WO2021237699A1 - 一种无桥功率因数校正pfc电路 - Google Patents

一种无桥功率因数校正pfc电路 Download PDF

Info

Publication number
WO2021237699A1
WO2021237699A1 PCT/CN2020/093368 CN2020093368W WO2021237699A1 WO 2021237699 A1 WO2021237699 A1 WO 2021237699A1 CN 2020093368 W CN2020093368 W CN 2020093368W WO 2021237699 A1 WO2021237699 A1 WO 2021237699A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling element
low
power switch
switch
power
Prior art date
Application number
PCT/CN2020/093368
Other languages
English (en)
French (fr)
Inventor
蒋华
吕泽杰
陈保国
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Priority to CN202080095802.9A priority Critical patent/CN115053443A/zh
Priority to PCT/CN2020/093368 priority patent/WO2021237699A1/zh
Priority to EP20937951.0A priority patent/EP4148966A4/en
Publication of WO2021237699A1 publication Critical patent/WO2021237699A1/zh
Priority to US17/994,635 priority patent/US20230089905A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the embodiments of the present application relate to the field of circuits, and in particular to a bridgeless power factor correction (PFC) circuit.
  • PFC power factor correction
  • the bridgeless PFC circuit has become the mainstream technology in the industry due to its high efficiency and high power density.
  • a switch tube with a smaller on-resistance can be used to replace the low-frequency rectifier diode, which is more suitable for applications in high-efficiency and high-power-density scenarios.
  • the PFC circuit needs to control different switching elements to close or open accordingly, so as to realize the rectification effect of the PFC circuit.
  • the first control signal is generated by detecting the voltage of the switching element
  • the second control signal is generated by detecting the AC input voltage
  • the first control signal and the second control signal are combined to form the final control signal to control
  • the closing or opening of the switching element realizes the zero-voltage opening of the switching element.
  • the embodiment of the present application provides a bridgeless PFC correction circuit.
  • the control module collects the current flowing through the current sampling element. When the current flowing through the current sampling element is greater than a first threshold, the control module controls the switching element to close. In this way, the closing of the switching element can be controlled according to the current flowing through the current sampling element, so as to realize the zero voltage opening of the switching element. Since the collected current does not change suddenly, the requirement on the time delay of the sampling control circuit included in the control module is reduced, and the signal anti-interference ability of the control module is relatively strong.
  • the first aspect of the present application provides a PFC circuit, which includes an AC power supply, a low-frequency switch module, a power module, and a control module.
  • the low-frequency switch module includes a switching element, the power module includes a first inductor, and the control
  • the module includes a current sampling element; the AC power source and the low-frequency switch module are connected through the switching element, the AC power source and the power module are connected through the first inductor, the low-frequency switch module and
  • the power modules are connected through the switching element, the control module and the power module are connected through the current sampling element, and/or the control module and the low-frequency switch module are connected through the current sampling element,
  • the control module controls the switching element included in the low-frequency switch module to turn on or off; the control module collects the current flowing through the current sampling element; when the current flowing through the current sampling element is greater than the first Threshold value, the control module controls the switching element to turn on or off.
  • the embodiment of the present application provides a bridgeless PFC correction circuit.
  • the control module collects the current flowing through the current sampling element. When the current flowing through the current sampling element is greater than a first threshold, the control module controls the switching element to close. In this way, the closing of the switching element can be controlled according to the current flowing through the current sampling element, so as to realize the zero voltage opening of the switching element. Since the collected current does not change suddenly, the requirement on the time delay of the sampling control circuit included in the control module is reduced, and the signal anti-interference ability of the control module is relatively strong.
  • the switching element includes a first low-frequency switch and a second low-frequency switch
  • the power module further includes a first power switch, a second power switch, and a first capacitor
  • the current sampling element includes a first sampling element; the first end of the AC power source is connected to the first end of the first inductor, and the second end of the AC power source is connected to the first end of the first low-frequency switch.
  • Terminal is connected to the first terminal of the second low-frequency switch; the second terminal of the first inductor is connected to the first terminal of the first power switch and the first terminal of the second power switch;
  • the second end of a low frequency switch is connected to the second end of the first power switch; the second end of the second low frequency switch is connected to the second end of the second power switch; the first capacitor is connected to the second end of the second power switch;
  • the bridge arms of the first power switch and the second power switch are connected in parallel; the input end of the control module is connected to the first sampling element, and the output end of the control module is connected to the first low-frequency switch
  • the third terminal of is connected to the third terminal of the second low-frequency switch; when the AC power supply is in different output states, the position of the first sampling element is different.
  • an optional circuit topology is provided.
  • the first sampling element can be connected to different branches.
  • the control module can collect the currents of different branches through the first sampling element, and then realize the control of the low-frequency switching elements according to the currents of the different branches.
  • the above circuit when the AC power supply is working in a positive half cycle and the first power switch is in a closed state, the first sampling element is connected in series to the first In the branch where the power switch is located; when the current flowing through the first sampling element is greater than a first threshold, the control module controls the first low-frequency switch to close.
  • the first sampling element is connected in series to the branch where the first power switch is located, and further, the control module can be The current of the first power switch realizes the control of the first low-frequency switch.
  • the above circuit when the AC power supply is working in a positive half cycle and the first power switch is in an off state, the first sampling element is connected in series to the first sampling element. In the branch where the second power switch is located; when the current flowing through the first sampling element is greater than a first threshold, the control module controls the first low-frequency switch to close.
  • the first sampling element is connected in series to the branch where the second power switch is located, and further, the control module can be configured according to the current flow.
  • the current through the second power switch realizes the control of the first low-frequency switch.
  • the above circuit when the AC power supply is working in a negative half cycle and the second power switch is in a closed state, the first sampling element is connected in series to the second In the branch where the power switch is located; when the current flowing through the first sampling element is greater than the first threshold, the control module controls the second low-frequency switch to close.
  • the first sampling element is connected in series to the branch where the second power switch is located, and further, the control module can be based on the flow The current of the second power switch realizes the control of the second low frequency switch.
  • the above circuit when the AC power supply is operating in a negative half cycle and the second power switch is in an off state, the first sampling element is connected in series to the first sampling element. In the branch where a power switch is located; when the current flowing through the first sampling element is greater than a first threshold, the control module controls the second low-frequency switch to close.
  • the first sampling element is connected in series to the branch where the first power switch is located, and further, the control module can be configured according to the current flow.
  • the current through the first power switch realizes the control of the second low frequency switch.
  • the current sampling element further includes a second sampling element, characterized in that, when the AC power supply is working in a positive half cycle, the first sampling element is connected in series Into the branch where the first power switch is located, the second sampling element is connected in series to the branch where the second power switch is located; when flowing through the first sampling element and the second sampling element The sum of the currents is greater than the first threshold, and the control module controls the first low-frequency switch to close.
  • control module can control the first low-frequency switch by the sum of the currents flowing through the first sampling element and the second sampling element, which provides a specific implementation manner.
  • the current sampling element further includes a second sampling element, and when the AC power supply operates in a negative half cycle, the first sampling element is connected in series to the first sampling element.
  • the second sampling element In the branch where a power switch is located, the second sampling element is connected in series to the branch where the second power switch is located; when the sum of the currents flowing through the first sampling element and the second sampling element When the value is greater than the first threshold, the control module controls the second low-frequency switch to close.
  • control module can control the second low-frequency switch by the sum of the currents flowing through the first sampling element and the second sampling element, which provides a specific implementation manner.
  • the low-frequency switch module further includes a first diode and a second diode; the cathode of the first diode is connected to the AC power supply The first terminal is connected to the anode of the second diode, and the anode of the first diode is connected to the second terminal of the first low-frequency switch and the second terminal of the first power switch; The anode of the second diode is connected to the first end of the AC power source, and the cathode of the second diode is connected to the second end of the second low-frequency switch and the second end of the second power switch
  • the control module collects the current of the third sampling element, and the current flowing through the third sampling element is the current flowing through the first diode or the second diode; When the current of the third sampling element is greater than the second threshold, the control module controls the first low-frequency switch or the second low-frequency switch to turn off.
  • the low-frequency switch module includes a first diode and a second diode.
  • the control module may turn off the low-frequency switch. Thereby improving the reliability of the PFC circuit.
  • the above circuit when the AC power supply is working in a positive half cycle and the first low-frequency switch is in the on state, the third sampling element is connected in series to the first In the branch where a diode is located, or the third sampling element is connected in series to the branch between the first end of the AC power source and the first connection point, and the first connection point is the The connection point of the first diode and the second diode; when the current flowing through the third sampling element is greater than a first threshold, the control module controls the first low-frequency switch to turn off.
  • the third sampling element is connected in series to the branch where the first diode is located, or the third sampling element is connected in series between the first end of the AC power source and the first connection point In the branch.
  • the control module collects the current flowing through the first diode.
  • the control module confirms that the current in the third sampling element is greater than the first threshold, in order to protect the first low-frequency switch, the control module can turn off the first low-frequency switch.
  • the above circuit when the AC power supply is operating in the negative half cycle and the second low-frequency switch is in the on state, the third sampling element is connected in series to the first In the branch where the two diodes are located, or the third sampling element is connected to the branch between the first end of the AC power source and the first connection point, the first connection point is the first The connection point between a diode and the second diode; when the current flowing through the third sampling element is greater than the first threshold, the control module controls the second low-frequency switch to turn off, thereby increasing The reliability of the PFC circuit.
  • the third sampling element is connected in series to the branch where the second diode is located, or the third sampling element is connected to the branch between the first end of the AC power source and the first connection point middle.
  • the control module collects the current flowing through the second diode.
  • the control module confirms that the current in the third sampling element is greater than the first threshold, in order to protect the second low-frequency switch, the control module can turn off the second low-frequency switch, thereby increasing The reliability of the PFC circuit is improved.
  • the above circuit when the AC power supply is working in a positive half cycle and the first low-frequency switch is in the on state, the third sampling element is connected in series to the second connection Point and a third connection point, the second connection point is the connection point between the first diode and the first power switch, and the third connection point is the connection point between the first low-frequency switch and the The connection point of the first capacitor, and the third sampling element is the same as the first sampling element; when the current flowing through the third sampling element is greater than the first threshold, the control module controls the first low frequency The switch is off.
  • the third sampling element is connected in series between the second connection point and the third connection point, and the control module can collect the current flowing through the first diode.
  • the control module confirms that the third sampling element is in When the current of is greater than the first threshold, the control module can turn off the first low-frequency switch, thereby improving the reliability of the PFC circuit.
  • the above circuit when the AC power supply is operating in the negative half cycle and the second low-frequency switch is in the on state, the third sampling element is connected in series to the fourth connection Point and a fifth connection point, the fourth connection point is the connection point of the second diode and the second power switch, and the fifth connection point is the connection point of the second low-frequency switch and the The connection point of the first capacitor, and the third sampling element is the same as the first sampling element; when the current flowing through the third sampling element is greater than the first threshold, the control module controls the second low frequency The switch is off.
  • the third sampling element is connected in series between the fourth connection point and the fifth connection point, and the control module can collect the current flowing through the second diode.
  • the control module confirms that the third sampling element is in When the current of is greater than the first threshold, the control module can turn off the second low-frequency switch, thereby improving the reliability of the PFC circuit.
  • the power module further includes a second inductor, a third power switch, and a fourth power switch, and the first end of the second inductor is connected to the AC power supply
  • the first end of the second inductor is connected to the first end of the third power switch
  • the first capacitor is connected to the bridge including the third power switch and the fourth power switch
  • the arm branches are connected in parallel; the second end of the third power switch is connected to the second end of the first power switch; the first end of the fourth power switch is connected to the first end of the second power switch , The second end of the fourth power switch is connected to the first end of the third power switch.
  • the PFC circuit includes multiple sets of boost circuits, which can improve the rectification efficiency of the PFC circuit.
  • the current sampling element further includes a second sampling element, and when the AC power supply is working in a positive half cycle, the first sampling element is connected in series to the first sampling element.
  • the second sampling element In the branch where a power switch is located, the second sampling element is connected in series to the branch where the third power switch is located, or the first sampling element is connected in series to the branch where the second power switch is located
  • the second sampling element In the circuit, the second sampling element is connected in series to the branch where the fourth power switch is located; when the sum of the currents flowing through the first sampling element and the second sampling element is greater than the first threshold, so
  • the control module controls the first low-frequency switch to close.
  • the first sampling element is connected in series to the branch where the first power switch is located, and the second sampling element is connected in series to the branch where the third power switch is located, or the first sampling element is connected in series.
  • the second sampling element is connected in series to the branch where the fourth power switch is located.
  • the control module may collect the sum of the currents of the first power switch and the third power switch, or the control module may control the closing of the first low-frequency switch by collecting the sum of the currents of the second power switch and the fourth power switch.
  • the current sampling element further includes a second sampling element, and when the AC power supply operates in a negative half cycle, the first sampling element is connected in series to the first sampling element.
  • the second sampling element In the branch where the second power switch is located, the second sampling element is connected in series to the branch where the fourth power switch is located, or the first sampling element is connected in series to the branch where the first power switch is located
  • the second sampling element is connected in series to the branch where the third power switch is located.
  • the first sampling element is connected in series to the branch where the second power switch is located, and the second sampling element is connected in series to the branch where the fourth power switch is located, or the first sampling element is connected in series.
  • the second sampling element is connected in series to the branch where the third power switch is located.
  • the control module may collect the sum of the currents of the second power switch and the fourth power switch, or the control module may control the closing of the second low-frequency switch by collecting the sum of the currents of the first power switch and the third power switch.
  • the current sampling element further includes a second sampling element, a fourth sampling element, and a fifth sampling element; when the AC power supply operates in a positive half cycle, the The first sampling element is connected in series to the branch where the first power switch is located, the second sampling element is connected in series to the branch where the second power switch is located, and the fourth sampling element is connected in series to the branch where the second power switch is located.
  • the fifth sampling element is connected in series to the branch where the fourth power switch is located; The sum of the currents of the fourth sampling element and the fifth sampling element is greater than a first threshold, and the control module controls the first low-frequency switch to close.
  • control module may collect the sum of currents flowing through the first power switch, the second power switch, the third power switch, and the fourth power switch to control the first low-frequency switch to close.
  • the current sampling element further includes a second sampling element, a fourth sampling element, and a fifth sampling element; when the AC power supply operates in a negative half cycle, the The first sampling element is connected in series to the branch where the first power switch is located, the second sampling element is connected in series to the branch where the second power switch is located, and the fourth sampling element is connected in series to the branch where the second power switch is located.
  • the fifth sampling element is connected in series to the branch where the fourth power switch is located; The sum of the currents of the fourth sampling element and the fifth sampling element is greater than a first threshold, and the control module controls the second low-frequency switch to close.
  • control module may collect the sum of currents flowing through the first power switch, the second power switch, the third power switch, and the fourth power switch to control the closing of the second low-frequency switch.
  • control module further includes a controller, and the controller is composed of discrete components, or the controller is composed of a logic device.
  • the logic device includes a complex programmable logic device (complex programmable logic device, CPLD), a microcontroller unit (Microcontroller Unit, MCU), and a field programmable gate array (field programmable gate array).
  • CPLD complex programmable logic device
  • MCU microcontroller Unit
  • field programmable gate array field programmable gate array
  • gate array FPGA
  • CPU central processing unit
  • DSP digital signal processing
  • the power module may work in critical conduction mode (Critical Conduction Mode, CRM), continuous current mode (Continuous Current Mode, CCM), and triangular current mode (Triangular Current Mode). Mode, TCM), or Discontinuous Current Mode (DCM).
  • CRM Critical Conduction Mode
  • CCM Continuous Current Mode
  • TCM Triangular Current Mode
  • DCM Discontinuous Current Mode
  • the switching element includes an insulated gate bipolar transistor (IGBT), a metal oxide semiconductor field effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor) , MOSFET) or gallium nitride (GaN Field Effect Transistor, GaN FET).
  • IGBT insulated gate bipolar transistor
  • MOSFET metal oxide semiconductor field effect transistor
  • GaN FET gallium nitride
  • the current sampling element is a resistor or a current transformer (computed tomography, CT).
  • a second aspect of the present application provides a communication power supply
  • the communication power supply includes the PFC circuit
  • the PFC circuit includes an AC power supply, a low-frequency switch module, a power module, and a control module
  • the PFC circuit is the first aspect or The PFC circuit described in any one of the possible implementations of the first aspect.
  • FIG. 1 is a basic topology diagram of a bridgeless PFC circuit provided by an embodiment of the present application
  • Fig. 2 is a basic topology diagram of another bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 4a is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 9a is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 15 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the bridgeless PFC circuit has become the mainstream technology in the industry due to its high efficiency and high power density.
  • the bridgeless PFC circuit can be used in communication power supplies, the bridgeless PFC circuit can also be used in boost rectifiers, and the bridgeless PFC circuit can also be used in other electronic devices, which is not specifically limited here. .
  • Fig. 1 is a basic topology diagram of a bridgeless PFC circuit provided by an embodiment of the present application.
  • Figure 1 shows the basic topology of a bridgeless PFC circuit.
  • the basic topology of the bridgeless PFC circuit includes an AC power supply, two rectifier diodes A1, A2, and two switching elements S3, S4, Inductance L1 and capacitance C.
  • the series-connected switching elements S3 and S4 may be metal-oxide-semiconductor field-effect transistors (MOSFETs).
  • the bridgeless PFC circuit can work with a single bridge arm, the bridgeless PFC circuit can also work with two bridge arms 180 degrees out of phase, and the bridgeless PFC circuit can also work with three bridge arms out of phase 120 degrees.
  • the details are not limited here.
  • the working principle of the bridgeless PFC circuit is explained by taking the bridgeless PFC circuit working through a single bridge arm as an example.
  • the switching elements S3 and S4 are MOSFETs, when the current output by the AC power supply is in the positive half cycle, the AC power supply is considered to be working in the positive half cycle.
  • MOSFET S4 acts as a supervisor
  • MOSFTE S3 acts as a synchronous tube.
  • the current loop flows through the inductor L1, the MOSFET S4, and the diode D2. At this time, the inductor L1 stores energy.
  • MOSFET S3 acts as a main tube and MOSFET S4 acts as a synchronous tube.
  • a current loop flows through inductor L1, MOSFET S3, and diode A1.
  • the inductor L1 stores energy.
  • the current loop flows through inductor L1, MOSFET S4, capacitor C and diode D1, and capacitor C is charged by the AC power supply and inductor L1.
  • the bridgeless PFC circuit can work in CRM mode, TCM mode, CCM mode, and DCM mode, and the bridgeless PFC circuit can also work in other modes, which is not specifically limited here. The following briefly introduces the characteristics of each working mode.
  • the reverse recovery current of the body diode of the synchronous tube is used to pull through the body diode of the main tube, so as to realize the zero-voltage turn-on of the main tube.
  • the bridgeless PFC circuit works in the TCM mode, by sampling and controlling the negative current of the synchronous tube, the body diode of the main tube is pulled through, so as to realize the zero-voltage turn-on of the main tube.
  • the bridgeless PFC circuit works in CCM mode, if the switching tube is a GaN tube, there is no reverse recovery problem, and the GaN tube can be directly used in the bridgeless PFC circuit. If the switching element is an IGBT or MOSFET, take MOSFTE as an example.
  • a diode with the opposite polarity of the body diode is connected in series to the MOSFET switching element, and then a diode is connected in parallel with the positive and negative poles of the MOSFET source and the cathode of the series diode.
  • the parallel diodes are usually silicon carbide SiC, GaN diodes, fast recovery diodes, so that the problem of reverse recovery in CCM mode can be solved, and the DCM mode will not be described in detail here.
  • Fig. 2 is a basic topology diagram of another bridgeless PFC circuit provided by an embodiment of the present application.
  • the switching elements S1 and S2 shown in FIG. 2 are usually used to replace the rectifier diodes A1 and A2 shown in FIG.
  • the PFC circuit needs to control S1 and S2 to close or open accordingly, so as to realize the rectification effect of the PFC circuit.
  • the first control signal is generated by detecting the voltage of the switching element
  • the second control signal is generated by detecting the AC input voltage
  • the first control signal and the second control signal are combined to form the final control signal to control The closing or opening of a switching element.
  • an embodiment of the present application provides a bridgeless PFC circuit.
  • the control module collects the current flowing through the current sampling element. When the current flowing through the current sampling element is greater than the first At a threshold, the control module controls the switching element to close. In this way, the closing of the switching element can be controlled according to the current flowing through the current sampling element, so as to realize the zero voltage opening of the switching element. Since the collected current does not change suddenly, the requirement on the time delay of the sampling control circuit included in the control module is reduced, and the signal anti-interference ability of the control module is relatively strong.
  • FIG. 3 is a schematic structural diagram of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the bridgeless PFC circuit includes: an AC power supply, a low-frequency switch module, a power module, and a control module.
  • the low-frequency switch module includes a switching element
  • the power module includes a first inductor
  • the control module includes a current sampling element. It can be understood that the bridgeless PFC circuit may also include other modules, which are not specifically limited here.
  • the modules included in the bridgeless PFC circuit have a connection relationship.
  • the AC power supply and the low-frequency switch module are connected through the switching element, the AC power supply and the power module are connected through the first inductance, the low-frequency switch module and the power module are connected through the switching element, and the control module and the power module are connected through the current sampling element.
  • the control module and the low-frequency switch module are connected through a current sampling element, and the control module controls the switching element included in the low-frequency switch module to close or open;
  • the control module collects the current flowing through the current sampling element. In this way, when the current flowing through the current sampling element is greater than the first threshold, the control module can control the switching element to close. Therefore, the control module can control the switching element according to the current flowing through the sampling element.
  • FIG. 4 is a schematic diagram of an embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the switching elements included in the bridgeless PFC circuit may include a first low-frequency switch and a second low-frequency switch, and may also include other low-frequency switches, which are not specifically limited here.
  • the power module included in the bridgeless PFC circuit further includes a first power switch, a second power switch, and a first capacitor.
  • the current sampling element includes the first sampling element, and may also include other elements, which are not specifically limited here.
  • the first end of the AC power supply is connected to the first end of the first inductor, and the second end of the AC power supply is connected to the first end of the first low-frequency switch and the second end of the second low-frequency switch.
  • Connect at one end The second end of the first inductor is connected to the first end of the first power switch and the first end of the second power switch.
  • the second end of the first low-frequency switch is connected to the second end of the first power switch.
  • the second end of the second low frequency switch is connected to the second end of the second power switch.
  • the first capacitor is connected in parallel with the bridge arm branch including the first power switch and the second power switch.
  • the input end of the control module is connected with the first sampling element, and the output end of the control module is connected with the third end of the first low-frequency switch and the third end of the second low-frequency switch.
  • the control module when the AC power supply is in different output states and the position of the first sampling element is different, the control module can collect the currents of different branches, and then control the first low-frequency switch and the second low-frequency switch according to the currents of different branches. The closing of the switch.
  • control module may further include a controller, which is composed of discrete components, or, the controller is composed of logic devices.
  • the control module can also be composed of other devices, which are not specifically limited here.
  • the logic device may include a complex CPLD, MCU, FPGA, CPU, and DSP, and the logic device may also be other devices, which is not specifically limited here.
  • the power module can work in critical conduction mode CRM, current continuous mode CCM, triangular current mode TCM, or current discontinuous mode DCM, and the power module can also work in other modes, which are not specifically limited here. .
  • the switching element may include an IGBT, a MOSFET, or a GaN FET, and the switching element may also be other elements, which is not specifically limited here.
  • the current sampling element is a resistor or a CT
  • the current sampling original can also be other devices, which is not specifically limited here.
  • Fig. 4a shows the driving waveform of the first low-frequency switch S2, the current waveform of the first inductor L1, and the voltage waveform of the AC input during the positive half cycle of the AC input. It can be seen from Fig. 9 that when the current flowing through the first inductor L1 rises to the preset threshold, the controller turns on the first low-frequency switch S2. After the positive half cycle is about to end and the AC input voltage is lower than the preset value, the controller restarts The first low-frequency switch S2 is turned off, so that the zero-voltage turn-on and the power frequency synchronous rectification of the first low-frequency switch S2 are realized.
  • FIG. 5 is a schematic diagram of an embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the first sampling element is connected in series to the branch where the first power switch is located.
  • the first sampling element can be connected in series from the a1 position to the branch where the first power switch is located, and the first sampling element can be connected in series from the b1 position to the branch where the first power switch is located, and the first sampling element can also be connected in series to the branch where the first power switch is located. It is connected to the branch where the first power switch is located in other equivalent ways, and the specific method is not limited here.
  • the control module when the AC power supply is working in a positive half cycle and the first power switch is in the closed state, current flows through the first inductor L1, the first power switch S4, and the first low-frequency switch S2. At this time, the first inductor L1 stores energy.
  • the control module can control the first low-frequency switch S2 to close, thus realizing the zero-voltage turn-on and power frequency of the first low-frequency switch S2 Synchronous rectification.
  • FIG. 6 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the first sampling element is connected in series to the branch where the second power switch is located.
  • the first sampling element M1 can be connected in series from position a2 to the branch where the second power switch S3 is located, and the first sampling element M1 can be connected in series from position b2 to the branch where the second power switch S3 is located.
  • the sampling element M1 can also be connected to the branch where the second power switch S3 is located in other equivalent ways, which is not specifically limited here.
  • the control module when the AC power supply is working in the positive half cycle and the first power switch S4 is in the off state, the current flows through the first inductor L1, the second power switch S3, the first capacitor C1, and the first low frequency switch S2 . At this time, the first inductor L1 outputs energy, and the AC power source and the first inductor L1 jointly charge the first capacitor C1.
  • the controller in the control module confirms that the current flowing through the first sampling element M1 is greater than the first threshold, the control module can control the first low-frequency switch S2 to close, thus realizing the zero-voltage turn-on and power frequency of the first low-frequency switch S2 Synchronous rectification.
  • FIG. 7 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the first sampling element M1 is connected in series to the second power switch S3.
  • the first sampling element M1 can be connected in series from the position a3 to the branch where the second power switch S3 is located, and the first sampling element M1 can be connected in series from the position b3 to the branch where the second power switch S3 is located.
  • the sampling element M1 can also be connected to the branch where the second power switch S3 is located in other equivalent ways, which is not specifically limited here.
  • the control module controls the second low-frequency switch S1 to close, thus realizing the zero-voltage turn-on and power frequency synchronization of the second low-frequency switch S1 Rectify.
  • FIG. 8 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the first sampling element M1 is connected in series to the first power switch S4 In the branch where it is.
  • the first sampling element M1 can be connected in series from the position a4 to the branch where the first power switch S4 is located, and the first sampling element M1 can be connected in series from the position b4 to the branch where the first power switch S4 is located.
  • the sampling element M1 can also be connected to the branch where the first power switch S4 is located in other equivalent ways, which is not specifically limited here.
  • the control module controls the second low-frequency switch S1 to close, thus realizing the zero-voltage turn-on of the second low-frequency switch S1 and the power frequency synchronous rectification .
  • FIG. 9 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the current sampling element may also include a second sampling element M2.
  • the first sampling element M1 When the AC power supply is working in a positive half cycle, the first sampling element M1 is connected in series to the branch where the first power switch is located.
  • the first sampling element M1 is connected in series to the branch where the first power switch S4 is located.
  • the first sampling element M1 can be connected in series from the position d1 to the branch where the first power switch S4 is located, and the first sampling element M1 can be connected in series from the position c1 to the branch where the first power switch S4 is located.
  • the sampling element M1 can also be connected to the branch where the first power switch S4 is located in other equivalent ways, which is not specifically limited here.
  • the second sampling element M2 is connected in series to the branch where the second power switch is located.
  • the second sampling element M2 is connected in series to the branch where the second power switch S3 is located.
  • the second sampling element M2 can be connected in series from the position a5 to the branch where the second power switch S3 is located, and the second sampling element M2 can be connected in series from the position b5 to the branch where the second power switch S3 is located.
  • the sampling element M2 can also be connected to the branch where the second power switch S3 is located in other equivalent manners, which is not specifically limited here.
  • the control module controls the first low-frequency switch S2 to close, thus realizing the first low-frequency switch S2 The zero voltage turn-on and power frequency synchronous rectification.
  • the first sampling element M1 is connected in series to the branch where the first power switch is located, and the second sampling element M2 is connected in series to the branch where the second power switch is located.
  • the specific series connection mode is similar to the mode shown in FIG. 9 in the foregoing embodiment, and the details are not repeated here.
  • the control module controls the second low-frequency switch S1 to close, thus realizing the second low-frequency switch S1 The zero voltage turn-on and power frequency synchronous rectification.
  • the low-frequency switch module may further include a first diode D2 and a second diode D1.
  • the cathode of the first diode D2 is connected to the first end of the AC power source and the anode of the second diode D1, and the anode of the first diode D2 is connected to the second end of the first low-frequency switch S2.
  • the second end of the first power switch S4 is connected.
  • the anode of the second diode D1 is connected to the first end of the AC power supply, and the cathode of the second diode D1 is connected to the second end of the second low-frequency switch S1 and the second end of the second power switch S3;
  • the control module collects The current of the third sampling element, the current flowing through the third sampling element is the current flowing through the first diode or the second diode;
  • the controller in the control module When the controller in the control module confirms that the current flowing through the third sampling element is greater than the first threshold, the controller in the control module controls the first low-frequency switch or the second low-frequency switch to turn off.
  • the protection of the first low-frequency switch S2 is taken as an example for description. Under severe working conditions such as lightning, excessive current in the channel direction of the low-frequency switching element can easily cause damage to the device.
  • the driving waveform of the first low-frequency switch S2, the current waveform of the first inductor L1, the current waveform of the first low-frequency switch S2, and the AC input voltage waveform As shown in FIG. 9a, the driving waveform of the first low-frequency switch S2, the current waveform of the first inductor L1, the current waveform of the first low-frequency switch S2, and the AC input voltage waveform. It can be seen from Figure 9a that when the negative current flowing through the first low-frequency switch S2 rises to a preset value, the controller included in the control module will quickly turn off the first low-frequency switch S2, thus achieving the first low-frequency switch S2. Negative overcurrent protection of switch S2.
  • FIG. 10 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the third sampling element M3 is connected in series to the second In the branch where a diode D2 is located.
  • the third sampling element M3 can be connected in series from position a6 to the branch where the first diode D2 is located, and the third sampling element M3 can be connected in series from position b6 to the branch where the first diode D2 is located.
  • the third sampling element M3 can also be connected to the branch where the first diode D2 is located in another equivalent manner, which is not specifically limited here.
  • the third sampling element M3 can also be connected in series to the branch between the first end of the AC power source and the first connection point at the position c2 as shown in the figure, and the first connection point is the first and second connection point.
  • the controller in the control module When the controller in the control module confirms that the current flowing through the third sampling element M3 is greater than the first threshold, the controller in the control module controls the first low-frequency switch S2 to turn off.
  • FIG. 11 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 11 a possible implementation manner is shown in FIG. 11.
  • the third sampling element M3 is connected in series to the branch where the second diode D1 is located.
  • the third sampling element M3 can be connected in series from position a7 to the branch where the second diode D1 is located, and the third sampling element M3 can be connected in series from position b7 to the branch where the second diode D1 is located.
  • the third sampling element M3 can also be connected to the branch where the second diode D1 is located in another equivalent manner, which is not specifically limited here.
  • the third sampling element M3 can also be connected in series to the branch between the first end of the AC power source and the first connection point at the position c3 as shown in the figure, and the first connection point is the first and second connection point.
  • the controller in the control module determines that the current flowing through the third sampling element M3 is greater than the first threshold, the controller in the control module controls the second low-frequency switch S1 to turn off.
  • FIG. 12 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 12 a possible implementation manner is shown in FIG. 12.
  • the third sampling element M3 is connected in series between the second connection point a8 and the third connection point b8, and the second connection point a8 Is the connection point between the first diode D2 and the first power switch S4, the third connection point b8 is the connection point between the first low-frequency switch S2 and the first capacitor C, and the third sampling element M3 is the same as the first sampling element M1 .
  • the controller in the control module When the controller in the control module confirms that the current flowing through the third sampling element M3 is greater than the first threshold, the controller in the control module controls the first low-frequency S2 switch to turn off.
  • FIG. 13 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • FIG. 13 a possible implementation manner is shown in FIG. 13.
  • the third sampling element M3 is connected in series between the fourth connection point a9 and the fifth connection point b9
  • the fourth connection point a9 is the connection point between the second diode D1 and the second power switch S3
  • the fifth connection point b9 is the connection point between the second low-frequency switch S1 and the first capacitor C
  • the third sampling element M3 and the first sampling element M1 same.
  • the controller in the control module determines that the current flowing through the third sampling element M3 is greater than the first threshold, the controller in the control module controls the second low-frequency switch S1 to turn off.
  • the power module may further include a second inductor L2, a third power switch S6, and a fourth power switch S5.
  • the first end of the second inductor L2 is connected to the first end of the AC power source, and the second end of the second inductor L2 is connected to the first end of the third power switch S6.
  • the first capacitor C is connected in parallel with the bridge arm branch including the third power switch S6 and the fourth power switch S5.
  • the second end of the third power switch S6 is connected to the second end of the first power switch S4.
  • the first end of the fourth power switch S5 is connected to the first end of the second power switch S3, and the second end of the fourth power switch S5 is connected to the first end of the third power switch S6.
  • FIG. 14 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the current sampling element further includes a second sampling element M2.
  • the first sampling element M1 is connected in series to the branch where the first power switch S4 is located, and the second sampling element M2 is connected in series to the branch where the third power switch S6 is located, or, the first The sampling element M1 is connected in series to the branch where the second power switch S3 is located, and the second sampling element M2 is connected in series to the branch where the fourth power switch S5 is located;
  • the controller in the control module When the controller in the control module confirms that the sum of the currents flowing through the first sampling element M1 and the second sampling element M2 is greater than the first threshold, the controller in the control module controls the first low-frequency switch S2 to close.
  • the first sampling element M1 is connected in series to the branch where the second power switch S3 is located, and the second sampling element M2 is connected in series to the branch where the fourth power switch S5 is located, or, the first The sampling element M1 is connected in series to the branch where the first power switch S4 is located, and the second sampling element M2 is connected in series to the branch where the third power switch S6 is located
  • the controller in the control module When the controller in the control module confirms that the sum of the currents flowing through the first sampling element M1 and the second sampling element M2 is greater than the first threshold, the controller in the control module controls the second low-frequency switch S1 to close.
  • FIG. 15 is a schematic diagram of another embodiment of a bridgeless PFC circuit provided by an embodiment of the present application.
  • the current sampling element further includes a second sampling element M2, a fourth sampling element M4, and a fifth sampling element M5.
  • the first sampling element M1 is connected in series to the branch where the first power switch S4 is located, and the second sampling element M2 is connected in series to the branch where the second power switch S3 is located, and the fourth sampling element is connected in series to the branch where the second power switch S3 is located.
  • M4 is connected in series to the branch where the third power switch S6 is located, and the fifth sampling element M5 is connected in series to the branch where the fourth power switch S5 is located.
  • the control module controls the first low-frequency switch S2 closure.
  • the first sampling element M1 is connected in series to the branch where the first power switch S4 is located, and the second sampling element M2 is connected in series to the branch where the second power switch S3 is located, and the fourth sampling element M4 is connected in series to the branch where the third power switch S6 is located, and the fifth sampling element M5 is connected in series to the branch where the fourth power switch S5 is located.
  • the control module controls the second low-frequency switch S1 to close .
  • a control method of indirectly collecting the current of the low-frequency switch tube is adopted, thereby reducing the volume of the current sampling element, and ensuring zero voltage turn-on and negative pass under any working conditions. Fast current protection.
  • the inductor current cannot change suddenly, the requirement for the ultra-low time delay of the detection control circuit signal is reduced, thereby realizing zero voltage conduction under any working conditions.
  • the low-frequency switching element is quickly turned off to avoid its overcurrent damage.
  • the invention realizes the zero-voltage turn-on of the low-frequency switching element of the bridgeless PFC circuit and the suppression of negative overcurrent, and improves the reliability of the bridgeless PFC circuit.

Abstract

一种无桥PFC校正电路,包括:控制模块采集流经电流采样元件的电流,当流经电流采样元件的电流大于第一阈值时,控制模块控制开关元件闭合。可以根据流经电流采样元件的电流进而控制开关元件的闭合,从而实现开关元件的零电压开通。由于采集的电流不会突变,因此降低了对控制模块中包括的采样控制电路的时延的要求,控制模块的信号抗干扰能力较强。

Description

一种无桥功率因数校正PFC电路 技术领域
本申请实施例涉及电路领域,尤其涉及一种无桥功率因数校正(power factor correction,PFC)电路。
背景技术
目前,绿色、节能、高效己成为电源发展的必然趋势。无桥PFC电路因其高效、高功率密度已成为业界主流技术。
无桥升压(boost)PFC电路中,可使用导通电阻较小的开关管替代低频整流二极管,因而更适合应用在高效率、高功率密度的场景中。当交流电源工作在不同的周期时,PFC电路需要相应的控制不同的开关元件闭合或者断开,进而实现PFC电路的整流作用。现有技术方案中,通过检测开关元件的电压进而产生第一控制信号,检测交流输入电压产生第二控制信号,将第一控制信号以及第二控制信号合成之后,形成最的终控制信号进而控制开关元件的闭合或者断开,来实现开关元件的零电压开通。
然而,开关元件的电压变化较为剧烈,对采样控制电路有较高要求,采样控制电路的信号抗干扰能力较弱。
发明内容
本申请实施例提供了一种无桥PFC校正电路,控制模块采集流经电流采样元件的电流,当流经电流采样元件的电流大于第一阈值时,控制模块控制开关元件闭合。这样,可以根据流经电流采样元件的电流进而控制开关元件的闭合,从而实现开关元件的零电压开通。由于采集的电流不会突变,因此降低了对控制模块中包括的采样控制电路的时延的要求,控制模块的信号抗干扰能力较强。
本申请第一方面提供一种PFC电路,该电路中包括:交流电源、低频开关模块、功率模块以及控制模块,所述低频开关模块包括开关元件,所述功率模块包括第一电感,所述控制模块包括电流采样元件;所述交流电源与所述低频开关模块之间通过所述开关元件连接,所述交流电源与所述功率模块之间通过所述第一电感连接,所述低频开关模块和所述功率模块之间通过所述开关元件连接,所述控制模块与所述功率模块通过所述电流采样元件连接和/或所述控制模块与所述低频开关模块通过所述电流采样元件连接,所述控制模块控制所述低频开关模块中包括的所述开关元件闭合或断开;所述控制模块采集流经所述电流采样元件的电流;当流经所述电流采样元件的电流大于第一阈值,所述控制模块控制所述开关元件闭合或断开。
本申请实施例提供了一种无桥PFC校正电路,控制模块采集流经电流采样元件的电流,当流经电流采样元件的电流大于第一阈值时,控制模块控制开关元件闭合。这样,可以根据流经电流采样元件的电流进而控制开关元件的闭合,从而实现开关元件的零电压开通。由于采集的电流不会突变,因此降低了对控制模块中包括的采样控制电路的时延的要求, 控制模块的信号抗干扰能力较强。
在第一方面的一种可能的实现方式中,上述电路:所述开关元件包括第一低频开关以及第二低频开关,所述功率模块还包括第一功率开关、第二功率开关以及第一电容,所述电流采样元件包括第一采样元件;所述交流电源的第一端与所述第一电感的第一端连接,所述交流电源的第二端与所述第一低频开关的第一端和所述第二低频开关的第一端连接;所述第一电感的第二端与所述第一功率开关的第一端和所述第二功率开关的第一端连接;所述第一低频开关的第二端与所述第一功率开关的第二端连接;所述第二低频开关的第二端与所述第二功率开关的第二端连接;所述第一电容与包括所述第一功率开关和所述第二功率开关的桥臂支路并联;所述控制模块的输入端与所述第一采样元件连接,所述控制模块的输出端与所述第一低频开关的第三端和所述第二低频开关的第三端连接;当所述交流电源处于不同的输出状态时,所述第一采样元件的位置不同。
该种可能的实现方式中,提供了一种可选的电路拓扑结构,当交流电源处于不同的输出状态时,第一采样元件可以接入不同的支路中。这样,控制模块可以通过第一采样元件采集不同支路的电流,进而根据不同支路的电流实现对低频开关元件的控制。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在正半周,且所述第一功率开关处于闭合状态,所述第一采样元件串联接入所述第一功率开关所在的支路中;当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第一低频开关闭合。
该种可能的实现方式中,当交流电源工作在正半周,且第一功率开关处于闭合状态时,第一采样元件串联接入第一功率开关所在的支路,进而,控制模块可以根据流经第一功率开关的电流实现对第一低频开关的控制。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在正半周,且所述第一功率开关处于断开状态,所述第一采样元件串联接入所述第二功率开关所在的支路中;当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第一低频开关闭合。
该种可能的实现方式中,当交流电源工作在正半周,且第一功率开关处于断开状态时,第一采样元件串联接入第二功率开关所在的支路,进而,控制模块可以根据流经第二功率开关的电流实现对第一低频开关的控制。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在负半周,且所述第二功率开关处于闭合状态,所述第一采样元件串联接入所述第二功率开关所在的支路中;当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第二低频开关闭合。
该种可能的实现方式中,当交流电源工作在负半周,且第二功率开关处于闭合状态时,第一采样元件串联接入第二功率开关所在的支路,进而,控制模块可以根据流经第二功率开关的电流实现对第二低频开关的控制。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在负半周,且所述第二功率开关处于断开状态,所述第一采样元件串联接入所述第一功率开关所在的支 路中;当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第二低频开关闭合。
该种可能的实现方式中,当交流电源工作在负半周,且第二功率开关处于断开状态时,第一采样元件串联接入第一功率开关所在的支路,进而,控制模块可以根据流经第一功率开关的电流实现对第二低频开关的控制。
在第一方面的一种可能的实现方式中,上述电路:所述电流采样元件还包括第二采样元件,其特征在于,当所述交流电源工作在正半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中;当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第一低频开关闭合。
该种可能的实现方式中,控制模块可以通过流经第一采样元件与第二采样元件的电流之和来控制第一低频开关,提供了一种具体的实现方式。
在第一方面的一种可能的实现方式中,上述电路:所述电流采样元件还包括第二采样元件,当所述交流电源工作在负半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中;当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第二低频开关闭合。
该种可能的实现方式中,控制模块可以通过流经第一采样元件与第二采样元件的电流之和来控制第二低频开关,提供了一种具体的实现方式。
在第一方面的一种可能的实现方式中,上述电路:所述低频开关模块还包括第一二极管以及第二二极管;所述第一二极管的负极与所述交流电源的第一端以及所述第二二极管的正极连接,所述第一二极管的正极与所述第一低频开关的第二端以及所述第一功率开关的第二端连接;所述第二二极管的正极与所述交流电源的第一端连接,所述第二二极管的负极与所述第二低频开关的第二端以及所述第二功率开关的第二端连接;所述控制模块采集第三采样元件的电流,所述流经所述第三采样元件的电流是流经所述第一二极管或所述第二二极管的电流;当流经所述第三采样元件的电流大于第二阈值时,所述控制模块控制所述第一低频开关或所述第二低频开关断开。
该种可能的实现方式中,低频开关模块包括第一二极管以及第二二极管。当第一二极管或第二二极管中的电流超过第一阈值时,为了保护低频开关,控制模块可以将低频开关关闭。从而提升PFC电路的可靠性。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在正半周,且所述第一低频开关处于导通状态,所述第三采样元件串联接入所述第一二极管所在的支路中,或,所述第三采样元件串联接入所述交流电源的第一端与第一连接点之间的支路中,所述第一连接点为所述第一二极管与所述第二二极管的连接点;当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第一低频开关断开。
该种可能的实现方式中,第三采样元件串联接入第一二极管所在的支路中,或者,第三采样元件串联接入所述交流电源的第一端与第一连接点之间的支路中。控制模块采集流 经第一二极管的电流,当控制模块确认第三采样元件中的电流大于第一阈值时,为了保护第一低频开关,控制模块可以将第一低频开关断开。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在负半周,且所述第二低频开关处于导通状态,所述第三采样元件串联接入所述第二二极管所在的支路中,或,所述第三采样元件接入所述交流电源的第一端与第一连接点之间的支路中,所述第一连接点为所述第一二极管与所述第二二极管的连接点;当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第二低频开关断开,进而提升了PFC电路的可靠性。
该种可能的实现方式中,第三采样元件串联接入第二二极管所在的支路中,或者,第三采样元件接入交流电源的第一端与第一连接点之间的支路中。控制模块采集流经第二二极管的电流,当控制模块确认第三采样元件中的电流大于第一阈值时,为了保护第二低频开关,控制模块可以将第二低频开关断开,进而提升了PFC电路的可靠性。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在正半周,且所述第一低频开关处于导通状态,所述第三采样元件串联接入第二连接点与第三连接点之间,所述第二连接点为所述第一二极管与所述第一功率开关的连接点,所述第三连接点为所述第一低频开关与所述第一电容的连接点,且所述第三采样元件与所述第一采样元件相同;当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第一低频开关断开。
该种可能的实现方式中,第三采样元件串联接入第二连接点与第三连接点之间,控制模块可以采集流经第一二极管的电流,当控制模块确认第三采样元件中的电流大于第一阈值时,控制模块可以将第一低频开关断开,进而提升了PFC电路的可靠性。
在第一方面的一种可能的实现方式中,上述电路:当所述交流电源工作在负半周,且所述第二低频开关处于导通状态,所述第三采样元件串联接入第四连接点与第五连接点之间,所述第四连接点为所述第二二极管与所述第二功率开关的连接点,所述第五连接点为所述第二低频开关与所述第一电容的连接点,且所述第三采样元件与所述第一采样元件相同;当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第二低频开关断开。
该种可能的实现方式中,第三采样元件串联接入第四连接点与第五连接点之间,控制模块可以采集流经第二二极管的电流,当控制模块确认第三采样元件中的电流大于第一阈值时,控制模块可以将第二低频开关断开,进而提升了PFC电路的可靠性。
在第一方面的一种可能的实现方式中,上述电路:所述功率模块还包括第二电感、第三功率开关以及第四功率开关,所述第二电感的第一端与所述交流电源的第一端连接,所述第二电感的第二端与所述第三功率开关的第一端连接;所述第一电容与包括所述第三功率开关和所述第四功率开关的桥臂支路并联;所述第三功率开关的第二端与所述第一功率开关的第二端连接;所述第四功率开关的第一端与所述第二功率开关的第一端连接,所述第四功率开关的第二端与所述第三功率开关的第一端连接。
该种可能的实现方式中,PFC电路中包括了多组升压电路,可以提升PFC电路的整流 效率。
在第一方面的一种可能的实现方式中,上述电路:所述电流采样元件还包括第二采样元件,当所述交流电源工作在正半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第三功率开关所在的支路中,或,所述第一采样元件串联接入所述第二功率开关所在的支路中,所述第二采样元件串联接入所述第四功率开关所在的支路中;当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第一低频开关闭合。
该种可能的实现方式中,第一采样元件串联接入第一功率开关所在的支路中,第二采样元件串联接入第三功率开关所在的支路中,或者,第一采样元件串联接入第二功率开关所在的支路中,第二采样元件串联接入第四功率开关所在的支路中。控制模块可以通过采集第一功率开关与第三功率开关的电流之和,或者,控制模块可以通过采集第二功率开关与第四功率开关的电流之和来控制第一低频开关闭合。
在第一方面的一种可能的实现方式中,上述电路:所述电流采样元件还包括第二采样元件,当所述交流电源工作在负半周,所述第一采样元件串联接入所述第二功率开关所在的支路中,所述第二采样元件串联接入所述第四功率开关所在的支路中,或,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第三功率开关所在的支路中。当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第二低频开关闭合。
该种可能的实现方式中,第一采样元件串联接入第二功率开关所在的支路中,第二采样元件串联接入第四功率开关所在的支路中,或者,第一采样元件串联接入第一功率开关所在的支路中,第二采样元件串联接入第三功率开关所在的支路中。控制模块可以通过采集第二功率开关与第四功率开关的电流之和,或者,控制模块可以通过采集第一功率开关与第三功率开关的电流之和来控制第二低频开关闭合。
在第一方面的一种可能的实现方式中,上述电路:所述电流采样元件还包括第二采样元件、第四采样元件以及第五采样元件;当所述交流电源工作在正半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中,所述第四采样元件串联接入所述第三功率开关所在的支路中,所述第五采样元件串联接入所述第四功率开关所在的支路中;当流经所述第一采样元件、所述第二采样元件、所述第四采样元件以及所述第五采样元件的电流之和大于第一阈值,所述控制模块控制所述第一低频开关闭合。
该种可能的实现方式中,控制模块可以采集流经第一功率开关、第二功率开关、第三功率开关以及第四功率开关的电流之和来控制第一低频开关闭合。
在第一方面的一种可能的实现方式中,上述电路:所述电流采样元件还包括第二采样元件、第四采样元件以及第五采样元件;当所述交流电源工作在负半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中,所述第四采样元件串联接入所述第三功率开关所在的支路中,所述第五采样元件串联接入所述第四功率开关所在的支路中;当流经所述第一采样元件、所述第二 采样元件、所述第四采样元件以及所述第五采样元件的电流之和大于第一阈值,所述控制模块控制所述第二低频开关闭合。
该种可能的实现方式中,控制模块可以采集流经第一功率开关、第二功率开关、第三功率开关以及第四功率开关的电流之和来控制第二低频开关闭合。
在第一方面的一种可能的实现方式中,所述控制模块还包括控制器,所述控制器由分立元件组成,或,所述控制器由逻辑器件组成。
在第一方面的一种可能的实现方式中,所述逻辑器件包括复杂可编程逻辑器件(complex programmable logic device,CPLD)、微控制单元(Microcontroller Unit,MCU)、现场可编程门阵列(field programmable gate array,FPGA)、中央处理器(central processing unit,CPU)或数字信号处理器(digital signal processing,DSP)。
在第一方面的一种可能的实现方式中,所述功率模块可以工作在临界导通模式(Critical Conduction Mode,CRM)、电流连续模式(Continuous Current Mode,CCM)、三角型电流模式(Triangular Current Mode,TCM)、或电流断续模式(Discontinuous Current Mode,DCM)。
在第一方面的一种可能的实现方式中,所述开关元件包括绝缘栅双极型晶体管(Insulated Gate Bipolar Transistor,IGBT)、金属氧化物半导体场效应管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)或氮化镓(GaN Field Effect Transistor,GaN FET)。
在第一方面的一种可能的实现方式中,所述电流采样元件为电阻或电流互感器(computed tomography,CT)。
本申请第二方面提供一种通信电源,所述通信电源包括所述PFC电路,所述PFC电路包括交流电源、低频开关模块、功率模块以及控制模块,所述PFC电路为为上述第一方面或第一方面任意一种可能实现方式中所描述的PFC电路。
附图说明
图1是本申请实施例提供的一种无桥PFC电路的基本拓扑图;
图2是本申请实施例提供的另一种无桥PFC电路的基本拓扑图;
图3是本申请实施例提供的一种无桥PFC电路的结构示意图;
图4是本申请实施例提供的一种无桥PFC电路的一实施例示意图;
图4a是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图5是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图6是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图7是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图8是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图9是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图9a是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图10是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图11是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图12是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图13是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图14是本申请实施例提供的一种无桥PFC电路的另一实施例示意图;
图15是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前,绿色、节能、高效己成为电源发展的必然趋势。无桥PFC电路因其高效、高功率密度已成为业界主流技术。
可选的,该无桥PFC电路可以应用在通信电源中,该无桥PFC电路还可以应用在升压整流器中,该无桥PFC电路还可以应用在其他电子设备中,具体此处不做限定。
图1是本申请实施例提供的一种无桥PFC电路的基本拓扑图。
请参阅图1,图1示出了无桥PFC电路的基本拓扑,该无桥PFC电路的基本拓扑包括交流电源、串联的两个整流二极管A1、A2、串联的两个开关元件S3、S4、电感L1以及电容C。该串联的开关元件S3、S4可以是金氧半场效晶体管(metal-oxide-semiconductor field-effect transistor,MOSFET)。
可选的,无桥PFC电路可以通过单桥臂工作,无桥PFC电路也可以通过两个桥臂错相180度工作,无桥PFC电路还可以通过3个桥臂错相120度工作。具体此处不做限定。
示例性的,以无桥PFC电路通过单桥臂工作为例说明无桥PFC电路的工作原理。若开关元件S3、S4为MOSFET,当交流电源输出的电流处于正半周期时,则认为交流电源工作在正半周。此时,MOSFET S4充当主管、MOSFTE S3充当同步管。在MOSFET S4的导通时间Ton内,电流回路流经电感L1、MOSFET S4以及二极管D2。此时电感L1储能。在MOSFET S4的关断时间Toff内,电流回路流经电感L1、MOSFET S3、电容C以及二极管A2。此时电感L1输出能量。交流电源以及电感L1向电容C充能。同理,当交流电源输出的电流处于负半周期时,则认为交流电源工作在负半周。MOSFET S3充当主管、MOSFET S4充当同步管,在MOSFET S3的导通时间Ton内,电流回路流经电感L1、MOSFET S3以及二极管A1,此时电感L1储能。在MOSFET S3的关断时间Toff内,电流回路流经电感L1、MOSFET S4、电 容C以及二极管D1,交流电源以及电感L1向电容C充能。
本申请实施例中,无桥PFC电路可以工作在CRM模式、TCM模式、CCM模式以及DCM模式,无桥PFC电路还可以工作在其他模式,具体此处不做限定。下面简单介绍一下各工作模式的特点。
当无桥PFC电路工作在CRM模式时,利用同步管体二极管的反向恢复电流,去拉通主管的体二极管,从而实现主管的零电压开通。当无桥PFC电路工作在TCM模式时,通过采样以及控制同步管的负电流,去拉通主管的体二极管,从而实现主管的零电压开通。当无桥PFC电路工作在CCM模式时,若开关管为GaN管时则不存在反向恢复的问题,GaN管可直接应用在无桥PFC电路当中。若开关元件为IGBT或者MOSFET时,以MOSFTE为例,通常在MOSFET开关元件串接一个与其体二极管极性相反的二极管、再并联一个二极管正负极分别连接在MOSFET的源极与串联二极管的阴极,并联二极管通常为碳化硅SiC、GaN二极管、快恢复二极管,这样就能解决CCM模式下反向恢复的问题,DCM模式这里不再详述。
图2是本申请实施例提供的另一种无桥PFC电路的基本拓扑图。
如图2所示,为进一步提升无桥PFC电路的功率密度和效率,通常使用如图2所示的开关元件S1以及S2替换如图1所示的整流二极管A1以及A2。
当交流电源工作在不同的周期时,PFC电路需要相应的控制S1以及S2闭合或者者断开,进而实现PFC电路的整流作用。现有技术方案中,通过检测开关元件的电压进而产生第一控制信号,检测交流输入电压产生第二控制信号,将第一控制信号以及第二控制信号合成之后,形成最的终控制信号进而控制开关元件的闭合或者断开。
然而,开关元件的电压变化较为剧烈,对采样开关元件电压所采用的采样控制电路时延要求低,采样控制电路的信号抗干扰能力较弱。
针对现有的无桥PFC电路在控制时存在的上述问题,本申请实施例提供了一种无桥PFC电路,控制模块采集流经电流采样元件的电流,当流经电流采样元件的电流大于第一阈值时,控制模块控制开关元件闭合。这样,可以根据流经电流采样元件的电流进而控制开关元件的闭合,从而实现开关元件的零电压开通。由于采集的电流不会突变,因此降低了对控制模块中包括的采样控制电路的时延的要求,控制模块的信号抗干扰能力较强。
图3是本申请实施例提供的一种无桥PFC电路的结构示意图。
如图3所示,无桥PFC电路包括:交流电源、低频开关模块、功率模块以及控制模块,低频开关模块包括开关元件,功率模块包括第一电感,控制模块包括电流采样元件。可以理解的是,该无桥PFC电路中还可以包括其他的模块,具体此处不做限定。
本申请实施例中,无桥PFC电路中所包括的模块之间具有连接关系。交流电源与低频开关模块之间通过开关元件连接,交流电源与功率模块之间通过第一电感连接,低频开关模块和功率模块之间通过开关元件连接,控制模块与功率模块通过电流采样元件连接和/或控制模块与低频开关模块通过电流采样元件连接,控制模块控制低频开关模块中包括的开关元件闭合或断开;
本申请实施例中,控制模块采集流经电流采样元件的电流。这样,当流经电流采样元件的电流大于第一阈值时,控制模块可以控制开关元件闭合。从而,控制模块可以根据流 经采样元件的电流实现对开关元件的控制。
基于图3所描述的无桥PFC电路的结构示意图,下面对本申请实施例提供的无桥PFC电路进行描述。
图4是本申请实施例提供的一种无桥PFC电路的一实施例示意图。
本申请实施例中,一种可能的实现方式如图4所示。无桥PFC电路所包含的开关元件可以包括第一低频开关以及第二低频开关,还可以包括其他低频开关,具体此处不做限定。无桥PFC电路所包含的功率模块还包括第一功率开关、第二功率开关以及第一电容,电流采样元件包括第一采样元件,还可以包括其他元件,具体此处不做限定。
本申请实施例中,如图4所示,交流电源的第一端与第一电感的第一端连接,交流电源的第二端与第一低频开关的第一端和第二低频开关的第一端连接。第一电感的第二端与第一功率开关的第一端和第二功率开关的第一端连接。第一低频开关的第二端与第一功率开关的第二端连接。第二低频开关的第二端与第二功率开关的第二端连接。第一电容与包括第一功率开关和第二功率开关的桥臂支路并联。控制模块的输入端与第一采样元件连接,控制模块的输出端与第一低频开关的第三端和第二低频开关的第三端连接。
本申请实施例中,当交流电源处于不同的输出状态时,第一采样元件的位置不同,控制模块可以采集不同支路的电流,进而根据不同支路的电流控制第一低频开关以及第二低频开关的闭合。
本申请实施例中,控制模块还可以包括控制器,控制器由分立元件组成,或,控制器由逻辑器件组成。控制模块还可以由其他器件组成,具体此处不做限定。
本申请实施例中,逻辑器件可以包括复杂CPLD、MCU、FPGA、CPU、DSP,逻辑器件还可以是其他器件,具体此处不做限定。
本申请实施例中,功率模块可以工作在临界导通模式CRM、电流连续模式CCM、三角型电流模式TCM、或电流断续模式DCM,功率模块还可以工作在其他模式,具体此处不做限定。
本申请实施例中,开关元件可以包括IGBT、MOSFET或GaN FET,开关元件还可以是其他元件,具体此处不做限定。
本申请实施例中,电流采样元件为电阻或CT,电流采样原件还可以是其他器件,具体此处不做限定。
图4a示出了交流输入正半周时,第一低频开关S2的驱动波形,第一电感L1的电流波形,交流输入的电压波形。由图9中可以看出,流经第一电感L1电流上升到预设阈值时,控制器开通第一低频开关S2,在正半周快结束、交流输入电压低于预设值后,控制器再关断第一低频开关S2,这样就实现了第一低频开关S2的零电压开通和工频同步整流。
图5是本申请实施例提供的一种无桥PFC电路的一实施例示意图。
本申请实施例中,一种可能的实现方式如图5所示。当交流电源工作在正半周,且第一功率开关处于闭合状态,第一采样元件串联接入第一功率开关所在的支路中。可选的,第一采样元件可以由a1位置串联接入第一功率开关所在的支路,第一采样元件可以由b1位置串联接入第一功率开关所在的支路,第一采样元件还可以通过其他等效的方式接入第一功率开关所在的支路,具体此处不做限定。
本申请实施例中,当交流电源工作在正半周,且第一功率开关处于闭合状态时,电流流经第一电感L1、第一功率开关S4以及第一低频开关S2。此时第一电感L1储能。当控制模块中的控制器确认流经第一采样元件M1的电流大于第一阈值时,控制模块可以控制第一低频开关S2闭合,这样就实现了第一低频开关S2的零电压开通和工频同步整流。
图6是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图6所示,当交流电源工作在正半周,且第一功率开关处于断开状态,第一采样元件串联接入第二功率开关所在的支路中。可选的,第一采样元件M1可以由a2位置串联接入第二功率开关S3所在的支路,第一采样元件M1可以由b2位置串联接入第二功率开关S3所在的支路,第一采样元件M1还可以通过其他等效的方式接入第二功率开关S3所在的支路,具体此处不做限定。
本申请实施例中,当交流电源工作在正半周,且第一功率开关S4处于断开状态时,电流流经第一电感L1、第二功率开关S3、第一电容C1以及第一低频开关S2。此时第一电感L1输出能量,交流电源以及第一电感L1共同向第一电容C1充能。当控制模块中的控制器确认流经第一采样元件M1的电流大于第一阈值时,控制模块可以控制第一低频开关S2闭合,这样就实现了第一低频开关S2的零电压开通和工频同步整流。
图7是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图7所示,当交流电源工作在负半周,且第二功率开关S3处于闭合状态,第一采样元件M1串联接入第二功率开关S3所在的支路中。可选的,第一采样元件M1可以由a3位置串联接入第二功率开关S3所在的支路,第一采样元件M1可以由b3位置串联接入第二功率开关S3所在的支路,第一采样元件M1还可以通过其他等效的方式接入第二功率开关S3所在的支路,具体此处不做限定。
本申请实施例中,当交流电源工作在负半周,且第二功率开关S3处于闭合状态时,电流流经第二低频开关S1、第二功率开关S3以及第一电感L1。当控制模块中的控制器确认流经第一采样元件M1的电流大于第一阈值时,控制模块控制第二低频开关S1闭合,这样就实现了第二低频开关S1的零电压开通和工频同步整流。
图8是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图8所示,当交流电源工作在负半周,且第二功率开关S3处于断开状态,第一采样元件M1串联接入第一功率开关S4所在的支路中。可选的,第一采样元件M1可以由a4位置串联接入第一功率开关S4所在的支路,第一采样元件M1可以由b4位置串联接入第一功率开关S4所在的支路,第一采样元件M1还可以通过其他等效的方式接入第一功率开关S4所在的支路,具体此处不做限定。
本申请实施例中,当交流电源工作在负半周,且第二功率开关S3处于断开状态时,电流流经第二低频开关S1、第一电容C、第一功率开关S4、以及第一电感L1。当控制模块中的控制器确认流经第一采样元件M1的电流大于第一阈值,控制模块控制第二低频开关S1闭合,这样就实现了第二低频开关S1的零电压开通和工频同步整流。
图9是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图9所示,可选的,电流采样元件还可以包 括第二采样元件M2。
当交流电源工作在正半周时,第一采样元件M1串联接入第一功率开关所在的支路中。第一采样元件M1串联接入第一功率开关S4所在的支路中。可选的,第一采样元件M1可以由d1位置串联接入第一功率开关S4所在的支路,第一采样元件M1可以由c1位置串联接入第一功率开关S4所在的支路,第一采样元件M1还可以通过其他等效的方式接入第一功率开关S4所在的支路,具体此处不做限定。
第二采样元件M2串联接入第二功率开关所在的支路中。可选的,第二采样元件M2串联接入第二功率开关S3所在的支路中。可选的,第二采样元件M2可以由a5位置串联接入第二功率开关S3所在的支路,第二采样元件M2可以由b5位置串联接入第二功率开关S3所在的支路,第二采样元件M2还可以通过其他等效的方式接入第二功率开关S3所在的支路,具体此处不做限定。
当控制模块中的控制器确认流经第一采样元件M1与第二采样元件M2的电流之和大于第一阈值时,控制模块控制第一低频开关S2闭合,这样就实现了第一低频开关S2的零电压开通和工频同步整流。
当交流电源工作在负半周时,第一采样元件M1串联接入第一功率开关所在的支路中,第二采样元件M2串联接入第二功率开关所在的支路中。具体的串联方式与上述实施例中图9所示的方式相类似,具体此处不做赘述。
当控制模块中的控制器确认流经第一采样元件M1与第二采样元件M2的电流之和大于第一阈值时,控制模块控制第二低频开关S1闭合,这样就实现了第二低频开关S1的零电压开通和工频同步整流。
一种可能的实现方式中,可选的,低频开关模块还可以包括第一二极管D2以及第二二极管D1。
本申请实施例中,第一二极管D2的负极与交流电源的第一端以及第二二极管D1的正极连接,第一二极管D2的正极与第一低频开关S2的第二端以及第一功率开关S4的第二端连接。第二二极管D1的正极与交流电源的第一端连接,第二二极管D1的负极与第二低频开关S1的第二端以及第二功率开关S3的第二端连接;控制模块采集第三采样元件的电流,流经第三采样元件的电流是流经第一二极管或第二二极管的电流;
当控制模块中的控制器确认流经第三采样元件的电流大于第一阈值时,控制模块中的控制器控制第一低频开关或第二低频开关断开。
本申请实施例中,以保护第一低频开关S2为例进行说明。在雷击(lightning)等恶劣工况下,低频开关元件沟道方向反向电流过大容易导致器件损坏。如图9a所示,第一低频开关S2的驱动波形,第一电感L1的电流波形,第一低频开关S2的电流波形,交流输入电压波形。从图9a中可以得知,流经第一低频开关S2的负向电流上升到预设值时,控制模块中包括的控制器将快速关断第一低频开关S2,这样就实现了第一低频开关S2的负向过电流保护。
图10是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图10所示,可选的,当交流电源工作在正半 周,且第一低频开关S2处于导通状态,第三采样元件M3串联接入第一二极管D2所在的支路中。可选的,第三采样元件M3可以由a6位置串联接入第一二极管D2所在的支路中,第三采样元件M3可以由b6位置串联接入第一二极管D2所在的支路中,第三采样元件M3还可以通过其他等效的方式接入第一二极管D2所在的支路中,具体此处不做限定。
可选的,或者,第三采样元件M3还可以在如图所示的c2位置串联接入交流电源的第一端与第一连接点之间的支路中,第一连接点为第一二极管与第二二极管的连接点d2。
当控制模块中的控制器确认流经第三采样元件M3的电流大于第一阈值时,控制模块中的控制器控制第一低频开关S2断开。
图11是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图11所示。可选的,当交流电源工作在负半周,且第二低频开关S1处于导通状态,第三采样元件M3串联接入第二二极管D1所在的支路中。可选的,第三采样元件M3可以由a7位置串联接入第二二极管D1所在的支路中,第三采样元件M3可以由b7位置串联接入第二二极管D1所在的支路中,第三采样元件M3还可以通过其他等效的方式接入第二二极管D1所在的支路中,具体此处不做限定。
可选的,或者,第三采样元件M3还可以在如图所示的c3位置串联接入交流电源的第一端与第一连接点之间的支路中,第一连接点为第一二极管与第二二极管的连接点d3。
当控制模块中的控制器确认流经第三采样元件M3的电流大于第一阈值时,控制模块中的控制器控制第二低频开关S1断开。
图12是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图12所示。可选的,当交流电源工作在正半周,且第一低频开关S2处于导通状态,第三采样元件M3串联接入第二连接点a8与第三连接点b8之间,第二连接点a8为第一二极管D2与第一功率开关S4的连接点,第三连接点b8为第一低频开关S2与第一电容C的连接点,且第三采样元件M3与第一采样元件M1相同。
当控制模块中的控制器确认流经第三采样元件M3的电流大于第一阈值时,控制模块中的控制器控制第一低频S2开关断开。
图13是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图13所示。可选的,当交流电源工作在负半周,且第二低频开S1关处于导通状态,第三采样元件M3串联接入第四连接点a9与第五连接点b9之间,第四连接点a9为第二二极管D1与第二功率开关S3的连接点,第五连接点b9为第二低频开关S1与第一电容C的连接点,且第三采样元件M3与第一采样元件M1相同。
当控制模块中的控制器确认流经第三采样元件M3的电流大于第一阈值时,控制模块中的控制器控制第二低频开关S1断开。
一种可能的实现方式中,可选的,功率模块还可以包括第二电感L2、第三功率开关S6以及第四功率开关S5。
第二电感L2的第一端与交流电源的第一端连接,第二电感L2的第二端与第三功率开 关S6的第一端连接。第一电容C与包括第三功率开关S6和第四功率开关S5的桥臂支路并联。第三功率开关S6的第二端与第一功率开关S4的第二端连接。第四功率开关S5的第一端与第二功率开关S3的第一端连接,第四功率开关S5的第二端与第三功率开关S6的第一端连接。
图14是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图14所示。可选的,电流采样元件还包括第二采样元件M2。
当交流电源工作在正半周,第一采样元件M1串联接入第一功率开关S4所在的支路中,第二采样元件串联M2接入第三功率开关S6所在的支路中,或,第一采样元件M1串联接入第二功率开关S3所在的支路中,第二采样元件M2串联接入第四功率开关S5所在的支路中;
当控制模块中的控制器确认流经第一采样元件M1与第二采样元件M2的电流之和大于第一阈值,控制模块中的控制器控制第一低频开关S2闭合。
当交流电源工作在负半周,第一采样元件M1串联接入第二功率开关S3所在的支路中,第二采样元件M2串联接入第四功率开关S5所在的支路中,或,第一采样元件M1串联接入第一功率开关S4所在的支路中,第二采样元件M2串联接入第三功率开关S6所在的支路中
当控制模块中的控制器确认流经第一采样元件M1与第二采样元件M2的电流之和大于第一阈值,控制模块中的控制器控制第二低频开关S1闭合。
图15是本申请实施例提供的一种无桥PFC电路的另一实施例示意图。
本申请实施例中,一种可能的实现方式如图15所示。可选的,电流采样元件还包括第二采样元件M2、第四采样元件M4以及第五采样元件M5。
当交流电源工作在正半周,第一采样元件M1串联接入第一功率开关S4所在的支路中,第二采样元件M2串联接入第二功率开关S3所在的支路中,第四采样元件M4串联接入第三功率开关S6所在的支路中,第五采样元件M5串联接入第四功率开关S5所在的支路中。
当控制模块中的控制器确认流经第一采样元件M1、第二采样元件M2、第四采样元件M4以及第五采样元件M5的电流之和大于第一阈值,控制模块控制第一低频开关S2闭合。
当交流电源工作在负半周,第一采样元件M1串联接入第一功率开关S4所在的支路中,第二采样元件M2串联接入第二功率开关S3所在的支路中,第四采样元件M4串联接入第三功率开关S6所在的支路中,第五采样元件M5串联接入第四功率开关S5所在的支路中。
当控制模块中的控制器流经第一采样元件M1、第二采样元件M2、第四采样元件M4以及第五采样元件M5的电流之和大于第一阈值,控制模块控制第二低频开关S1闭合。本申请实施例所提供的的无桥PFC电路中,采用了间接采集低频开关管电流的控制方法,进而减小了电流采样元件的体积,确保了任意工况下的零电压开通和负向过电流快速保护。通过采集同时流经功率开关元件、电感和低频开关元件体二极管的电流,快速开通低频开关元件。由于电感电流不能突变,降低了对检测控制电路信号超低时延的要求,从而实现了任意工况下的零电压导通。通过采集同时流经低频开关模块中的该第一开关元件、该第一二极管的电流,快速关断低频开关元件,避免其过电流损坏。本发明实现了无桥PFC电路低频开关元件的零电压开通和负向过电流的抑制,提升了无桥PFC电路的可靠性。

Claims (24)

  1. 一种无桥功率因素校正PFC电路,其特征在于,包括:交流电源、低频开关模块、功率模块以及控制模块,所述低频开关模块包括开关元件,所述功率模块包括第一电感,所述控制模块包括电流采样元件;
    所述交流电源与所述低频开关模块之间通过所述开关元件连接,所述交流电源与所述功率模块之间通过所述第一电感连接,所述低频开关模块和所述功率模块之间通过所述开关元件连接,所述控制模块与所述功率模块通过所述电流采样元件连接和/或所述控制模块与所述低频开关模块通过所述电流采样元件连接,所述控制模块控制所述低频开关模块中包括的所述开关元件闭合或断开;
    所述控制模块采集流经所述电流采样元件的电流;
    当流经所述电流采样元件的电流大于第一阈值,所述控制模块控制所述开关元件闭合或断开。
  2. 根据权利要求1所述的PFC电路,其特征在于,所述开关元件包括第一低频开关以及第二低频开关,所述功率模块还包括第一功率开关、第二功率开关以及第一电容,所述电流采样元件包括第一采样元件;
    所述交流电源的第一端与所述第一电感的第一端连接,所述交流电源的第二端与所述第一低频开关的第一端和所述第二低频开关的第一端连接;
    所述第一电感的第二端与所述第一功率开关的第一端和所述第二功率开关的第一端连接;
    所述第一低频开关的第二端与所述第一功率开关的第二端连接;
    所述第二低频开关的第二端与所述第二功率开关的第二端连接;
    所述第一电容与包括所述第一功率开关和所述第二功率开关的桥臂支路并联;
    所述控制模块的输入端与所述第一采样元件连接,所述控制模块的输出端与所述第一低频开关的第三端和所述第二低频开关的第三端连接;
    当所述交流电源处于不同的输出状态时,所述第一采样元件的位置不同。
  3. 根据权利要求2所述的PFC电路,其特征在于,
    当所述交流电源工作在正半周,且所述第一功率开关处于闭合状态,所述第一采样元件串联接入所述第一功率开关所在的支路中;
    当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第一低频开关闭合。
  4. 根据权利要求2所述的PFC电路,其特征在于,
    当所述交流电源工作在正半周,且所述第一功率开关处于断开状态,所述第一采样元件串联接入所述第二功率开关所在的支路中;
    当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第一低频开关闭合。
  5. 根据权利要求2所述的PFC电路,其特征在于,
    当所述交流电源工作在负半周,且所述第二功率开关处于闭合状态,所述第一采样元 件串联接入所述第二功率开关所在的支路中;
    当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第二低频开关闭合。
  6. 根据权利要求2所述的PFC电路,其特征在于,
    当所述交流电源工作在负半周,且所述第二功率开关处于断开状态,所述第一采样元件串联接入所述第一功率开关所在的支路中;
    当流经所述第一采样元件的电流大于第一阈值,所述控制模块控制所述第二低频开关闭合。
  7. 根据权利要求2所述的PFC电路,所述电流采样元件还包括第二采样元件,其特征在于,
    当所述交流电源工作在正半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中;
    当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第一低频开关闭合。
  8. 根据权利要求2所述的PFC电路,其特征在于,所述电流采样元件还包括第二采样元件,
    当所述交流电源工作在负半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中;
    当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第二低频开关闭合。
  9. 根据权利要求2所述的PFC电路,其特征在于,所述低频开关模块还包括第一二极管以及第二二极管;
    所述第一二极管的负极与所述交流电源的第一端以及所述第二二极管的正极连接,所述第一二极管的正极与所述第一低频开关的第二端以及所述第一功率开关的第二端连接;
    所述第二二极管的正极与所述交流电源的第一端连接,所述第二二极管的负极与所述第二低频开关的第二端以及所述第二功率开关的第二端连接;
    所述控制模块采集第三采样元件的电流,所述流经所述第三采样元件的电流是流经所述第一二极管或所述第二二极管的电流;
    当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第一低频开关或所述第二低频开关断开。
  10. 根据权利要求9所述的PFC电路,其特征在于,
    当所述交流电源工作在正半周,且所述第一低频开关处于导通状态,所述第三采样元件串联接入所述第一二极管所在的支路中,或,所述第三采样元件串联接入所述交流电源的第一端与第一连接点之间的支路中,所述第一连接点为所述第一二极管与所述第二二极管的连接点;
    当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第一低频开关断开。
  11. 根据权利要求9所述的PFC电路,其特征在于,
    当所述交流电源工作在负半周,且所述第二低频开关处于导通状态,所述第三采样元件串联接入所述第二二极管所在的支路中,或,所述第三采样元件接入所述交流电源的第一端与第一连接点之间的支路中,所述第一连接点为所述第一二极管与所述第二二极管的连接点;
    当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第二低频开关断开。
  12. 根据权利要求9所述的PFC电路,其特征在于,
    当所述交流电源工作在正半周,且所述第一低频开关处于导通状态,所述第三采样元件串联接入第二连接点与第三连接点之间,所述第二连接点为所述第一二极管与所述第一功率开关的连接点,所述第三连接点为所述第一低频开关与所述第一电容的连接点,且所述第三采样元件与所述第一采样元件相同;
    当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第一低频开关断开。
  13. 根据权利要求9所述的PFC电路,其特征在于,
    当所述交流电源工作在负半周,且所述第二低频开关处于导通状态,所述第三采样元件串联接入第四连接点与第五连接点之间,所述第四连接点为所述第二二极管与所述第二功率开关的连接点,所述第五连接点为所述第二低频开关与所述第一电容的连接点,且所述第三采样元件与所述第一采样元件相同;
    当流经所述第三采样元件的电流大于第一阈值时,所述控制模块控制所述第二低频开关断开。
  14. 根据权利要求2或9中任意一项所述的PFC电路,其特征在于,所述功率模块还包括第二电感、第三功率开关以及第四功率开关,
    所述第二电感的第一端与所述交流电源的第一端连接,所述第二电感的第二端与所述第三功率开关的第一端连接;
    所述第一电容与包括所述第三功率开关和所述第四功率开关的桥臂支路并联;
    所述第三功率开关的第二端与所述第一功率开关的第二端连接;
    所述第四功率开关的第一端与所述第二功率开关的第一端连接,所述第四功率开关的第二端与所述第三功率开关的第一端连接。
  15. 根据权利要求14所述的PFC电路,其特征在于,所述电流采样元件还包括第二采样元件,
    当所述交流电源工作在正半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第三功率开关所在的支路中,或,所述第一采样元件串联接入所述第二功率开关所在的支路中,所述第二采样元件串联接入所述第四功率开关所在的支路中;
    当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第一低频开关闭合。
  16. 根据权利要求14所述的PFC电路,其特征在于,所述电流采样元件还包括第二采样元件,
    当所述交流电源工作在负半周,所述第一采样元件串联接入所述第二功率开关所在的支路中,所述第二采样元件串联接入所述第四功率开关所在的支路中,或,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第三功率开关所在的支路中;
    当流经所述第一采样元件与所述第二采样元件的电流之和大于第一阈值,所述控制模块控制所述第二低频开关闭合。
  17. 根据权利要求14所述的PFC电路,其特征在于,所述电流采样元件还包括第二采样元件、第四采样元件以及第五采样元件;
    当所述交流电源工作在正半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中,所述第四采样元件串联接入所述第三功率开关所在的支路中,所述第五采样元件串联接入所述第四功率开关所在的支路中;
    当流经所述第一采样元件、所述第二采样元件、所述第四采样元件以及所述第五采样元件的电流之和大于第一阈值,所述控制模块控制所述第一低频开关闭合。
  18. 根据权利要求14所述的PFC电路,其特征在于,所述电流采样元件还包括第二采样元件、第四采样元件以及第五采样元件;
    当所述交流电源工作在负半周,所述第一采样元件串联接入所述第一功率开关所在的支路中,所述第二采样元件串联接入所述第二功率开关所在的支路中,所述第四采样元件串联接入所述第三功率开关所在的支路中,所述第五采样元件串联接入所述第四功率开关所在的支路中;
    当流经所述第一采样元件、所述第二采样元件、所述第四采样元件以及所述第五采样元件的电流之和大于第一阈值,所述控制模块控制所述第二低频开关闭合。
  19. 根据权利要求1至18所述的PFC电路,其特征在于,所述控制模块还包括控制器,所述控制器由分立元件组成,或,所述控制器由逻辑器件组成。
  20. 根据权利要求19所述的PFC电路,其特征在于,所述逻辑器件包括复杂可编程逻辑器件CPLD、微控制单元MCU、现场可编程门阵列FPGA、中央处理器CPU或数字信号处理器DSP。
  21. 根据权利要求1至18所述的PFC电路,其特征在于,所述功率模块可以工作在临界导通模式CRM、电流连续模式CCM、三角型电流模式TCM、或电流断续模式DCM。
  22. 根据权利要求1至18所述的PFC电路,其特征在于,所述开关元件包括绝缘栅双极型晶体管IGBT、金属氧化物半导体场效应管MOSFET或氮化镓GaN FET。
  23. 根据权利要求1至18所述的PFC电路,其特征在于,所述电流采样元件为电阻或电流互感器CT。
  24. 一种通信电源,其特征在于,所述通信电源包括所述PFC电路,所述PFC电路包括交流电源、低频开关模块、功率模块以及控制模块,所述PFC电路为如权利要求1至23 中任一项所述的PFC电路。
PCT/CN2020/093368 2020-05-29 2020-05-29 一种无桥功率因数校正pfc电路 WO2021237699A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080095802.9A CN115053443A (zh) 2020-05-29 2020-05-29 一种无桥功率因数校正pfc电路
PCT/CN2020/093368 WO2021237699A1 (zh) 2020-05-29 2020-05-29 一种无桥功率因数校正pfc电路
EP20937951.0A EP4148966A4 (en) 2020-05-29 2020-05-29 BRIDGELESS POWER FACTOR CORRECTION (PFC) CIRCUIT
US17/994,635 US20230089905A1 (en) 2020-05-29 2022-11-28 Bridgeless power factor correction pfc circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093368 WO2021237699A1 (zh) 2020-05-29 2020-05-29 一种无桥功率因数校正pfc电路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/994,635 Continuation US20230089905A1 (en) 2020-05-29 2022-11-28 Bridgeless power factor correction pfc circuit

Publications (1)

Publication Number Publication Date
WO2021237699A1 true WO2021237699A1 (zh) 2021-12-02

Family

ID=78745438

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093368 WO2021237699A1 (zh) 2020-05-29 2020-05-29 一种无桥功率因数校正pfc电路

Country Status (4)

Country Link
US (1) US20230089905A1 (zh)
EP (1) EP4148966A4 (zh)
CN (1) CN115053443A (zh)
WO (1) WO2021237699A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185189A1 (zh) * 2022-04-02 2023-10-05 华为数字能源技术有限公司 功率控制电路及其控制方法
WO2024007003A3 (en) * 2022-07-01 2024-02-15 Pacific Import Manufacturing, Inc. Bridgeless digital control power factor correction circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117748690A (zh) * 2024-02-19 2024-03-22 西安图为电气技术有限公司 电池的充放电电路和电池的充放电方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707441A (zh) * 2009-11-26 2010-05-12 华为技术有限公司 图腾柱无桥电路系统及电流采样装置
CN102185504A (zh) * 2011-05-17 2011-09-14 成都芯源系统有限公司 电源电路及控制电源电路的方法
CN106685206A (zh) * 2016-08-31 2017-05-17 株式会社村田制作所 功率因数校正装置及其控制方法以及电子设备
CN206402101U (zh) * 2017-01-22 2017-08-11 北京新能源汽车股份有限公司 一种pfc电路及充电机
CN110165883A (zh) * 2019-06-21 2019-08-23 海信(广东)空调有限公司 一种无桥pfc电路及变频产品
JP6589667B2 (ja) * 2016-02-02 2019-10-16 Tdk株式会社 ブリッジレスpfcコンバータ
CN110365203A (zh) * 2019-06-19 2019-10-22 广州金升阳科技有限公司 电流采样电路、电流过零检测电路、图腾柱无桥pfc电路及其控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10461632B1 (en) * 2018-04-10 2019-10-29 Semiconductor Components Industries, Llc Current sensing for bridgeless PFC converters
CN109067212B (zh) * 2018-07-31 2021-01-26 杭州中恒电气股份有限公司 一种功率因数校正电路及其控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707441A (zh) * 2009-11-26 2010-05-12 华为技术有限公司 图腾柱无桥电路系统及电流采样装置
CN102185504A (zh) * 2011-05-17 2011-09-14 成都芯源系统有限公司 电源电路及控制电源电路的方法
JP6589667B2 (ja) * 2016-02-02 2019-10-16 Tdk株式会社 ブリッジレスpfcコンバータ
CN106685206A (zh) * 2016-08-31 2017-05-17 株式会社村田制作所 功率因数校正装置及其控制方法以及电子设备
CN206402101U (zh) * 2017-01-22 2017-08-11 北京新能源汽车股份有限公司 一种pfc电路及充电机
CN110365203A (zh) * 2019-06-19 2019-10-22 广州金升阳科技有限公司 电流采样电路、电流过零检测电路、图腾柱无桥pfc电路及其控制方法
CN110165883A (zh) * 2019-06-21 2019-08-23 海信(广东)空调有限公司 一种无桥pfc电路及变频产品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4148966A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023185189A1 (zh) * 2022-04-02 2023-10-05 华为数字能源技术有限公司 功率控制电路及其控制方法
WO2024007003A3 (en) * 2022-07-01 2024-02-15 Pacific Import Manufacturing, Inc. Bridgeless digital control power factor correction circuit

Also Published As

Publication number Publication date
US20230089905A1 (en) 2023-03-23
CN115053443A (zh) 2022-09-13
EP4148966A4 (en) 2023-06-14
EP4148966A1 (en) 2023-03-15

Similar Documents

Publication Publication Date Title
WO2021237699A1 (zh) 一种无桥功率因数校正pfc电路
US8432138B2 (en) Power factor correction converter and control method thereof
US9570973B2 (en) Bridgeless power factor correction circuit and control method utilizing control module to control current flow in power module
US8564973B2 (en) Inverter topology circuit, inversion method and inverter
TW201304381A (zh) 電源電路及電源電路的控制方法
CN103887962B (zh) 功率因数校正电路
CN110365203B (zh) 电流采样电路、电流过零检测电路、图腾柱无桥pfc电路及其控制方法
WO2008020629A1 (fr) Convertisseur cc/cc à commutation souple pousser-tirer de type poussée d'isolation
CN104852567A (zh) 一种软开关图腾柱无桥功率因素校正电路
CN107070195A (zh) 半工频周期谐振软开关结构的图腾柱功率因数校正电路
CN110572069B (zh) 一种双向dc-ac变换器
WO2014067271A1 (zh) 三电平逆变器和供电设备
WO2021184921A1 (zh) 升降压驱动电路、方法、空调器和计算机可读存储介质
WO2017049900A1 (zh) Igbt短路检测保护电路及基于igbt的可控整流电路
CN106655830B (zh) 一种解耦控制方法及系统
CN107204717A (zh) 一种无桥升压型cuk pfc电路
CN106411125A (zh) 一种dc‑dc变换软开关电路及其控制方法
CN109546850A (zh) 无桥功率因数改善电路
CN109713929B (zh) 一种基于零电压软开关的三相三开关两电平整流器
CN112821748B (zh) 图腾柱无桥功率因数校正装置及电源
CN108462399A (zh) 一种高效整流器
WO2024011875A1 (zh) 一种变换器及其封波控制方法
CN208369467U (zh) 图腾柱pfc电路及空调器
TWI519053B (zh) 逆變器及其控制方法
TW201931752A (zh) 具ac正向電橋及改良的dc/dc拓樸的逆變器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937951

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020937951

Country of ref document: EP

Effective date: 20221205

NENP Non-entry into the national phase

Ref country code: DE