WO2014113914A1 - 螺芴衍生物分子玻璃及其制备方法和光刻中的应用 - Google Patents

螺芴衍生物分子玻璃及其制备方法和光刻中的应用 Download PDF

Info

Publication number
WO2014113914A1
WO2014113914A1 PCT/CN2013/070825 CN2013070825W WO2014113914A1 WO 2014113914 A1 WO2014113914 A1 WO 2014113914A1 CN 2013070825 W CN2013070825 W CN 2013070825W WO 2014113914 A1 WO2014113914 A1 WO 2014113914A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular glass
photoresist
spirofluorene derivative
spirofluorene
derivative molecular
Prior art date
Application number
PCT/CN2013/070825
Other languages
English (en)
French (fr)
Inventor
李嫕
郝青山
陈金平
曾毅
于天君
Original Assignee
中国科学院理化技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院理化技术研究所 filed Critical 中国科学院理化技术研究所
Priority to PCT/CN2013/070825 priority Critical patent/WO2014113914A1/zh
Priority to US14/762,260 priority patent/US9290435B2/en
Priority to CN201380000139.XA priority patent/CN104144908B/zh
Publication of WO2014113914A1 publication Critical patent/WO2014113914A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/96Esters of carbonic or haloformic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/01Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis
    • C07C37/055Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by replacing functional groups bound to a six-membered aromatic ring by hydroxy groups, e.g. by hydrolysis the substituted group being bound to oxygen, e.g. ether group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/17Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings containing other rings in addition to the six-membered aromatic rings, e.g. cyclohexylphenol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/23Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic, containing six-membered aromatic rings and other rings, with unsaturation outside the aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • C07C43/2055Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring containing more than one ether bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • C07C69/736Ethers the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0382Macromolecular compounds which are rendered insoluble or differentially wettable the macromolecular compound being present in a chemically amplified negative photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms

Definitions

  • the invention belongs to the technical field of materials, and particularly relates to a preparation method of a snail-deposited molecular glass having a high glass transition temperature and good film-forming property, and the application thereof as a photoresist main material in lithography technology. Especially in the application of extreme ultraviolet lithography.
  • a photoresist (also referred to as a photoresist) refers to an etch-resistant film material whose solubility is changed by irradiation or irradiation of a light source such as ultraviolet light, excimer laser, electron beam, ion beam, or X-ray. It is mainly used for micro-machining of integrated circuits and semiconductor discrete devices, and is also widely used in the production of flat panel displays, LEDs, magnetic heads and precision sensors. Since the photoresist is photochemically sensitive, it can be used for photochemical reaction, and the photoresist is coated on the semiconductor, the conductor and the insulator, and the portion left after exposure and development protects the underlayer, and then etched by an etchant.
  • a light source such as ultraviolet light, excimer laser, electron beam, ion beam, or X-ray. It is mainly used for micro-machining of integrated circuits and semiconductor discrete devices, and is also widely used in the production of flat panel displays, LEDs, magnetic heads and precision sensors
  • the desired fine pattern can be transferred from the reticle to the substrate to be processed, so the photoresist is a key material in the microfabrication technology.
  • lithography continues to increase resolution, from early G-line (436nm) lithography, I-line (365nm) lithography, deep-UV (248nm) lithography to the present The 193nm lithography, as well as the next generation of the most promising EUV ( 13.5nm) lithography development process, and the corresponding requirements for photoresist.
  • the photoresist material used in the existing 193 nm lithography generally uses a low molecular weight polymer having a molecular weight of 5000-15000 Daltons. Such polymer materials are usually due to large molecular volume, polydispersity of molecular weight, and entanglement of molecular chains. The reason affects the edge roughness or line width roughness of the pattern, which is not suitable for finer scribe lines. Therefore, the development of new photoresists is crucial to the development of lithography.
  • Molecuar glasses are a class of small molecular compounds with special structures and functions that have been proposed and developed in recent years. These small molecular compounds have exact molecular structure, monodispersity, and small radius of gyration. The thermal stability and film forming properties of polymers are expected to become a new class of photoresist master materials (Adv. Mater. 2008, 20, 3355). Molecular glass currently studied as a main material of photoresist is mainly photosensitive.
  • a branched or cyclic structural compound in which the branched structure is dominated by a polyphenylene-bonded rigid structure (J. Mater. Chem.. 2008, 18, 1903; Chem. Mater. 2008, 20, 1606), the cyclic structure is mainly a calixarene or a similar calixarene structure (J. Mater. Chem.. 2008, 18, 3588; J. Mater. Chem.. 2010, 20, 4445).
  • the snail structure has two geometrical skeletons perpendicular to each other, which can effectively inhibit the crystallization between molecules, and is easy to form a film.
  • the snail has a good rigid structure, high glass transition temperature and good thermal stability, and the design is based on a snail structure.
  • the molecular glass will help to increase its glass transition temperature and film forming properties.
  • the first technical problem to be solved by the present invention is to provide a snail-derivative molecular glass.
  • the molecular glass has good solubility in various polar solvents, and a good film can be obtained by spin coating, and at the same time, it has a high glass transition temperature (greater than 100 ° C). Suitable for the requirements of lithography processing.
  • a second technical problem to be solved by the present invention is to provide a method for preparing the above-mentioned spiro-derivative molecular glass.
  • the method uses tetrabromospiropurine as raw material, and obtains a series of molecular glass based on snail by simple coupling reaction, deprotection reaction and functional modification.
  • the synthesis process is simple, and the product can be realized by recrystallization or precipitation. Separation.
  • a third technical problem of the present invention is to provide an application of a photoresist having the above molecular glass as a host material in an extreme ultraviolet lithography process.
  • the snail derivative molecular glass of the present invention has the following molecular structure:
  • the substituent -R 12 is a hydrogen atom, a hydroxyl group, a methoxy group or an acid-sensitive substituent; the substituents -R 12 may be the same or different, but the substituents on the same benzene ring may not be all hydrogen atoms;
  • the base is an alkane carbonate having a carbon number of ⁇ 12, and the structure is
  • G ⁇ d-U alkyl, A/W represents a linkage
  • the alkane carbonate or alkane ⁇ -acetate substituent having a carbon number of ⁇ 12 is a group having the following structure:
  • the preparation method of the snail derivative molecular glass of the present invention comprises the following steps:
  • the spiro quinone derivative obtained in the step 1) is mixed with BF 3 in a molar ratio of 1:8-10, and deprotected in a dichloromethane solvent at -50 to -80 °C. Reacting to form a spirofluorene derivative having a phenolic hydroxyl group in the periphery;
  • the spirulina derivative obtained in the step 2) and the acid-sensitive substituent-containing compound are mixed at a molar ratio of 1:4 to 18, and pyridine or potassium carbonate is added as a catalyst.
  • the reaction was carried out at room temperature for 10 to 24 hours to obtain a snail-derivative molecular glass.
  • the phenylboride having different methoxy substitution positions and numbers is selected from one or more of the following: p-methoxyphenyl sheet decyl borane, m-methoxy phenyl benzoate boron Alkane, 3,4-dimethoxyphenyl sheet decyl borane, 3,5-dimethoxyphenyl sheet decyl borane, 3,4,5-trimethoxyphenyl sheet decyl borane .
  • the acid-sensitive substituent-containing compound is a compound having the following structure:
  • the acid-sensitive substituent-containing compound is a compound having the following structure:
  • the invention provides the use of the photoresist with the above molecular glass as the main material in photolithography, wherein the spiro-derivative molecular glass whose periphery is hydroxyl (or partial hydroxyl) can be used as a negative photoresist, and the peripheral hydroxyl group passes the acid.
  • Molecular glass with a sensitive substituent protection can be used as a positive photoresist.
  • the present invention further provides a negative photoresist formulation comprising: a snail derivative molecular glass having a hydroxyl group or a partial hydroxyl group as a host material, a photoacid generator, a crosslinking agent, and a photoresist solvent.
  • the above-mentioned spiro-derivative molecular glass used as a negative photoresist means that at least four of the groups -R 12 in the formula are hydroxyl groups.
  • the snail derivative molecular glass material content is 1% to 10% (mass content)
  • the crosslinking agent content is 0.1% to 1% (mass content)
  • the photoacid generator content is 0.01% ⁇ 1% (mass content)
  • the rest is a photoresist solvent.
  • the present invention further provides a positive photoresist formulation comprising: a spiro-derivative molecular glass having a peripherally acid-sensitive group or a partial acid-sensitive group as a host material, a photoacid generator, and a photoresist solvent.
  • a positive photoresist formulation comprising: a spiro-derivative molecular glass having a peripherally acid-sensitive group or a partial acid-sensitive group as a host material, a photoacid generator, and a photoresist solvent.
  • the above-mentioned spirulinium derivative molecular glass used as a positive photoresist means that at least four of the groups -R 12 in the formula are acid-sensitive substituents.
  • the glass material content of the snail derivative molecular glass is 1% to 10% (mass content)
  • the photoacid generator is 0.01% to 1% (mass content)
  • the rest is a photoresist solvent.
  • the photoacid generator includes an ionic or nonionic type, such as triphenylsulfonium triflate, bis(4-tert-butylphenyl)iodonium p-toluenesulfonate, N-hydroxynaphthoyl An imine trifluoromethanesulfonate or the like;
  • the crosslinking agent includes tetramethoxymethyl glycoluril, 2,4-dimethylol-6-methylphenol (2,4-DMMP), and the like;
  • the photoresist solvent includes propylene glycol monomethyl ether acetate (PGMEA), ethyl lactate, ethylene glycol monomethyl ether, cyclohexanone, and the like.
  • the above positive or negative photoresist formulations may also include other auxiliary additives such as sensitizers, surfactants, anti-diffusion agents, stabilizers and the like.
  • the positive or negative photoresist formulation of the present invention is spin-coated on a silicon wafer by a homogenizer to form a film, thereby obtaining a photoresist coating, and lithographic stripes having a resolution of less than 50 nm can be formed by interference lithography.
  • the compounding process of the snail structure is simple, and the separation of the product and the system can be achieved by recrystallization or precipitation, which is suitable for industrial production.
  • the geometric structure of the snails on both sides of the snail is used to inhibit the crystallization of the molecules, which is beneficial to film formation and utilization.
  • the glass has high vitrification temperature and good thermal stability.
  • the design and synthesis of molecular glass based on the snail structure can fully meet the requirements of the lithography process. Due to the introduction of a large amount of phenolic hydroxyl groups on the snail group, it is increased on the one hand. The interaction of intermolecular hydrogen bonds makes such molecular glass exhibit good film forming properties and high glass transition temperature.
  • the controllable hydroxyl group-modified acid-sensitive group enables the molecular glass to Used as a photoresist host material for lithography;
  • the photoresist formulation prepared by the present invention can be used for 248 nm lithography, 193 nm lithography, extreme ultraviolet (EUV) lithography, nanoimprint lithography (NIL), and electron beam light.
  • EUV extreme ultraviolet
  • NIL nanoimprint lithography
  • EBL extreme ultraviolet
  • EUV extreme ultraviolet
  • Figure 1 is a differential scanning calorimetry graph
  • Figure 2 is a graph of thermal weight loss.
  • the present invention lists the preparation of three methoxy boron-containing phenyl borides for reference.
  • R represents a ⁇ ° substituent.
  • the specific steps are as follows: Add 2, 7, 2, 7, 7-tetrakis (3, 4, 5-trihydroxyphenyl)-9, 9,- snail (406 mg, 0.5 mmol, 1.0) to a 100 mL three-necked flask.
  • the glass transition temperature of the molecular glass of the spiro-derivative derivative prepared in the columns 2, 4, and 6 was measured.
  • the differential scanning calorimetry curve and the thermogravimetric analysis are shown in Fig. 1 and Fig. 2, respectively, and the results show that the glass of the molecular glass is obtained.
  • the temperature has reached above 100 °C, and has good thermal stability, meeting the requirements of the lithography process.
  • the prepared film was subjected to an exposure experiment on a soft X-ray interference lithography line station (BL08U1B) of a Shanghai synchrotron radiation source, and the exposure period was 140 nm, and a very uniform lithographic fringe was obtained, as shown in FIG.
  • the lithographic stripes have a width of 50 nm with good resolution, contrast, and very low line edge roughness.
  • the prepared film was exposed to a soft X-ray interference lithography line station (BL08U1B) of Shanghai Synchrotron Radiation Source.
  • the exposure period was 140 nm, and a very uniform lithographic fringe was obtained, as shown in Fig. 4.
  • the width of the lithographic stripes is around 70 nm, with good resolution, contrast, and very low line edge roughness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Photolithography (AREA)

Abstract

本发明公开了螺芴衍生物分子玻璃,具有如下分子结构:式(I)。式中:R1~R12为氢原子、羟基、甲氧基或酸敏感性取代基;取代基R1~R12可相同或不同,但同一苯环上取代基不能均为氢原子;该分子玻璃在各种极性溶剂中都具有很好的溶解性,适于制成薄膜,同时,其具有很高的玻璃化温度,适合光刻加工工艺的要求;本发明还公开了上述螺芴衍生物分子玻璃的制备方法,合成过程简单,适合工业化;本发明同时公开了以上所述分子玻璃为主体材料的光刻胶在光刻中的应用,其中外围为羟基(或部分羟基)的螺芴衍生物分子玻璃可作为负性光刻胶使用,外围羟基通过酸敏感性取代基保护(或部分保护)的分子玻璃可作为正性光刻胶使用。

Description

螺芴衍生物分子玻璃及其制备方法和光刻中的应用 技术领域
本发明属于材料技术领域, 具体涉及一种具有较高玻璃化转变温度和很好成膜性能的 螺芴衍生物分子玻璃的制备方法, 以及其作为光刻胶主体材料在光刻技术中的应用, 尤其 是在极紫外光刻技术中的应用。
背景技术
光刻胶 (又称光致抗蚀剂)是指通过紫外光、 准分子激光、 电子束、 离子束、 X射线等 光源的照射或辐射, 其溶解度发生变化的耐蚀刻薄膜材料。 主要用于集成电路和半导体分 立器件的微细加工, 同时在平板显示、 LED、 磁头及精密传感器等制作过程中也有着广泛 的应用。 由于光刻胶具有光化学敏感性, 可利用其进行光化学反应, 将光刻胶涂覆半导体、 导体和绝缘体上, 经曝光、 显影后留下的部分对底层起保护作用, 然后采用蚀刻剂进行蚀 刻就可将所需要的微细图形从掩模版转移到待加工的衬底上, 因此光刻胶是微细加工技术 中的关键性材料。 随着对集成电路产品技术需求的提升, 光刻技术也不断地提高分辨率, 经历从早期的 G线 (436nm) 光刻, I线 (365nm) 光刻, 深紫外 (248nm) 光刻到目前的 193nm光刻, 以及下一代最有发展前景的极紫外 (EUV, 13.5nm) 光刻的发展历程, 而相 应的对光刻胶也提出了更高的要求。
现有的 193nm光刻所使用的光刻胶主体材料通常采用分子量 5000-15000道尔顿的低 分子量聚合物, 这类聚合物材料通常由于分子体积太大, 分子量多分散以及分子链的缠绕 等原因影响图案的边缘粗糙度或线宽粗糙度, 不适合更为精细的刻线要求, 因此发展新型 的光刻胶对光刻技术的发展至关重要。
分子玻璃 (Molecuar Glasses) 是最近几年提出并发展起来的一类的具有特殊结构和功 能的小分子化合物,这类小分子化合物具有确切的分子结构、单分散性以及小的回旋半径, 同时具有聚合物的热稳定性和成膜性的特点,因此有望成为一类新的光刻胶主体材料 (Adv. Mater. 2008, 20, 3355 )。 目前作为光刻胶主体材料进行研究的分子玻璃主要是具有光敏性
(或酸敏性)的支状或环状结构化合物, 支状结构以多苯环连接的刚性结构为主(J. Mater. Chem.. 2008, 18, 1903; Chem. Mater. 2008, 20, 1606), 环状结构则主要是杯芳烃或类似杯芳 烃结构 (J. Mater. Chem.. 2008, 18, 3588; J. Mater. Chem.. 2010, 20, 4445 )。 设计合成分子玻 璃除了考虑其光敏性 (或酸敏性) 夕卜, 其玻璃化温度 (Tg)和成膜性能是分子玻璃是否具有 实用性的两个最重要的指标, 如果合成的化合物容易结晶或者玻璃化温度 Tg低于 100°C, 都将直接影响其作为光刻胶主体材料的应用。
螺芴结构具有两面相互垂直的几何骨架, 可以有效地抑制分子间的结晶, 易于成膜, 同时螺芴具有较好的刚性结构, 玻璃化温度高, 热稳定性好, 设计合成基于螺芴结构的分 子玻璃将有助于提高其玻璃化温度和成膜性能。
发明内容
本发明要解决的第一个技术问题是提供一种螺芴衍生物分子玻璃。 该分子玻璃在各种 极性溶剂中都具有很好的溶解性, 可以采用旋涂法(Spin Coating)制得良好的薄膜, 同时, 其具有很高的玻璃化温度 (大于 100°C ), 适合光刻加工工艺的要求。
本发明要解决的第二个技术问题是提供一种上述螺芴衍生物分子玻璃的制备方法。 该 方法以四溴螺芴为原料, 通过简单的偶合反应, 脱保护基反应以及功能化修饰得到了一系 列基于螺芴的分子玻璃, 合成过程简单, 产物通过重结晶或沉淀即可实现与体系的分离。
本发明的第三个技术问题在于提供以上述分子玻璃为主体材料的光刻胶在极紫外光 刻工艺中的应用。
为解决 一个技术问题, 本发明螺芴衍生物分子玻璃, 具有如下分子结构:
Figure imgf000004_0001
式中:
取代基 ~R12为氢原子、 羟基、 甲氧基或酸敏感性取代基; 取代基 ~R12可相同或 不同, 但同一苯环上取代基不能均为氢原子;
基为碳原子数≤ 12的烷烃类碳酸酯, 结构为
Figure imgf000004_0002
或烷烃类 α-醋酸酯取代基, 结构为
Figure imgf000005_0001
其中 G^ d-U烷基, A/W表示连接键。
优选地, 所述碳原子数≤ 12的烷烃类碳酸酯或烷烃类 α-醋酸酯取代基为具有如下结构 的基团:
Figure imgf000005_0002
式中, Α 表示连接键。 为解决上述第二个技术问题,本发明螺芴衍生物分子玻璃的制备方法,包括以下步骤:
1)在惰性气体保护下, 将四溴取代的螺芴和具有不同甲氧基取代位置和数目的苯基硼 化物以摩尔比为 1 : 4〜8的比例混合, 加入催化量的醋酸钯催化剂, 在四氢呋喃溶液中, 加热至 50〜70°C反应 6〜24小时, 得到不同苯甲氧基取代的螺芴衍生物;
2)在惰性气体保护下, 将步骤 1)所得螺芴衍生物与 BF3以摩尔比 1 : 8~10混合, 在二 氯甲烷溶剂中, -50〜- 80°C的条件下发生脱保护反应, 生成外围带有酚羟基的螺芴衍生物;
3)在惰性气体保护下, 将步骤 2)所得的螺芴衍生物与含酸敏感性取代基的化合物以摩 尔比为 1 : 4〜18的比例混合, 并且加入吡啶或碳酸钾做催化剂, 在室温下反应 10〜24小 时, 得到螺芴衍生物分子玻璃。
所述具有不同甲氧基取代位置和数目的苯基硼化物选自下列物质中的一种或多种: 对 甲氧基苯基片呐醇硼烷、 间甲氧基苯基片呐醇硼烷、 3,4-二甲氧基苯基片呐醇硼烷、 3,5- 二甲氧基苯基片呐醇硼烷、 3,4,5-三甲氧基苯基片呐醇硼烷。
所述含酸敏感性取代基的化合物是具有如下结构的化合物:
Figure imgf000005_0003
式中, R为碳原子数≤ 12的烷基链; X=C1、 Br或 I。
优选地, 所述含酸敏感性取代基的化合物为具有如下结构的化合物:
Figure imgf000005_0004
式中, X=C1、 Br或 I。 本发明提供以上述分子玻璃为主体材料的光刻胶在光刻中的应用, 其中外围为羟基 (或部分羟基) 的螺芴衍生物分子玻璃可作为负性光刻胶使用, 外围羟基通过酸敏感性取 代基保护 (或部分保护) 的分子玻璃可作为正性光刻胶使用。
本发明进一步提供一种负性光刻胶配方, 包括: 外围为羟基或部分羟基的螺芴衍生物 分子玻璃作主体材料、 光酸产生剂、 交联剂、 光刻胶溶剂。 上述作为负性光刻胶使用的螺 芴衍生物分子玻璃是指通式中 ~R12中至少 4个基团为羟基。所述负性光刻配方中, 螺芴 衍生物分子玻璃主体材料含量 1%~10% (质量含量), 交联剂含量 0.1%~1% (质量含量), 光酸产生剂含量 0.01%~1% (质量含量), 其余为光刻胶溶剂。
本发明进一步提供一种正性光刻胶配方, 包括: 外围为酸敏基团或部分酸敏基团的螺 芴衍生物分子玻璃作主体材料、 光酸产生剂、 光刻胶溶剂。 上述作为正性光刻胶使用的螺 芴衍生物分子玻璃是指通式中 ~R12中至少 4个基团为酸敏感性取代基。所述正性光刻胶 配方中, 螺芴衍生物分子玻璃主体材料含量 1%~10% (质量含量), 光酸产生剂 0.01%~1% (质量含量), 其余为光刻胶溶剂。
所述光酸产生剂包括离子型或非离子型, 如三氟甲磺酸三苯基硫鎿盐、 对甲苯磺酸二 (4-叔丁基苯基) 碘鎿盐、 N-羟基萘酰亚胺三氟甲磺酸盐等; 所述交联剂包括四甲氧基甲 基甘脲、 2,4-二羟甲基 -6-甲基苯酚(2,4-DMMP)等; 所述光刻胶溶剂包括丙二醇单甲醚醋 酸酯 (PGMEA)、 乳酸乙酯、 乙二醇单甲醚、 环己酮等。
上述正性或负性光刻胶配方还可以包括其他辅助添加剂, 如增感剂、 表面活性剂、 防 扩散剂、 稳定剂等。
将本发明中的正性或负性光刻胶配方通过匀胶机在硅片上进行旋涂成膜, 即得到光刻 胶涂层, 可以通过干涉光刻形成分辨率小于 50nm光刻条纹。
本发明的优点在于:
螺芴结构的化合物合成过程简单, 通过重结晶或沉淀即可实现产物与体系的分离, 适 用于工业化生产; 利用螺芴两面相互垂直的几何结构, 抑制分子的结晶, 有利于成膜, 同 时利用螺芴玻璃化温度高, 热稳定性好的特点, 设计合成基于螺芴结构的分子玻璃能够充 分满足光刻工艺的要求; 由于在螺芴基团上引入大量的酚羟基, 一方面增大了分子间氢键 的相互作用, 使得此类分子玻璃表现出很好的成膜性能和较高的玻璃化温度, 另一方面可 控的对羟基修饰酸敏性基团, 使得该类分子玻璃能作为光刻胶主体材料用于光刻; 本发明 制备的光刻胶配方可以用于 248nm光刻、 193nm光刻、 极紫外 (EUV)光刻、 纳米压印光 刻 (NIL) 和电子束光刻 (EBL) 等现代光刻工艺中, 尤其是满足极紫外 (EUV) 光刻工 艺中对光刻条纹高分辨率的要求。
附图说明 下面结合附图对本发明的具体实施方式作进一步详细的说明
图 1为差示扫描量热曲线图;
图 2为热失重曲线图。
图 3实施例 10采用干涉光刻得到的条纹电镜照片。
图 4实施例 11采用干涉光刻得到的条纹电镜照片。
具体实施方式
为更好地理解本发明, 下面将通过具体的实施例进一步说明本发明的方案, 但本发明 的保护范围应包括权利要求的全部内容, 但不限于此。
本发明列出三种含甲氧基取代基的苯基硼化物的制备方法, 供参考。
1、 制备 3,5-二甲氧基苯基硼化物, 合成路线图如下:
Figure imgf000007_0001
具体步骤如下: 在 lOOmL Schlenk反应瓶中加入 3,5-二甲氧基溴苯(1.74g, 8.0mmol, l.Oeq)和催化剂 PdCl2(PPh3)2 (281mg, 0.4mmol ,0.05eq), 重复抽真空-通氮气三次, 用注射器 向反应瓶中加入干燥重蒸的 1,2-二氯乙烷(20ml), 三乙胺 (7ml, 40mmol, 5.0eq)和片呐醇硼 烷(HBpin) (3.5ml, 24.0mmol, 3.0eq), 反应体系升温至 90°C, 回流反应 4h。 反应体系冷却 至室温, 将反应液倒入 20ml水中终止反应, 用乙酸乙酯多次萃取水相, 合并有机相, 分 别用饱和食盐水, 水各洗涤一次, 无水硫酸镁干燥, 旋干溶剂, 将得到的产物在正己; 乙酸乙酯中重结晶,得到白色固体 1.8g, 产率 85%。 ¾ NM (400 MHz, CDC13) δ (ppm) 7.03 (s, 2H, benzene), 6.90 (s, 1H, benzene), 3.84 (s, 6H, -OCH3), 1.33 (s, 12H, -CH3)。
2、 制备 3,4-二甲氧基苯基硼化物, 合成路线
Figure imgf000007_0002
具体步骤如下: 在 lOOmL Schlenk反应瓶中加入 3,4-二甲氧基溴苯(1.74g, 8.0mmol, l.Oeq)和催化剂 PdCl2(PPh3)2 (281mg, 0.4mmol ,0.05eq), 重复抽真空-通氮气三次, 用注射器 向反应瓶中加入干燥重蒸的 1,2-二氯乙烷(20ml), 三乙胺 (7ml, 40mmol, 5.0eq)和片呐醇硼 烷(HBpin) (3.5ml, 24.0mmol, 3.0eq), 反应体系升温至 90°C, 回流反应 4h。 反应体系冷却 至室温, 将反应液倒入 20ml水中终止反应, 用乙酸乙酯多次萃取水相, 合并有机相, 分 别用饱和食盐水, 水各洗涤一次, 无水硫酸镁干燥, 旋干溶剂, 将得到的产物在正己; 乙酸乙酯中重结晶,得到白色固体 1.7g, 产率 80%。 NMR OO MHz, CDC13) δ (ppm) 7.15 (s, IH, benzene), 7.05 (s, IH, benzene), 6.90 (s, IH, benzene), 3.84-3.86 (d, 6H, -OCH3), 1.32 (s 12H, -CH3)。
3、 制备 3,4,5-三甲氧基苯基硼化物, 合成路线图如下:
Figure imgf000008_0001
具体步骤如下: 在 lOOmL Schlenk反应瓶中加入 3,4,5-三甲氧基溴苯(1.24g, 5.0mmol, l.Oeq)和催化剂 PdCl2(PPh3)2 (176mg, 0.25mmol ,0.05eq), 重复抽真空-通氮气三次, 用注射 器向反应瓶中加入干燥重蒸的 1,2-二氯乙烷 (15ml ), 三乙胺 (4.5ml, 25mmol, 5.0eq)和 HBpin(2.2ml, 15.0mmol, 3.0eq),反应体系升温至 90°C,回流反应 4h。反应体系冷却至室温, 将反应液倒入 20ml水中, 用乙酸乙酯多次萃取水相, 合并有机相, 分别用饱和食盐水, 水各洗涤一次, 无水硫酸镁干燥, 旋干溶剂, 将得到的产物在正己焼 /乙酸乙酯中重结晶, 得到白色固体 1.2g,产率 80%。 ¾ NM (400 MHz, CDCI3) δ (ppm) 7.03 (s, 2H,benzene), 3.90 (s, 6H, -OCH3), 3.87 (s, 3H, -OCH3), 1.34 (s, 12H, -CH3)。
实施例 1.
制备 2, 7, 2' ,7' -四- (3, 5-二甲氧基苯基) -9, 9'-螺芴, 合成路线图如下:
Figure imgf000009_0001
具体步骤如下:在 50mL Schlenk反应瓶中加入 Pb(OAc)2 (15.5mg,0.05mmol, O.leq), 配 体 2-双环己基磷 -2,, 6,-二甲氧基联苯 S-phos (49.8 mg, 0.1 mmol, 0.2 eq), 重复抽真空 -通氮 气三次, 用注射器加入干燥重蒸的四氢呋喃 (5mL), 室温下搅拌 30min, 制备得到的催化剂 溶液密封备用。 在另一个 100ml的 Schlenk反应瓶加入 2, 7, 2' ,7'-四溴螺芴 (316.0mg, 0.5mmol, l.Oeq), 3, 5-二甲氧基苯基片呐醇硼烷 (660.0mg, 2.5mmol, 5.0eq), 重复抽真空- 通氮气三次, 用注射器加入 NaOH溶液 (lml, 5M) 和四氢呋喃 (2ml)以及上述制备的催化 剂溶液, 反应液加热至 60°C反应 6h。 冷却到室温, 用氯仿 /水萃取, 合并有机层, 无水硫 酸镁干燥, 减压浓缩除去溶剂, 剩余物用乙醚重结晶, 得到浅黄色固体 264mg, 产率 61%。 ¾ NM (400 MHz, CDCb) δ (ppm) 7.96 (d, J = 7.9 Hz, 4H), 7.63 (d, J = 8.0 Hz, 4H), 7.04 (s, 4H), 6.95 (s, 8H), 6.66 (s, 4H), 3.88 (s, 24H)。 MS (MALDI-TOF): m/z = 860.8, calcd for (C57H4808) m/z = 860.3 ([M] +).
实施例 2.
制备 2, 7, 2, ,7,-四- (3, 4, 5-三甲氧基苯基) -9, 9'-螺芴, 合成路线图如下:
Figure imgf000009_0002
具体步骤如下:在 50mL Schlenk反应瓶中加入 Pb(OAc)2 (15.5mg,0.05mmol, O.leq), 配 体 2-双环己基磷 -2,, 6,-二甲氧基联苯 S-phos (49.8 mg, 0.1 mmol, 0.2 eq), 重复抽真空 -通氮 气三次, 用注射器加入干燥重蒸的四氢呋喃 (5mL), 室温下搅拌 30min, 制备得到的催化剂 溶液密封备用。 在另一个 100ml的 Schlenk反应瓶加入 2, 7, 2' ,7'-四溴螺芴 (316.0mg, 0.5mmol, l.Oeq), 3, 4, 5-三甲氧基苯基片呐醇硼烷 (735.0mg, 2.5mmol, 5.0eq), 重复抽真空- 通氮气三次, 用注射器加入 NaOH溶液 (lml, 5M) 和四氢呋喃 (2ml)以及上述制备的催化 剂溶液, 反应液加热至 60°C反应 6h。 冷却到室温, 用氯仿 /水萃取, 合并有机层, 无水硫 酸镁干燥, 减压浓缩除去溶剂, 剩余物用乙醚重结晶, 得到浅黄色固体 319mg, 产率 65%。 ¾ NM (400 MHz, CDC13) δ (ppm) 7.94 (d, J = 8.0 Hz, 4H), 7.61 (dd, J = 8.0, 4H), 6.94 (d, J = 1.2 Hz, 4H), 6.63 (s, 8H), 3.83 (d, J = 8.1 Hz, 36H)。 MS(MALDI-TOF): m/z = 980.3, calcd for C6iH560i2 m/z = 980.1 ([M]+)。
实施例 3.
制备 2, 7, 2' ,7' -四- (3, 5-二羟基苯基) -9, 9'-螺芴, 合成路线图如下:
Figure imgf000010_0001
具体步骤如下: 在 250mL 的三口瓶中加入 2, 7, 2, ,7,-四- (3, 5-二甲氧基苯基) -9, 9,- 螺芴 (l.Og, 1.16mmol, l.Oeq)和二氯甲烷 50ml, 氮气氛围下溶解, 在低温 -78°C下, 用注射 器向反应液中滴加三溴化硼的二氯甲烷溶液 (1M, 10ml, 9.0eq), 反应液在 -78°C下反应 1 小时后逐渐升温到室温, 继续反应 12小时。 向反应液中缓慢加入 10ml水猝灭反应, 减压 除去二氯甲烷溶剂, 剩余物过滤得到淡黄色滤饼, 分别用水和二氯甲烷洗涤, 得到固体用 甲醇 /水沉淀三次得到淡黄色固体 826mg,产率 95%。 ΝΜΙ (400 MHz, DMSO-d6) δ (ppm) 7.96 (d, J = 7.9 Hz, 4H), 7.63 (d, J = 8.0 Hz, 4H), 7.04 (s, 4H), 6.95 (s, 8H), 6.66 (s, 4H)。 MS (MALDI-TOF): m/z = 748.6, calcd for (C57H4808) m/z = 748.2 ([M] +).
实施例 4.
制备 2, 7, 2, ,7,-四- (3, 4, 5-三羟基苯基) -9, 9,-螺芴, 合成路线图如下:
Figure imgf000010_0002
具体步骤如下:在 250mL 的三口瓶中加入 2, 7, 2, ,7, -四 - (3, 4, 5-三甲氧基苯基)-9, 9,- 螺芴 (981mg, l.Ommol, l.Oeq)和二氯甲烷 50ml, 氮气氛围下溶解, 在低温 -78°C下, 用注 射器向反应液中滴加三溴化硼的二氯甲烷溶液 (1M, 18ml, 18eq), 反应液在 -78 °C下反应 1 小时后逐渐升温到室温, 继续反应 12小时。 向反应液中缓慢加入 10ml水猝灭反应, 减压 除去二氯甲烷溶剂, 剩余物过滤得到淡黄色滤饼, 分别用水和二氯甲烷洗涤, 得到固体用 甲醇 /水沉淀三次得到淡黄色固体 756mg,产率 93%。 NMR (400 MHz, DMSO-d6) δ (ppm) 8.05 (d, J= 8.0 Hz, 4H), 7.58 (d, J= 8.0 Hz, 4H, spirofluorene), 6.73 (s, 4H, spirofluorene), 6.39 (s, 8H, benzene) MS(MALDI-TOF): m/z = 811.3, calcd for C6iH560i2 m/z = 812.8 ([M]+)。
实施例 5
2, 7, 2' ,7' -四- (3, 5-二叔丁基碳酸酯基苯基) -9, 9'-螺芴, 合成路线图如下:
Figure imgf000011_0001
应式中 Boc 。
具体步骤如下: 在 lOO mL三口瓶中加入 2, 7, 2,,7,-四- ( 3, 5-二羟基苯基) -9, 9,-螺 芴 (500mg, 0.67mmol, l.Oeq) 和四丁基溴化铵 ( 258mg, 0.8mmol, 1.2eq), 吡啶(10ml),搅 拌至固体溶解, 向反应液中慢慢滴加入 Boc酸酐 (二碳酸二叔丁酯) (2.34g, 10.72mmol, 16eq), 反应液升温至 60°C, 反应 48h。 冷却至室温, 用二氯甲焼 /水萃取, 有机相用柠檬 酸水溶液洗涤三次, 有机层用无水 MgS04干燥, 减压除去溶剂, 得到半固体状物在二氯 甲烷 /正己烷混合液中重结晶, 得到的白色固体 883mg, 产率 85%。 NMR (400 MHz, CDCb) δ (ppm) 7.83 (d, J = 7.9 Hz, 4H), 7.52 (d, J = 8.0 Hz, 4H), 6.98 (s, 4H), 6.81 (s, 8H), 6.44 (s, 4H), 0.81 (s, 72H), MS(MALDI-TOF): m/z = 1549.0, calcd for〔89¾6024 m/z = 1549.7 ([M]+)。
实施例 6
制备 2, 7, 2, ,7,-四- (3, 4-二叔丁基碳酸酯基苯基) -9, 9'-螺芴, 合成路线图如下:
Figure imgf000012_0001
反应式中 Boc
Figure imgf000012_0002
具体步骤如下: 在 lOO mL三口瓶中加入 2, 7, 2,,7,-四- ( 3, 4-二羟基苯基) -9, 9,-螺 芴 (500mg, 0.67mmol, l.Oeq) 和四丁基溴化铵 ( 258mg, 0.8mmol, 1.2eq), 吡啶(10ml),搅 拌至固体溶解, 向反应液中慢慢滴加入 Boc酸酐 (二碳酸二叔丁酯) (2.34g, 10.72mmol, 16eq), 反应液升温至 60°C, 反应 48h。 冷却至室温, 用二氯甲焼 /水萃取, 有机相用柠檬 酸水溶液洗涤三次, 有机层用无水 MgS04干燥, 减压除去溶剂, 得到半固体状物在二氯 甲烷 /正己烷混合液中重结晶, 得到的白色固体 880mg, 产率 85%。 NMR (400 MHz, CDC13) δ (ppm) 7.93-7.91 (d, 4H, spirobifluorene), 7.57-7.55(d, 4H, spirobifluorene), 7.29 (s, 4H, spirobifluorene), 7.26-7.28 (d, 4H, Ar-H), 7.19-7.17 (d, 4H, Ar-H) , 6.91 (s, 4H, Ar-H), 1.51(m, 72H, ί-Bu-H). MS(MALDI-TOF): m/z = 1549.0, calcd for C89H96024 m/z = 1549.7 ([M]+)。
实施例 7
2, 7, 2' ,7' -四- (3-羟基 -5-叔丁基碳酸酯基苯基) -9, 9'-螺芴, 合成路线图如下:
Figure imgf000012_0003
应式中 Boc 。
具体步骤如下: 在 100 mL三口瓶中加入 2, 7, 2, ,7,-四- (3, 5-二羟基苯基) -9, 9,-螺芴 (500mg, 0.67mmol, l.Oeq) 和四丁基溴化铵 ( 258mg, 0.8mmol, 1.2eq), 吡啶(10ml), 搅拌 至固体溶解,向反应液中慢慢滴加入 Boc酸酐(二碳酸二叔丁酯) (585mg, 2.68mmol, 4eq), 反应液升温至 60°C, 反应 48h。 冷却至室温, 用二氯甲焼 /水萃取, 有机相用柠檬酸水溶液 洗涤三次, 有机层用无水 MgS04干燥, 减压除去溶剂, 得到淡黄色固体产物, 将其溶于 10ml二氯甲烷中, 缓慢滴加到 150ml的正己烷中形成大量沉淀, 抽滤, 反复沉淀 3次,得 到类白色固体 730mg,产率 QSo/o H NMR OO MHz, CDCb) δ (ppm) 7.81 (d, J = 7.9 Hz, 4H), 7.49 (d, J = 8.0 Hz, 4H), 6.88 (s, 4H), 6.80 (s, 4H), 6.70 (s, 4H), 6.44 (s, 4H), 1.40 (s, 72H) , MS(MALDI-TOF): m/z = 1149.0, calcd for C69H640i6 m/z = 1148.4 ([M]+)。
实施例 8
制备 2, 7, 2' ,7' -四- (3, 4-二羟基 -5-醋酸金刚烷酯基苯基) -9, 9'-螺芴, 合成路线图如 下:
Figure imgf000013_0001
反应式中 R表示^ ° 取代基。 具体步骤如下: 在 lOO mL三口瓶中加入 2, 7, 2,,7,-四- ( 3, 4, 5-三羟基苯基) -9, 9,- 螺芴(406mg, 0.5mmol, 1.0eq)、四丁基溴化铵 (199mg, 0.6mmol, 1.2eq)、K2C03 (1.4g, lOmmol) 和 N-甲基吡咯烷酮(NMP, 30ml), 常温下搅拌 2小时, 向反应液中慢慢滴加入含氯乙酸金 刚烷酯 (485.4mg, 2mmol, 4.0eq) 的 NMP ( 5ml) 溶液, 升温至 60°C反应 48h。 反应完全 后, 冷却至室温, 反应液用乙酸乙酯 /水萃取, 有机相分别用 3^%的草酸溶液和水洗涤一 次, 合并有机层, 无水硫酸镁干燥, 减压除去溶剂。 用乙酸乙酯 /正己烷混合溶剂重结晶, 得到淡黄色固体 745mg, 产率 92%。 ¾ NM (400 MHz, CDC13) δ (ppm) 7.88 (d, J = 8.0 Hz, 4H), 7.55 (d, J = 8.0, 4H), 6.87 (d, J = 1.2 Hz, 4H), 6.45 (s, 8H), 4.45 (s, 8H), 1.67 (m, 68H)。 MS(MALDI-TOF): m/z =1635.7, calcd for C101H104O20 m/z = 1636.6 ([M]+)。
实施例 9
测定实施列 2、 4、 6 中制备得到的螺芴衍生物分子玻璃的玻璃化温度, 差示扫描量热 曲线和热重分析分别见附图 1和图 2, 结果显示该类分子玻璃的玻璃化温度都达到了 100 °C以上, 同时具有很好的热稳定性, 满足光刻工艺的要求。 实施例 10
正性光刻胶配方及光刻实验: 将实施例 6中的化合物 2, 7, 2' ,7' -四 - ( 3, 4-二叔丁基 碳酸酯基苯基) -9, 9'-螺芴溶于丙二醇单甲醚醋酸酯 (PGMEA) 中, 制得质量浓度 3%的 溶液,并加入光致产酸剂三氟甲磺酸三苯基硫鎿盐,质量浓度 0.15%,溶解后用孔径 0.22μηι 的微孔过滤器过滤, 得到旋涂液, 在经过酸碱处理的硅基底上进行旋涂制膜, 得到厚度均 匀的薄膜。 将制备得到的薄膜在上海同步辐射光源的软 X射线干涉光刻线站 (BL08U1B) 上进行曝光实验, 曝光周期为 140nm, 得到非常均匀的光刻条纹, 见图 3。 光刻条纹的宽 度为 50nm, 同时具有很好的分辨率、 对比度以及很低的线边缘粗糙度。
实施例 11
负性光刻胶配方的设计: 将实施例 3中的化合物 2, 7, 2' ,7' -四 - (3, 5-二羟基苯基) -9, 9'-螺芴溶于乳酸乙酯中, 制得质量浓度 10%的溶液, 并加入四甲氧基甲基甘脲为交联剂, 质量浓度 1%, 三氟甲磺酸三苯基硫鎿盐为光致产酸剂, 质量浓度 0.5%, 用孔径 0.22μηι的 微孔过滤器过滤, 得到旋涂液, 在经过酸碱处理的硅基底上进行旋涂制膜, 得到厚度均匀 的薄膜。 将制备得到的薄膜在上海同步辐射光源的软 X射线干涉光刻线站 (BL08U1B) 上 进行曝光实验, 曝光周期为 140nm, 得到非常均匀的光刻条纹, 见图 4。 光刻条纹的宽度 为 70nm左右, 同时具有很好的分辨率、 对比度以及很低的线边缘粗糙度。
显然, 本发明的上述实施例仅仅是为清楚地说明本发明所作的举例, 而并非是对本发 明的实施方式的限定。 对于所属领域的普通技术人员来说, 在上述说明的基础上还可以做 出其它不同形式的变化或变动。 这里无法对所有的实施方式予以穷举。 凡是属于本发明的 技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims

权利要求书
1、 螺芴衍生物分子玻璃, 其特征在于, 具有如下分子结构:
Figure imgf000015_0001
式中:
取代基 ~R12为氢原子、 羟基、 甲氧基或酸敏感性取代基; 取代基 R ~R12可相同或 不同, 但同一苯环上取代基不能均为氢原子。
2、 根据权利要求 1所述的螺芴衍生物分子玻璃, 其特征在于, 所述酸敏感性取代基 为碳原子数≤ 12的烷烃类碳酸酯, 结构为
0
、人 ,
或烷烃类 α-醋酸酯取代基, 结构为
Figure imgf000015_0002
其中 Cn d-U烷基, v AAT表示连接键。
3、 根据权利要求 2所述的螺芴衍生物分子玻璃, 其特征在于, 所述碳原子数≤ 12的 烷烃类碳酸酯或烷烃类 α-醋酸酯取代基为具有如下结构的基团:
Figure imgf000015_0003
式中, ^Α 表示连接键。
4、如权利要求 1所述螺芴衍生物分子玻璃的制备方法, 其特征在于, 包括以下步骤: 1)在惰性气体保护下,将四溴取代的螺芴和具有不同甲氧基取代位置和数目的苯基砚 化物以摩尔比为 1 : 4〜8的比例混合, 加入催化量的醋酸钯催化剂, 在四氢呋喃溶液中, 加热至 50〜70°C反应 6〜24小时, 得到不同苯甲氧基取代的螺芴衍生物; 2)在惰性气体保护下, 将步骤 1)所得螺芴衍生物与 BF3以摩尔比 1 : 8~10混合, 在二 氯甲烷溶剂中, -50〜- 80°C的条件下发生脱保护反应, 生成外围带有酚羟基的螺芴衍生物;
3)在惰性气体保护下,将步骤 2)所得的螺芴衍生物与含酸敏感性取代基的化合物以摩 尔比为 1 : 4〜18的比例混合, 并且加入吡啶或碳酸钾做催化剂, 在室温下反应 10〜24小 时, 得到螺芴衍生物分子玻璃。
5、 根据权利要求 3所述的螺芴衍生物分子玻璃的制备方法, 其特征在于, 所述具有 不同甲氧基取代位置和数目的苯基硼化物是下列物质中的一种或多种: 对甲氧基苯基片呐 醇硼烷、 间甲氧基苯基片呐醇硼烷、 3,4-二甲氧基苯基片呐醇硼烷、 3,5-二甲氧基苯基片呐 醇硼烷、 3,4,5-三甲氧基苯基片呐醇硼烷。
6、 根据权利要求 3所述的螺芴衍生物分子玻璃的制备方法, 其特征在于, 所述含酸 敏感性取代基的化合物是具有如下结构的化合物:
R— 0
Figure imgf000016_0001
式中, R为碳原子数不大于 12的烷基; X=C1、 Br或 I。
7、 根据权利要求 6所述的螺芴衍生物分子玻璃的制备方法, 其特征在于, 所述含酸 敏感性取代基的化合物为具有如下结构的化合物:
Figure imgf000016_0002
8、 如权利要求 1所述的化合物的用途, 其特征在于, 其中 ~R12全部为或部分为羟 基的螺芴衍生物分子玻璃作为负性光刻胶使用。
9、 如权利要求 1所述的化合物的用途, 其特征在于, 其中 R Ru全部或部分羟基通 过酸敏感性取代基保护的螺芴衍生物分子玻璃作为正性光刻胶使用。
10、 一种负性光刻胶, 其特征在于, 包括权利要求 1所述 R ~R12全部为羟基或部分羟 基的螺芴衍生物分子玻璃、 光酸产生剂、 交联剂和光刻胶溶剂。
11、 根据权利要求 10所述的负性光刻胶, 其特征在于, 所述 ~R12至少 4个基团为
12、 根据权利要求 10所述的负性光刻胶, 其特征在于, 所述螺芴衍生物分子玻璃含 量 lwt%~10wt%, 交联剂含量 0.1wt%~lwt%, 光酸产生剂含量 0.01wt%~lwt%, 其余为光 刻胶溶剂。
13、 根据权利要求 10-13中任一所述的负性光刻胶, 其特征在于, 所述光酸产生剂选 自下列物质中的一种或多种: 三氟甲磺酸三苯基硫鎿盐、 对甲苯磺酸二 (4-叔丁基苯基) 碘鎿盐、 N-羟基萘酰亚胺三氟甲磺酸盐等; 所述交联剂选自下列物质中的一种或两种: 四 甲氧基甲基甘脲、 2,4-二羟甲基 -6-甲基苯酚; 所述光刻胶溶剂选自下列物质中的一种或多 种: 丙二醇单甲醚醋酸酯、 乳酸乙酯、 乙二醇单甲醚、 环己酮。
14、 一种正性光刻胶, 其特征在于, 包括权利要求 1所述 i ~R12全部或部分为酸敏感 性取代基的螺芴衍生物分子玻璃、 光酸产生剂和光刻胶溶剂。
15、 根据权利要求 14所述的正性光刻胶, 其特征在于, 所述 Κ ~ 2中至少 4个基团 为酸敏感性取代基。
16、 根据权利要求 14所述的正性光刻胶, 其特征在于, 所述螺芴衍生物分子玻璃含 量 lwt%~10wt%, 光酸产生剂含量 0.01wt%~lwt%, 其余为光刻胶溶剂。
17、 根据权利要求 14-16中任一所述的正性光刻胶, 其特征在于, 所述光酸产生剂选 自下列物质中的一种或多种: 三氟甲磺酸三苯基硫鎿盐、 对甲苯磺酸二 (4-叔丁基苯基) 碘鎿盐、 N-羟基萘酰亚胺三氟甲磺酸盐等;所述光刻胶溶剂选自下列物质中的一种或多种: 丙二醇单甲醚醋酸酯、 乳酸乙酯、 乙二醇单甲醚、 环己酮。
18、 一种光刻胶涂层, 其特征是, 将权利要求 10-13中任一项所述的负性光刻胶通过 旋涂在硅片上进行成膜。
19、 一种光刻胶涂层, 其特征是, 将权利要求 14-17中任一项所述的正性光刻胶通过 旋涂在硅片上进行成膜。
20、 如权利要求 18或 19所述的光刻胶涂层的用途, 其特征在于: 用于 248nm光刻、 193nm光刻、 极紫外光刻、 纳米压印光刻或电子束光刻中。
PCT/CN2013/070825 2013-01-22 2013-01-22 螺芴衍生物分子玻璃及其制备方法和光刻中的应用 WO2014113914A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2013/070825 WO2014113914A1 (zh) 2013-01-22 2013-01-22 螺芴衍生物分子玻璃及其制备方法和光刻中的应用
US14/762,260 US9290435B2 (en) 2013-01-22 2013-01-22 Molecular glass of spirofluorene derivative, preparation method thereof and use thereof in photo-etching
CN201380000139.XA CN104144908B (zh) 2013-01-22 2013-01-22 螺芴衍生物分子玻璃及其制备方法和光刻中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/070825 WO2014113914A1 (zh) 2013-01-22 2013-01-22 螺芴衍生物分子玻璃及其制备方法和光刻中的应用

Publications (1)

Publication Number Publication Date
WO2014113914A1 true WO2014113914A1 (zh) 2014-07-31

Family

ID=51226800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070825 WO2014113914A1 (zh) 2013-01-22 2013-01-22 螺芴衍生物分子玻璃及其制备方法和光刻中的应用

Country Status (3)

Country Link
US (1) US9290435B2 (zh)
CN (1) CN104144908B (zh)
WO (1) WO2014113914A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341748A (zh) * 2017-01-25 2018-07-31 中国科学院理化技术研究所 一种基于1,4二取代柱[5]芳烃衍生物的单分子树脂、正性光刻胶及其应用
CN109305895A (zh) * 2017-07-26 2019-02-05 深圳前海广宇天骥科技有限公司 利用一釜法制备螺芴衍生物单分子树脂的方法
CN111302979A (zh) * 2020-03-04 2020-06-19 苏州瑞红电子化学品有限公司 一种单组份分子玻璃及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044757A1 (en) * 2006-02-16 2008-02-21 Cornell Research Foundation, Inc. Molecular glass photoresists
US20110260114A1 (en) * 2010-04-27 2011-10-27 Xerox Corporation Semiconducting composition
CN102557930A (zh) * 2012-01-05 2012-07-11 南京航空航天大学 联苯型分子玻璃及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6187224B1 (en) * 1996-10-31 2001-02-13 Axiva Gmbh Optical brightening agent
EP1289030A1 (en) * 2001-09-04 2003-03-05 Sony International (Europe) GmbH Doping of a hole transporting material
CN100521846C (zh) * 2002-07-19 2009-07-29 出光兴产株式会社 有机电致发光装置和有机发光介质
KR100682860B1 (ko) * 2004-01-27 2007-02-15 삼성에스디아이 주식회사 스피로플루오렌계 고분자 및 이를 이용한 유기 전계 발광소자
EP1624500B1 (de) * 2004-08-05 2016-03-16 Novaled GmbH Spiro-Bifluoren Verbindungen als organisches Halbleiter-Matrixmaterial
CN103641726B (zh) * 2005-09-30 2015-10-28 株式会社半导体能源研究所 螺芴衍生物,发光元件用材料,发光元件,发光设备和电子设备
CN102876319B (zh) * 2012-09-28 2014-04-16 宁波大学 一种螺芴吡啶荧光材料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080044757A1 (en) * 2006-02-16 2008-02-21 Cornell Research Foundation, Inc. Molecular glass photoresists
US20110260114A1 (en) * 2010-04-27 2011-10-27 Xerox Corporation Semiconducting composition
CN102557930A (zh) * 2012-01-05 2012-07-11 南京航空航天大学 联苯型分子玻璃及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU, CHEN ET AL.: "Compact Hybrid Cell Based on a Convoluted Nanowire Structure for Harvesting Solar and Mechanical Energy", ADV. MATER., vol. 23, no. 7, 7 January 2011 (2011-01-07), pages 873 - 877 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108341748A (zh) * 2017-01-25 2018-07-31 中国科学院理化技术研究所 一种基于1,4二取代柱[5]芳烃衍生物的单分子树脂、正性光刻胶及其应用
CN108341748B (zh) * 2017-01-25 2021-02-12 中国科学院理化技术研究所 一种基于1,4二取代柱[5]芳烃衍生物的单分子树脂、正性光刻胶及其应用
CN109305895A (zh) * 2017-07-26 2019-02-05 深圳前海广宇天骥科技有限公司 利用一釜法制备螺芴衍生物单分子树脂的方法
CN109305895B (zh) * 2017-07-26 2021-10-26 深圳前海广宇天骥科技有限公司 利用一釜法制备螺芴衍生物单分子树脂的方法
CN111302979A (zh) * 2020-03-04 2020-06-19 苏州瑞红电子化学品有限公司 一种单组份分子玻璃及其制备方法和应用

Also Published As

Publication number Publication date
CN104144908B (zh) 2016-02-03
CN104144908A (zh) 2014-11-12
US9290435B2 (en) 2016-03-22
US20150353468A1 (en) 2015-12-10

Similar Documents

Publication Publication Date Title
CN104557552B (zh) 一种星形四苯基乙烯衍生物分子玻璃、正性光刻胶、正性光刻胶涂层及其应用
CN103304385B (zh) 含双酚a骨架结构的分子玻璃光刻胶及其制备方法和应用
EP1734032A1 (en) Calixresorcinarene compounds, photoresist base materials, and compositions thereof
JP2004191913A (ja) フォトレジスト基材及びその組成物
CN107324978B (zh) 联苯取代金刚烷衍生物单分子树脂、正性光刻胶组合物和负性光刻胶组合物
WO2014113914A1 (zh) 螺芴衍生物分子玻璃及其制备方法和光刻中的应用
CN108341748B (zh) 一种基于1,4二取代柱[5]芳烃衍生物的单分子树脂、正性光刻胶及其应用
Wang et al. Molecular glass resists based on tetraphenylsilane derivatives: Effect of protecting ratios on advanced lithography
JP6044283B2 (ja) フラーレンc60誘導体、並びに極紫外線光又は電子ビーム露光用レジスト組成物
CN113200858B (zh) 基于三蝶烯衍生物单分子树脂的合成、正性光刻胶及其在光刻中的应用
WO2020259126A1 (zh) 含硅多苯基单分子树脂及其光刻胶组合物
TW200948766A (en) Aromatic fluorine-free photoacid generators and photoresist compositions containing the same
CN108314785B (zh) 八苯基取代笼形倍半硅氧烷衍生物分子玻璃及其应用
CN107266319B (zh) 树枝状多苯基取代金刚烷衍生物单分子树脂、正性光刻胶组合物和负性光刻胶组合物
CN112631072A (zh) 由10-羟基攀援山橙碱合成的锍鎓盐类光致产酸剂及其制备方法
CN117024380A (zh) 一种基于六溴三蝶烯的负性分子玻璃光刻胶化合物及合成方法和应用
CN112830944B (zh) 基于二茂金属化合物的光刻胶及其制备方法和应用
CN111978228B (zh) 基于硫鎓盐的单分子树脂产酸剂及其光刻胶组合物
Liu et al. Single-component chemically amplified i-line molecular glass photoresist based on calix [4] resorcinarenes
CN112142955B (zh) 金刚烷-多酚寡聚物及其光刻胶组合物和应用
CN117865866B (zh) 基于三蝶烯的多硫鎓盐单分子树脂光刻胶及其制备方法
CN102161622B (zh) 具有酚取代基的化合物、制备该化合物的方法、以及包含该化合物的抗蚀剂组合物
CN116661241A (zh) 一类单分散部分保护的分子及其制备方法和在光刻中的应用
CN117003698A (zh) 可聚合磺酸肟酯类光致产酸剂和光刻胶树脂及其制备方法
CN118005513A (zh) 稠环芳香烃衍生物及其制备方法和在光刻中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13872853

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14762260

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13872853

Country of ref document: EP

Kind code of ref document: A1