WO2020232994A1 - 功率因数校正电路和空调器 - Google Patents

功率因数校正电路和空调器 Download PDF

Info

Publication number
WO2020232994A1
WO2020232994A1 PCT/CN2019/117015 CN2019117015W WO2020232994A1 WO 2020232994 A1 WO2020232994 A1 WO 2020232994A1 CN 2019117015 W CN2019117015 W CN 2019117015W WO 2020232994 A1 WO2020232994 A1 WO 2020232994A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching tube
module
factor correction
power factor
reactor
Prior art date
Application number
PCT/CN2019/117015
Other languages
English (en)
French (fr)
Inventor
鲍殿生
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910415197.8A external-priority patent/CN109980914A/zh
Priority claimed from CN201920713080.3U external-priority patent/CN209860796U/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2021568656A priority Critical patent/JP2022533375A/ja
Publication of WO2020232994A1 publication Critical patent/WO2020232994A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • This application relates to the technical field of air conditioners, and specifically to a power factor correction circuit and an air conditioner.
  • the power factor correction circuit uses high-power MOS switching technology as the main power device to replace IGBT devices, and uses the characteristics of low on-resistance of MOS to replace the characteristics of constant on-voltage drop of IGBT to achieve low-to-medium power The power consumption is reduced to reduce the power consumption of the air conditioner.
  • a drive chip with protection function is used to drive the power factor correction module, and the power factor correction function of the circuit is realized in combination with a single reactor structure, which has the following defects:
  • the driver chip with protection function can only realize the abnormal detection when the current flows through the upper and lower bridge arms.
  • the actual current flow seldom goes through the upper and lower bridge arms. Therefore, the probability of failure corresponding to the protection scheme is very low and practical. Relatively poor.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • an object of the present application is to provide a power factor correction circuit.
  • Another object of the application is to provide an air conditioner.
  • a power factor correction circuit which includes: a power factor correction module that receives a power supply signal from an AC power supply; the power factor correction module includes a switch tube; The switch tube is configured to control the power supply signal to supply power to the load; a first reactor and a second reactor, the first reactor is arranged on the live wire of the AC power source, and the second reactor is arranged on the The zero line of the AC power supply; a drive module, connected to the drive input end of the switch tube, for outputting a switch signal to the switch tube; a control module, connected to the drive module, for controlling the drive module to turn on Output the switch signal or turn off the output of the switch signal, wherein, if a power factor correction operation is performed, the control module controls the drive module to output a corresponding switch control signal, and the switch control signal controls the drive The module outputs the switching signal to charge the first reactor and the second reactor, or discharge through the first reactor and the second reactor.
  • control module controls the drive module to output the corresponding switch control signal, so that the power factor correction module correspondingly forms a charging path or a discharge path to achieve power factor correction in full-wave rectification mode Features.
  • a current sensor specifically a Hall current sensor, arranged on the AC input side of the power factor correction module to collect input current and convert the input current into a voltage signal
  • drive protection Module connected to the Hall current sensor and the control module, and used to determine whether to output a protection signal to the control module according to the relationship between the voltage signal and the corresponding safety threshold, and the protection signal is used for The control module is triggered to turn off the output of the drive module.
  • the safety threshold represents the upper limit of the safety voltage on the input side of the power factor correction module.
  • a Hall current sensor is set at the AC input of the power factor correction module. Based on the set position, the Hall current sensor collects the input current of the power factor correction module, converts the current into a voltage signal and outputs the drive protection module. On the other hand, the drive protection module detects whether there is an overcurrent phenomenon, so that when an overcurrent phenomenon is detected, the control stops outputting the switching signal to the power factor correction module. On the one hand, because the Hall current sensor is not connected to the circuit under test Electrical contact can not consume the power of the power supply under test, so it does not affect the high-efficiency and low-power control of the frequency conversion equipment.
  • the Hall current sensor directly collects the input current of the power factor correction module, the power factor correction module
  • Different current flow paths corresponding to different functional operations such as the diagonal bridge arm flow path, the upper left and right bridge arm flow paths, and the lower left and right bridge arm flow paths, can all be detected by the Hall current sensor for circuit abnormality Therefore, it can be more directly detected whether the rectifier is abnormal, and when the abnormality is determined, the corresponding abnormal component can be determined under different working conditions.
  • the driver chip with protection function is combined with the sampling resistor.
  • the overcurrent detection scheme has smaller limitations, and is more targeted and practical.
  • the Hall current sensor is a sensor that uses the Hall effect to convert a large current into a second small voltage signal, and combines with an operational amplifier to amplify the small voltage signal into a standard voltage, that is, the Hall current sensor outputs a voltage signal to the outside. , And compare it with the built-in safety threshold of the drive protection module, and determine whether there is a short circuit overcurrent phenomenon in the circuit according to the comparison result. Since the Hall current sensor can measure both AC and DC, it can be set in power factor correction The AC input side of the module can also be set on the DC output side of the power factor correction module. In this application, since both power factor correction and full-wave rectification are considered, the Hall current sensor is set on the AC input side of the power factor correction module .
  • it further includes: a zero-crossing detection module, which is arranged between the live terminal and the neutral terminal of the AC power supply and connected to the control module, and the zero-crossing detection module is used to collect The zero-crossing detection signal between the live wire terminal and the neutral wire terminal; the control module is also used to: determine the phase state of the AC power supply according to the zero-crossing detection signal output by the zero-crossing detection module, to A switch control signal for the drive module is determined according to the phase state to control charging or discharging of the first reactor and the second reactor.
  • a zero-crossing detection module which is arranged between the live terminal and the neutral terminal of the AC power supply and connected to the control module, and the zero-crossing detection module is used to collect The zero-crossing detection signal between the live wire terminal and the neutral wire terminal
  • the control module is also used to: determine the phase state of the AC power supply according to the zero-crossing detection signal output by the zero-crossing detection module, to A switch control signal for the drive module is determined according to the phase state to control
  • the first reactor and the second reactor are arranged between the AC input end of the power factor correction module and the AC power source.
  • the reactor can supply electric energy from the AC power source. It is converted into magnetic energy to be used as energy storage, and the PFC circuit can be boosted and power factor improved by releasing the energy.
  • the zero-crossing detection module can determine the real-time phase of the AC power supply, so as to drive different switching devices in the power factor correction module to perform switching operations according to different phase states, To realize the rectification function or the power factor correction (PFC) function respectively, so that the DC power supply of the load is realized based on the rectification function, or through PFC control, the AC side voltage and the AC side current are in phase.
  • PFC power factor correction
  • the Hall current sensor is arranged between the first reactor and the live terminal, and/or the Hall current sensor is arranged between the second reactor and the neutral terminal between.
  • the power factor correction module is formed by a first switching tube, a second switching tube, a third switching tube, and a fourth switching tube.
  • the first switching tube and the second switching tube are arranged in the power
  • the upper part of the factor correction module, the third switch tube and the fourth switch tube are arranged in the lower part of the power factor correction module, the first switch tube and the third switch tube are arranged on the left part of the power factor correction module, the second switch tube and the fourth switch tube are arranged on the left part of the power factor correction module.
  • the switch tube is arranged at the right part of the power factor correction module.
  • the first switch tube, the second switch tube, the third switch tube, and the fourth switch tube all have their own freewheeling diodes, and the The drain of a switching tube is connected in series with the drain of the second switching tube, and the connection point is determined as the positive output terminal of the power factor correction module, and the source of the third switching tube is connected to the fourth switching tube.
  • the source of the power factor correction module is connected in series, and the connection point determines the negative output terminal of the power factor correction module, and is grounded, the source of the first switching tube is connected in series with the drain of the third switching tube, and the connection point Connected to the live terminal, connect the source of the second switch tube and the drain of the fourth switch in series, and connect the connection point to the neutral terminal.
  • the first switching tube, the second switching tube, the third switching tube, and the fourth switching tube may all be MOSFETs (Metal-Oxide-Semiconductor Field-Effect TransIstor, metal oxide semiconductor field effect transistor, that is, MOS tube), For example, super junction MOSFET, or SiC-MOSFET.
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect TransIstor, metal oxide semiconductor field effect transistor, that is, MOS tube
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect TransIstor, metal oxide semiconductor field effect transistor, that is, MOS tube
  • super junction MOSFET or SiC-MOSFET.
  • the working mode of the MOS tube realizes the switch by controlling the on-off between the source and the drain by the gate, and the gate power is greater than the source power when it is turned on.
  • the control circuit performs rectification operation or power factor correction operation respectively.
  • the control circuit When used as a component of the motor drive system, By alternately performing "power factor improvement action” and “synchronous rectification action” to boost the voltage to achieve the purpose of increasing the allowable limit of the motor speed, and in the working process, by adding a current transformer and a Hall to the circuit
  • the current sensor is used to detect the operating current, and in the case of detecting an abnormal current, control the power factor correction module to stop working, and re-run after the abnormality is eliminated, thereby ensuring the safety of the motor driving process.
  • the Hall current sensor by setting the Hall current sensor on the AC input end of the power factor correction module, current flows through the Hall current sensor regardless of whether the rectification operation or the power factor correction operation is performed, so that current flow is detected When passing through the Hall device, the device will output the corresponding voltage.
  • the protection required in the overcurrent detection unit built in the drive protection module or the Hall current sensor The first switching tube is connected in series with the second switching tube between the live wire and the neutral line, and the third switching tube is connected in series with the fourth switching tube between the live wire and the neutral line.
  • the current will output the corresponding voltage through the Hall current sensor and trigger the drive protection module, and then turn off the switching signal of the drive module, so as to protect the switching tube.
  • the drive protection module will release the control of the over-current drive module to resume normal operation, so that during the rectification operation or the power factor correction process, it can realize timely faults with relatively high probability Effective detection to achieve the purpose of improving the safety of the entire PFC circuit.
  • the voltage can be sampled based on the Hall current sensor in different current flow paths, and the detection result of the sampled voltage can be used to determine whether there is a short circuit, so it can meet the power factor correction
  • the detection requirements of the flow path formed by different combinations of the first switching tube, the second switching tube, the third switching tube and the fourth switching tube in the module.
  • the driving module includes a first driving module for driving the first switching tube and the third switching tube, and a driving module for driving the second switching tube and the first switching tube.
  • the second drive module with four switch tubes, wherein, if the drive protection module detects that the voltage signal is greater than a safety threshold and/or the voltage drop is greater than a second preset safety threshold, it triggers the control module to turn off the The drive output of the first drive module and the second drive module.
  • the driving module includes a first driving module and a second driving module to realize the half-bridge driving of the H-bridge organizer.
  • control module controls the driving module to stop driving output, it controls the first driving module and the second driving module to stop output at the same time, that is, the two driving modules have the same execution priority.
  • the first switching tube and the third switching tube are driven by the first driving module
  • the second switching tube and the fourth switching tube are driven by the second driving module
  • the voltage signal output by the Hall current sensor is sent to the driving protection module.
  • the drive protection module detects that the voltage signal output by the Hall current sensor exceeds the preset value, it will forcibly turn off the first drive module and the second drive module, thereby protecting the four switch tubes.
  • it further includes: a bus capacitor, one end of the bus capacitor is connected to the positive output terminal, the other end of the bus capacitor is grounded, and the driving module outputs the switching signal through the AC
  • the power supply charges the bus capacitance or discharges the bus capacitance, the driving module does not output the switching signal, and the bus capacitance is discharged.
  • control module is further configured to: if the input voltage of the AC power supply is in a positive half cycle, control the output of the drive module to make the first switch tube and the fourth The switching signal of the switch tube is turned on, and the corresponding freewheeling diode is bypassed; the control module is also used for: if the input voltage of the AC power supply is in the negative half cycle, control the drive module to output for causing the first The second switching tube and the third switching tube conduct the switching signal, and bypass the corresponding freewheeling diode to achieve synchronous rectification.
  • the freewheeling diode is part of the PN junction existing between the source and drain of the first switching tube.
  • the saturation voltage of the first switching tube (in the on state) The voltage between the drain and the source) is lower than the forward voltage drop of the freewheeling diode.
  • the current flowing in the first switching tube in the on state makes the conduction loss smaller than the current flowing in the freewheeling diode in the first switching tube in the off state.
  • the second switching tube, the third switching tube, and the fourth switching tube are also applicable.
  • the low-power synchronous rectification can be realized by using the principle of low conduction voltage drop of the MOS tube and turning on the corresponding MOS tube according to the phase state of the alternating current.
  • control module outputs a corresponding control signal according to the current alternating current phase detected by the zero-crossing detection module, and drives the corresponding switch tube to work.
  • the current passes through the Hall current sensor and the reactor, and then supplies power to the system through the freewheeling diode rectification of the first switch tube and the fourth switch tube.
  • the voltage drop of the freewheeling diode is large, causing energy waste.
  • the control module judges according to the zero-crossing detection module that at the beginning of the positive half cycle of the AC power supply, the current passes through the Hall current sensor and the reactor, and the output switching signal drives the first switching tube and the fourth switching tube to conduct. , So that the current flowing through the freewheeling diode on the first switch tube and the fourth switch tube flows through the MOS tube, and the low conduction characteristic of the MOS tube is used to bypass the freewheeling diode, thereby reducing conduction loss.
  • the control module controls the second switching tube and the third switching tube to enable the four MOS tubes to realize the synchronous rectification function. In the synchronous rectification process, the current through the Hall current sensor is detected, Check whether there is an overcurrent phenomenon.
  • the control module is further configured to: if the input voltage of the AC power supply is in a positive half cycle, control the opening and closing of the third switching tube and the fourth switching tube according to the zero-crossing detection signal and the switching signal, The third switching tube and the fourth switching tube are turned on to charge the reactor, the third switching tube and the fourth switching tube are turned off, and the first switching tube is turned on, The reactor supplies power to the load; the control module is also used to: if the input voltage of the AC power supply is in the negative half cycle, control the third switching tube and the switching tube according to the zero-crossing detection signal and the switching signal. The fourth switching tube is turned on and off, the third switching tube and the fourth switching tube are turned on to charge the reactor, turning off the third switching tube and the fourth switching tube, and driving The second switch tube is turned on, and the reactor supplies power to the load to realize power factor correction.
  • the control module drives the third switch tube and the fourth switch tube to conduct according to the zero-crossing detection signal to conduct the reactor Charging, during the charging process, by detecting the current on the Hall current sensor to determine whether there is a short-circuit phenomenon, when the third and fourth switching tubes are turned off, the control module drives the first switching tube to open, and the electric energy stored in the reactor The first switch tube is released to the subsequent circuit to supply power to the bus capacitor and load (such as a motor).
  • the control module drives the third switch tube and the fourth switch according to the zero-crossing detection signal The tube is turned on to charge the reactor.
  • the control module drives the second switching tube to open, and the electric energy stored in the reactor will be released to the subsequent circuit through the second switching tube.
  • Supply power to the bus capacitor and load (such as a motor).
  • the bus capacitor and load such as a motor.
  • the current flows through the Hall current sensor. Therefore, in the process of performing power factor correction, the current signal is collected by the Hall current sensor and converted into the corresponding voltage signal. Based on the voltage signal to determine whether there is overcurrent in the circuit.
  • a load drive module which is provided between the positive output terminal and the negative output terminal, and is configured to receive the DC output of the power factor correction module to supply power to the load;
  • the control module is also connected to the load driving module for outputting an inverter control signal to the load driving module.
  • the load drive module is used to invert a regulated DC into a three-phase AC output to achieve power supply to the motor.
  • the detection of the DC output bus voltage of the factor correction module and the detection of the input voltage control the switching state of each switch tube in the power factor correction module and the pulse width when each switch tube is turned on.
  • control module is also connected to the load drive module for outputting an inverter control signal to the load drive module.
  • an air conditioner including: the power factor correction circuit as described in the technical solution of the first aspect of the present application.
  • the power factor correction circuit is applied to the motor drive system of the compressor, by detecting whether an overcurrent phenomenon occurs in the circuit, so as to prevent the motor from rotating too fast when the overcurrent occurs, causing the compressor to demagnetize.
  • Figure 1 shows a schematic diagram of a power factor correction circuit in the related art
  • Fig. 2 shows a schematic diagram of a power factor correction circuit according to an embodiment of the present application.
  • the power factor correction circuit is suitable for an air conditioner, and includes: a power factor correction module 10 for receiving a power supply signal from an AC power source, the power factor correction module including a switch tube, The switch tube is configured to control the power supply signal to supply power to the load; a first reactor L1 and a second reactor L2, the first reactor L1 is arranged on the live wire of the AC power supply, and the second reactor L2 Set on the zero line of the AC power supply; a drive module, connected to the drive input end of the switch tube, for outputting a switch signal to the switch tube; a control module 30, connected to the drive module, for controlling The driving module turns on the output of the switch signal or turns off the output of the switch signal.
  • control module 30 controls the drive module to output the corresponding switch control signal, so that the power factor correction module 10 correspondingly forms a charging path or a discharging path to realize the power in the full-wave rectification mode.
  • Factor correction function
  • a Hall current sensor 40 arranged on the AC input side of the power factor correction module 10 to collect input current and convert the input current into a voltage signal; drive the protection module 50, It is connected to the Hall current sensor 40 and the control module 30, and is used to determine whether to output a protection signal to the control module 30 according to the relationship between the voltage signal and the corresponding safety threshold.
  • the protection signal is used When the control module 30 is triggered, the output of the driving module is turned off.
  • a Hall current sensor 40 is provided at the AC input end of the power factor correction module 10.
  • the Hall current sensor 40 collects the input current of the power factor correction module 10 based on the set position, and converts the current into a voltage signal
  • the drive protection module 50 detects whether an overcurrent phenomenon occurs, so that when an overcurrent phenomenon is detected, the control stops outputting the switching signal to the power factor correction module 10.
  • due to Hall The current sensor 40 does not make electrical contact with the circuit under test, and can not consume the power of the power supply under test, so it does not affect the high-efficiency and low-power control of the frequency conversion equipment.
  • the Hall current sensor 40 directly collects the power factor correction module 10
  • the input current of the power factor correction module 10 corresponds to different current flow paths when performing different functional operations, such as the diagonal bridge arm flow path, the upper left and right bridge arm flow paths, and the lower left and right bridge arm flow paths.
  • the circuit abnormality detection can be performed by the Hall current sensor 40, so that it can more directly detect whether the rectifier 10 is abnormal, and when the abnormality is determined, the corresponding abnormal component can be determined under different working conditions.
  • the use of a driver chip with protection function combined with a sampling resistor for over-current detection has smaller limitations and is more targeted and practical.
  • the Hall current sensor 40 is a sensor that uses the Hall effect to convert a primary large current into a secondary small voltage signal, and combines with an operational amplifier to amplify the small voltage signal into a standard voltage, that is, the Hall current sensor 40 outputs externally
  • the voltage signal is compared with the built-in safety threshold of the drive protection module 50. According to the result of the comparison, it is determined whether there is a short circuit or overcurrent phenomenon in the circuit. Since the Hall current sensor 40 can measure both AC and DC, it can be set
  • the AC input side of the power factor correction module 10 may also be arranged on the DC output side of the power factor correction module 10.
  • a zero-crossing detection module 60 which is arranged between the live terminal and the neutral terminal N of the AC power supply and is connected to the control module 30.
  • the zero-crossing detection module 60 is used to collect the zero-crossing detection signal between the live terminal and the neutral terminal N; the control module 30 is also used to: determine the zero-crossing detection signal output by the zero-crossing detection module 60
  • the phase state of the AC power supply is controlled to charge or discharge the first reactor L1 and the second reactor L2 according to the phase state.
  • the reactor by arranging the first reactor L1 and the second reactor L2 between the AC input end of the power factor correction module 10 and the AC power source, when the AC power source performs an AC output, the reactor can be switched from the AC power source
  • the supplied electrical energy is converted into magnetic energy as energy storage, and the PFC circuit can be boosted and improved in power factor by releasing the energy.
  • the zero-crossing detection module 60 determines the real-time phase of the AC power source, so as to drive different switching devices in the power factor correction module 10 according to different phase states. Switch operation to realize the rectification function or power factor correction (PFC) function respectively, thereby realizing the DC power supply at the load side based on the rectification function, or through PFC control, so that the AC side voltage and the AC side current are in phase.
  • PFC power factor correction
  • the Hall current sensor 40 is arranged between the first reactor L1 and the live wire end, and/or the Hall current sensor 40 is arranged on the second reactor L2 And the neutral end.
  • the power factor correction module 10 is formed by a first switching tube Q1, a second switching tube Q2, a third switching tube Q3, and a fourth switching tube Q4.
  • a switch tube Q1 and a second switch tube Q2 are arranged on the upper part of the power factor correction module 10
  • the third switch tube Q3 and the fourth switch tube Q4 are arranged on the lower part of the power factor correction module 10
  • the first switch tube Q1 and the third switch The tube Q3 is arranged at the left part of the power factor correction module 10
  • the second switching tube Q2 and the fourth switching tube Q4 are arranged at the right part of the power factor correction module 10, the first switching tube Q1, the second switching tube Q2 ,
  • the third switching tube Q3 and the fourth switching tube Q4 both have their own freewheeling diodes.
  • the drain of the first switching tube Q1 and the drain of the second switching tube Q2 are connected in series and connected The point is determined as the positive output terminal of the power factor correction module 10, the source of the third switching tube Q3 is connected in series with the source of the fourth switching tube Q4, and the connection point is determined to determine the power factor correction module 10
  • the negative output terminal is connected to the ground, the source of the first switching tube Q1 and the drain of the third switching tube Q3 are connected in series, and the connection point is connected to the live wire terminal to connect the second switching tube Q2
  • the source of is connected in series with the drain of the fourth switch Q4, and the connection point is connected to the neutral terminal N.
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, and the fourth switching tube Q4 can all be MOSFT (Mta-Oxid-Smicoductor Fid-ffct TrasIstor, metal oxide semiconductor field effect transistors, namely MOS tube), such as super junction MOSFT or SiC-MOSFT.
  • MOSFT Metal oxide semiconductor field effect transistors
  • the working mode of the MOS tube realizes the switch by controlling the on-off between the source and the drain by the gate, and the gate power is greater than the source power when it is turned on.
  • the control circuit by setting the power factor correction module 10 composed of four switch tubes, combined with the control instructions output by the control module 30, the control circuit performs the rectification operation or the power factor correction operation respectively, as a component of the motor drive system
  • the voltage is boosted by alternately performing "power factor improvement actions” and “synchronous rectification actions” to achieve the purpose of increasing the allowable limit of the motor speed, and in the working process, by adding current transformers and The Hall current sensor is used to detect the operating current, and when an abnormal current is detected, the power factor correction module 10 is controlled to stop working and restart after the abnormality is eliminated, so as to ensure the safety of the motor driving process.
  • the Hall current sensor 40 by setting the Hall current sensor 40 at the AC input end of the power factor correction module 10, no matter whether the rectification operation or the power factor correction operation is being performed, current flows through the Hall current sensor 40, so that when detecting When a current flows through the Hall device, the device will output the corresponding voltage.
  • the overcurrent detection in the drive protection module 50 or the Hall current sensor 40 The voltage value to be protected is set in the unit.
  • the first switch tube Q1 and the second switch tube Q2 are connected in series between the live wire and the neutral line, and the third switch tube Q3 and the fourth switch tube Q4 are connected in series between the live wire and the neutral line.
  • the current will output the corresponding voltage through the Hall current sensor 40 and trigger the drive protection module 50, and then The switch signal of the drive module is turned off to protect the overcurrent to the switch tube.
  • the drive protection module 50 will release the control of the overcurrent drive module to resume normal operation, so that during the rectification operation, Or in the process of power factor correction, timely and effective detection of faults with relatively high probability can be realized, so as to achieve the purpose of improving the safety of the entire PFC circuit.
  • the voltage can be sampled based on the Hall current sensor 40 in different current flow paths, and the detection result of the sampled voltage can determine whether there is a short-circuit phenomenon, so it can meet the power
  • the driving module includes a first driving module 202 for driving the first switching tube Q1 and the third switching tube Q3, and a first driving module 202 for driving the second switching tube Q2 And the second driving module 204 of the fourth switch tube Q4, wherein, if the driving protection module 50 detects that the voltage signal is greater than a safety threshold and/or the voltage drop is greater than a second preset safety threshold, Trigger the control module 30 to turn off the drive output of the first drive module 202 and the second drive module 204
  • the driving module includes a first driving module 202 and a second driving module 204 to realize the half-bridge driving of the H-bridge organizer.
  • control module 30 controls the driving module to stop driving output, it controls the first driving module 202 and the second driving module 204 to stop output at the same time, that is, the two driving modules have the same execution priority. level.
  • it further includes: a bus capacitor E, one end of the bus capacitor is connected to the positive output terminal, the other end of the bus capacitor is grounded, and the driving module outputs the switching signal through the When the AC power supply charges the bus capacitor or discharges the bus capacitor, the drive module does not output the switching signal, and the bus capacitor discharges.
  • the Hall current sensor 40 is provided between the AC power supply and the reactor; the drive protection module 50 is also used to: If the voltage signal is greater than the safety threshold, the protection signal is output to the control module 30 to turn off the output of the driving module.
  • the Hall current sensor 40 can be placed in any position of the live wire or the neutral wire of the series reactor.
  • the Hall current sensor 40 by setting the Hall current sensor 40 at the AC input end of the power factor correction module 10, no matter whether the rectification operation or the power factor correction operation is being performed, current flows through the Hall current sensor 40, so that when detecting When a current flows through the Hall device, the device will output the corresponding voltage.
  • the overcurrent detection in the drive protection module 50 or the Hall current sensor 40 The voltage value to be protected is set in the unit.
  • the first switch tube Q1 and the second switch tube Q2 are connected in series between the live wire and the neutral line, and the third switch tube Q3 and the fourth switch tube Q4 are connected in series between the live wire and the neutral line.
  • the current will output the corresponding voltage through the Hall current sensor 40 and trigger the drive protection module 50, and then The switch signal of the drive module is turned off to protect the overcurrent to the switch tube.
  • the drive protection module 50 will release the control of the overcurrent drive module to resume normal operation, so that during the rectification operation, Or in the process of power factor correction, timely and effective detection of faults with relatively high probability can be realized, so as to achieve the purpose of improving the safety of the entire PFC circuit.
  • the voltage can be sampled based on the Hall current sensor 40 in different current flow paths, and the detection result of the sampled voltage can determine whether there is a short-circuit phenomenon, so it can meet the power
  • the first switching tube Q1, the second switching tube Q2, the third switching tube Q3, and the fourth switching tube Q4 in the factor correction module 10 are differently combined with the detection requirements of the flow path.
  • the first switching tube Q1 and the third switching tube Q3 are driven by the first driving module 202
  • the second switching tube Q2 and the fourth switching tube Q4 are driven by the second driving module 204
  • the voltage signal output by the Hall current sensor 40 is output to the driver
  • the protection module 50 when the drive protection module 50 detects that the voltage signal output by the Hall current sensor 40 exceeds a preset value, will forcibly turn off the first drive module 202 and the second drive module 204, thereby protecting the four switch tubes.
  • control module 30 is further configured to: if the input voltage of the AC power supply is in a positive half cycle, control the output of the drive module to make the first switch Q1 and the The fourth switching tube Q4 turns on the switching signal and bypasses the corresponding freewheeling diode; the control module 30 is also used to: if the input voltage of the AC power supply is in the negative half cycle, control the drive module to output The switching signal that causes the second switching tube Q2 and the third switching tube Q3 to conduct, and the corresponding freewheeling diode is bypassed to realize synchronous rectification.
  • the freewheeling diode is a part of the P junction that exists between the source and drain of the first switching tube Q1.
  • the saturation voltage of the first switching tube Q1 (connected to The voltage between the drain and the source in the on state is lower than the forward voltage drop of the freewheeling diode. Therefore, compared with the current flowing in the parasitic diode, the voltage drop of the current flowing in the source and drain of the first switching tube Q1 is reduced, and the conduction loss can even be reduced. It is easy to understand that the current flowing in the first switching tube Q1 in the on state makes the conduction loss smaller than the current flowing in the freewheeling diode in the first switching tube Q1 in the off state.
  • third switching tubes Q3, and fourth switching tubes Q4 are also applicable.
  • the low-power synchronous rectification can be realized by using the principle of the low conduction voltage drop of the MOS transistor and turning on the corresponding MOS transistor according to the phase state of the alternating current.
  • control module 30 outputs a corresponding control signal according to the current alternating current phase detected by the zero-crossing detection module 60, and drives the corresponding switch tube to work.
  • the control module 30 judges according to the zero-crossing detection module 60 that at the beginning of the positive half cycle of the AC power supply, the current flows through the Hall current sensor 40 and the reactor, and the output switching signal drives the first switching tube Q1 and the fourth The switching tube Q4 is turned on, so that the current flowing through the freewheeling diodes on the first switching tube Q1 and the fourth switching tube Q4 flows through the MOS tube.
  • the low conduction characteristic of the MOS tube is used to bypass the freewheeling diode, thereby reducing the conduction. loss.
  • control module 30 controls to turn on the second switching tube Q2 and the third switching tube Q3, so that the four MOS tubes can realize the synchronous rectification function.
  • the current detection on the 40 detects whether there is an overcurrent phenomenon.
  • control module 30 is further configured to: if the input voltage of the AC power supply is in a positive half cycle, control the third switch tube according to the zero-crossing detection signal and the switch signal Q3 and the fourth switching tube Q4 are switched on and off, and the third switching tube Q3 and the fourth switching tube Q4 are turned on to charge the reactor L1 and turn off the third switching tube Q3 and The fourth switching tube Q4, the first switching tube Q1 are turned on, and the reactor L1 supplies power to the load; the control module 30 is also used to: if the input voltage of the AC power supply is in the negative half cycle, perform The zero-crossing detection signal and the switching signal control the opening and closing of the third switching tube Q3 and the fourth switching tube Q4, and the third switching tube Q3 and the fourth switching tube Q4 are turned on to connect The reactor L1 is charged, the third switching tube Q3 and the fourth switching tube Q4 are turned off, the second switching tube Q2 is driven to be turned on, and the reactor L1 supplies power to the load to achieve power factor
  • the control module 30 drives the third switching tube Q3 and the fourth switching tube Q4 to be turned on according to the zero-crossing detection signal.
  • the reactor is charged.
  • the control module 30 drives the first switching tube Q1 to turn on, and the electric energy stored in the reactor will be released to the subsequent circuit through the first switching tube Q1.
  • Supply power to the bus capacitor E and the load (such as a motor).
  • the control module 30 drives the third switching tube Q3 and the fourth switching tube Q4 to conduct according to the zero-crossing detection signal to conduct the reactor
  • the control module 30 drives the second switching tube Q2 to turn on, and the electric energy stored in the reactor will be released to the subsequent circuit through the second switching tube Q2 to provide the bus capacitor E is supplying power to the load (such as a motor).
  • the DC voltage of the bus capacitor E is boosted, so that the short-circuit current can be passed, reducing the distortion of the current waveform and making the current waveform Close to a sine wave, which can improve the power factor of the PFC circuit.
  • the pulse width of the third switching tube Q3 or the first switching tube Q1 according to the bus voltage of the load, the duration of the short-circuit current in the PFC circuit can be reasonably adjusted.
  • Reasonably controlling the turn-on/turn-off times of each switch according to the number of pulse changes can reduce the turn-on loss of the switching unit, reduce the switching loss, and improve the efficiency.
  • a load driving module 70 connected to the DC output terminal of the power factor correction module 10, and configured to receive the DC output of the power factor correction module 10 to supply power to the load;
  • the DC bus voltage detection module (not shown in the figure) is connected to the DC output terminal of the power factor correction module 10 and is arranged in parallel with the load driving module 70 for detecting the DC bus voltage.
  • the load drive module 70 is used to invert a regulated DC into a three-phase AC output to achieve power supply to the motor.
  • the detection of the bus voltage of the DC output of the power factor correction module 10 and the detection of the input voltage control the switching state of each switching tube in the power factor correction module 10 and the pulse width when each switching tube is turned on.
  • control module 30 is further connected to the load driving module 70 for outputting an inverter control signal to the load driving module 70.
  • An air conditioner includes: the power factor correction circuit described in any one of the above embodiments.
  • the power factor correction circuit is applied to the motor drive system of the compressor, by detecting whether an overcurrent phenomenon occurs in the circuit, so as to prevent the motor from rotating too fast when the overcurrent occurs, causing the compressor to demagnetize.
  • the Hall current sensor Since the Hall current sensor does not make electrical contact with the circuit under test, it does not consume the power of the tested power supply, so it does not affect the high-efficiency and low-power control of the frequency conversion equipment.
  • the ward Hall current sensor directly collects the power factor correction module
  • the input current of the power factor correction module corresponds to different current flow paths when performing different functional operations, such as the diagonal bridge arm flow path, the upper left and right bridge arm flow paths, and the lower left and right bridge arm flow paths, etc.
  • the circuit abnormality detection can be performed by the Hall current sensor, so it can be more directly detected whether the rectifier is abnormal, and when the abnormality is determined, the corresponding abnormal component can be determined under different working conditions.
  • the protection function of the driver chip combined with the sampling resistor for over-current detection has smaller limitations, and is more targeted and practical.
  • the embodiments of the present application can be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can guide a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing functions specified in a flow or multiple flows in the flowchart and/or a block or multiple blocks in the block diagram.

Abstract

一种功率因数校正电路和空调器,其中,功率因数校正电路包括:功率因数校正模块(10),接收交流电源的供电信号,功率因数校正模块包括开关管;第一电抗器与第二电抗器,第一电抗器设置于交流电源的火线、第二电抗器设置于交流电源的零线上;驱动模块(202,204),连接至开关管的驱动输入端,用于向开关管输出开关信号;控制模块(30),连接至驱动模块(202,204),用于控制驱动模块(202,204)开启输出开关信号或关闭输出开关信号。通过在市电火线与零线上设置第一电抗器和第二电抗器,相对于单电抗器电路,一方面,能够可现两个电抗器叠加的效果,另一方面,能够代替装配困难的大尺寸电抗器,安装在功率因数校正电路中,以降低安装难度。

Description

功率因数校正电路和空调器
本申请要求于2019年05月17日提交中国专利局、申请号为“201910415197.8”、发明名称为“功率因数校正电路和空调器”、以及于2019年05月17日提交中国专利局、申请号为“201920713080.3”、发明名称为“功率因数校正电路和空调器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及空调技术领域,具体而言,涉及一种功率因数校正电路和一种空调器。
背景技术
功率因数校正电路(power factor correction,即PFC电路)采用大功率MOS开关技术作为主功率器件替代IGBT器件,利用MOS低导通阻抗的特性取代IGBT导通压降恒定的特性实现在中小功率下的功耗降低,以实现降低空调器的功耗。
相关技术中,如图1所示,采用具有保护功能的驱动芯片进行功率因数校正模块的驱动,结合单电抗器结构实现电路的功率因数校正功能,存在以下缺陷:
(1)在用于空调器的PFC电路结构中,与交流电源匹配的电抗器往往体积都较大,导致安装难度较高;
(2)具有保护功能的驱动芯片只能实现电流流经上下桥臂时的异常检测,实际的电流流向很少走上下桥臂流道,因此保护方案对应的故障出现的概率很低,实用性比较差。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的一个目的在于提供一种功率因数校正电路。
本申请的另一个目的在于提供一种空调器。
为了实现上述目的,根据本申请的第一方面的实施例,提供了一种功率因数校正电路,包括:功率因数校正模块,接收交流电源的供电信号,所述功率因数校正模块包括开关管,所述开关管被配置为控制所述供电信号对负载供电;第一电抗器与第二电抗器,所述第一电抗器设置于所述交流电源的火线、所述第二电抗器设置于所述交流电源的零线上;驱动模块,连接至所述开关管的驱动输入端,用于向所述开关管输出开关信号;控制模块,连接至所述驱动模块,用于控制所述驱动模块开启输出所述开关信号或关闭输出所述开关信号,其中,若执行功率因素校正操作,则由所述控制模块控制所述驱动模块输出对应的开关控制信号,由所述开关控制信号控制所述驱动模块输出所述开关信号,以对所述第一电抗器与所述第二电抗器充电,或通过所述第一电抗器与所述第二电抗器放电。
在该技术方案中,通过在市电火线上与第一电抗器和第二电抗器,相对于单电抗器电路,一方面,能够可现两个电抗器叠加的效果,另一方面,能够代替装配困难的大尺寸电抗器,安装在功率因数校正电路中,以降低安装难度。
另外,在执行功率因数校正操作过程中,通过控制模块控制驱动模块输出对应的开关控制信号,以使功率因数校正模块中对应形成充电通路或放电通路,以实现全波整流模式下的功率因数校正功能。
在上述技术方案中,还包括:电流传感器,具体为霍尔电流传感器,设置于所述功率因数校正模块的交流输入侧,以采集输入电流,并将所述输入电流转换为电压信号;驱动保护模块,与所述霍尔电流传感器以及所述控制模块连接,用于根据所述电压信号与对应的安全阈值之间的关系,确定是否向所述控制模块输出保护信号,所述保护信号用于触发所述控制模块关闭所述驱动模块的输出。
其中,安全阈值表示功率因数校正模块的输入侧的安全电压上限值。
在该技术方案中,在功率因数校正模块的交流输入端设置霍尔电流传感器,霍尔电流传感器基于设置的位置,采集功率因数校正模块的输入电流,并将电流转换为电压信号输出驱动保护模块上,以由驱动保护模块检测是否出现过流现象,以在检测到出现过流现象的情况下,控制停止向功率因数校正模块输出开关信号,一方面,由于霍尔电流传感器不与被测电 路发生电接触,能够不消耗被测电源的功率,因此不影响变频设备的高效低功耗控制,另一方面,由于霍尔电流传感器直接采集功率因数校正模块的输入端电流,使功率因数校正模块在执行不同的功能操作时对应的不同电流流路,比如对角桥臂流路、上部的左右桥臂流路以及下部的左右桥臂流路等,均可以通过霍尔电流传感器进行电路异常检测,因此能够更加直接的检测到整流器是否出现异常,以及在确定出现异常时,在不同的工况下能够确定对应的异常部件,相对于现有技术中采用具有保护功能的驱动芯片结合采样电阻进行过流检测的方案,局限性更小,并且更加具有针对性与实用性。
其中,霍尔电流传感器是利用霍尔效应将一次大电流变换为二次微小电压信号的传感器,并结合运算放大器,将微小电压信号放大为标准电压,也就是说霍尔电流传感器对外输出电压信号,并与驱动保护模块内置的安全阈值进行比较,根据比较的结果确定电路中是否出现短路过流现象,由于霍尔电流传感器既可以测量交流,也可以测量直流,因此既可以设置在功率因数校正模块的交流输入侧,也可以设置在功率因数校正模块的直流输出侧,在本申请中,由于兼顾功率因数校正与全波整流,因此将霍尔电流传感器设置于功率因数校正模块的交流输入侧。
在上述任一项技术方案中,还包括:过零检测模块,设置在所述交流电源的火线端与零线端之间,并连接至所述控制模块,所述过零检测模块用于采集所述火线端与所述零线端之间的过零检测信号;所述控制模块还用于:根据所述过零检测模块输出的过零检测信号确定所述述交流电源的相位状态,以根据所述相位状态确定对所述驱动模块的开关控制信号,以控制对所述第一电抗器与所述第二电抗器进行充电或放电。
在该技术方案中通过将第一电抗器与第二电抗器设置在功率因数校正模块的交流输入端与交流电源之间,在交流电源进行交流输出时,电抗器能够将从交流电源供给的电能转换为磁能以作为能量存储,并能够通过释放该能量来实现PFC电路的升压和功率因数的改善。
具体地,通过在火线与零线之间设置过零检测模块,以由过零检测模块判断交流电源的实时相位,以便根据不同的相位状态驱动功率因数校正模块中不同的开关器件执行开关操作,以分别实现整流功能或功率因数校正(PFC)功能,从而基于整流功能实现负载端的直流供电,或通过PFC 控制,使交流侧电压与交流侧电流在相位上达到一致。
另外,产生过流现象的原因很多,比如电路受到干扰引起控制模块死机复位,或者电抗器发生短路异常等等。
在上述任一项技术方案中,所述霍尔电流传感器设置于所述第一电抗器与火线端之间,和/或所述霍尔电流传感器设置于所述第二电抗器与零线端之间。
在上述任一项技术方案中,所述功率因数校正模块由第一开关管、第二开关管、第三开关管与第四开关管构造形成,第一开关管与第二开关管设置于功率因数校正模块的上部,第三开关管与第四开关管设置于功率因数校正模块的下部,第一开关管与第三开关管设置于功率因数校正模块的左部,第二开关管与第四开关管设置于功率因数校正模块的右部,所述第一开关管、所述第二开关管、所述第三开关管与所述第四开关管均自带续流二极管,将所述第一开关管的漏极与所述第二开关管的漏极串联,并将连接点确定为所述功率因数校正模块的正极输出端,将所述第三开关管的源极与第四开关管的源极串联,并将连接点确定所述功率因数校正模块的负极输出端,并接地,将所述第一开关管的源极与所述第三开关管的漏极串联,并将连接点连接至所述火线端,将所述第二开关管的源极与所述第四开关管的漏极串联,并将连接点连接至所述零线端。
具体地,第一开关管、第二开关管、第三开关管及第四开关管均可以为MOSFET(Metal-Oxide-Semiconductor Field-Effect TransIstor,金属氧化物半导体场效应晶体管,即MOS管),例如超结MOSFET、或者SiC-MOSFET。
MOS管的工作方式,通过栅极控制源极与漏极之间通断实现开关,导通时需要栅极电源大于源极电源。
在该技术方案中,通过设置由四个开关管构成的功率因数校正模块,结合控制模块输出的控制指令,控制电路分别执行整流操作或功率因数校正操作,在作为电机驱动系统的构成部分时,通过交替地进行“功率因数改善动作”以及“同步整流动作”来进行升压,以达到提高电机转速的允许限度的目的,并且在工作过程中,通过在电路中增加设置电流互感器与霍尔电流感应器,以检测运行电流,并且在检测到出现电流异常的情况下,控制功率因数校正模块停止工作,在异常排除后重新运行,从而保证电机 驱动过程的安全性。
在该技术方案中,通过在功率因数校正模块的交流输入端设置霍尔电流传感器,无论在执行整流操作还是功率因数校正操作,均有电流流过霍尔电流传感器,从而在检测到有电流流过霍尔器件时,该器件将输出相应的电压,根据功率因数校正模块的四个开关管能够承受的电流值,在驱动保护模块或霍尔电流传感器内置的过流检测单元中设定需要保护的电压值,第一开关管于第二开关管串联在火线于零线之间,第三开关管于第四开关管串联在火线于零线之间,当第一开关管-第二开关管或者第三开关管-第四开关管出现异常过流时,该电流将通过霍尔电流传感器输出相应电压并触发驱动保护模块,进而关断驱动模块的开关信号,从而保护实现对开关管的过流,当过流信号解除,驱动保护模块将解除对过流驱动模块的控制,以恢复正常工作,从而在整流操作过程中,或功率因数校正过程中均可实现对概率比较高的故障的及时有效的检测,以达到提升整个PFC电路的安全性的目的。
对于设置霍尔电流传感器的功率因数校正电路,在不同的电流流路中均可以基于霍尔电流传感器对电压进行采样,并根据采样电压的检测结果确定是否存在短路现象,因此能够满足功率因数校正模块中第一开关管、第二开关管、第三开关管与第四开关管的不同的结合形式形成的流路的检测需求。
在上述任一项技术方案中,所述驱动模块包括用于驱动所述第一开关管与所述第三开关管的第一驱动模块,以及用于驱动所述第二开关管与所述第四开关管的第二驱动模块,其中,若所述驱动保护模块在检测到所述电压信号大于安全阈值和/或所述压降大于第二预设安全阈值,则触发所述控制模块关闭所述第一驱动模块与所述第二驱动模块的驱动输出。
在该技术方案中,驱动模块包括第一驱动模块与第二驱动模块,以实现H桥整理器的半桥驱动。
另外,本领域的技术人员能够理解的是,控制模块控制驱动模块停止驱动输出时,为同时控制第一驱动模块与第二驱动模块停止输出,即两个驱动模块具有相同的执行优先级。
具体地,第一开关管与第三开关管采用第一驱动模块驱动,第二开关管与第四开关管采用第二驱动模块驱动,霍尔电流传感器输出的电压信号 发送至驱动保护模块,当驱动保护模块检测到霍尔电流传感器输出的电压信号超出预设值将强制关断第一驱动模块与第二驱动模块,从而保护四个开关管。
在上述任一项技术方案中,还包括:母线电容,所述母线电容的一端连接至所述正极输出端,所述母线电容的另一端接地,驱动模块输出所述开关信号,通过所述交流电源对所述母线电容充电,或所述母线电容放电,驱动模块不输出所述开关信号,所述母线电容放电。
在上述任一项技术方案中,所述控制模块还用于:若所述交流电源的输入电压处于正半周,则控制所述驱动模块输出用于使所述第一开关管与所述第四开关管导通的开关信号,并旁路对应的续流二极管;所述控制模块还用于:若所述交流电源的输入电压处于负半周,则控制所述驱动模块输出用于使所述第二开关管与所述第三开关管导通的开关信号,并旁路对应的续流二极管,以实现同步整流。
其中,在第一开关管的内部具有续流二极管,续流二极管是在第一开关管的源极与漏极之间存在的PN结的部分,第一开关管的饱和电压(接通状态下的漏极源极间电压)低于续流二极管的正向的电压降。由此,在第一开关管的源极漏极中流过电流与在寄生二极管中流过电流相比,电压降变小,甚至能够降低导通损失。易于理解地讲,在接通状态的第一开关管中流过电流与在断开状态的第一开关管中的续流二极管中流过电流相比,使导通损失变小,此外,对于其他的第二开关管、第三开关管与第四开关管也适用。
在该技术方案中,通过利用MOS管低导通压降的原理,根据交流电的相位状态开通相应的MOS管即可实现低功耗同步整流。
具体的,控制模块根据过零检测模块检测到的当前交流电相位进行输出相应的控制信号,驱动相应的开关管工作。
相关技术中,在进行同步整流时,在交流电源正半周时,电流经过霍尔电流传感器及电抗器,然后通过第一开关管于第四开关管的续流二极管整流对系统供电,此时由于续流二极管压降较大,造成能源浪费。
在该技术方案中,此时控制模块根据过零检测模块判断在交流电源的正半周开始时,电流经过霍尔电流传感器及电抗器,输出开关信号驱动第一开关管与第四开关管导通,使流过第一开关管第四开关管上续流二极管 的电流流过MOS管,利用MOS管的低导通特性,旁路续流二极管,从而降低导通损耗。同理在交流电源负半周时,控制模块则控制开通第二开关管与第三开关管,使四个MOS管实现同步整流功能,在同步整流过程中,通过对经过霍尔电流传感器电流检测,检测是否出现过流现象。
在上述任一项技术方案中,
所述控制模块还用于:若所述交流电源的输入电压处于正半周,则根据所述过零检测信号与所述开关信号控制所述第三开关管与所述第四开关管开闭,所述第三开关管与所述第四开关管导通,以对所述电抗器进行充电,关断所述第三开关管与所述第四开关管,所述第一开关管导通,所述电抗器向负载供电;所述控制模块还用于:若所述交流电源的输入电压处于负半周,则根据所述过零检测信号与所述开关信号控制所述第三开关管与所述第四开关管开闭,所述第三开关管与所述第四开关管导通,以对所述电抗器进行充电,关断所述第三开关管与所述第四开关管,驱动所述第二开关管导通,所述电抗器向负载供电,以实现功率因数校正。
在该技术方案中,在电路用于进行PFC操作时,在输入处于交流电源的正半周时,控制模块根据过零检测信号,驱动第三开关管与第四开关管导通,对电抗器进行充电,在充电过程中,通过检测霍尔电流传感器上的电流确定是否出现短路现象,当关断第三开关管与第四开关管时,控制模块驱动第一开关管打开,电抗器储存的电能将通过第一开关管释放给后级电路,给母线电容与负载(比如电机)供电,在输入处于交流电源的负半周时,控制模块根据过零检测信号,驱动第三开关管与第四开关管导通,对电抗器进行充电,当关断第三开关管与第四开关管时,控制模块驱动第二开关管打开,电抗器储存的电能将通过第二开关管释放给后级电路,给母线电容与负载(比如电机)供电,通过向母线电容释放在电抗器中积蓄的能量,对母线电容的直流电压进行升压,从而能够通过短路电流,减小电流波形的失真,使电流波形接近正弦波,进而能够改善PFC电路的功率因数。
进一步地,无论输入电压处于交流电源的正半周还是负半周,电流均流经霍尔电流传感器,因此在执行功率因数校正过程中,通过霍尔电流传感器采集电流信号并转换为对应的电压信号,以基于电压信号判断电路中 是否出现过流。
在上述任一项技术方案中,还包括:负载驱动模块,设置于所述正极输出端与所述负极输出端之间,用于接收所述功率因数校正模块的直流输出,以对负载供电;所述控制模块还连接至负载驱动模块连接,以用于向所述负载驱动模块输出逆变控制信号。
在该技术方案中,在负载为电机的应用场景中,负载驱动模块用于将稳压直流逆变为三相交流输出,以实现对电机供电,结合直流母线电压检测模块的设置,通过对功率因数校正模块的直流输出的母线电压的检测,及所述输入电压的检测,控制功率因数校正模块中各个开关管元的开关状态以及各个开关管导通时的脉宽。
在上述任一项技术方案中,所述控制模块还连接至负载驱动模块连接,以用于向所述负载驱动模块输出逆变控制信号。
根据本申请的第二方面的实施例,提供了一种空调器,包括:如本申请第一方面技术方案中所述的功率因数校正电路。
具体地,功率因数校正电路应用于压缩机的电机驱动系统中,通过检测电路中是否出现过流现象,以防止过流时造成电机转速过快,导致压缩机出现退磁现象。
本申请的附加方面和优点将在下面的描述部分中给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了相关技术中的功率因数校正电路的示意图;
图2示出了根据本申请的施例的功率因数校正电路的示意图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
实施例一
如图2所示,根据本申请的一个实施例的功率因数校正电路,适用于空调器,包括:功率因数校正模块10,接收交流电源的供电信号,所述功率因数校正模块包括开关管,所述开关管被配置为控制所述供电信号对负载供电;第一电抗器L1与第二电抗器L2,所述第一电抗器L1设置于所述交流电源的火线、所述第二电抗器L2设置于所述交流电源的零线上;驱动模块,连接至所述开关管的驱动输入端,用于向所述开关管输出开关信号;控制模块30,连接至所述驱动模块,用于控制所述驱动模块开启输出所述开关信号或关闭输出所述开关信号。
在该技术方案中,通过在市电火线上与第一电抗器L1和第二电抗器L2,相对于单电抗器电路,一方面,能够可现两个电抗器叠加的效果,另一方面,能够代替装配困难的大尺寸电抗器,安装在功率因数校正电路中,以降低安装难度。
另外,在执行功率因数校正操作过程中,通过控制模块30控制驱动模块输出对应的开关控制信号,以使功率因数校正模块10中对应形成充电通路或放电通路,以实现全波整流模式下的功率因数校正功能。
实施例二
在上述技术方案中,还包括:霍尔电流传感器40,设置于所述功率因数校正模块10的交流输入侧,以采集输入电流,并将所述输入电流转换为电压信号;驱动保护模块50,与所述霍尔电流传感器40以及所述控制模块30连接,用于根据所述电压信号与对应的安全阈值之间的关系,确定是否向所述控制模块30输出保护信号,所述保护信号用于触发所述控制模块30关闭所述驱动模块的输出。
在该实施例中,在功率因数校正模块10的交流输入端设置霍尔电流传感器40,霍尔电流传感器40基于设置的位置,采集功率因数校正模块10的输入电流,并将电流转换为电压信号输出驱动保护模块50上,以由驱动保护模块50检测是否出现过流现象,以在检测到出现过流现象的情况下,控制停止向功率因数校正模块10输出开关信号,一方面,由于霍尔电流传 感器40不与被测电路发生电接触,能够不消耗被测电源的功率,因此不影响变频设备的高效低功耗控制,另一方面,由于霍尔电流传感器40直接采集功率因数校正模块10的输入端电流,使功率因数校正模块10在执行不同的功能操作时对应的不同电流流路,比如对角桥臂流路、上部的左右桥臂流路以及下部的左右桥臂流路等,均可以通过霍尔电流传感器40进行电路异常检测,因此能够更加直接的检测到整流器10是否出现异常,以及在确定出现异常时,在不同的工况下能够确定对应的异常部件,相对于现有技术中采用具有保护功能的驱动芯片结合采样电阻进行过流检测的方案,局限性更小,并且更加具有针对性与实用性。
其中,霍尔电流传感器40是利用霍尔效应将一次大电流变换为二次微小电压信号的传感器,并结合运算放大器,将微小电压信号放大为标准电压,也就是说霍尔电流传感器40对外输出电压信号,并与驱动保护模块50内置的安全阈值进行比较,根据比较的结果确定电路中是否出现短路过流现象,由于霍尔电流传感器40既可以测量交流,也可以测量直流,因此既可以设置在功率因数校正模块10的交流输入侧,也可以设置在功率因数校正模块10的直流输出侧。
实施例三
在上述任一项实施例中,还包括:过零检测模块60,设置在所述交流电源的火线端与零线端N之间,并连接至所述控制模块30,所述过零检测模块60用于采集所述火线端与所述零线端N之间的过零检测信号;所述控制模块30还用于:根据所述过零检测模块60输出的过零检测信号确定所述述交流电源的相位状态,以根据所述相位状态控制对所述第一电抗器L1与所述第二电抗器L2进行充电或放电。
在该实施例中通过将第一电抗器L1与第二电抗器L2设置在功率因数校正模块10的交流输入端与交流电源之间,在交流电源进行交流输出时,电抗器能够将从交流电源供给的电能转换为磁能以作为能量存储,并能够通过释放该能量来实现PFC电路的升压和功率因数的改善。
具体地,通过在火线与零线之间设置过零检测模块60,以由过零检测模块60判断交流电源的实时相位,以便根据不同的相位状态驱动功率因数校正模块10中不同的开关器件执行开关操作,以分别实现整流功能或功率因数校正(PFC)功能,从而基于整流功能实现负载端的直流供电,或通 过PFC控制,使交流侧电压与交流侧电流在相位上达到一致。
另外,产生过流现象的原因很多,比如电路受到干扰引起控制模块30死机复位,或者电抗器发生短路异常等等。
在上述任一项技术方案中,所述霍尔电流传感器40设置于所述第一电抗器L1与火线端之间,和/或所述霍尔电流传感器40设置于所述第二电抗器L2与零线端之间。
实施例四
如图2所示,在上述任一项实施例中,所述功率因数校正模块10由第一开关管Q1、第二开关管Q2、第三开关管Q3与第四开关管Q4构造形成,第一开关管Q1与第二开关管Q2设置于功率因数校正模块10的上部,第三开关管Q3与第四开关管Q4设置于功率因数校正模块10的下部,第一开关管Q1与第三开关管Q3设置于功率因数校正模块10的左部,第二开关管Q2与第四开关管Q4设置于功率因数校正模块10的右部,所述第一开关管Q1、所述第二开关管Q2、所述第三开关管Q3与所述第四开关管Q4均自带续流二极管,将所述第一开关管Q1的漏极与所述第二开关管Q2的漏极串联,并将连接点确定为所述功率因数校正模块10的正极输出端,将所述第三开关管Q3的源极与第四开关管Q4的源极串联,并将连接点确定所述功率因数校正模块10的负极输出端,并接地,将所述第一开关管Q1的源极与所述第三开关管Q3的漏极串联,并将连接点连接至所述火线端,将所述第二开关管Q2的源极与所述第四开关管Q4的漏极串联,并将连接点连接至所述零线端N。
具体地,第一开关管Q1、第二开关管Q2、第三开关管Q3及第四开关管Q4均可以为MOSFT(Mta-Oxid-Smicoductor Fid-ffct TrasIstor,金属氧化物半导体场效应晶体管,即MOS管),例如超结MOSFT、或者SiC-MOSFT。
MOS管的工作方式,通过栅极控制源极与漏极之间通断实现开关,导通时需要栅极电源大于源极电源。
在该实施例中,通过设置由四个开关管构成的功率因数校正模块10,结合控制模块30输出的控制指令,控制电路分别执行整流操作或功率因数校正操作,在作为电机驱动系统的构成部分时,通过交替地进行“功率因数改善动作”以及“同步整流动作”来进行升压,以达到提高电机转速的 允许限度的目的,并且在工作过程中,通过在电路中增加设置电流互感器与霍尔电流感应器,以检测运行电流,并且在检测到出现电流异常的情况下,控制功率因数校正模块10停止工作,在异常排除后重新运行,从而保证电机驱动过程的安全性。
在该实施例中,通过在功率因数校正模块10的交流输入端设置霍尔电流传感器40,无论在执行整流操作还是功率因数校正操作,均有电流流过霍尔电流传感器40,从而在检测到有电流流过霍尔器件时,该器件将输出相应的电压,根据功率因数校正模块10的四个开关管能够承受的电流值,在驱动保护模块50或霍尔电流传感器40内置的过流检测单元中设定需要保护的电压值,第一开关管Q1于第二开关管Q2串联在火线于零线之间,第三开关管Q3于第四开关管Q4串联在火线于零线之间,当第一开关管Q1-第二开关管Q2或者第三开关管Q3-第四开关管Q4出现异常过流时,该电流将通过霍尔电流传感器40输出相应电压并触发驱动保护模块50,进而关断驱动模块的开关信号,从而保护实现对开关管的过流,当过流信号解除,驱动保护模块50将解除对过流驱动模块的控制,以恢复正常工作,从而在整流操作过程中,或功率因数校正过程中均可实现对概率比较高的故障的及时有效的检测,以达到提升整个PFC电路的安全性的目的。
对于设置霍尔电流传感器40的功率因数校正电路,在不同的电流流路中均可以基于霍尔电流传感器40对电压进行采样,并根据采样电压的检测结果确定是否存在短路现象,因此能够满足功率因数校正模块10中第一开关管Q1、第二开关管Q2、第三开关管Q3与第四开关管Q4的的结合形式形成的流路的检测需求。
在上述任一项实施例中,所述驱动模块包括用于驱动所述第一开关管Q1与所述第三开关管Q3的第一驱动模块202,以及用于驱动所述第二开关管Q2与所述第四开关管Q4的第二驱动模块204,其中,若所述驱动保护模块50在检测到所述电压信号大于安全阈值和/或所述压降大于第二预设安全阈值,则触发所述控制模块30关闭所述第一驱动模块202与所述第二驱动模块204的驱动输出
在该实施例中,驱动模块包括第一驱动模块202与第二驱动模块204,以实现H桥整理器的半桥驱动。
另外,本领域的技术人员能够理解的是,控制模块30控制驱动模块停 止驱动输出时,为同时控制第一驱动模块202与第二驱动模块204停止输出,即两个驱动模块具有相同的执行优先级。
在上述任一项实施例中,还包括:母线电容E,所述母线电容的一端连接至所述正极输出端,所述母线电容的另一端接地,驱动模块输出所述开关信号,通过所述交流电源对所述母线电容充电,或所述母线电容放电,驱动模块不输出所述开关信号,所述母线电容放电。
实施例五
如图2所示,在上述任一项实施例中,所述霍尔电流传感器40设置在所述交流电源与所述电抗器之间;所述驱动保护模块50还用于:若检测到所述电压信号大于安全阈值,则向所述控制模块30输出所述保护信号,以关闭所述驱动模块的输出。
其中,霍尔电流传感器40可以放置于电抗器串联的火线或零线的任何位置。
在该实施例中,通过在功率因数校正模块10的交流输入端设置霍尔电流传感器40,无论在执行整流操作还是功率因数校正操作,均有电流流过霍尔电流传感器40,从而在检测到有电流流过霍尔器件时,该器件将输出相应的电压,根据功率因数校正模块10的四个开关管能够承受的电流值,在驱动保护模块50或霍尔电流传感器40内置的过流检测单元中设定需要保护的电压值,第一开关管Q1于第二开关管Q2串联在火线于零线之间,第三开关管Q3于第四开关管Q4串联在火线于零线之间,当第一开关管Q1-第二开关管Q2或者第三开关管Q3-第四开关管Q4出现异常过流时,该电流将通过霍尔电流传感器40输出相应电压并触发驱动保护模块50,进而关断驱动模块的开关信号,从而保护实现对开关管的过流,当过流信号解除,驱动保护模块50将解除对过流驱动模块的控制,以恢复正常工作,从而在整流操作过程中,或功率因数校正过程中均可实现对概率比较高的故障的及时有效的检测,以达到提升整个PFC电路的安全性的目的。
对于设置霍尔电流传感器40的功率因数校正电路,在不同的电流流路中均可以基于霍尔电流传感器40对电压进行采样,并根据采样电压的检测结果确定是否存在短路现象,因此能够满足功率因数校正模块10中第一开关管Q1、第二开关管Q2、第三开关管Q3与第四开关管Q4的不同结合流路的检测需求。
第一开关管Q1与第三开关管Q3采用第一驱动模块202驱动,第二开关管Q2与第四开关管Q4采用第二驱动模块204驱动,霍尔电流传感器40输出的电压信号输出到驱动保护模块50,当驱动保护模块50检测到霍尔电流传感器40输出的电压信号超出预设值将强制关断第一驱动模块202与第二驱动模块204,从而保护四个开关管。
实施例六
在上述任一项实施例中,所述控制模块30还用于:若所述交流电源的输入电压处于正半周,则控制所述驱动模块输出用于使所述第一开关管Q1与所述第四开关管Q4导通的开关信号,并旁路对应的续流二极管;所述控制模块30还用于:若所述交流电源的输入电压处于负半周,则控制所述驱动模块输出用于使所述第二开关管Q2与所述第三开关管Q3导通的开关信号,并旁路对应的续流二极管,以实现同步整流。
其中,在第一开关管Q1的内部具有续流二极管,续流二极管是在第一开关管Q1的源极与漏极之间存在的P结的部分,第一开关管Q1的饱和电压(接通状态下的漏极源极间电压)低于续流二极管的正向的电压降。由此,在第一开关管Q1的源极漏极中流过电流与在寄生二极管中流过电流相比,电压降变小,甚至能够降低导通损失。易于理解地讲,在接通状态的第一开关管Q1中流过电流与在断开状态的第一开关管Q1中的续流二极管中流过电流相比,使导通损失变小,此外,对于其他的第二开关管Q2、第三开关管Q3与第四开关管Q4也适用。
在该实施例中,通过利用MOS管低导通压降的原理,根据交流电的相位状态开通相应的MOS管即可实现低功耗同步整流。
具体的,控制模块30根据过零检测模块60检测到的当前交流电相位进行输出相应的控制信号,驱动相应的开关管工作。
相关技术中,在进行同步整流时,在交流电源正半周时,电流经过霍尔电流传感器40及电抗器,然后通过第一开关管Q1于第四开关管Q4的续流二极管整流对系统供电,此时由于续流二极管压降较大,造成能源浪费。
在该实施例中,此时控制模块30根据过零检测模块60判断在交流电源的正半周开始时,电流经过霍尔电流传感器40及电抗器,输出开关信号驱动第一开关管Q1与第四开关管Q4导通,使流过第一开关管Q1与第四 开关管Q4上续流二极管的电流流过MOS管,利用MOS管的低导通特性,旁路续流二极管,从而降低导通损耗。同理在交流电源负半周时,控制模块30则控制开通第二开关管Q2与第三开关管Q3,使四个MOS管实现同步整流功能,在同步整流过程中,通过对经过霍尔电流传感器40上的电流检测,检测是否出现过流现象。
实施例七
在上述任一项实施例中,所述控制模块30还用于:若所述交流电源的输入电压处于正半周,则根据所述过零检测信号与所述开关信号控制所述第三开关管Q3与所述第四开关管Q4开闭,所述第三开关管Q3与所述第四开关管Q4导通,以对所述电抗器L1进行充电,关断所述第三开关管Q3与所述第四开关管Q4,所述第一开关管Q1导通,所述电抗器L1向负载供电;所述控制模块30还用于:若所述交流电源的输入电压处于负半周,则根据所述过零检测信号与所述开关信号控制所述第三开关管Q3与所述第四开关管Q4开闭,所述第三开关管Q3与所述第四开关管Q4导通,以对所述电抗器L1进行充电,关断所述第三开关管Q3与所述第四开关管Q4,驱动所述第二开关管Q2导通,所述电抗器L1向负载供电,以实现功率因数校正。
在该实施例中,在电路用于进行PFC操作时,在输入处于交流电源的正半周时,控制模块30根据过零检测信号,驱动第三开关管Q3与第四开关管Q4导通,对电抗器进行充电,当关断第三开关管Q3与第四开关管Q4时,控制模块30驱动第一开关管Q1打开,电抗器储存的电能将通过第一开关管Q1释放给后级电路,给母线电容E与负载(比如电机)供电,在输入处于交流电源的负半周时,控制模块30根据过零检测信号,驱动第三开关管Q3与第四开关管Q4导通,对电抗器进行充电,当关断第三开关管Q3与第四开关管Q4时,控制模块30驱动第二开关管Q2打开,电抗器储存的电能将通过第二开关管Q2释放给后级电路,给母线电容E与负载(比如电机)供电,通过向母线电容E释放在电抗器中积蓄的能量,对母线电容E的直流电压进行升压,从而能够通过短路电流,减小电流波形的失真,使电流波形接近正弦波,进而能够改善PFC电路的功率因数,进一步地,通过根据负载的母线电压计算第三开关管Q3或第一开关管Q1的脉宽,能够合理调整PFC电路中短路电流的持续时间,根据脉冲变化次数合 理控制各个开关导通/关断的次数,能够降低开关单元的导通损失,降低开关损耗,提高效率。
在上述任一项实施例中,还包括:负载驱动模块70,连接至所述功率因数校正模块10的直流输出端,用于接收所述功率因数校正模块10的直流输出,以对负载供电;直流母线电压检测模块(图中未示出),连接至所述功率因数校正模块10的直流输出端,并与所述负载驱动模块70并联设置,用于检测直流母线电压。
在该实施例中,在负载为电机的应用场景中,负载驱动模块70用于将稳压直流逆变为三相交流输出,以实现对电机供电,结合直流母线电压检测模块的设置,通过对功率因数校正模块10的直流输出的母线电压的检测,及所述输入电压的检测,控制功率因数校正模块10中各个开关管元的开关状态以及各个开关管导通时的脉宽。
在上述任一项实施例中,所述控制模块30还连接至负载驱动模块70连接,以用于向所述负载驱动模块70输出逆变控制信号。
根据本申请的实施例的空调器,包括:上述任一项实施例所述的功率因数校正电路。
具体地,功率因数校正电路应用于压缩机的电机驱动系统中,通过检测电路中是否出现过流现象,以防止过流时造成电机转速过快,导致压缩机出现退磁现象。
与现有技术相比,本申请技术方案中公开的实施例至少具有下述有益效果:
(1)通过在市电火线上与第一电抗器和第二电抗器,相对于单电抗器电路,一方面,能够可现两个电抗器叠加的效果,另一方面,能够代替装配困难的大尺寸电抗器,安装在功率因数校正电路中,以降低安装难度。
(2)于霍尔电流传感器不与被测电路发生电接触,能够不消耗被测电源的功率,因此不影响变频设备的高效低功耗控制,病区霍尔电流传感器直接采集功率因数校正模块的输入端电流,使功率因数校正模块在执行不同的功能操作时对应的不同电流流路,比如对角桥臂流路、上部的左右桥臂流路以及下部的左右桥臂流路等,均可以通过霍尔电流传感器进行电路异常检测,因此能够更加直接的检测到整流器是否出现异常,以及在确定 出现异常时,在不同的工况下能够确定对应的异常部件,相对于现有技术中采用具有保护功能的驱动芯片结合采样电阻进行过流检测的方案,局限性更小,并且更加具有针对性与实用性。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
应当注意的是,在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词“包含”不排除存在未列在权利要求中的部件或步骤。位于部件之前的单词“一”或“一个”不排除存在多个这样的部件。 本申请可以借助于包括有若干不同部件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的模块权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (11)

  1. 一种功率因数校正电路,其中,包括:
    功率因数校正模块,接收交流电源的供电信号,所述功率因数校正模块包括开关管,所述开关管被配置为控制所述供电信号对负载供电;
    第一电抗器与第二电抗器,所述第一电抗器设置于所述交流电源的火线、所述第二电抗器设置于所述交流电源的零线上;
    驱动模块,连接至所述开关管的驱动输入端,用于向所述开关管输出开关信号;
    控制模块,连接至所述驱动模块,用于控制所述驱动模块开启输出所述开关信号或关闭输出所述开关信号,
    其中,执行功率因素校正操作,由所述控制模块控制所述驱动模块输出对应的开关控制信号,由所述开关控制信号控制所述驱动模块输出所述开关信号,以对所述第一电抗器与所述第二电抗器充电,或通过所述第一电抗器与所述第二电抗器放电。
  2. 根据权利要求1所述的功率因数校正电路,其中,还包括:
    电流传感器,设置于所述功率因数校正模块的交流输入侧,以采集输入电流,并将所述输入电流转换为电压信号;
    驱动保护模块,与所述电流传感器以及所述控制模块连接,所述电压信号若大于安全阈值,安全阈值则向所述控制模块输出保护信号,所述保护信号用于触发所述控制模块关闭所述驱动模块的输出。
  3. 根据权利要求2所述的功率因数校正电路,其中,还包括:
    过零检测模块,设置在所述交流电源的火线端与零线端之间,并连接至所述控制模块,所述过零检测模块用于采集所述火线端与所述零线端之间的过零检测信号;
    所述控制模块还用于:若执行功率因数校正操作,则根据所述过零检测模块输出的过零检测信号确定所述交流电源的相位状态,以根据所述相位状态确定对所述驱动模块的开关控制信号,以控制对所述第一电抗器与所述第二电抗器进行充电或放电。
  4. 根据权利要求3所述的功率因数校正电路,其中,
    所述电流传感器设置于所述第一电抗器与火线端之间,和/或
    所述电流传感器设置于所述第二电抗器与零线端之间。
  5. 根据权利要求4所述的功率因数校正电路,其中,
    所述功率因数校正模块由第一开关管、第二开关管、第三开关管与第四开关管构造形成,所述第一开关管、所述第二开关管、所述第三开关管与所述第四开关管均自带续流二极管,将所述第一开关管的漏极与所述第二开关管的漏极串联,并将连接点确定为所述功率因数校正模块的正极输出端,将所述第三开关管的源极与第四开关管的源极串联,并将连接点确定为所述功率因数校正模块的负极输出端,将所述第一开关管的源极与所述第三开关管的漏极串联,并将连接点连接至所述火线端,将所述第二开关管的源极与所述第四开关管的漏极串联,并将连接点连接至所述零线端。
  6. 根据权利要求5所述的功率因数校正电路,其中,
    所述驱动模块包括用于驱动所述第一开关管与所述第三开关管的第一驱动模块,以及用于驱动所述第二开关管与所述第四开关管的第二驱动模块,
    其中,若所述驱动保护模块在检测到所述电压信号大于安全阈值,则触发所述控制模块关闭所述第一驱动模块与所述第二驱动模块的驱动输出。
  7. 根据权利要求5所述的功率因数校正电路,其中,
    所述控制模块还用于:若所述交流电源的输入电压处于正半周,则控制所述驱动模块输出用于使所述第一开关管与所述第四开关管导通的开关信号,并旁路对应的续流二极管;
    所述控制模块还用于:若所述交流电源的输入电压处于负半周,则控制所述驱动模块输出用于使所述第二开关管与所述第三开关管导通的开关信号,并旁路对应的续流二极管,以实现同步整流。
  8. 根据权利要求5所述的功率因数校正电路,其中,
    所述控制模块还用于:若所述交流电源的输入电压处于正半周,则根据所述过零检测信号与所述开关信号控制所述第三开关管与所述第四开关管开闭,所述第三开关管与所述第四开关管导通,以对所述电抗器进行充电,关断所述第三开关管与所述第四开关管,所述第一开关管导通,所述电抗器向负载供电;
    所述控制模块还用于:若所述交流电源的输入电压处于负半周,则根 据所述过零检测信号与所述开关信号控制所述第三开关管与所述第四开关管开闭,所述第三开关管与所述第四开关管导通,以对所述电抗器进行充电,关断所述第三开关管与所述第四开关管,驱动所述第二开关管导通,所述电抗器向负载供电,以实现功率因数校正。
  9. 根据权利要求5至8中任一项所述的功率因数校正电路,其中,还包括:
    母线电容,所述母线电容的一端连接至所述正极输出端,所述母线电容的另一端接地,驱动模块输出所述开关信号,通过所述交流电源对所述母线电容充电,或所述母线电容放电,驱动模块不输出所述开关信号,所述母线电容放电。
  10. 根据权利要求5至8中任一项所述的功率因数校正电路,其中,还包括:
    负载驱动模块,设置于所述正极输出端与所述负极输出端之间,用于接收所述功率因数校正模块的直流输出,以对负载供电;
    所述控制模块还连接至负载驱动模块连接,以用于向所述负载驱动模块输出逆变控制信号。
  11. 一种空调器,其中,包括:如权利要求1至10中任一项所述的功率因数校正电路。
PCT/CN2019/117015 2019-05-17 2019-11-11 功率因数校正电路和空调器 WO2020232994A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021568656A JP2022533375A (ja) 2019-05-17 2019-11-11 力率改善回路及び空気調和機

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201920713080.3 2019-05-17
CN201910415197.8 2019-05-17
CN201910415197.8A CN109980914A (zh) 2019-05-17 2019-05-17 功率因数校正电路和空调器
CN201920713080.3U CN209860796U (zh) 2019-05-17 2019-05-17 功率因数校正电路和空调器

Publications (1)

Publication Number Publication Date
WO2020232994A1 true WO2020232994A1 (zh) 2020-11-26

Family

ID=73458965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/117015 WO2020232994A1 (zh) 2019-05-17 2019-11-11 功率因数校正电路和空调器

Country Status (2)

Country Link
JP (1) JP2022533375A (zh)
WO (1) WO2020232994A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852320A (zh) * 2021-08-20 2021-12-28 杭州先途电子有限公司 一种电机控制电路和变频控制器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545582A (zh) * 2012-02-09 2012-07-04 华为技术有限公司 无桥功率因数校正电路及其控制方法
US20180062504A1 (en) * 2016-08-31 2018-03-01 Murata Manufacturing Co., Ltd. Power factor correction device and controlling method thereof, and electronic device
CN108054913A (zh) * 2018-01-29 2018-05-18 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN108809076A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN109075697A (zh) * 2018-02-11 2018-12-21 深圳欣锐科技股份有限公司 Pfc电路输出电压的纹波优化控制方法及相关电路
CN109980914A (zh) * 2019-05-17 2019-07-05 广东美的制冷设备有限公司 功率因数校正电路和空调器
CN110011531A (zh) * 2019-05-17 2019-07-12 广东美的制冷设备有限公司 功率因数校正电路和空调器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3949390B2 (ja) * 2001-05-08 2007-07-25 新電元工業株式会社 同期整流回路
CN101682267B (zh) * 2007-06-04 2013-05-08 松下电器产业株式会社 电源控制装置以及具有该电源控制装置的热泵装置
JP2009033814A (ja) * 2007-07-25 2009-02-12 Panasonic Corp 直流電源装置
JP5148261B2 (ja) * 2007-12-21 2013-02-20 東芝キヤリア株式会社 直流電源装置
CN102882386B (zh) * 2011-07-12 2015-09-30 南京博兰得电子科技有限公司 一种ac/dc变换装置及其控制方法
JP6080345B2 (ja) * 2011-09-27 2017-02-15 ミネベアミツミ株式会社 スイッチング電源、およびスイッチング電源におけるac波形生成方法
JP5754394B2 (ja) * 2012-02-22 2015-07-29 株式会社日本自動車部品総合研究所 電力変換装置
JP2015061322A (ja) * 2013-09-17 2015-03-30 株式会社日本自動車部品総合研究所 電力変換装置
JP2016144323A (ja) * 2015-02-03 2016-08-08 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 直流電源装置およびこれを用いた空気調和機
JP6651795B2 (ja) * 2015-11-06 2020-02-19 住友電気工業株式会社 力率改善装置、双方向ac/dc変換装置及びコンピュータプログラム
JP7044462B2 (ja) * 2016-06-28 2022-03-30 日立ジョンソンコントロールズ空調株式会社 電力変換装置、及びこれを備える空気調和機
CN110915119B (zh) * 2017-08-04 2023-02-24 三菱电机株式会社 电力变换装置、电动机驱动装置以及空调机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545582A (zh) * 2012-02-09 2012-07-04 华为技术有限公司 无桥功率因数校正电路及其控制方法
US20180062504A1 (en) * 2016-08-31 2018-03-01 Murata Manufacturing Co., Ltd. Power factor correction device and controlling method thereof, and electronic device
CN108054913A (zh) * 2018-01-29 2018-05-18 广东美的制冷设备有限公司 Pfc电路、电机控制系统及变频空调器
CN109075697A (zh) * 2018-02-11 2018-12-21 深圳欣锐科技股份有限公司 Pfc电路输出电压的纹波优化控制方法及相关电路
CN108809076A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN109980914A (zh) * 2019-05-17 2019-07-05 广东美的制冷设备有限公司 功率因数校正电路和空调器
CN110011531A (zh) * 2019-05-17 2019-07-12 广东美的制冷设备有限公司 功率因数校正电路和空调器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852320A (zh) * 2021-08-20 2021-12-28 杭州先途电子有限公司 一种电机控制电路和变频控制器
CN113852320B (zh) * 2021-08-20 2024-04-02 杭州先途电子有限公司 一种电机控制电路和变频控制器

Also Published As

Publication number Publication date
JP2022533375A (ja) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2020232993A1 (zh) 功率因数校正电路和空调器
CN209860795U (zh) 功率因数校正电路和空调器
WO2020232995A1 (zh) 功率因数校正电路和空调器
CN104518697B (zh) 一种三电平逆变器的限流控制方法和装置
WO2014156003A1 (ja) インバータ装置
CN209545434U (zh) 功率因数校正电路和空调器
US10608552B1 (en) Transistor protection in a boost circuit using surge detection
CN110011530A (zh) 功率因数校正电路和空调器
CN110011531A (zh) 功率因数校正电路和空调器
TWI450491B (zh) 避免突波電流之馬達驅動裝置
WO2021003886A1 (zh) 驱动控制电路和家电设备
CN109980915A (zh) 功率因数校正电路和空调器
WO2017049900A1 (zh) Igbt短路检测保护电路及基于igbt的可控整流电路
US11909197B2 (en) Motor drive device, blower, compressor, and air conditioner
WO2021237699A1 (zh) 一种无桥功率因数校正pfc电路
CN109980914A (zh) 功率因数校正电路和空调器
WO2020232994A1 (zh) 功率因数校正电路和空调器
CN210007620U (zh) 功率因数校正电路和空调器
CN110034671A (zh) 功率因数校正电路和空调器
CN209860796U (zh) 功率因数校正电路和空调器
US20240014731A1 (en) Noise suppression method and apparatus for totem pole pfc circuit, and electronic device
US10879812B2 (en) Semiconductor switch
WO2024011875A1 (zh) 一种变换器及其封波控制方法
CN210007619U (zh) 功率因数校正电路和空调器
CN209545435U (zh) 功率因数校正电路和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021568656

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929558

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19929558

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19929558

Country of ref document: EP

Kind code of ref document: A1