶解性发生显著变化,然后通过显影就可以实现图案转移,因此光酸产生剂的产酸效率、光酸产生剂在材料中的分布状况对图案质量具有重要作用。通常光刻胶是由树脂主体材料、PAG以及各种微量添加剂组成的混合物,这种简单的物理混合很容易造成产酸剂在主体材料中形成不均匀分布的微小区域,从而会影响光刻图案的边缘粗糙度。另一方面,这种物理混合使得产生的酸在主体材料中的扩散速度很难控制,对图案的边缘粗糙度产生不利影响。传统解决上述问题的一种方法是将产酸剂共价连接到高分子树脂的主链上(J.Vac.Sci.Technol.B 2007,25,2136),使得产酸剂和主体材料成为一体,一方面可以让产酸剂在主体材料中的分布更加均匀,另一方面可以控制酸扩散的范围发生在与PAG相邻的主体材料范围内,从而大大降低边缘粗糙度。
将单分子树脂和PAG进行结合,既能够利用单分子树脂实现高分辨光刻的要求,同时还可以对光酸产生剂的分布和酸扩散进行有效调控,实现边缘粗糙度的有效降低。现有技术中已公 开了一些单组分光刻胶,但这些材料的成膜性、溶解性、玻璃化温度以及抗刻蚀性方面均有待进一步改善。
发明内容
为解决上述问题,本发明提供了一种基于硫鎓盐的单分子树脂,其可以用作光刻胶中的产酸剂和/或光刻胶主体材料。
本发明的技术方案如下:
一种如下式I所示的化合物:
Figure PCTCN2020090907-appb-000001
其中:
式(I)中,R 0、R a1~R a12相同或不同,各自独立地表示H、羟基、C 1-15烷氧基或-OR b,所述R b为具有酸敏感性的基团;
R选自未取代,或任选被一个、两个或更多个Rs1取代的如下基团:C 1-15烷基、C 3-20环烷基、C 6-20芳基、5-20元杂芳基、3-20元杂环基、-C 1-15烷基-C 6-20芳基、-C 1-15烷基-5-20元杂芳基、-C 1-15烷基-CO-C 6-20芳基、-C 1-15烷基-CO-5-20元杂芳基、-C 1-15烷基-CO-C 1-15烷基、-C 1-15烷基-CO-C 3-20环烷基;
Rs1选自NO 2、卤素、C 1-15烷基、C 1-15烷氧基、C 3-20环烷基、C 6-20芳基、5-20元杂芳基;
X 为阴离子,例如卤离子、烷基磺酸根、卤代烷基磺酸根(如三氟甲磺酸根、全氟丙基磺酸根、全氟丁基磺酸根)、对甲苯磺酸根、四氟硼酸根、六氟磷酸根、双三氟甲烷磺酰亚氨离子。
根据本发明的实施方案,所述具有酸敏感性的基团R b是指可在酸性条件下发生反应,从而从主体上脱去的基团。
在本发明的一个实施方案中,所述具有酸敏感性的基团R b为-CR 1-O-R 1、-CO-O-R 1、-CH 2-CO-O-R 1
Figure PCTCN2020090907-appb-000002
其中R 1相同或不同,彼此独立地选自未取代,或任选被一个、两个或更多个Rs2取代的如下基团:C 1-15烷基,C 3-20环烷基;
Figure PCTCN2020090907-appb-000003
的环上任选被一个、两个或更多个Rs2取代;
m为1至4的任一整数,
Figure PCTCN2020090907-appb-000004
表示基团与主体结构的连接键;
Rs2相同或不同,彼此独立地选自如下基团:NO 2、卤素、C 1-15烷基、C 1-15烷氧基、C 3-20环烷基。
在一个实施方案中,所述R 1为被C 1-6烷基取代或未取代的如下基团:C 1-6烷基,C 3-8单环 环烷基、C 7-12桥环环烷基。
根据本发明的实施方案,R选自无取代,或任选被一个、两个或更多个Rs1取代的如下基团:C 1-6烷基、C 3-6环烷基、C 6-12芳基、-C 1-6烷基-C 6-12芳基、-C 1-6烷基-5-12元杂芳基、-C 1-6烷基-CO-C 6-12芳基、-C 1-6烷基-CO-C 1-6烷基;
Rs1选自C 1-6烷基、NO 2、C 1-6烷氧基。
在一个实施方案中,R 0、R a1~R a12相同或不同,各自独立地表示氢原子、羟基、C 1-6烷氧基或-OR b
优选地,所述具有酸敏感性的基团R b选自如下:
Figure PCTCN2020090907-appb-000005
其中,
Figure PCTCN2020090907-appb-000006
表示连接键;
优选地,基团R具体选自如下结构中的一种:
Figure PCTCN2020090907-appb-000007
其中,
Figure PCTCN2020090907-appb-000008
表示连接键。
在一个实施方案中,R 0为羟基或-OR b
在一个实施方案中,R a1~R a12、R 0中至少一个为羟基或-OR b
在一个实施方案中,R a1~R a12中至少三分之一的基团为羟基或-OR b
在一个实施方案中,R a1~R a12中在每一个苯环上至少有一个基团为羟基或-OR b。例如,每一个苯环上具有一个、两个、或三个-OR b
作为实例,式I所示化合物可以选自如下:
Figure PCTCN2020090907-appb-000009
Figure PCTCN2020090907-appb-000010
本发明还提供式I所示化合物的制备方法,包括如下步骤:
Figure PCTCN2020090907-appb-000011
化合物II与RZ反应得到化合物I;或者,
化合物II与R-L及MX反应得到化合物I;
其中,R a1~R a12、R 0、R、X具有如上所述定义;M选自碱金属、L选自离去基团,例如氯、溴等;Z为烷基磺酸基、卤代烷基磺酸基(如三氟甲磺酸基、全氟丙基磺酸基、全氟丁基磺酸基)、对甲苯磺酸基。
根据本发明的实施方案,所述化合物II由如下方法制备,包括:
Figure PCTCN2020090907-appb-000012
其中,R 0、R a1~R a12如前述所定义,R 0’、R a1’~R a12’相同或不同,各自独立地表示氢原子或羟基;
将式III化合物与还原剂反应,制备得到R 0、R a1~R a12独立的选自H或-OH的式II化合物;
任选的,将上述得到的R 0、R a1~R a12独立的选自H或-OH的式II化合物与化合物C 1-15烷基-L或者化合物R b-L反应,制备得到R 0、R a1~R a12独立的选自H、C 1-15烷氧基或-OR b的式II化合物;其中L为离去基团或者L与R b构成含R b的酸酐。
根据本发明的实施方案,L选自卤素等离去基团。
根据本发明的实施方案,所述还原剂选自三氯化磷。
根据本发明的实施方案,M选自钾或钠。根据本发明的实施方案,所述化合物III由如下 方法制备,包括:
Figure PCTCN2020090907-appb-000013
其中,R 1’、R 2’、R 3’、R 0”、R 1~R 12相同或不同,各自独立地选自氢原子或甲氧基,R 0’、R a1’~R a12’相同或不同,各自独立地表示氢原子或羟基;
1)将式V化合物与
Figure PCTCN2020090907-appb-000014
反应生成式IV化合物;其中R 1’、R 2’、R 3’独立地选自H或甲氧基;
2)将化合物IV进行去甲基化反应生成式III化合物。
本发明还提供如上所述化合物I在光刻胶中的应用。所述化合物用作光刻胶中的产酸剂和/或光刻胶主体材料。
在一个实施方案中,本发明所述化合物I既用作光刻胶主体材料(即成膜树脂),又用作产酸剂。
在一个实施方案中,本发明所述化合物I用作产酸剂。
本发明还提供一种光刻胶组合物,其包括上述式I所示化合物。
优选地,所述光刻胶组合物还包括溶剂。
在一个实施方式中,所述溶剂选自下列物质中的一种、两种或多种:乳酸乙酯、醋酸丁酯、丙二醇单甲醚醋酸酯(PGMEA)、丙二醇二甲醚、乙二醇单甲醚、环己酮、甲基正戊酮、甲基异戊酮。
在一个实施方式中,所述光刻胶组合物为单组分光刻胶,即所述光刻胶组合物中除溶剂外,只包括一种组分,即式I所示化合物。所述单组分光刻胶中,R a1~R a12、R 0中至少一个为-OR b。优选地,式I中R a1~R a12中至少三分之一的基团为-OR b。优选地,式I中,R a1~R a12中在每一个苯环上至少一个基团为-OR b
进一步地,单组分光刻胶中,所述式I所示化合物的含量是光刻胶总质量的1%-10%,其余均为光刻胶溶剂。
在一个实施方式中,所述光刻胶组合物还包括一种或多种其他光刻胶主体材料。
所述其他光刻胶主体材料可以为现有技术中已知的任意光刻胶主体材料。例如ZL201380000139.X中报道的材料。
在一个实施方式中,所述光刻胶组合物包括式I所示化合物和交联剂。所述式I所示化合物中,R a1~R a12在每一个苯环上至少一个基团为羟基。
本发明还提供一种光刻胶薄膜,其中包括本发明式I所示化合物。
在一个实施方式中,本发明所述光刻胶薄膜由本发明式I所示化合物组成。
本发明还提供一种光刻胶薄膜的制备方法,包括将上述光刻胶组合物在基底上旋涂,成膜得到。
在一个实施方式中,所述基底可以为硅片等。
本发明还提供如上所述光刻胶组合物、光刻胶薄膜在光刻中的应用。
在一个实施方式中,所述光刻为248nm光刻、193nm光刻、极紫外光刻、纳米压印光刻或电子束光刻等。特别地,所述光刻胶组合物、光刻胶薄膜用于电子束光刻和极紫外(EUV)光刻技术中。
本发明的有益效果如下:
本发明提供了一系列基于硫鎓盐的新型单分子树脂,即式I所示的化合物。其可以用作光刻胶的产酸剂,与其它主体材料混合使用,例如与已知的单分子树脂(分子玻璃)混合使用。由于本发明所述化合物的结构和常规的光刻胶主体材料结构相似,因此混合更均匀,从而可以降低光刻的边缘粗糙度。优选地,在式I所示的化合物结构中,同时含有硫鎓盐和羟基或酸敏感的基团,因此本发明所述化合物可以同时具有产酸和酸交联或酸敏感双重功能,其既可以作为光刻胶的产酸剂,又可以作为光刻胶的主体材料。式I所示的化合物特殊的结构有助于实现对酸扩散的调控和边缘粗糙度的有效降低。本发明所述化合物可以单独形成单组分光刻胶,用于各种类型的光刻。
本发明所述化合物在各种极性溶剂中都具有很好的溶解性,可以采用旋涂法(Spin Coating)制得良好的薄膜。所述化合物中多苯环羟基取代的骨架结构,能够有效地抑制分子结晶,易于成膜。同时,所述化合物具有很高的玻璃化温度(大于100℃),适合光刻加工工艺的要求。本发明所述化合物热稳定性以及抗刻蚀性均较高。
本发明所述化合物中,产酸剂基团(硫鎓盐基团)和酸敏感性基团的比例可以根据需要进行调节,优选摩尔比为1:4-1:14。
本发明所述化合物合成过程简单,反应中间体和终产物通过重结晶或沉淀即可实现产物与体系的分离,适用于工业化生产。
术语与定义
除非另有定义,否则本文所有科技术语具有的含义与权利要求主题所属领域技术人员通常理解的含义相同。
“更多个”表示三个或三个以上。
术语“卤素”包括F、Cl、Br或I。
术语“C 1-15烷基”应理解为表示具有1~15个碳原子的直链或支链饱和一价烃基。例如,“C 1-6烷基”表示具有1、2、3、4、5、或6个碳原子的直链和支链烷基。所述烷基是例如甲基、乙基、丙基、丁基、戊基、己基、异丙基、异丁基、仲丁基、叔丁基、异戊基、2-甲基丁基、1-甲基丁基、1-乙基丙基、1,2-二甲基丙基、新戊基、1,1-二甲基丙基、4-甲基戊基、3-甲基戊基、2-甲基戊基、1-甲基戊基、2-乙基丁基、1-乙基丁基、3,3-二甲基丁基、2,2-二甲基丁基、1,1-二甲基丁基、2,3-二甲基丁基、1,3-二甲基丁基或1,2-二甲基丁基等或它们的异构体。
术语“C 1-15烷氧基”应理解为-O-C 1-15烷基,其中C 1-15烷基具有上述定义。
术语“C 3-20环烷基”应理解为表示饱和的一价单环、双环烃环或多环烃环(也称稠环烃环),其具有3-20个碳原子。双环或多环环烷基包括并环环烷基、桥环烷基、螺环烷基;所述的并环是指由两个或两个以上环状结构彼此公用两个相邻的环原子(即共用一个键)所形成的稠环结构。所述的桥环是指有两个或两个以上环装结构彼此共用两个非相邻的环原子所形成的稠环结构。所述的螺环是指由两个或两个以上环状结构彼此共用一个环原子所形成的稠环结构。例如所述C 3-20环烷基可以是C 3-8单环环烷基,如环丙基、环丁基、环戊基、环己基、环庚基、环辛基,或者是C 7-12并环环烷基,如十氢化萘环;也可以是C 7-12桥环环烷基,如降冰片烷、金刚烷、二环[2,2,2]辛烷。
术语“3-20元杂环基”意指饱和或不饱和的一价单环或双环烃环,其包含1-5个独立选自N、O和S的杂原子,优选“3-10元杂环基”。术语“3-10元杂环基”意指饱和的一价单环或双环烃环,其包含1-5个,优选1-3个选自N、O和S的杂原子。所述杂环基可以通过所述碳原子中的任一个或氮原子(如果存在的话)与分子的其余部分连接。特别地,所述杂环基可以包括但不限于:4元环,如氮杂环丁烷基、氧杂环丁烷基;5元环,如四氢呋喃基、二氧杂环戊烯基、吡咯烷基、咪唑烷基、吡唑烷基、吡咯啉基;或6元环,如四氢吡喃基、哌啶基、吗啉基、二噻烷基、硫代吗啉基、哌嗪基或三噻烷基;或7元环,如二氮杂环庚烷基。任选地,所述杂环基可以是苯并稠合的。所述杂环基可以是双环的,例如但不限于5,5元环,如六氢环戊并[c]吡咯-2(1H)-基环,或者5,6元双环,如六氢吡咯并[1,2-a]吡嗪-2(1H)-基环。含氮原子的环可以是部分不饱和的,即它可以包含一个、两个或更多个双键,例如但不限于2,5-二氢-1H-吡咯基、4H-[1,3,4]噻二嗪基、4,5-二氢噁唑基或4H-[1,4]噻嗪基,或者,它可以是苯并稠合的,例如但不限于二氢异喹啉基、1,3-苯并噁唑基、1,3-苯并二氧杂环戊烯基。根据本发明,所述杂环基是无芳香性的。
术语“C 6-20芳基”应理解为优选表示具有6~20个碳原子的一价芳香性或部分芳香性的单环、双环或三环烃环,优选“C 6-14芳基”。术语“C 6-14芳基”应理解为优选表示具有6、7、8、9、10、11、12、13或14个碳原子的一价芳香性或部分芳香性的单环、双环或三环烃环(“C 6-14芳基”),特别是具有6个碳原子的环(“C 6芳基”),例如苯基;或联苯基,或者是具有9个碳原子的环(“C 9芳基”),例如茚满基或茚基,或者是具有10个碳原子的环(“C 10芳基”),例如四氢化萘基、二氢萘基或萘基,或者是具有13个碳原子的环(“C 13芳基”),例如芴基,或者是具有14个碳原子的环(“C 14芳基”),例如蒽基。当所述C 6-20芳基被取代时,其可以为单取代或者多取代。并且,对其取代位点没有限制,例如可以为邻位、对位或间位取代。
术语“5-20元杂芳基”应理解为包括这样的一价单环、双环或三环芳族环系:其具有5~20个环原子且包含1-5个独立选自N、O和S的杂原子,例如“5-14元杂芳基”。术语“5-14元杂芳基”应理解为包括这样的一价单环、双环或三环芳族环系:其具有5、6、7、8、9、10、11、12、13或14个环原子,特别是5或6或9或10个碳原子,且其包含1-5个,优选1-3各独立选自 N、O和S的杂原子并且,另外在每一种情况下可为苯并稠合的。特别地,杂芳基选自噻吩基、呋喃基、吡咯基、噁唑基、噻唑基、咪唑基、吡唑基、异噁唑基、异噻唑基、噁二唑基、三唑基、噻二唑基、噻-4H-吡唑基等以及它们的苯并衍生物,例如苯并呋喃基、苯并噻吩基、苯并噁唑基、苯并异噁唑基、苯并咪唑基、苯并三唑基、吲唑基、吲哚基、异吲哚基等;或吡啶基、哒嗪基、嘧啶基、吡嗪基、三嗪基等,以及它们的苯并衍生物,例如喹啉基、喹唑啉基、异喹啉基等;或吖辛因基、吲嗪基、嘌呤基等以及它们的苯并衍生物;或噌啉基、酞嗪基、喹唑啉基、喹喔啉基、萘啶基、蝶啶基、咔唑基、吖啶基、吩嗪基、吩噻嗪基、吩噁嗪基等。
上述术语“C 1-15烷基”的定义也适用于其它含C 1-15烷基的基团,例如-C 1-15烷基-C 6-20芳基、-C 1-15烷基-5-20元杂芳基、-C 1-15烷基-CO-C 6-20芳基、-C 1-15烷基-CO-5-20元杂芳基、-C 1-15烷基-CO-C 1-15烷基、-C 1-15烷基-CO-C 3-20环烷基等。
同理,C 6-20芳基、5-20元杂芳基、C 3-20环烷基在全文中具有相同的定义。
附图说明
图1为本发明实施例7中化合物I-1的差示扫描量热曲线图和热失重曲线图。
图2为本发明实施例14中化合物I-3的差示扫描量热曲线图和热失重曲线图。
图3为化合物I-1成膜的原子力扫描探针显微镜(AFM)平面图。
图4为化合物I-1成膜的原子力扫描探针显微镜(AFM)立体图。
图5为化合物I-1单组分光刻胶的极紫外光刻条纹扫描电镜(SEM)图。
图6为化合物I-1作为产酸剂与其它主体材料形成光刻胶的电子束光刻条纹扫描电镜(SEM)图。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非限制性的,不应以此限制本发明的保护范围。
实施例1
制备二-(3,5-二溴-4-羟基苯基)-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000015
具体步骤:在装有冷凝管的250ml三口瓶中加入2,6-二溴苯酚(25.2g,100.0mmol,1.0eq),二氯亚砜(5.95g,50mmol,0.5eq.),从冷凝管上端用导管接一个倒置漏斗到30%NaOH水溶液中,以吸收反应产生的HCl。在5℃冷水浴下,向反应体系中加入二硫化碳溶剂(100ml)和AlCl 3(1.3g,10mmol,0.1eq),继续在冷水浴下搅拌反应1小时,然后撤去冷水浴,恢复到室温反应约3小时,最后反应体系在油浴中升温到60℃反应4小时,反应液冷却至室温,析出大量白色固体,过滤,滤饼用乙醇重结晶,得到产物23.3g,产率85%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)9.83(s,2H),7.68(s,4H)。
实施例2
制备二-(3,5-二溴-4-甲氧基苯基)-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000016
具体步骤:在装有冷凝管的250ml三口瓶中加入二-(3,5-二溴-4-羟基苯基)-硫酮(11.0g,20.0mmol,1.0eq),干燥的丙酮120ml,无水碳酸钾(5.5g,40mmol,2.0eq),碘甲烷(8.5g,60mmol,3.0eq.),在氮气保护下回流反应24小时,反应液冷却至室温,减压除去溶剂,并用二氯甲烷/水萃取,合并有机层,无水硫酸钠干燥,减压浓缩除去溶剂,在乙酸乙酯中重结晶得到白色固体10.2g,产率88%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)3.88(s,6H),7.81(s,4H)。
实施例3
制备3,5-二(3,4-二甲氧基苯基)-4-甲氧基苯基-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000017
具体步骤:高纯氮气保护下,在250ml的Schleck反应瓶中加入二-(3,5-二溴-4-甲氧基苯基)-硫酮(5.8g,10mmol,1.0eq),Pd(PPh 3) 4(578mg,0.5mmol,0.05eq),3,4-二甲氧基苯硼酸(9.1g,50.0mmol,5.0eq),体系在氮气氛围下,最后加入重蒸的二氧六环100ml,水20ml,反应液加热回流24h,冷却至室温,并用二氯甲烷/水萃取,合并有机层,无水硫酸钠干燥,减压浓缩除去溶剂,在乙酸乙酯中重结晶得到白色固体6.7g,产率83%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.61(s,4H,苯环),7.10-7.07(m,8H,苯环),6.94-6.92(d,4H,苯环),3.92(s,12H,-OCH 3),3.89(s,12H,-OCH 3),3.21(s,6H,-OCH 3);MS(MALDI-TOF):m/z=806.9,计算值:(C 46H 46O 11S)m/z=806.8([M] +)。
实施例4
制备3,5-二(3,4-二羟基苯基)-4-羟基苯基-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000018
具体步骤:在250mL的三口瓶中加入3,5-二(3,4-二甲氧基苯基)-4-甲氧基苯基-硫酮(4.0g,5.0mmol,1.0eq)和二氯甲烷50ml,氮气氛围下溶解,在低温-78℃下,用注射器向反应液中滴加 三溴化硼(25.0g,100.0mmol,20.0eq)的二氯甲烷溶液30ml,反应液在-78℃下反应1小时后逐渐升温到室温,继续反应6小时,向反应体系中缓慢加入20ml冰水猝灭反应,析出大量白色固体,反应体系过滤得到白色固体,分别用水和二氯甲烷洗涤,得到固体再用甲醇/水沉淀三次得到淡黄色固体3.2g,产率95%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)9.23(s,2H,-OH),8.76-8.53(m,8H,-OH),7.71(s,4H,苯环),7.20-7.17(m,8H,苯环),6.84-6.72(d,4H,苯环);MS(MALDI-TOF):m/z=666.7,计算值:(C 36H 26O 11S)m/z=666.7([M] +)。
实施例5
制备3,5-二(3,4-二羟基苯基)-4-羟基苯基-硫醚,合成路线如下:
Figure PCTCN2020090907-appb-000019
具体步骤如下:在250mL三口瓶中加入3,5-二(3,4-二羟基苯基)-4-羟基苯基-硫酮(6.7g,10.0mmol,1.0eq),三氯化磷(6.7g,50.0mmol,5.0eq)和50ml干燥乙腈,氮气氛围下搅拌溶解后,室温条件下搅拌24h。反应液用乙酸乙酯/水萃取,有机相分别用饱和硫酸氢钠水溶液和水各洗涤三次,无水硫酸镁干燥,减压除去溶剂,得到固体在无水乙醇/正己烷混合液中重结晶,得到的白色固体5.2g,产率81%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)9.15(s,2H,-OH),8.76-8.53(m,8H,-OH),7.31(s,4H,苯环),7.20-7.17(m,8H,苯环),6.84-6.72(d,4H,苯环);MS(MALDI-TOF):m/z=650.7,计算值:C 36H 26O 10S m/z=650.7([M] +)。
实施例6
制备3,5-二(3,4-二叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚(化合物II-1)合成路线如下:
Figure PCTCN2020090907-appb-000020
其中Boc表示
Figure PCTCN2020090907-appb-000021
具体步骤:在100mL三口瓶中加入3,5-二(3,4-二羟基苯基)-4-羟基苯基-硫醚(1.3g,2.0mmol,1.0eq),Boc酸酐(二碳酸二叔丁酯)(8.8g,40.0mmol,2.0eq)和30ml干燥四氢呋喃,氮 气氛围下搅拌溶解后,向溶液中加入催化量DMAP(24.4mg,0.2mmol,0.1eq)引发反应,室温条件下搅拌24h。反应液用乙酸乙酯/水萃取,有机相分别用饱和硫酸氢钠水溶液和水各洗涤三次,无水硫酸镁干燥,减压除去溶剂,得到半固体状物在乙酸乙酯/正己烷混合液中重结晶,得到的白色固体2.6g,产率82%。 1H NMR(400MHz,CDCl 3)7.21(s,4H,苯环),7.10-7.07(m,8H,苯环),6.64-6.52(d,4H,苯环),1.56(s,36H,-OBoc),1.55(s,54H,-OBoc);MS(MALDI-TOF):m/z=1651.8,计算值:C 86H 106O 30S m/z=1651.8([M] +)。
实施例7
制备化合物I-1,合成路线如下:
Figure PCTCN2020090907-appb-000022
Boc表示
Figure PCTCN2020090907-appb-000023
具体步骤:高纯氮气保护下,在250ml的Schleck反应瓶中加入3,5-二(3,4-二叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚(3.3g,2mmol,1.0eq),碳酸铯(1.4g,4mmol,2.0eq),体系在氮气氛围下,加入重蒸的二氯甲烷50ml,反应置于-78℃下搅拌20min,滴加三氟甲烷磺酸甲酯,-78℃下反应2h,缓慢升至室温,25℃下反应6h,并用二氯甲烷/水萃取,合并有机层,无水硫酸钠干燥,减压浓缩除去溶剂,在乙酸乙酯和正己烷混合溶剂中重结晶,得到白色固体2.5g,产率68%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.21(s,4H,苯环),7.10-7.07(m,8H,苯环),6.64-6.52(d,4H,苯环),3.73(s,3H,-S-CH 3),1.56(s,36H,-OBoc),1.55(s,54H,-OBoc);MS(MALDI-TOF):m/z=1815.9,计算值:(C 88H 109F 3O 33S 2)m/z=1815.9([M] +)。
实施例8
制备3,5-二(4-甲氧基苯基)-4-甲氧基苯基-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000024
具体步骤同实施例3,不同之处在于用对甲氧基苯硼酸替代3,4-二甲氧基苯硼酸,反应产率82%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.61(s,4H,苯环),7.10-7.07(d,8H,苯环),6.94-6.92(d,8H,苯环),3.72(s,12H,-OCH 3),3.21(s,6H,-OCH 3);MS(MALDI-TOF):m/z=686.8,计算 值:C 42H 38O 7S m/z=686.8([M]+)
实施例9
制备3,5-二(4-羟基苯基)-4-羟基苯基-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000025
具体步骤同实施例4,不同之处在于用3,5-二(4-甲氧基苯基)-4-甲氧基苯基-硫酮替代3,5-二(3,4-二甲氧基苯基)-4-甲氧基苯基-硫酮,反应产率82%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)9.23(s,2H,-OH),8.76-8.74(m,4H,-OH),7.71(s,4H,苯环),7.20-7.17(d,8H,苯环),6.84-6.72(d,8H,苯环);MS(MALDI-TOF):m/z=602.7,计算值:C 36H 26O 7S m/z=602.6([M]+)
实施例10
制备3,5-二(4-二羟基苯基)-4-羟基苯基-硫醚,合成路线如下:
Figure PCTCN2020090907-appb-000026
具体步骤同实施例5,不同之处在于用3,5-二(4-羟基苯基)-4-羟基苯基-硫酮替代3,5-二(3,4-二羟基苯基)-4-羟基苯基-硫酮,反应产率82%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)8.73(s,2H,-OH),8.56-8.34(m,4H,-OH),7.71(s,4H,苯环),7.20-7.17(d,8H,苯环),6.74-6.62(d,8H,苯环);MS(MALDI-TOF):m/z=586.1,计算值:C 36H 26O 6S m/z=586.0([M]+)
实施例11
制备如下所示的化合物II-2,合成路线如下:
Figure PCTCN2020090907-appb-000027
反应式中NB表示
Figure PCTCN2020090907-appb-000028
具体步骤:在100mL三口瓶中加入586mg(即1.0mmol)的3,5-二(4-二羟基苯基)-4-羟基苯基-硫醚、400mg(即1.2mmol)四丁基溴化铵、4.1g(即30mmol)的K 2CO 3和50ml的N-甲基吡咯烷酮(NMP),常温下搅拌2小时,向反应液中慢慢滴加入10ml NB-Cl(4.96g)的N-甲基吡咯烷酮(NMP)溶液,升温至60℃反应48h。反应完全后,冷却至室温,反应液用乙酸乙酯/水萃取,有机相分别用3wt%的草酸溶液和水洗涤一次,合并有机层,无水硫酸镁干燥,减压除去溶剂。用乙酸乙酯/正己烷混合溶剂重结晶,得到白色固体3.27g,产率63%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.71(s,4H,苯环),7.20-7.17(d,8H,苯环),6.74-6.62(d,8H,苯环),4.72(s,12H,O-CH 2-),1.18-2.21(m,78H,甲基取代的降冰片)。MS(MALDI-TOF):m/z=1584.0,计算值:C 96H 110O 18S m/z=1583.9([M]+)。
实施例12
制备如下所示的化合物I-2,合成路线如下:
Figure PCTCN2020090907-appb-000029
反应式中NB表示
Figure PCTCN2020090907-appb-000030
具体步骤同实施例7,不同之处在于用全氟丁基磺酸乙酯替代三氟甲磺酸甲酯,用实施例11得到的化合物II-2替代3,5-二(3,4-二叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚,反应产率78%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.71(s,4H,苯环),7.20-7.17(d,8H,苯环),6.74-6.62(d,8H,苯环),4.72(s,12H,O-CH 2-),3.68(q,2H,-S-CH 2),1.18-2.21(m,78H,甲基取代的降冰片),1.40(t,3H,CH 3);MS(MALDI-TOF):m/z=1862.1,计算值:C 101H 115F 7O 21S 2m/z=1862.0([M]+)。
实施例13
制备如下所示的化合物II-3,合成路线如下:
Figure PCTCN2020090907-appb-000031
反应式中AD表示
Figure PCTCN2020090907-appb-000032
具体步骤同实施例11,不同之处在于用化合物AD-Cl替代化合物NB-Cl,产率67%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.71(s,4H,苯环),7.20-7.17(d,8H,苯环),6.74-6.62(d,8H,苯环),4.72(s,12H,O-CH 2-),1.17-2.30(m,102H,甲基取代的金刚烷)。MS(MALDI-TOF):m/z=1824.3,计算值:C 114H 134O 18S m/z=1824.3([M]+)。
实施例14
制备如下所示化合物I-3,合成路线如下:
Figure PCTCN2020090907-appb-000033
反应式中AD表示
Figure PCTCN2020090907-appb-000034
具体步骤同实施例12,不同之处在于用实施例13制备的化合物II-3替代化合物II-2,反应产率78%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.71(s,4H,苯环),7.20-7.17(d,8H,苯环),6.74-6.62(d,8H,苯环),4.71(s,12H,O-CH 2-),3.67(q,2H,-S-CH 2),1.67(m,90H,甲基取代的金刚烷),1.40(t,3H,CH 3);MS(MALDI-TOF):m/z=2073.4,计算值:C 117H 134F 7O 21S 2m/z=2073.4([M]+)。
实施例15
制备化合物I-4,合成路线如下:
Figure PCTCN2020090907-appb-000035
反应式中Boc表示
Figure PCTCN2020090907-appb-000036
具体步骤:高纯氮气保护下,在250ml的Schleck反应瓶中加入3,5-二(3,4-二叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚(3.3g,2mmol,1.0eq),三氟甲基磺酸钠(0.7g,4mmol,2.0eq),体系在氮气氛围下,加入干燥的丙酮50ml,反应置于-78℃下搅拌20min,滴加苄溴(0.7g,4mmol,2.0eq),-78℃下反应2h,缓慢升至室温,25℃下反应6h,并用二氯甲烷/水萃取,合 并有机层,无水硫酸钠干燥,减压浓缩除去溶剂,在乙酸乙酯和正己烷混合溶剂中重结晶,得到白色固体2.8g,产率67%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.41(s,4H,苯环),7.30-7.27(m,8H,苯环),7.22-7.19(m,5H,苯环),6.64-6.52(d,4H,苯环),3.85(s,2H,-S-CH 2),1.56(s,36H,-OBoc),1.55(s,54H,-OBoc);MS(MALDI-TOF):m/z=1892.0,计算值:(C 94H 113F 3O 33S 2)m/z=1892.0([M] +)。
实施例16
制备化合物I-5,合成路线如下:
Figure PCTCN2020090907-appb-000037
反应式中Boc表示
Figure PCTCN2020090907-appb-000038
具体步骤:高纯氮气保护下,在250ml的Schleck反应瓶中加入3,5-二(3,4-二叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚(3.3g,2mmol,1.0eq),三氟甲基磺酸银(0.7g,4mmol,2.0eq),体系在氮气氛围下,加入干燥的二氯甲烷50ml,冰水浴下,加入2-溴苯乙酮(0.8g,4mmol,2.0eq),反应2h,缓慢升至室温,室温下反应6h,并用二氯甲烷/水萃取,合并有机层,无水硫酸钠干燥,减压浓缩除去溶剂,在乙酸乙酯和正己烷混合溶剂中重结晶,得到白色固体2.9g,产率67%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.41(s,4H,苯环),7.30-7.27(m,8H,苯环),7.20-7.17(m,5H,苯环),6.64-6.52(d,4H,苯环),4.37(s,2H,-S-CH 2),1.56(s,36H,-OBoc),1.55(s,54H,-OBoc);MS(MALDI-TOF):m/z=1920.0,计算值:(C 95H 113F 3O 34S 2)m/z=1920.0([M] +)。
实施例17
制备化合物I-6,合成路线如下:
Figure PCTCN2020090907-appb-000039
反应式中Boc表示
Figure PCTCN2020090907-appb-000040
具体步骤同实施例16,不同之处在于用溴代环己烷替代了2-溴苯乙酮,产率67%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.41(s,4H,苯环),7.30-7.27(m,8H,苯环),6.64-6.52(d,4H,苯环),3.81(m,1H,-S-CH-),1.56(s,36H,-OBoc),1.55(s,54H,-OBoc),1.44-1.47(m,10H,环己烷);MS(MALDI-TOF):m/z=1884.0,计算值:(C 93H 117F 3O 33S 2)m/z=1884.1([M] +)。
实施例18
制备化合物I-7,合成路线如下:
Figure PCTCN2020090907-appb-000041
反应式中Boc表示
Figure PCTCN2020090907-appb-000042
具体步骤同实施例16,不同之处在于用4-硝基溴苯替代了2-溴苯乙酮,产率63%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.41(s,4H,苯环),7.30-7.27(m,8H,苯环),7.22-7.19(m,5H,苯环),6.82(d,4H,苯环),6.64-6.52(d,4H,苯环),1.56(s,36H,-OBoc),1.55(s,54H,-OBoc);MS(MALDI-TOF):m/z=1923.0,计算值:(C 93H 110F 3O 35S 2)m/z=1923.0([M] +)。
实施例19
制备3,5-二(3,4,5-三甲氧基苯基)-4-甲氧基苯基-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000043
具体步骤同实施例3,不同之处在于用3,4,5-三甲氧基苯硼酸替代了3,4-二甲氧基苯硼酸,产率85%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.61(s,4H,苯环),7.10-7.07(m,8H,苯环),3.86(s,24H,-OCH 3),3.82(s,12H,-OCH 3),3.21(s,6H,-OCH 3);MS(MALDI-TOF):m/z=927.0,计算值:(C 50H 54O 15S)m/z=927.0([M] +)。
实施例20
制备3,5-二(3,4,5-三羟基苯基)-4-羟基苯基-硫酮,合成路线如下:
Figure PCTCN2020090907-appb-000044
具体步骤同实施例4,不同之处在于用3,5-二(3,4,5-三甲氧基苯基)-4-甲氧基苯基-硫酮替代3,5-二(3,4-二甲氧基苯基)-4-甲氧基苯基-硫酮,产率95%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)9.13(s,2H,-OH),8.36-8.23(m,12H,-OH),7.71(s,4H,苯环),7.15-7.07(m,8H,苯环);MS(MALDI-TOF):m/z=730.6,计算值:(C 36H 26O 15S)m/z=730.6([M] +)。
实施例21
制备3,5-二(3,4,5-三羟基苯基)-4-羟基苯基-硫醚,合成路线如下:
Figure PCTCN2020090907-appb-000045
具体步骤同实施例5,不同之处在于用3,5-二(3,4,5-三羟基苯基)-4-羟基苯基-硫酮替代3,5-二(3,4-二羟基苯基)-4-羟基苯基-硫酮,产率83%。 1H NMR(400MHz,DMSO-d 6)δ(ppm)9.20(s,2H,-OH),8.42-8.35(m,12H,-OH),7.61(s,4H,苯环),7.25-7.17(m,8H,苯环);MS(MALDI-TOF):m/z=714.6,计算值:C 36H 26O 14S m/z=714.3([M] +)。
实施例22
制备3,5-二(3,4,5-三叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚(化合物II-4),合成路线如下:
Figure PCTCN2020090907-appb-000046
其中Boc表示
Figure PCTCN2020090907-appb-000047
具体步骤同实施例6,不同之处在于用3,5-二(3,4,5-三羟基苯基)-4-羟基苯基-硫醚替代3,5-二(3,4-二羟基苯基)-4-羟基苯基-硫醚,产率85%。 1H NMR(400MHz,CDCl 3)7.41(s,4H,苯环),7.15-7.10(m,8H,苯环),1.58(s,36H,-OBoc),1.54(s,90H,-OBoc);MS(MALDI-TOF):m/z=2116.3,计算值:C 106H 138O 42S m/z=2116.3([M] +)。
实施例23
制备化合物I-8,合成路线如下:
Figure PCTCN2020090907-appb-000048
反应式中Boc表示
Figure PCTCN2020090907-appb-000049
具体步骤同实施例7,不同之处在于用3,5-二(3,4,5-三叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚替代3,5-二(3,4-二叔丁基碳酸酯基苯基)-4-叔丁基碳酸酯基苯基-硫醚,产率65%。 1H NMR(400MHz,CDCl 3)δ(ppm)7.31(s,4H,苯环),7.20-7.17(m,4H,苯环),6.54-6.42(m,4H,苯环),3.73(s,3H,-S-CH 3),1.58(s,36H,-OBoc),1.54(s,90H,-OBoc);MS(MALDI-TOF):m/z=2280.4,计算值:(C 108H 141F 3O 45S 2)m/z=2280.4([M] +)。
实施例24
测定实施例7和14中制备得到的单分子树脂(化合物I-1、化合物I-3)的热稳定性和玻璃化温度,两种单分子树脂的差示扫描量热曲线和热重分析见附图1和图2,结果显示其玻璃化温度都达到了100℃以上,具有很好的热稳定性。
实施例25
将实施例7中的化合物I-1溶于丙二醇单甲醚醋酸酯(PGMEA)中,制得30mg/ml的溶液,用孔径0.22μm的微孔过滤器过滤,得到旋涂液,在经过酸碱处理的硅基底上进行旋涂制膜,用原子力显微镜AFM对薄膜均匀度进行分析,平面及立体图分别见附图3和4,从图中可以看出所得到的薄膜非常均匀。
实施例26
一种单组分光刻胶与光刻:将实施例7中的化合物I-1溶于丙二醇单甲醚醋酸酯(PGMEA)中,制得质量浓度3%的溶液,用孔径0.22μm的微孔过滤器过滤,得到旋涂液,在经过酸碱处理的硅基底上进行旋涂制膜,在100℃下烘烤3分钟,将制备得到的薄膜在上海同步辐射光源的软X射线干涉光刻线站(BL08U1B)上进行曝光实验,曝光周期为140nm,得到非常均匀的 光刻条纹,见图5。光刻条纹的宽度为53nm左右,使用图像软件处理分析可知,光刻条纹的边缘粗糙度只有2.8nm。
实施例27
一种复合组分光刻胶与光刻:将实施例7中的化合物I-1作为产酸剂和专利ZL201380000139.X中报道的2,7,2’,7’-四-(3,4-二叔丁基碳酸酯基苯基)-9,9’-螺芴单分子树脂进行混合,溶于丙二醇单甲醚醋酸酯(PGMEA)中,其中,单分子树脂主体材料的含量30mg/ml,产酸剂含量1.5mg/ml,光刻胶溶液用孔径0.22μm的微孔过滤器过滤,得到旋涂液,在经过酸碱处理的硅基底上进行旋涂制膜,在100℃下烘烤3分钟,将制备得到的薄膜进行电子束曝光实验,曝光周期为150nm,得到非常均匀的光刻条纹,见图6。光刻条纹的宽度为70nm左右,使用图像软件处理分析可知,光刻条纹的边缘粗糙度为3.0nm。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 如下式I所示的化合物:
    Figure PCTCN2020090907-appb-100001
    其中:
    式(I)中,R 0、R a1~R a12相同或不同,各自独立地表示氢原子、羟基、C 1-15烷氧基或-OR b,所述R b为具有酸敏感性的基团;
    R选自未取代或任选被一个、两个或更多个Rs1取代的如下基团:C 1-15烷基、C 3-20环烷基、C 6-20芳基、5-20元杂芳基、3-20元杂环基、-C 1-15烷基-C 6-20芳基、-C 1-15烷基-5-20元杂芳基、-C 1-15烷基-CO-C 6-20芳基、-C 1-15烷基-CO-5-20元杂芳基、-C 1-15烷基-CO-C 1-15烷基、-C 1-15烷基-CO-C 3-20环烷基;
    Rs1选自NO 2、卤素、C 1-15烷基、C 1-15烷氧基、C 3-20环烷基、C 6-20芳基、5-20元杂芳基;
    X 为阴离子,例如卤离子、烷基磺酸根、卤代烷基磺酸根(如三氟甲磺酸根、全氟丙基磺酸根、全氟丁基磺酸根)、对甲苯磺酸根、四氟硼酸根、六氟磷酸根、双三氟甲烷磺酰亚氨离子。
  2. 根据权利要求1所述的化合物,其特征在于,
    所述R b为-CR 1-O-R 1、-CO-O-R 1、-CH 2-CO-O-R 1
    Figure PCTCN2020090907-appb-100002
    其中R 1相同或不同,彼此独立地选自未取代或任选被一个、两个或更多个Rs2取代的如下基团:C 1-15烷基,C 3-20环烷基;
    Figure PCTCN2020090907-appb-100003
    的环上任选被一个、两个或更多个Rs2取代;
    m为1至4的任一整数,
    Figure PCTCN2020090907-appb-100004
    表示连接键;
    Rs2相同或不同,彼此独立地选自如下基团:NO 2、卤素、C 1-15烷基、C 1-15烷氧基、C 3-20环烷基;
    优选地,所述R 1为未取代或被C 1-6烷基取代的如下基团:C 1-6烷基,C 3-8单环环烷基、C 7-12桥环环烷基。
  3. 根据权利要求1或2所述的化合物,其特征在于,R选自未取代或任选被一个、两个或更多个Rs1取代的如下基团:C 1-6烷基、C 3-6环烷基、C 6-12芳基、-C 1-6烷基-C 6-12芳基、-C 1-6烷基-5-12元杂芳基、-C 1-6烷基-CO-C 6-12芳基、-C 1-6烷基-CO-C 1-6烷基;
    Rs1选自C 1-6烷基、NO 2、C 1-6烷氧基;
    优选地,R a1~R a12中至少三分之一的基团为羟基或-OR b
    还优选地,R a1~R a12中在每一个苯环上至少有一个基团为羟基或-OR b
  4. 根据权利要求1-3任一项所述的化合物,其特征在于,所述R b选自如下基团:
    Figure PCTCN2020090907-appb-100005
    优选地,基团R选自如下结构中的一种:
    Figure PCTCN2020090907-appb-100006
    其中,
    Figure PCTCN2020090907-appb-100007
    表示连接键。
  5. 根据权利要求1-4任一项所述的化合物,其特征在于,式I所示化合物选自如下化合物:
    Figure PCTCN2020090907-appb-100008
  6. 权利要求1-5任一项所述化合物的制备方法,其特征在于,包括如下步骤:
    Figure PCTCN2020090907-appb-100009
    化合物II与RZ反应得到化合物I;或者,
    化合物II与R-L及MX反应得到化合物I;
    其中,R a1~R a12、R 0、R、X如权利要求1-5任一项所述定义;M选自碱金属、L选自离去基团,例如氯、溴等;Z为烷基磺酸基、卤代烷基磺酸基(如三氟甲磺酸基、全氟丙基磺酸基、全氟丁基磺酸基)、对甲苯磺酸基;
    优选的,所述化合物II由如下方法制备,包括:
    Figure PCTCN2020090907-appb-100010
    其中,R 0、R a1~R a12如权利要求1-5任一项所述定义,R 0’、R a1’~R a12’相同或不同,各自独立地表示氢原子或羟基;
    将式III化合物与还原剂反应,制备得到R 0、R a1~R a12独立的选自H或-OH的式II化合物;
    任选的,将上述得到的R 0、R a1~R a12独立的选自H或-OH的式II化合物与化合物C 1-15烷基-L或者化合物R b-L反应,制备得到R 0、R a1~R a12独立的选自H、C 1-15烷氧基或-OR b的式II化合物;其中L为离去基团或者L与R b构成含R b的酸酐。
  7. 权利要求1-5任一项所述化合物I在光刻胶中的应用;
    优选地,所述化合物用作光刻胶中的产酸剂和/或光刻胶主体材料。
  8. 一种光刻胶组合物,其特征在于,包括权利要求1-5任一项所述式I所示化合物;
    优选地,所述光刻胶组合物还包括溶剂;
    所述溶剂例如选自下列物质中的一种、两种或多种:乳酸乙酯、醋酸丁酯、丙二醇单甲醚醋酸酯(PGMEA)、丙二醇二甲醚、乙二醇单甲醚、环己酮、甲基正戊酮、甲基异戊酮;
    优选地,所述光刻胶组合物为单组分光刻胶,即所述光刻胶组合物仅由式I所示化合物和溶剂组成;
    优选地,所述单组分光刻胶中,R a1~R a12、R 0中至少一个为-OR b
    优选地,所述单组分光刻胶中,R a1~R a12中在每一个苯环上至少一个基团为-OR b
    优选地,单组分光刻胶中,所述式I所示化合物的含量是光刻胶总质量的1%-10%,其余均为光刻胶溶剂;
    优选地,所述光刻胶组合物还包括一种或多种其他光刻胶主体材料;
    优选地,所述光刻胶组合物包括式I所示化合物和交联剂;
    优选地,所述式I所示化合物中,R a1~R a12在每一个苯环上至少一个基团为羟基。
  9. 一种光刻胶薄膜,其特征在于,包括权利要求1-5任一项所述式I所示化合物。
  10. 权利要求8所述光刻胶组合物、或权利要求9所述光刻胶薄膜在光刻中的应用;
    优选地,所述光刻为248nm光刻、193nm光刻、极紫外光刻、纳米压印光刻或电子束光刻。
PCT/CN2020/090907 2019-05-22 2020-05-18 基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物 WO2020233550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910430516.2 2019-05-22
CN201910430516.2A CN111978228B (zh) 2019-05-22 2019-05-22 基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物

Publications (1)

Publication Number Publication Date
WO2020233550A1 true WO2020233550A1 (zh) 2020-11-26

Family

ID=73436507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/090907 WO2020233550A1 (zh) 2019-05-22 2020-05-18 基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物

Country Status (2)

Country Link
CN (1) CN111978228B (zh)
WO (1) WO2020233550A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115707707A (zh) * 2021-08-20 2023-02-21 中国科学院理化技术研究所 一种基于硫杂素馨烯的硫鎓盐单分子树脂及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374066A (en) * 1979-09-28 1983-02-15 General Electric Company Method for making triarylsulfonium salts
CN101522613A (zh) * 2006-10-04 2009-09-02 西巴控股有限公司 锍盐光引发剂
CN107324978A (zh) * 2017-07-17 2017-11-07 中国科学院理化技术研究所 联苯取代金刚烷衍生物单分子树脂、正性光刻胶组合物和负性光刻胶组合物
CN108147983A (zh) * 2016-12-05 2018-06-12 中国科学院化学研究所 一类硫鎓盐键合苯多酚型分子玻璃光刻胶及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10248020B2 (en) * 2012-12-28 2019-04-02 Rohm And Haas Electronic Materials Llc Acid generators and photoresists comprising same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374066A (en) * 1979-09-28 1983-02-15 General Electric Company Method for making triarylsulfonium salts
CN101522613A (zh) * 2006-10-04 2009-09-02 西巴控股有限公司 锍盐光引发剂
CN108147983A (zh) * 2016-12-05 2018-06-12 中国科学院化学研究所 一类硫鎓盐键合苯多酚型分子玻璃光刻胶及其制备方法和应用
CN107324978A (zh) * 2017-07-17 2017-11-07 中国科学院理化技术研究所 联苯取代金刚烷衍生物单分子树脂、正性光刻胶组合物和负性光刻胶组合物

Also Published As

Publication number Publication date
CN111978228B (zh) 2021-10-12
CN111978228A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
US9454076B2 (en) Molecular glass photoresists containing bisphenol a framework and method for preparing the same and use thereof
TWI525071B (zh) 新穎化合物
TWI421236B (zh) 具芳香環的光酸產生劑
CN104557552B (zh) 一种星形四苯基乙烯衍生物分子玻璃、正性光刻胶、正性光刻胶涂层及其应用
WO2006068267A1 (ja) レジスト用化合物および感放射線性組成物
TW201121932A (en) Cyclic compound, fabricating method thereof, radiation-sensitive composition, and forming method of resist pattern
TW200910012A (en) Resist composition for electron beam, X-ray, or EUV, and pattern-forming method using the same
TW200916952A (en) Resist composition containing novel sulfonium compound, pattern-forming method using the resist composition, and novel sulfonium compound
TW201013333A (en) Resist processing method
CN107324978B (zh) 联苯取代金刚烷衍生物单分子树脂、正性光刻胶组合物和负性光刻胶组合物
TW201127802A (en) Cyclic compound, method of producing the same, radiation-sensitive composition and method of forming resist pattern
TW201116508A (en) Cyclic compound, method of producing the same, radiation-sensitive composition and method of forming resist pattern
WO2020233550A1 (zh) 基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物
TW200949439A (en) Cyclic compound, process for producing cyclic compound, photoresist base material comprising cyclic compound, photoresist composition, microprocessing method, semiconductor device, and apparatus
WO2020259126A1 (zh) 含硅多苯基单分子树脂及其光刻胶组合物
CN113200858B (zh) 基于三蝶烯衍生物单分子树脂的合成、正性光刻胶及其在光刻中的应用
JP7252244B2 (ja) ハードマスク組成物
CN111978224B (zh) 含硫单分子树脂及其光刻胶组合物
JP6046540B2 (ja) スルホニウム塩、光酸発生剤、硬化性組成物およびレジスト組成物
TW200535565A (en) Nitrogen-containing organic compound, resist composition and patterning process
WO2014113914A1 (zh) 螺芴衍生物分子玻璃及其制备方法和光刻中的应用
US20240174656A1 (en) Fused ring aromatic hydrocarbon derivative, preparation method therefor, and use thereof in lithography
WO2024087158A1 (zh) 含硅高抗刻蚀分子玻璃光刻胶化合物及其制备方法和应用
CN117658880A (zh) 基于金刚烷的多硫鎓盐单分子树脂光刻胶及其制备方法和应用
CN117865866B (zh) 基于三蝶烯的多硫鎓盐单分子树脂光刻胶及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20809226

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20809226

Country of ref document: EP

Kind code of ref document: A1