CN106685206A - 功率因数校正装置及其控制方法以及电子设备 - Google Patents

功率因数校正装置及其控制方法以及电子设备 Download PDF

Info

Publication number
CN106685206A
CN106685206A CN201610792617.0A CN201610792617A CN106685206A CN 106685206 A CN106685206 A CN 106685206A CN 201610792617 A CN201610792617 A CN 201610792617A CN 106685206 A CN106685206 A CN 106685206A
Authority
CN
China
Prior art keywords
switch device
switch
current
bridge arm
sampling unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610792617.0A
Other languages
English (en)
Inventor
梅纯
陈洲
朱方顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to CN201610792617.0A priority Critical patent/CN106685206A/zh
Publication of CN106685206A publication Critical patent/CN106685206A/zh
Priority to US15/681,615 priority patent/US10038368B2/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/70Regulating power factor; Regulating reactive current or power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

一种功率因数校正装置及其控制方法以及电子设备,该功率因数校正装置包括:第一输入端和第二输入端;输出端;电感,其第一端耦接第一输入端;第一桥臂,其第一端耦接输出端,其第二端直接或间接地接地,第一桥臂包括串联的第一开关器件和第二开关器件;第二桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地;第一电流采样单元,其至少一端接地,第一电流采样单元配置为至少在交流输入信号的负半周采样流经电感的电感电流的下降沿,以得到采样结果;开关控制单元,配置为根据采样结果产生开关控制信号,以控制第一开关器件和第二开关器件变更开关状态。本发明的方案能够减小寄生参数对电路的影响。

Description

功率因数校正装置及其控制方法以及电子设备
技术领域
本发明涉及功率因数校正(PFC)技术,尤其涉及一种功率因数校正装置及其控制方法以及电子设备。
背景技术
功率因数(Power Factor,PF)是用来衡量用电设备用电效率的一种参数。为了提高用电效率,在将交流输入信号提供至用电设备之前,通常都会先对交流输入信号进行功率因数校正(Power Factor Correction,PFC)。功率因数校正装置通常都是通过减小电压和电流之间的相位差来提高功率因数的。
现有技术中,一种功率因数校正装置采用的是传统的有桥升压(BOOST)电路,但是,由于这种电路中的整流桥内的二极管存在固定压降,导致损耗较大,电路的效率无法满足要求。
为了克服上述问题,现有技术中的另一种功率因数校正装置采用无桥双升压(BOOST)电路,但是,由于这种电路需要采用2套升压电路,在成本和空间上并不占优势。而且,这种电路中的开关管仍然是硬开通,效率提升有限。
目前,还有一种功率因数校正装置中使用的是图腾柱电路。图腾柱电路使用的元件较少,便于提高功率密度。而且,这种电路中的开关管是软开通,使得效率能够进一步提升,从而有利于提高整机效率。早先的图腾柱电路采用常规的MOS管,由于常规的MOS管的体二极管的反向恢复效应,使得图腾柱电路通常只能工作在电感电流断续模式,控制策略较为复杂。而基于GaN材料的MOS管开通速度很快,并且反向恢复效应特别小,因此,采用GaN材料的MOS管,图腾柱电路可以工作在电感电流连续模式,更加易于实现。
参考图1,图1示出了现有技术中一种图腾柱电路,包括:电感L、第一桥臂11、第二桥臂12和输出电容C。其中,第一桥臂11包括开关管Q1和开关管Q2,二者在第一连接点A连接;第二桥臂12包括开关管Q3和开关管Q4,二者在第二连接点B连接。更进一步而言,开关管Q1和Q2为主管,通常可以选用基于GaN材料的MOS管,用于控制整个图腾柱电路的充放电;开关管Q3和Q4在交流输入电压AC的正、负半周内分别导通,以用于同步整流。
下面参考图2A至图2F对图2所示图腾柱电路的工作过程进行简单介绍。参考图2A,当交流输入信号AC处于正半周时,开关管Q2和Q4导通,开关管Q1和Q3关断,交流输入信号AC施加在电感L上,使得流过电感L的电感电流上升;参考图2B,随后开关管Q2关断,由于存在死区时间,开关管Q1尚未导通,而电感电流无法突变,因此电流通过开关管Q1的体二极管流向输出电容C;参考图2C,死区时间结束后,开关管Q1软开通,电感L放电,电感电流开始下降;当交流输入信号AC处于负半周时,对应的等效电路如图2D至图2F所示,与正半周类似,只是用于充电和放电的开关管进行了互换,而同步整流管由开关管Q4换成了开关管Q3。
为了对图腾柱电路中的开关管进行控制,公告号为CN101707441B的专利文献中公开了一种控制方案,在与电感相连的第一桥臂中增加了两个电流采样单元,利用两个电流采样单元采集的电流分别控制第一桥臂中的两个开关管的导通和关断。但是在此方案中,其中一个电流采样单元是浮地连接,也即该电流采样单元与地无导体连接,使得此电路易受寄生参数的影响,并增加了对模拟电路的感应干扰;而且,为了保证较高的精度,电流采样单元往往需要采用带有较大感性、容性的器件,这就导致了电流采样单元足以产生影响电路运行效果的寄生参数。
公开号为US2012/0293141A1的专利文献公开了另一种图腾柱电路中开关管的控制方案。具体而言,该方案采用电流互感器来检测电流进而用于控制开关管。但是,电流互感器仍然会引入可能对电路产生影响的寄生参数。具体而言,电流互感器会引入寄生电感,开关管在导通和关断瞬间,寄生电感上可能会产生非常大的电压尖峰,可能导致系统无法正常工作。
发明内容
本发明解决的技术问题是提供一种功率因数校正装置及其控制方法以及电子设备,能够减小寄生参数对电路的影响。
为解决上述技术问题,本发明实施例提供一种功率因数校正装置,包括:第一输入端和第二输入端,配置为接收交流输入信号,所述交流输入信号包括交替的正半周和负半周;输出端,配置为向负载提供输出信号;电感,其第一端耦接所述第一输入端;第一桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第一桥臂包括串联的第一开关器件和第二开关器件,所述第一开关器件和第二开关器件连接的第一连接点耦接所述电感的第二端;第二桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第二桥臂包括串联的第三开关器件和第四开关器件,所述第三开关器件和第四开关器件连接的第二连接点耦接所述第二输入端;第一电流采样单元,其至少一端接地,所述第一电流采样单元配置为至少在所述交流输入信号的负半周采样流经所述电感的电感电流的下降沿,以得到采样结果;开关控制单元,耦接所述第一电流采样单元、第一开关器件和第二开关器件,所述开关控制单元配置为根据所述采样结果产生开关控制信号,以控制所述第一开关器件和第二开关器件变更开关状态。
根据本发明的一个实施例,所述第一桥臂的第二端和所述第二桥臂的第二端连接于第三连接点,所述输出端耦接输出电容的第一端,所述输出电容的第二端或所述第三连接点接地,所述第一电流采样单元的采样点设置于所述输出电容的第二端和所述第三连接点之间,所述第一电流采样单元还在所述交流输入信号的正半周采样所述电感电流的下降沿。
根据本发明的一个实施例,所述第一桥臂还包括:第二电流采样单元,其检测点设置于所述第一连接点和所述输出端之间,所述第二电流采样单元配置为检测流经所述第一开关器件的电流;其中,所述开关控制单元还耦接所述第二电流采样单元,当所述第二电流采样单元检测到流经所述第一开关器件的电流超过预设的第一阈值时,所述开关控制单元产生的开关控制信号控制所述第一开关器件关断至少预设时间。
根据本发明的一个实施例,所述第二电流采样单元为无感性的电流采样单元。
根据本发明的一个实施例,所述第一桥臂还包括:第三电流采样单元,其检测点设置于所述第一连接点和第三连接点之间,所述第三电流采样单元配置为检测流经所述第二开关器件的电流;其中,所述开关控制单元还耦接所述第三电流采样单元,当所述第三电流采样单元检测到流经所述第二开关器件的电流超过预设的第二阈值时,所述开关控制单元产生的开关控制信号控制所述第二开关器件关断至少预设时间。
根据本发明的一个实施例,所述第一电流采样单元的采样点设置于所述第一桥臂的第二端和所述第二桥臂的第二端之间,所述第一桥臂的第二端或所述第二桥臂的第二端接地。
根据本发明的一个实施例,在所述交流输入信号的正半周,所述第一电流采样单元检测流经所述第二开关器件的电流,当所述第一电流采样单元检测到流经所述第二开关器件的电流超过预设的第三阈值时,所述开关控制单元产生的开关控制信号控制所述第二开关器件关断至少预设时间。
根据本发明的一个实施例,所述第一桥臂还包括:第二电流采样单元,其检测点设置于所述第一连接点和所述输出端之间,所述第二电流采样单元配置为检测流经所述第一开关器件的电流;其中,所述开关控制单元还耦接所述第二电流采样单元,当所述第二电流采样单元检测到流经所述第一开关器件的电流超过预设的第四阈值时,所述开关控制单元产生的开关控制信号控制所述第一开关器件关断至少预设时间。
根据本发明的一个实施例,所述第二电流采样单元为无感性的电流采样单元。
根据本发明的一个实施例,当所述第一电流采样单元检测到所述电感电流开始下降时,所述开关控制单元在预设时间后的时间点采样得到所述采样结果,根据所述采样结果计算所述第一开关器件和第二开关器件下次变更状态的时间点,并产生所述开关控制信号以控制所述第一开关器件和第二开关器件在所述时间点变更开关状态。
为了解决上述问题,本发明实施例还提供一种电子设备,包括上述任一种功率因数校正装置。
为了解决上述问题,本发明实施例还提供一种功率因数校正装置的控制方法,所述功率因数校正装置包括:第一输入端和第二输入端,配置为接收交流输入信号,所述交流输入信号包括交替的正半周和负半周;输出端,配置为向负载提供输出信号;电感,其第一端耦接所述第一输入端;第一桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第一桥臂包括串联的第一开关器件和第二开关器件,所述第一开关器件和第二开关器件连接的第一连接点耦接所述电感的第二端;第二桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第二桥臂包括串联的第三开关器件和第四开关器件,所述第三开关器件和第四开关器件连接的第二连接点耦接所述第二输入端;所述控制方法包括:至少在所述交流输入信号的负半周采样流经所述电感的电感电流的下降沿,以得到采样结果;根据所述采样结果产生开关控制信号,以控制所述第一开关器件和第二开关器件变更开关状态。
与现有技术相比,本发明实施例的技术方案具有以下有益效果:
本发明实施例的功率因数校正装置中,采用至少一端接地的第一电流采样单元,该第一电流采样单元至少在交流输入信号的负半周采样电感电流的下降沿以得到采样结果,并根据该采样结果控制第一桥臂内的第一和第二开关器件的导通和关断。其中,在用于生成开关控制信号的采样结果中,还可以包括在交流输入信号的正半周采样电感电流的上升沿或下降沿得到的结果。由于第一电流采样单元接地,因此,相较于现有技术中浮地的地电位因寄生参数导致的变动,本发明实施例中第一电流采样单元的地电位稳定,并不会影响整个电路的运行效果,并且提高了高压状态下的安定性。
进一步而言,第一桥臂的第二端可以和第二桥臂的第二端连接于第三连接点,输出电容的第二端或第三连接点接地,第一电流采样单元的采样点可以设置于输出电容的第二端和第三连接点之间,由此,第一电流采样单元可以在交流输入信号的正半周和负半周采样电感电流的下降沿,正半周和负半周采样得到的采样结果都可以用于生成控制第一和第二开关器件的开关控制信号。
或者,第一电流采样单元的采样点可以设置于第一桥臂的第二端和第二桥臂的第二端之间,第一桥臂的第二端或者第二桥臂的第二端接地。由此,在交流输入信号的负半周,第一电流采样单元采样电感电流的下降沿,采样结果用于生成控制第一和第二开关器件的开关控制信号;而在交流输入信号的正半周,第一电流采样单元可以检测流经第二开关器件的电流,检测结果可以用于保护性地关断第二开关器件。
附图说明
图1是现有技术中一种图腾柱电路的电路结构示意图;
图2A至图2F是图1所示图腾柱电路在多种不同工作状态下的等效电路图;
图3是根据本发明第一实施例的功率因数校正装置的电路结构示意图;
图4A是图3所示功率因数校正装置在交流输入信号的正半周的等效电路图;
图4B是图3所示功率因数校正装置在交流输入信号的负半周的等效电路图;
图5是图3所示功率因数校正装置的工作信号波形图;
图6是根据本发明第二实施例的功率因数校正装置的电路结构示意图;
图7是根据本发明第三实施例的功率因数校正装置的电路结构示意图;
图8是根据本发明第四实施例的功率因数校正装置的电路结构示意图;
图9A是图8所示功率因数校正装置在交流输入信号的正半周的等效电路图;
图9B是图8所示功率因数校正装置在交流输入信号的负半周的等效电路图;
图10是根据本发明第五实施例的功率因数校正装置的电路结构示意图;
图11是根据本发明第六实施例的电子设备的结构框图。
具体实施方式
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
第一实施例
参考图3,图3示出了根据第一实施例的功率因数保护装置,该装置采用了基于图腾柱电路的结构,主要包括第一输入端、第二输入端、输出端Out、电感L、第一桥臂31、第二桥臂32、第一电流采样单元301和开关控制单元30。
其中,第一输入端和第二输入端配置为接收交流输入信号AC,交流输入信号AC包括交替的正半周和负半周。例如,交流输入信号AC可以是幅度220V、频率50Hz的市电信号。输出端Out配置为向负载(图中未示出)提供输出信号。电感L的第一端耦接第一输入端。
第一桥臂31的第一端耦接输出端Out,其第二端与第二桥臂32的第二端连接于第三连接点D。第一桥臂31包括串联的第一开关器件Q1和第二开关器件Q2,第一开关器件Q1和第二开关器件Q2连接的第一连接点A耦接电感L的第二端。第一开关器件Q1和第二开关器件Q2可以是MOS管,优选为基于GaN材料的MOS管。
第二桥臂32的第一端耦接输出端Out,其第二端与第一桥臂31的第二端连接于第三连接点D。第二桥臂32包括串联的第三开关器件Q3和第四开关器件Q4,第三开关器件Q3和第四开关器件Q4连接的第二连接点B耦接第二输入端。第三开关器件Q3和第四开关器件Q4可以是MOS管,或者也可以是二极管。在图3所示的实施例中,第三开关器件Q3和第四开关器件Q4为MOS管。
第一电流采样单元301的至少一端接地。第一电流采样单元301配置为在交流输入信号AC的正半周和负半周采样流经电感L的电感电流的下降沿,以得到采样结果,该采样结果传输至开关控制单元30。更具体而言,第一电流采样单元301的采样点设置于第三连接点和输出电容C的第二端之间,输出电容C的第一端耦接输出端Out,输出电容C可以配置为与负载并联。
第三连接点D或者输出电容C的第二端接地,例如经由导体或者阻性器件接地。非限制性地,图3所示的实施例中,输出电容C的第二端接地,由此使得负载直接接地,从而使得负载可以接收到稳定的输出信号。
需要说明的是,图3中第一电流采样单元301的连接方式仅为示意,其具体连接方式可以根据具体采用的器件不同而不同。例如,第一电流采样单元301可以是采样电阻,采样电阻的第一端连接第三连接点D,采样电阻的第二端连接输出电容C的第二端,采样电阻的第一端作为采样结果的输出端连接至开关控制单元30。或者,第一电流采样单元301也可以是电流互感器,电流互感器的原边绕组串联于第三连接点D和输出电容C的第二端之间,电流互感器中与原边绕组耦合的副边绕组的第一端连接至预设电位(例如接地),副边绕组的第二端作为采样结果的输出端连接至开关控制单元30。
开关控制单元30耦接第一电流采样单元301、第一开关器件Q1和第二开关器件Q2。开关控制单元30配置为根据第一电流采样单元301的采样结果产生开关控制信号,以控制第一开关器件Q1和第二开关器件Q2变更开关状态。更具体而言,开关控制单元30产生的开关控制信号可以控制第一开关器件Q1和第二开关器件Q2在导通状态和关断状态之间切换。此外,开关控制单元30还可以一并控制第三开关器件Q3和第四开关器件Q4的开关状态。开关控制单元30可以采用各种专用或通用电路实现,例如,开关控制单元30可以采用数字信号处理器(DSP)实现。
下面参考图4A和图4B对图3所示功率因数校正装置的工作过程进行说明。为了更加清楚、简明地示出等效电路,图4A和图4B中省略了开关控制单元、关断的开关器件以及接地点。
参考图4A,在交流输入信号AC的正半周的电流下降沿,第一开关器件Q1和第四开关器件Q4导通,其他开关器件关断。电流从第一输入端流出,经由电感L、第一开关器件Q1、输出电容C、第一电流采样单元301以及第四开关器件Q4返回第二输入端。此过程是电感L的放电过程,第一电流采样单元301可以采样电感电流的下降沿。
参考图4B,在交流输入信号AC的负半周的电流下降沿,第二开关器件Q2和第三开关器件Q3导通,其他开关器件关断。电流从第二输入端流出,经由第三开关器件Q3、输出电容C、第一电流采样单元301、第二开关器件Q2和电感L返回第一输入端。此过程也是电感L的放电过程,第一电流采样单元301可以采样电感电流的下降沿。
由上,结合图3、图4A和图4B,在交流输入信号AC的正半周和负半周,第一电流采样单元301都可以采样电感电流的下降沿,并将采样得到的采样结果传输至开关控制单元30,用以生成控制第一开关器件Q1和第二开关器件Q2的开关控制信号。第一电流采样单元301采样电感电流的下降沿,第一电流采样单元301的至少一端接地,相比于浮地的连接方式,可以将寄生参数对电路的影响降到最小。由此,第一电流采样单元301可以采用感性、容性较大的高精度器件以提高采样精度,而不受寄生参数的困扰。
此外,根据图4A和图4B,在交流输入信号AC的正半周和负半周,流过第一电流采样单元301的电流方向是相同的,其测量范围是0至电流峰值,因此可以选用量程较短的电流采样器件,有利于提高精度。
仍然参考图3,开关控制单元30可以使用各种适当的方式基于采样结果生成开关控制信号。例如,第一电流采样单元301检测到电感电流开始下降时,开关控制单元30在预设时间后的时间点采样电感电流的下降沿,以得到采样结果;进而根据采样结果计算第一开关器件Q1和第二开关器件Q2下次变更状态的时间点,并产生开关控制信号以控制第一开关器件Q1和第二开关器件Q2在相应的时间点变更开关状态。其中,预设时间后的时间点可以优选为电感电流的下降沿的中点或者在中点附近。对于交流输入信号AC的正半周和负半周,用于得到采样时间点的预设时间可以不同。
结合图3和图5,作为一个非限制性的例子,开关控制单元30可以采用脉宽调制信号的方式来控制第一开关器件Q1和第二开关器件Q2。具体而言,使用波形互补的脉宽调制信号PWM1和脉宽调制信号PWM2分别控制第一开关器件Q1和第二开关器件Q2。脉宽调制信号PWM1和脉宽调制信号PWM2的生成可以基于PWM计数器(PWM COUNTER)的计数值来实现。图5中,PWM COUNTER表示PWM计数器的计数值,PWM1表示脉宽调制信号PWM1,PWM2表示脉宽调制信号PWM2,IL表示流经电感的电感电流。
具体而言,PWM计数器可以工作在连续增减模式,当计数值在增加且等于预设值CMPA时,将脉宽调制信号PWM1置高(例如,逻辑“1”),而当计数值减小且等于预设值CMPA时,将脉宽调制信号PWM1置低(例如,逻辑“0”)。相应地,将脉宽调制信号PWM1取反可以得到脉宽调制信号PWM2。在交流输入信号AC的正半周,可以在PWM计数器的计数值等于0时(例如时刻t1)触发第一电流采样单元301对电感电流IL采样;而在交流输入信号AC的负半周,可以在PWM计数器的计数值等于周期值时(例如时刻t2)触发第一电流采样单元301对电感电流IL采样。另外,由于在每个PWM计数器的计数周期内需要采样多个数据,存在一定的采样延时,而且在第一开关器件Q1和第二开关器件Q2关断时刻可能存在波形震荡导致采样误差,需要确保采样点到关断时刻存在适当的时间差,因此,脉宽调制信号PWM1和PWM2的占空比可以不超过90%。
第二实施例
参考图6,图6示出了根据第二实施例的功率因数校正装置,其结构与图3所示第一实施例基本相同,主要区别在于,第一桥臂31还包括第二电流采样单元302。
进一步而言,第二电流采样单元302的检测点设置于第一连接点A和输出端Out之间,第二电流采样单元302配置为检测流经第一开关器件Q1的电流。虽然图6所示的例子中,第二电流采样单元302的检测点设置于输出端Out和第一开关器件Q1之间,但是可选地,第二电流采样单元302的检测点也可以设置于第一开关器件Q1和第一连接点A之间。
第二电流采样单元302耦接开关控制单元30,为了简化,图6并未示出第二电流采样单元302和开关控制单元30的连接关系。当第二电流采样单元302检测到流经第一开关器件Q1的电流超过预设的第一阈值时,开关控制单元30产生的开关控制信号控制第一开关器件Q1关断至少预设时间。采用这样的方式,可以实现对第一开关器件Q1的过流保护,尽量避免第一开关器件Q1的损坏。
第二电流采样单元302主要用于过流保护或过流监测,其精度的要求并不高。与第一电流采样单元301类似,第二电流采样单元302也可以是各种适当的电流采样单元,例如采样电阻或者采样芯片等。优选地,第二电流采样单元302可以为无感性的电流采样单元,例如现有技术中各种适当的无感性或低感性的电流采样芯片。由于第二电流采样单元302是浮地连接,因此,采用无感性或低感性的电流采样单元可以尽量减小寄生参数,以减小寄生参数对电路的影响。
第三实施例
参考图7,图7示出了根据第三实施例的功率因数校正装置,其结构与图6所示第二实施例基本相同,主要区别在于,第一桥臂31还包括第三电流采样单元303。
进一步而言,第三电流采样单元303的检测点设置于第一连接点A和第三连接点D之间,第三电流采样单元303配置为检测流经第二开关器件Q2的电流。优选地,第三电流采样单元303的检测点设置于第二开关器件Q2和第三连接点D之间,由此第三电流采样单元303可以通过第三连接点D直接接地或者经由第一电流采样单元301间接接地,相比于浮地的连接方式,可以减小第三电流采样单元303的寄生参数对电路的影响。非限制性地,在图7所示的实施例中,输出电容C的第二端接地,第三电流采样单元经由第一电流采样单元301间接地接地。
第三电流采样单元303耦接开关控制单元30,为了简化,图7并未示出第三电流采样单元303和开关控制单元30的连接关系。当第三电流采样单元303检测到流经第二开关器件Q2的电流超过预设的第二阈值时,开关控制单元30产生的开关控制信号控制第二开关器件Q2关断至少预设时间。采用这样的方案,可以实现对第二开关器件Q2的过流保护,尽量避免第二开关器件Q2的损坏。
需要说明的是,图7所示的例子中,采用第二电流采样单元302和第三电流采样单元303分别对第一开关器件Q1和第二开关器件Q2进行过流保护,不过作为一种可选方案,也可以仅采用第三电流采样单元303对第二开关器件Q2进行过流保护,而略去第二电流采样单元302,以简化电路结构。
第四实施例
参考图8,图8示出了根据第四实施例的功率因数保护装置,其结构与图1所示第一实施例基本相同,主要区别在于,第一电流采样单元301的采样点设置于第一桥臂31的第二端与第二桥臂32的第二端之间。与第一实施例的主要区别还在于接地点的不同,具体而言,第一桥臂31的第二端或第二桥臂32的第二端接地。在图8所示的实施例中,第二桥臂32的第二端连接至输出电容C的第二端并接地,由此使得负载直接接地,从而使得负载可以接收到稳定的输出信号。
图8中的第一电流采样单元301的连接方式也只是示意,其具体连接方式可以根据具体采用的器件不同而不同。例如,第一电流采样单元301可以是采样电阻,采样电阻的第一端连接第一桥臂31的第二端,采样电阻的第二端连接第二桥臂32的第二端,采样电阻的第一端作为采样结果的输出端连接至开关控制单元30。或者,第一电流采样单元301也可以是电流互感器,电流互感器的原边绕组串联于第一桥臂31的第一端和第二桥臂32的第二端之间,电流互感器的副边绕组的第一端连接至预设电位(例如接地),副边绕组的第二端作为采样结果的输出端连接至开关控制单元30。
与第一实施例类似,在第四实施例中,第一电流采样单元301在交流输入信号的负半周采样电感电流的下降沿,并根据采样结果生成开关控制信号。第一电流采样单元301的至少一端接地,相比于浮地的连接方式,可以将寄生参数对电路的影响降到最小。由此,第一电流采样单元301可以采用感性、容性较大的高精度器件以提高采样精度,而不受寄生参数的困扰。
在交流输入信号AC的负半周,第一电流采样单元301可以对电感电流的下降沿进行采样,得到的采样结果可以提供至开关控制单元30,以生成开关控制信号;而在交流输入信号AC的正半周,第一电流采样单元301可以检测流经第二开关器件Q2的电流,得到的检测结果可以提供至开关控制单元30,当检测到流经第二开关器件Q2的电流超过预设的第三阈值时,开关控制单元30控制第二开关器件Q2关断至少预设时间,以实现过流保护。采用本实施例的方案,可以解决背景技术提到的公开号为US2012/0293141A1的专利文献中的尖峰电流问题。
下面参考图9A和图9B进行详细说明。为了更加清楚、简明地示出等效电路,图9A和图9B中省略了开关控制单元、关断的开关器件以及接地点。
首先参考图9A,在交流输入信号AC的正半周的电流上升沿,电流从第一输入端流出,经由电感L、第二开关器件Q2、第一电流采样单元301以及第四开关器件Q4返回第二输入端,由此,第一电流采样单元301可以检测流经第二开关器件Q2的电流,检测结果传输至开关控制单元以实现对第二开关器件Q2的过流保护。另外,流经第二开关器件Q2的电流同时也流经电感L,因此,在交流输入信号AC的正半周,第一电流采样单元301也可以对流经电感L的电感电流进行采样,例如,对交流输入信号AC的正半周时流经电感L的电流的上升沿进行采样,采样结果可以传输至开关控制单元,以用于生成控制第一开关器件Q1和第二开关器件Q2的开关控制信号。参考图9B,在交流输入信号AC的负半周的电流下降沿,电流从第二输入端流出,经由第三开关器件Q3、输出电容C、第一电流采样单元301、第二开关器件Q2和电感L返回第一输入端。此过程是电感L的放电过程,第一电流采样单元301可以采样电感电流的下降沿,采样结果可以传输至开关控制单元,用于生成开关控制信号。
此外,根据图9A和图9B,在交流输入信号AC的正半周的电流上升沿和负半周的电流下降沿,流过第一电流采样单元301的电流方向是相反的,其测量范围是电流峰值的2倍,因此在此实施例中,第一电流采样单元301需要选用量程相对较长的电流采样器件。
第五实施例
参考图10,图10示出了根据第五实施例的功率因数校正装置,其结构与图8所示第四实施例基本相同,主要区别在于,第一桥臂31还包括第二电流采样单元302。
进一步而言,第二电流采样单元302的检测点设置于第一连接点A和输出端Out之间,第二电流采样单元302配置为检测流经第一开关器件Q1的电流。虽然图10所示的例子中,第二电流采样单元302的检测点设置于输出端Out和第一开关器件Q1之间,但是可选地,第二电流采样单元302的检测点也可以设置于第一开关器件Q1和第一连接点A之间。
第二电流采样单元302耦接开关控制单元30,为了简化,图10并未示出第二电流采样单元302和开关控制单元30的连接关系。当第二电流采样单元302检测到流经第一开关器件Q1的电流超过预设的第四阈值时,开关控制单元30产生的开关控制信号控制第一开关器件Q1关断至少预设时间。采用这样的方式,可以实现对第一开关器件Q1的过流保护,以尽量避免第一开关器件Q1的损坏。
优选地,第二电流采样单元302可以为无感性的电流采样单元。由于第二电流采样单元302是浮地连接,因此,采用无感性的电流采样单元可以尽量减小寄生参数,以减小寄生参数对电路的影响。
第六实施例
参考图11,图11示出了根据第六实施例的电子设备的结构框图,主要包括包含图腾柱电路的主电路111、后级谐振电路(LLC)112和DSP控制板110。其中,DSP控制板110用以实现上述第一至第五实施例中的开关控制单元,而主电路111可以是开关控制单元以外的其他电路结构。因此,第六实施例的电子设备包含上述第一至第五实施例中的功率因数校正装置以及后级谐振电路112。由此,交流输入信号AC经由功率因数校正装置进行功率因数校正后,用以驱动后级谐振电路112。
作为一个非限制性的例子,DSP控制板110可以基于型号为TMS320F28027的芯片实现,其具有成本低、运行主频高、AD采样延时小、AD采样以及PWM信号生成方式配置灵活等特点,可以较为容易地满足上述第一至第五实施例的需求。在开机后,可以首先对该DSP控制板110进行系统配置,例如包括时钟选择、终端控制、RAM代码复制、FLASH配置等;然后再对需要使用的外设分别进行配置,待所有的初始化操作完成后,就可以进入死循环以等待中断触发,进入终端控制程序而执行图腾柱电路的控制算法,也即生成开关控制信号。
更进一步而言,DSP控制板110生成开关控制信号的过程一方面可以基于对电感电流的下降沿的采样结果,另一方面还可以基于交流输入信号和输出端的输出信号的电压采样结果。换言之,开关控制信号的过程可以采用双环控制,内环电流环使得输出端的电流保持与交流输入信号的输入电压相同的正弦波形,同时尽量减小相位差;而外环电压环使得输出端的电压维持稳定,同时根据交流输入信号以及负载的变化调整提供至输出端的输出电流的有效值。
需要说明的是,图11所示仅是一种非限制性的例子,上述第一至第五实施例所示的功率因数校正装置可以用于需要进行功率因数校正的任何适当的电子设备中。
第七实施例
第七实施例涉及一种功率因数校正装置的控制方法,该功率因数校正装置可以参考图1,包括:第一输入端和第二输入端,配置为接收交流输入信号AC,交流输入信号AC包括交替的正半周和负半周;输出端,配置为向负载提供输出信号;电感L,其第一端耦接第一输入端;第一桥臂11,其第一端耦接上述输出端,其第二端直接或间接地接地,第一桥臂11包括串联的第一开关器件Q1和第二开关器件Q2,第一开关器件Q1和第二开关器件Q2连接的第一连接点A耦接电感L的第二端;第二桥臂12,其第一端耦接输出端,其第二端直接或间接地接地,第二桥臂12包括串联的第三开关器件Q3和第四开关器件Q4,第三开关器件Q3和第四开关器件Q4连接的第二连接点B耦接第二输入端。该控制方法可以包括:至少在交流输入信号AC的负半周采样流经电感L的电感电流的下降沿,以得到采样结果;根据采样结果产生开关控制信号,以控制第一开关器件Q1和第二开关器件Q2变更开关状态。
在第一变化例中,第一桥臂11的第二端与第二桥臂12的第二端连接于第三连接点,输出端耦接输出电容C的第一端,输出电容C的第二端或者第三连接点接地。将采样点设置于输出电容C的第二端和第三连接点之间,以在交流输入信号AC的负半周采样电感电流的下降沿。此外,该采样点还可以用于在交流输入信号AC的正半周采样电感电流的下降沿,正半周和负半周的采样结果都可以用于产生开关控制信号。这样的例子可以参照图3及其相关描述。
更具体而言,当检测到电感电流开始下降时,在预设时间后的时间点采样得到采样结果,根据采样结果计算第一开关器件Q1和第二开关器件Q2下次变更状态的时间点,并产生开关控制信号以控制第一开关器件Q1和第二开关器件Q2在该时间点变更开关状态。开关控制信号的产生过程可以参照图5及其相关描述。
在基于上述第一变化例的第二变化例中,还可以在第一连接点A和输出端之间的通路上检测流经第一开关器件Q1的电流,当检测到流经第一开关器件Q1的电流超过预设的第一阈值时,生成的开关控制信号控制第一开关器件Q1关断至少预设时间,以对第一开关器件Q1进行过流保护。这样的例子可以参照图6及其相关描述。
在基于上述第一或第二变化例的第三变化例中,还可以在第一连接点A和第三连接点之间的通路上检测流经第二开关器件Q2的电流,当流经第二开关器件Q2的电流超过预设的第二阈值时,生成的开关控制信号控制第二开关器件Q2关断至少预设时间,以对第二开关器件Q2进行过流保护。这样的例子可以参照图7及其相关描述。
在第四变化例中,电感电流的下降沿的采样点设置于第一桥臂11的第二端和第二桥臂12的第二端之间,第一桥臂11的第二端或者第二桥臂32的第二端接地。该采样点可以在交流输入信号AC的负半周采样电感电流的下降沿。而在交流输入信号AC的正半周,在该采样点还可以检测流经第二开关器件Q2的电流,当检测到流经第二开关器件Q2的电流超过预设的第三阈值时,产生的开关控制信号控制第二开关器件Q2关断至少预设时间,以实现对第二开关器件Q2的过流保护。这样的例子可以参见图8及其相关描述。
在基于第四变化例的第五变化例中,还可以在第一连接点A和输出端之间的通路上检测流经第一开关器件Q1的电流,当流经第一开关器件Q1的电流超过预设的第四阈值时,产生的开关控制信号控制第一开关器件Q1关断至少预设时间,以实现对第一开关器件Q1的过流保护。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (19)

1.一种功率因数校正装置,其特征在于,包括:
第一输入端和第二输入端,配置为接收交流输入信号,所述交流输入信号包括交替的正半周和负半周;
输出端,配置为向负载提供输出信号;
电感,其第一端耦接所述第一输入端;
第一桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第一桥臂包括串联的第一开关器件和第二开关器件,所述第一开关器件和第二开关器件连接的第一连接点耦接所述电感的第二端;
第二桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第二桥臂包括串联的第三开关器件和第四开关器件,所述第三开关器件和第四开关器件连接的第二连接点耦接所述第二输入端;
第一电流采样单元,其至少一端接地,所述第一电流采样单元配置为至少在所述交流输入信号的负半周采样流经所述电感的电感电流的下降沿,以得到采样结果;
开关控制单元,耦接所述第一电流采样单元、第一开关器件和第二开关器件,所述开关控制单元配置为根据所述采样结果产生开关控制信号,以控制所述第一开关器件和第二开关器件变更开关状态。
2.根据权利要求1所述的功率因数校正装置,其特征在于,所述第一桥臂的第二端和所述第二桥臂的第二端连接于第三连接点,所述输出端耦接输出电容的第一端,所述输出电容的第二端或所述第三连接点接地,所述第一电流采样单元的采样点设置于所述输出电容的第二端和所述第三连接点之间,所述第一电流采样单元还在所述交流输入信号的正半周采样所述电感电流的下降沿。
3.根据权利要求2所述的功率因数校正装置,其特征在于,所述第一桥臂还包括:第二电流采样单元,其检测点设置于所述第一连接点和所述输出端之间,所述第二电流采样单元配置为检测流经所述第一开关器件的电流;
其中,所述开关控制单元还耦接所述第二电流采样单元,当所述第二电流采样单元检测到流经所述第一开关器件的电流超过预设的第一阈值时,所述开关控制单元产生的开关控制信号控制所述第一开关器件关断至少预设时间。
4.根据权利要求3所述的功率因数校正装置,其特征在于,所述第二电流采样单元为无感性的电流采样单元。
5.根据权利要求2至4中任一项所述的功率因数校正装置,其特征在于,所述第一桥臂还包括:第三电流采样单元,其检测点设置于所述第一连接点和第三连接点之间,所述第三电流采样单元配置为检测流经所述第二开关器件的电流;
其中,所述开关控制单元还耦接所述第三电流采样单元,当所述第三电流采样单元检测到流经所述第二开关器件的电流超过预设的第二阈值时,所述开关控制单元产生的开关控制信号控制所述第二开关器件关断至少预设时间。
6.根据权利要求1所述的功率因数校正装置,其特征在于,所述第一电流采样单元的采样点设置于所述第一桥臂的第二端和所述第二桥臂的第二端之间,所述第一桥臂的第二端或所述第二桥臂的第二端接地。
7.根据权利要求6所述的功率因数校正装置,其特征在于,在所述交流输入信号的正半周,所述第一电流采样单元检测流经所述第二开关器件的电流,当所述第一电流采样单元检测到流经所述第二开关器件的电流超过预设的第三阈值时,所述开关控制单元产生的开关控制信号控制所述第二开关器件关断至少预设时间。
8.根据权利要求6或7所述的功率因数校正装置,其特征在于,所述第一桥臂还包括:第二电流采样单元,其检测点设置于所述第一连接点和所述输出端之间,所述第二电流采样单元配置为检测流经所述第一开关器件的电流;
其中,所述开关控制单元还耦接所述第二电流采样单元,当所述第二电流采样单元检测到流经所述第一开关器件的电流超过预设的第四阈值时,所述开关控制单元产生的开关控制信号控制所述第一开关器件关断至少预设时间。
9.根据权利要求8所述的功率因数校正装置,其特征在于,所述第二电流采样单元为无感性的电流采样单元。
10.根据权利要求1所述的功率因数校正装置,其特征在于,当所述第一电流采样单元检测到所述电感电流开始下降时,所述开关控制单元在预设时间后的时间点采样得到所述采样结果,根据所述采样结果计算所述第一开关器件和第二开关器件下次变更状态的时间点,并产生所述开关控制信号以控制所述第一开关器件和第二开关器件在所述时间点变更开关状态。
11.一种电子设备,其特征在于,包括权利要求1至10中任一项所述的功率因数校正装置。
12.一种功率因数校正装置的控制方法,所述功率因数校正装置包括:
第一输入端和第二输入端,配置为接收交流输入信号,所述交流输入信号包括交替的正半周和负半周;
输出端,配置为向负载提供输出信号;
电感,其第一端耦接所述第一输入端;
第一桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第一桥臂包括串联的第一开关器件和第二开关器件,所述第一开关器件和第二开关器件连接的第一连接点耦接所述电感的第二端;
第二桥臂,其第一端耦接所述输出端,其第二端直接或间接地接地,所述第二桥臂包括串联的第三开关器件和第四开关器件,所述第三开关器件和第四开关器件连接的第二连接点耦接所述第二输入端;
其特征在于,所述控制方法包括:
至少在所述交流输入信号的负半周采样流经所述电感的电感电流的下降沿,以得到采样结果;
根据所述采样结果产生开关控制信号,以控制所述第一开关器件和第二开关器件变更开关状态。
13.根据权利要求12所述的功率因数校正装置的控制方法,其特征在于,所述第一桥臂的第二端和所述第二桥臂的第二端连接于第三连接点,所述输出端耦接输出电容的第一端,所述输出电容的第二端或所述第三连接点接地,所述电感电流的下降沿的采样点设置于所述输出电容的第二端和所述第三连接点之间,所述采样点还用于在所述交流输入信号的正半周采样所述电感电流的下降沿。
14.根据权利要求13所述的功率因数校正装置的控制方法,其特征在于,还包括:
在所述第一连接点和所述输出端之间的通路上,检测流经所述第一开关器件的电流;
当检测到流经所述第一开关器件的电流超过预设的第一阈值时,所述开关控制信号控制所述第一开关器件关断至少预设时间。
15.根据权利要求13或14所述的功率因数校正装置的控制方法,其特征在于,还包括:
在所述第一连接点和第三连接点之间的通路上,检测流经所述第二开关器件的电流;
当流经所述第二开关器件的电流超过预设的第二阈值时,所述开关控制信号控制所述第二开关器件关断至少预设时间。
16.根据权利要求12所述的功率因数校正装置的控制方法,其特征在于,所述电感电流的下降沿的采样点设置于所述第一桥臂的第二端和所述第二桥臂的第二端之间,所述第一桥臂的第二端或所述第二桥臂的第二端接地。
17.根据权利要求16所述的功率因数校正装置的控制方法,其特征在于,在所述交流输入信号的正半周,在所述采样点检测流经所述第二开关器件的电流,当检测到流经所述第二开关器件的电流超过预设的第三阈值时,所述开关控制信号控制所述第二开关器件关断至少预设时间。
18.根据权利要求16或17所述的功率因数校正装置的控制方法,其特征在于,还包括:
在所述第一连接点和输出端之间的通路上,检测流经所述第一开关器件的电流;
当流经所述第一开关器件的电流超过预设的第四阈值时,所述开关控制信号控制所述第一开关器件关断至少预设时间。
19.根据权利要求12所述的功率因数校正装置的控制方法,其特征在于,当检测到所述电感电流开始下降时,在预设时间后的时间点采样得到所述采样结果,根据所述采样结果计算所述第一开关器件和第二开关器件下次变更状态的时间点,并产生所述开关控制信号以控制所述第一开关器件和第二开关器件在所述时间点变更开关状态。
CN201610792617.0A 2016-08-31 2016-08-31 功率因数校正装置及其控制方法以及电子设备 Pending CN106685206A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610792617.0A CN106685206A (zh) 2016-08-31 2016-08-31 功率因数校正装置及其控制方法以及电子设备
US15/681,615 US10038368B2 (en) 2016-08-31 2017-08-21 Power factor correction device and controlling method thereof, and electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610792617.0A CN106685206A (zh) 2016-08-31 2016-08-31 功率因数校正装置及其控制方法以及电子设备

Publications (1)

Publication Number Publication Date
CN106685206A true CN106685206A (zh) 2017-05-17

Family

ID=58839973

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610792617.0A Pending CN106685206A (zh) 2016-08-31 2016-08-31 功率因数校正装置及其控制方法以及电子设备

Country Status (2)

Country Link
US (1) US10038368B2 (zh)
CN (1) CN106685206A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108599549A (zh) * 2018-06-01 2018-09-28 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108696116A (zh) * 2018-06-01 2018-10-23 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108809121A (zh) * 2018-06-04 2018-11-13 广东美的制冷设备有限公司 整流控制方法、空调器及计算机可读存储介质
CN108809076A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108809122A (zh) * 2018-06-04 2018-11-13 广东美的制冷设备有限公司 整流控制方法、空调器及计算机可读存储介质
CN108809074A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉冲控制方法、空调器及存储介质
CN108809075A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN109921676A (zh) * 2019-03-04 2019-06-21 易事特集团股份有限公司 变流器拓扑单元与变流器装置
CN110071625A (zh) * 2019-01-16 2019-07-30 广东美的制冷设备有限公司 驱动控制电路、空调控制器和空调器
CN110365233A (zh) * 2018-04-10 2019-10-22 半导体组件工业公司 无桥pfc转换器的方法、封装ic及系统
CN110365202A (zh) * 2018-04-10 2019-10-22 半导体组件工业公司 无桥pfc转换器及其控制方法和封装式ic装置
CN111412628A (zh) * 2019-01-07 2020-07-14 广东美的制冷设备有限公司 电路板及空调器
CN111817546A (zh) * 2019-04-10 2020-10-23 群光电能科技股份有限公司 图腾柱无桥功率因数转换装置及其操作方法
WO2021237699A1 (zh) * 2020-05-29 2021-12-02 华为数字能源技术有限公司 一种无桥功率因数校正pfc电路
WO2022040851A1 (zh) * 2020-08-24 2022-03-03 华为数字能源技术有限公司 高功率因数整流电路及电源转换器
CN115498905A (zh) * 2022-09-20 2022-12-20 杭州蔚斯博系统科技有限公司 变换器控制方法,装置及包括其的移动式储能电源

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109921524B (zh) 2017-12-12 2024-08-09 恩智浦美国有限公司 具有用于异物检测的电力水平计算电路的无线充电系统
CN109995230A (zh) * 2017-12-29 2019-07-09 沃尔缇夫能源系统公司 功率因数校正pfc电路的控制方法、装置、设备及介质
CN111313569A (zh) 2018-12-11 2020-06-19 恩智浦美国有限公司 无线充电系统中的异物检测电路的q因子确定
CN111371189B (zh) 2018-12-26 2024-06-25 恩智浦美国有限公司 在具有复杂谐振电路的无线充电系统中确定q因数
WO2020232994A1 (zh) * 2019-05-17 2020-11-26 广东美的制冷设备有限公司 功率因数校正电路和空调器
TWI697183B (zh) * 2019-10-25 2020-06-21 國立臺灣科技大學 圖騰柱無橋式功率因數校正器及功率因數校正方法
CN112928825A (zh) * 2019-12-06 2021-06-08 恩智浦美国有限公司 确定品质因数的方法及无线充电器
CN113452271B (zh) * 2020-03-25 2022-09-06 台达电子企业管理(上海)有限公司 一种电源控制方法
CN114665699A (zh) * 2020-12-23 2022-06-24 台达电子企业管理(上海)有限公司 功率因数校正转换器及其控制方法
CN112803745B (zh) * 2020-12-31 2022-05-27 广东美的制冷设备有限公司 一种电流控制方法、装置及存储介质
CN112803746B (zh) * 2020-12-31 2022-04-12 台达电子企业管理(上海)有限公司 图腾柱型pfc电路
CN112821748B (zh) * 2021-01-29 2021-12-07 上海瞻芯电子科技有限公司 图腾柱无桥功率因数校正装置及电源
WO2022235540A1 (en) * 2021-05-04 2022-11-10 Texas Instruments Incorporated Charge mode control for power factor correction circuit
US11705808B2 (en) 2021-05-04 2023-07-18 Texas Instruments Incorporated Charge mode control for power factor correction circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201839199U (zh) * 2010-09-29 2011-05-18 比亚迪股份有限公司 一种无桥功率因素校正电路
CN103138557A (zh) * 2011-12-02 2013-06-05 中兴通讯股份有限公司 H桥pfc电路及该电路中电感电流的下降沿采样方法
US20130257390A1 (en) * 2012-03-29 2013-10-03 Delta Electronics, Inc Power factor correction circuit
CN105393447A (zh) * 2013-05-30 2016-03-09 德克萨斯仪器股份有限公司 具有软切换的图腾柱式输出的ac-dc转换器
CN105874694A (zh) * 2013-12-19 2016-08-17 德克萨斯仪器股份有限公司 用于零电压切换的装置和方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707441B (zh) 2009-11-26 2012-06-06 华为技术有限公司 图腾柱无桥电路系统及电流采样装置
CN102185504A (zh) 2011-05-17 2011-09-14 成都芯源系统有限公司 电源电路及控制电源电路的方法
CN102624213B (zh) * 2012-03-29 2014-12-03 台达电子工业股份有限公司 一种功率因数校正电路
CN102832826B (zh) * 2012-08-24 2016-01-27 台达电子工业股份有限公司 用于功率变换器的控制电路、变换系统及其控制方法
CN104237615B (zh) * 2013-06-09 2019-03-12 中兴通讯股份有限公司 电流过零检测装置、信号获取电路及电路系统
CN104518656B (zh) * 2013-10-08 2018-10-12 南京中兴软件有限责任公司 图腾柱无桥功率因数校正软开关控制装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201839199U (zh) * 2010-09-29 2011-05-18 比亚迪股份有限公司 一种无桥功率因素校正电路
CN103138557A (zh) * 2011-12-02 2013-06-05 中兴通讯股份有限公司 H桥pfc电路及该电路中电感电流的下降沿采样方法
US20130257390A1 (en) * 2012-03-29 2013-10-03 Delta Electronics, Inc Power factor correction circuit
CN105393447A (zh) * 2013-05-30 2016-03-09 德克萨斯仪器股份有限公司 具有软切换的图腾柱式输出的ac-dc转换器
CN105874694A (zh) * 2013-12-19 2016-08-17 德克萨斯仪器股份有限公司 用于零电压切换的装置和方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110365233B (zh) * 2018-04-10 2021-03-16 半导体组件工业公司 无桥pfc转换器的方法、封装ic及系统
CN110365202B (zh) * 2018-04-10 2021-07-30 半导体组件工业公司 无桥pfc转换器及其控制方法和封装式ic装置
CN110365233A (zh) * 2018-04-10 2019-10-22 半导体组件工业公司 无桥pfc转换器的方法、封装ic及系统
CN110365202A (zh) * 2018-04-10 2019-10-22 半导体组件工业公司 无桥pfc转换器及其控制方法和封装式ic装置
CN108696116A (zh) * 2018-06-01 2018-10-23 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108809076A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108809074A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉冲控制方法、空调器及存储介质
CN108809075A (zh) * 2018-06-01 2018-11-13 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108599549A (zh) * 2018-06-01 2018-09-28 广东美的制冷设备有限公司 图腾柱pfc电路、脉宽控制方法、空调器及存储介质
CN108809121A (zh) * 2018-06-04 2018-11-13 广东美的制冷设备有限公司 整流控制方法、空调器及计算机可读存储介质
CN108809122A (zh) * 2018-06-04 2018-11-13 广东美的制冷设备有限公司 整流控制方法、空调器及计算机可读存储介质
CN111412628A (zh) * 2019-01-07 2020-07-14 广东美的制冷设备有限公司 电路板及空调器
CN110071625A (zh) * 2019-01-16 2019-07-30 广东美的制冷设备有限公司 驱动控制电路、空调控制器和空调器
CN109921676A (zh) * 2019-03-04 2019-06-21 易事特集团股份有限公司 变流器拓扑单元与变流器装置
CN111817546A (zh) * 2019-04-10 2020-10-23 群光电能科技股份有限公司 图腾柱无桥功率因数转换装置及其操作方法
CN111817546B (zh) * 2019-04-10 2021-07-13 群光电能科技股份有限公司 图腾柱无桥功率因数转换装置及其操作方法
WO2021237699A1 (zh) * 2020-05-29 2021-12-02 华为数字能源技术有限公司 一种无桥功率因数校正pfc电路
WO2022040851A1 (zh) * 2020-08-24 2022-03-03 华为数字能源技术有限公司 高功率因数整流电路及电源转换器
CN115498905A (zh) * 2022-09-20 2022-12-20 杭州蔚斯博系统科技有限公司 变换器控制方法,装置及包括其的移动式储能电源

Also Published As

Publication number Publication date
US10038368B2 (en) 2018-07-31
US20180062504A1 (en) 2018-03-01

Similar Documents

Publication Publication Date Title
CN106685206A (zh) 功率因数校正装置及其控制方法以及电子设备
CN106100297B (zh) 基于碳化硅mosfet的驱动电路
CN104237615B (zh) 电流过零检测装置、信号获取电路及电路系统
CN101325367B (zh) 一种部分有源功率因数校正电路
CN201805600U (zh) 一种led驱动器原边恒流控制装置
CN103675426B (zh) 电感电流过零检测方法及电路以及带该电路的开关电源
CN102832792A (zh) 一种源极驱动控制电路及其控制方法
CN103795260A (zh) 一种非互补反激有源钳位变换器
CN103066831B (zh) 控制电路以及控制方法
CN105449807B (zh) 基于次级控制的充电系统及其次级控制装置
CN109921624A (zh) 一种开关电源控制器、开关电源及其过压检测方法
Hu et al. Cycle-by-cycle average input current sensing method for LLC resonant topologies
CN105576993A (zh) 一种变频器死区补偿方法及补偿系统
CN206804103U (zh) 一种水位监测装置
CN103280963A (zh) 一种降低功率管导通功耗的pfc控制电路
CN204068723U (zh) 一种三相电压暂降发生装置
CN106465502A (zh) 用于驱动负载的驱动器
CN104852595B (zh) 桥式模块化多电平开关电容ac‑ac变换器换流方法
CN104578774B (zh) 基于输出电压纹波控制的降压型变换器
CN102496933A (zh) 一种双并联有源电力滤波装置
CN109425811A (zh) 一种igbt检测电路及检测方法
CN207490887U (zh) Igbt高频软开关驱动厚膜
CN110076421A (zh) 基于SiC的快频脉冲TIG焊接电源数字化控制电路
CN206962707U (zh) 一种用于同步整流功率变换器的动态补偿控制电路
CN209659146U (zh) 一种开关电源控制器和开关电源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170517