WO2017049900A1 - Igbt短路检测保护电路及基于igbt的可控整流电路 - Google Patents

Igbt短路检测保护电路及基于igbt的可控整流电路 Download PDF

Info

Publication number
WO2017049900A1
WO2017049900A1 PCT/CN2016/079835 CN2016079835W WO2017049900A1 WO 2017049900 A1 WO2017049900 A1 WO 2017049900A1 CN 2016079835 W CN2016079835 W CN 2016079835W WO 2017049900 A1 WO2017049900 A1 WO 2017049900A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
diode
detection
circuit
pin
Prior art date
Application number
PCT/CN2016/079835
Other languages
English (en)
French (fr)
Inventor
苗雨
谢涌泉
李程志
邵国斌
Original Assignee
江森自控科技公司
江森自控空调冷冻设备(无锡)有限公司
约克(无锡)空调冷冻设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江森自控科技公司, 江森自控空调冷冻设备(无锡)有限公司, 约克(无锡)空调冷冻设备有限公司 filed Critical 江森自控科技公司
Priority to KR1020187011172A priority Critical patent/KR20180095503A/ko
Priority to EP16847782.6A priority patent/EP3355433A4/en
Priority to US15/762,509 priority patent/US20180287372A1/en
Priority to JP2018516031A priority patent/JP2018530297A/ja
Publication of WO2017049900A1 publication Critical patent/WO2017049900A1/zh
Priority to US16/452,313 priority patent/US20190386483A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1213Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/125Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers
    • H02H7/1257Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for rectifiers responsive to short circuit or wrong polarity in output circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/20Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment
    • H02H7/205Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for electronic equipment for controlled semi-conductors which are not included in a specific circuit arrangement
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/082Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
    • H03K17/0828Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in composite switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/22Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices
    • H02H7/222Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for distribution gear, e.g. bus-bar systems; for switching devices for switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/0009AC switches, i.e. delivering AC power to a load

Definitions

  • the invention relates to a controllable rectifier circuit and a protection circuit based on IGBT, in particular to an IGBT short circuit detection and protection circuit and a controllable rectifier circuit based on IGBT.
  • IGBT is used for switching DC voltage in most cases (to achieve DC chopping). Therefore, when the IGBT is short-circuited, the current flowing through the IGBT is always in a fixed direction, so it is necessary to design according to this current direction.
  • the short circuit protection circuit can be.
  • the IGBT is used as an AC electronic switch, if the IGBT is short-circuited, the current direction in the IGBT is determined by the polarity of the voltage across the IGBT, that is, when the IGBT is short-circuited, the direction of the current is uncertain, in order to comprehensively perform the IGBT. For protection, it is necessary to perform short-circuit protection for both directions.
  • the commonly used IGBT short-circuit protection method is to detect the voltage drop Vce between the collector and the emitter of the IGBT, and send it to the non-inverting input terminal of the comparator in the driving optocoupler, and compare it with a fixed threshold of the inverting input terminal. .
  • the principle is based on the relationship between Vce and Ic. When Ic increases rapidly, Vce rises, where Vce is the voltage drop between the collector and the emitter, and Ic is the current between the collector and the emitter. Therefore, when Vce is greater than the fixed threshold of the inverting terminal, it indicates that the IGBT is short-circuited, and the comparator is flipped to achieve short-circuit protection.
  • this method can only achieve short-circuit protection in a fixed current direction, and to achieve short-circuit protection in both directions, it is necessary to additionally increase the short-circuit protection circuit in the other direction, and the corresponding cost is also greatly improved.
  • the present invention provides an improved IGBT bidirectional short circuit detection and protection circuit, which can realize bidirectional short circuit protection of two reverse series IGBTs without additional short circuit protection circuit.
  • An embodiment of the present invention provides an IGBT short-circuit detection and protection circuit for short-circuit detection and protection of an IGBT, the circuit comprising: a driving unit for generating a PWM driving signal to control conduction of the IGBT; and a comparing unit, It has a threshold pin and a sense pin, the threshold pin is connected to a threshold voltage, the detection pin is connected to a collector of the IGBT through a diode, and the detection pin provides a detection current for the diode.
  • the cathode of the diode and the collector of the IGBT a connection, wherein the driving unit controls the IGBT to turn off when a voltage at the sense pin is greater than the threshold voltage.
  • the emitter of the IGBT is connected to a reference ground voltage.
  • the driving unit and the comparing unit are integrated in a single chip.
  • Yet another embodiment of the present invention provides an IGBT short-circuit detection and protection circuit for performing short-circuit detection protection on a pair of IGBTs connected in reverse series, the pair of IGBTs including a first IGBT and a second IGBT, the first IGBT
  • the emitter is connected to the emitter of the second IGBT
  • the circuit includes: a driving unit, the output end of which outputs a PWM driving signal, and is connected to the gate ends of the first IGBT and the second IGBT to simultaneously control the a first IGBT and a second IGBT are turned on; a comparison unit having a threshold pin and a detection pin, the threshold pin being connected to a threshold voltage, the detection pin respectively passing through the first diode and the second a pole tube connected to the collectors of the first IGBT and the second IGBT, the detection pin providing a detection current for the first diode and the second diode, the first diode and the second a cathode of the diode is
  • first freewheeling diode and a second freewheeling diode are respectively connected in parallel between the collector and the emitter of the first IGBT and the second IGBT.
  • the driving unit and the comparing unit are integrated in a single chip.
  • an IGBT-based controllable rectification circuit including: a three-phase AC power supply and three sets of IGBT units connected in reverse series, wherein each group is connected in reverse series
  • the IGBT unit includes a first IGBT and an emitter of a second IGBT, an emitter of the first IGBT is connected to an emitter of the second IGBT, and a collector of the first IGBT and the second IGBT is connected to a three-phase AC power source One of the phases is connected, and the other of the first IGBT and the second IGBT is connected to the collector of one of the other two sets of IGBT cells,
  • Each of the IGBT units further includes: a driving unit, the output end of which outputs a PWM driving signal, and is connected to the gate ends of the first IGBT and the second IGBT to simultaneously control conduction of the first IGBT and the second IGBT a comparison unit having a threshold pin and a sense pin, the threshold pin being coupled to a threshold voltage, the sense pin passing through the first diode and the second diode and the first IGBT and the a collector connection of two IGBTs, the detection pin providing a detection current for the first diode and the second diode, and cathodes of the first diode and the second diode respectively A collector connection of an IGBT and a second IGBT, wherein the driving unit controls the first IGBT and the second IGBT to be turned off when a voltage at the detection pin is greater than the threshold voltage.
  • each phase of the three-phase AC power source is connected to the set of IGBT units through an inductor.
  • the driving unit and the comparing unit are integrated in a single chip.
  • the IGBT short-circuit detection and protection circuit of the present invention uses the IGBT to be turned on, if a short circuit occurs, the current direction is determined by the polarity of the voltage across the IGBT, and only two diodes are added for each IGBT to realize two reverse series connection. Bidirectional short-circuit protection of the IGBT without additional short circuit protection.
  • the present invention utilizes a driver chip including a comparator, and simultaneously realizes a bidirectional short-circuit protection function for two reverse-series IGBTs, which are triggered by hardware to implement soft-off, thereby simplifying the circuit. At the same time, the cost is greatly reduced and the stability of the circuit is improved.
  • FIG. 1 is a circuit diagram showing an IGBT short circuit detection and protection circuit according to an embodiment of the present invention
  • FIG. 2 is a circuit diagram showing a reverse series IGBT pair short circuit detection and protection circuit according to an embodiment of the invention
  • FIG. 3 is a circuit diagram of a IGBT controllable rectifier circuit according to an embodiment of the invention.
  • FIG. 4 is a diagram for explaining the principle of IGBT short-circuit detection protection in the first current direction in the controllable rectifier circuit shown in FIG. 3;
  • FIG. 5 is a diagram for explaining the principle of IGBT short-circuit detection protection in the second current direction in the controllable rectifier circuit shown in FIG. 3;
  • FIG. 6 shows a circuit diagram of an IGBT-based rectifier circuit in accordance with another embodiment of the present invention.
  • the present invention provides an IGBT short-circuit detection and protection circuit for short-circuit detection and protection of the IGBT, as shown in FIG.
  • the circuit includes a driver chip IC including a comparator, and the driver chip can output a PWM driving signal to control the turning on and off of the IGBT, that is, when the PMW driving signal is at a high level, the IGBT is turned on, and the PMW driving signal is low. Normally, the IGBT is turned off.
  • the comparator in the driver chip IC has a threshold pin and an detection pin Vdesat, the threshold pin is an inverting input terminal connected to a threshold voltage, and the detection pin Vdesat is a non-inverting input terminal, which passes through the diode D
  • the collector C of the IGBT is connected, and the detection pin Vdesat supplies a detection current to the diode D through a constant current source inside the driving chip, for example, a detection current of a size of 250 uA, a cathode of the diode D and a set of the IGBT
  • the electrode C is connected, the collector C of the IGBT is connected to the input voltage, and the emitter E of the IGBT is connected to the reference signal voltage of the driving signal.
  • the IGBT When the IGBT is turned on, the current flows from the collector to the emitter, and the diode D is also turned on, detecting The input voltage of the pin Vdesat is the voltage drop of the diode D + the voltage drop Vce between the collector and the emitter of the IGBT. If the IGBT is short-circuited, the current Ic between the collector and the emitter increases, thus the collector and the emission The voltage drop Vce between the poles also increases.
  • the threshold voltage such as 7V as described in FIG. 1, the comparator in the driver chip is flipped, thereby driving the PW of the chip output.
  • the M drive signal goes low and the IGBT is turned off to achieve short circuit protection.
  • the present invention further provides an IGBT short-circuit detection and protection circuit for performing short-circuit detection protection on a pair of IGBTs connected in reverse phase.
  • the pair of IGBTs includes a first IGBT. (IGBT 1) and a second IGBT (IGBT 2), the emitter E of the first IGBT is connected to the emitter E of the second IGBT, and the collector of the first IGBT is connected to an input voltage.
  • the driver chip IC output terminal including the comparator outputs a PWM driving signal and is connected to the gate ends of the first IGBT and the second IGBT to simultaneously control conduction of the first IGBT and the second IGBT.
  • the comparator in the driver chip IC has a threshold pin and a detection pin Vdesat, and the threshold pin is connected to a threshold voltage, and the detection pin Vdesat passes through the first high voltage isolation diode D1 and the second high voltage isolation diode D3, respectively.
  • a collector connection of the first IGBT and the second IGBT The detection pin Vdesat supplies a detection current to the first high voltage isolation diode D1 and the second high voltage isolation diode D3, and the cathodes of the first high voltage isolation diode D1 and the second high voltage isolation diode D3 are respectively associated with the first IGBT and the The collector C of the two IGBTs is connected.
  • first freewheeling diode D2 and a second freewheeling diode D4 are connected in parallel between the collector C and the emitter E of the first IGBT and the second IGBT, respectively.
  • the so-called anti-parallel here that is, only one of the IGBT and the freewheeling diode can be turned on.
  • the PWM driving signal output by the driving chip IC becomes a low level, and the first IGBT and the second IGBT are turned off.
  • the Vce voltage acquiring unit D1 of the first direction current acquires the voltage drop across the IGBT1 in real time, and sends it to the non-inverting input terminal Vdesat and reverse of the comparator.
  • the threshold value of the input terminal is compared to realize short-circuit protection of the current in the first direction; when the current flows in the direction of the IGBT2 ⁇ freewheeling diode unit D2, the Vce voltage obtaining unit D3 of the current in the second direction acquires the voltage drop across the IGBT2 in real time.
  • the Vdesat which is sent to the non-inverting input of the comparator, is compared with the threshold of the inverting input to achieve short-circuit protection of the current in the second direction.
  • the above circuit of the present invention provides a controllable rectification circuit based on IGBT, as shown in FIG. 3, the rectification circuit comprises a three-phase AC power supply having three-phase inputs R, S and T, each One phase input is respectively connected to the corresponding energy storage inductors L1, L2, L3, and each phase output is respectively connected to a group of reverse series IGBT cells.
  • the R-phase output is connected to the first group of reverse-series IGBT cells through the inductor L1, and the first group of IGBT cells includes a first IGBT (IGBT 1) and a second IGBT (IGBT 2), the first The emitter of the IGBT (IGBT 1) is connected to the emitter of the second IGBT (IGBT 2), the collector of the first IGBT (IGBT 1) is connected to R, and the set of the second IGBT (IGBT 1) The electrodes are connected to the collectors of one of the other two sets of IGBT cells.
  • the first group of IGBT cells further includes a short circuit detection protection circuit including a first driver chip IC1 including a comparator and a high voltage isolation diode and a freewheeling diode.
  • the output end of the first driving chip IC1 outputs a PWM1 driving signal, and is connected to the gate ends of the first IGBT and the second IGBT to simultaneously control conduction of the first IGBT and the second IGBT.
  • the comparator in the first driving chip IC1 has a threshold pin and a detecting pin Vdesat, the threshold pin is connected to a threshold voltage, and the detecting pin Vdesat passes through the first diode D1 and the second diode D3, respectively Connected to the collectors of the first IGBT and the second IGBT, the detection pin Vdesat provides a detection current for the first diode D1 and the second diode D3, the first diode D1 and The cathode of the second diode D3 is connected to the collectors C of the first IGBT and the second IGBT, respectively. Collector C and emitter of the first IGBT and the second IGBT The first freewheeling diode D2 and the second freewheeling diode D4 are connected in parallel in parallel with each other.
  • the L-phase output is coupled to the second set of reverse-series IGBT cells via inductor L2
  • the T-phase output is coupled to the third set of reverse-series IGBT cells via inductor L3
  • the second set of reverse-series IGBT cells are
  • the three IGBTs (IGBT 3), the fourth IGBT (IGBT 4), the third high voltage isolation diode D5, the fourth high voltage isolation diode D7, the third freewheeling diode D6, the fourth freewheeling diode D8, and the second driving chip IC2 are configured.
  • the third group of reversely connected IGBT units consists of a fifth IGBT (IGBT 5), a sixth IGBT (IGBT 5), a fifth high voltage isolation diode D9, a sixth high voltage isolation diode D11, a fifth freewheeling diode D10, and a sixth continuation.
  • the flow diode D12 and the third drive chip IC3 are formed.
  • the connection of the second and third sets of reversely connected IGBT cells is similar to the connection of the first set of reversely connected IGBT cells, and will not be described herein.
  • collectors of the second IGBT, the fourth IGBT, and the sixth IGBT are connected to each other.
  • the above-mentioned IGBT-based controllable rectification circuit of the present invention is similar to the rectification principle of the conventional three-switch two-level APFC circuit, and will not be described herein.
  • the short circuit detection protection of the IGBT of the controllable rectifier circuit in the present embodiment will be described below with reference to FIG. 4 and FIG. 5.
  • the current between the R phase and the S phase will be described as an example, and the situation between the other phases is similar.
  • the current direction is R ⁇ L1 ⁇ IGBT1 ⁇ D4 ⁇ IGBT4 ⁇ D6 ⁇ L2 ⁇ S (shown by the dotted arrow in Fig. 4 direction).
  • the driving chip IC1/IC2 When the IGBT is short-circuited, the voltage drop across the IGBT increases sharply.
  • the driving chip IC1/IC2 When the voltage of the Vdesat of the non-inverting input terminal of the driving chip IC1/IC2 is greater than the threshold set by the inverting input terminal, the driving chip IC1/IC2 automatically drives the driving signal PWM. The soft turn-off (ie, goes low), thereby achieving short-circuit protection of the current from the R ⁇ S direction.
  • the driving photocoupler automatically turns off the driving signal softly, thereby The short circuit protection of the current from the S ⁇ R direction is realized.
  • the driving signal and the comparator for controlling the conduction of the IGBT are integrated in the driving chip IC, which simplifies the circuit and provides stability, but can also use discrete devices as needed, that is,
  • the driving signal of the IGBT and the detection of the voltage between the collector and the emitter are respectively realized by a driving unit and a comparison unit that provide a driving signal PWM, which can also realize the short-circuit detection and protection function of the above IGBT, and the specific circuit is as shown in FIG.

Abstract

一种IGBT短路检测保护电路,该电路包括:驱动单元,其输出端输出PWM驱动信号,且与第一IGBT(IGBT 1)和第二IGBT(IGBT 2)的栅端连接,以同时控制第一IGBT和第二IGBT的导通;比较单元,其具有阈值引脚和检测引脚(Vdesat),阈值引脚与阈值电压连接,检测引脚分别通过第一二极管(D1)和第二二极管(D3)与第一IGBT和第二IGBT的集电极(C)连接,检测引脚为第一二极管和第二二极管提供检测电流,第一二极管和第二二极管的阴极分别与第一IGBT和第二IGBT的集电极连接,其中,检测引脚处的电压大于阈值电压时,驱动单元控制第一IGBT和第二IGBT关断。该IGBT短路检测保护电路具有实现对两个反向串联IGBT的双向短路保护,且无需额外增加保护电路。

Description

IGBT短路检测保护电路及基于IGBT的可控整流电路 技术领域
本发明涉及基于IGBT的可控整流电路及保护电路,具体而言涉及一种IGBT短路检测保护电路及基于IGBT的可控整流电路。
背景技术
IGBT作为一种电子开关,绝大多数情况下用于开关直流电压(实现直流斩波),因此当IGBT出现短路时,流过IGBT的电流始终为固定方向,因此只要按照这一电流方向设计相应的短路保护电路即可。而当IGBT用作交流电子开关时,若IGBT出现短路,则IGBT中的电流方向由IGBT两端的电压极性所决定,即当IGBT短路时电流的方向是不确定的,为了对IGBT进行全面的保护,就必须针对两个方向分别进行短路保护。常用的IGBT短路保护方法是通过检测IGBT的集电极与发射极之间的压降Vce,将其送入驱动光耦内的比较器的同相输入端,与反向输入端的一固定阀值进行比较。其原理是根据Vce与Ic之间的关系,当Ic迅速增大时,Vce跟着上升,其中Vce为集电极和发射极之间的压降,Ic为集电极和发射极之间的电流。因此,当Vce大于反向端的固定阀值时,表示IGBT出现短路,此时比较器翻转实现短路保护。但该方法只能实现固定电流方向的短路保护,而要实现对两个方向的短路保护就必须额外增加另一个方向的短路保护电路,相应的成本也大幅提高。
因此,为解决上述技术问题,有必要提出一种改进的IGBT双向短路检测保护电路。
发明内容
针对现有技术的不足,本发明提出一种改进的IGBT双向短路检测保护电路,可以实现对两个反向串联IGBT的双向短路保护,而无需额外增加短路保护电路。
本发明的一个实施例提供一种IGBT短路检测保护电路,用于IGBT的短路检测以及保护,该电路包括:驱动单元,其用于生成PWM驱动信号以控制所述IGBT的导通;比较单元,其具有阈值引脚和检测引脚,所述阈值引脚与阈值电压连接,所述检测引脚通过二极管与所述IGBT的集电极连接,所述检测引脚为所述二极管提供检测电流,所述二极管的阴极与所述IGBT的集电极 连接,其中,所述检测引脚处的电压大于所述阈值电压时,所述驱动单元控制所述IGBT关断。
进一步地,所述IGBT的发射极与参考地电压连接。
进一步地,所述驱动单元与比较单元集成在单一芯片内。
本发明的又一个实施例提供一种IGBT短路检测保护电路,用于对反向串联的一对IGBT进行短路检测保护,所述一对IGBT包括第一IGBT和第二IGBT,所述第一IGBT的发射极与所述第二IGBT的发射极连接,该电路包括:驱动单元,其输出端输出PWM驱动信号,且与所述第一IGBT和第二IGBT的栅端连接,以同时控制所述第一IGBT和第二IGBT的导通;比较单元,其具有阈值引脚和检测引脚,所述阈值引脚与阈值电压连接,所述检测引脚分别通过第一二极管和第二二极管与所述第一IGBT和第二IGBT的集电极连接,所述检测引脚为所述第一二极管和第二二极管提供检测电流,所述第一二极管和第二二极管的阴极分别与所述第一IGBT和第二IGBT的集电极连接,其中,所述检测引脚处的电压大于所述阈值电压时,所述驱动单元控制所述第一IGBT和第二IGBT关断。
进一步地,在所述第一IGBT和第二IGBT的集电极和发射极之间分别反向并联第一续流二极管和第二续流二极管。
进一步地,所述驱动单元与比较单元集成在单一芯片内。
本发明的另一个实施例提供一种基于IGBT的可控整流电路,该基于IGBT的可控整流电路包括:三相交流电源以及三组反相串联的IGBT单元,其中,每组反向串联的IGBT单元包括第一IGBT和第二IGBT,所述第一IGBT的发射极与所述第二IGBT的发射极连接,所述第一IGBT和第二IGBT其中之一的集电极与三相交流电源的其中一相连接,所述第一IGBT和第二IGBT其中另一集电极与另外两组的IGBT单元的其中之一的集电极连接,
其中每组IGBT单元还包括:驱动单元,其输出端输出PWM驱动信号,且与所述第一IGBT和第二IGBT的栅端连接,以同时控制所述第一IGBT和第二IGBT的导通;比较单元,其具有阈值引脚和检测引脚,所述阈值引脚与阈值电压连接,所述检测引脚分别通过第一二极管和第二二极管与所述第一IGBT和第二IGBT的集电极连接,所述检测引脚为所述第一二极管和第二二极管提供检测电流,所述第一二极管和第二二极管的阴极分别与所述第一IGBT和第二IGBT的集电极连接,其中,所述检测引脚处的电压大于所述阈值电压时,所述驱动单元控制所述第一IGBT和第二IGBT关断。
进一步地,在所述第一IGBT和第二IGBT的集电极和发射极之间分别反 向并联第一续流二极管和第二续流二极管。
进一步地,所述三相交流电源的每一相均通过电感与所述一组IGBT单元连接。
进一步地,所述驱动单元与比较单元集成在单一芯片内。
本发明的IGBT短路检测保护电路利用IGBT导通时,如果出现短路则电流方向由其两端电压的极性所决定的特点,仅通过为每个IGBT增加一个二极管,实现对两个反向串联IGBT的双向短路保护,而无需额外增加短路保护电路。
进一步地,本发明利用一个内含比较器的驱动芯片,同时实现对两个反向串联的IGBT的双向短路保护功能,该双向短路保护功能均由硬件触发,实现软关断,从而在简化电路的同时大大降低了成本,并提高了电路的稳定性。
附图说明
本发明的下列附图在此作为本发明的一部分用于理解本发明。附图中示出了本发明的实施例及其描述,用来解释本发明的原理。
附图中:
图1示出了根据本发明一实施例的IGBT短路检测保护电路的电路示意图;
图2示出了根据本发明一实施例的反向串联的IGBT对短路检测保护电路的电路示意图;
图3示出了根据本发明一实施例的基于IGBT可控整流电路的电路示意图;
图4用于说明图3所示可控整流电路中在第一电流方向的IGBT短路检测保护原理;
图5用于说明图3所示可控整流电路中在第二电流方向的IGBT短路检测保护原理;
图6示出了根据本发明另一实施例的基于IGBT整流电路的电路示意图。
具体实施方式
在下文的描述中,给出了大量具体的细节以便提供对本发明更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本发明可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本发明发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本发明能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本发明的范围完全地传递给本领域技术人员。自始至终相同附图标记表示相同的元件。
为了彻底理解本发明,将在下列的描述中提出详细的步骤以及详细的结构,以便阐释本发明的技术方案。本发明的较佳实施例详细描述如下,然而除了这些详细描述外,本发明还可以具有其他实施方式。
基于前述原理:根据Vce与Ic之间的关系,当Ic迅速增大时,Vce跟着上升,本发明提供一种IGBT短路检测保护电路,用于IGBT的短路检测以及保护,如图1所示,该电路包括内含比较器的驱动芯片IC,所述驱动芯片可以输出PWM驱动信号来控制IGBT的导通和关断,即PMW驱动信号为高电平时,IGBT导通,PMW驱动信号为低电平时,IGBT关断。驱动芯片IC内的比较器具有阈值引脚和检测引脚Vdesat,所述阈值引脚为反相输入端,其与阈值电压连接,所述检测引脚Vdesat为同相输入端,其通过二极管D与IGBT的集电极C连接,所述检测引脚Vdesat通过驱动芯片内部的恒流源为所述二极管D提供检测电流,比如大小为250uA的检测电流,所述二极管D的阴极与所述IGBT的集电极C连接,IGBT的集电极C与输入电压连接,IGBT的发射极E与驱动信号参考地电压连接,当IGBT导通时,电流从集电极流向发射极,此时二极管D也导通,检测引脚Vdesat的输入电压为二极管D的压降+IGBT集电极和发射极之间的压降Vce,如果IGBT出现短路,则集电极和发射极之间的电流Ic增大,因而集电极和发射极之间的压降Vce也增大,当所述检测引脚处Vdesat的电压大于所述阈值电压,比如图1中所述7V时,驱动芯片内的比较器翻转,进而驱动芯片输出的PWM驱动信号变为低电平,所述IGBT关断,实现短路保护。
基于上述IGBT短路检测保护电路,本发明还提供一种IGBT短路检测保护电路,用于对反相串联的一对IGBT进行短路检测保护,如图2所示,所述一对IGBT包括第一IGBT(IGBT 1)和第二IGBT(IGBT 2),所述第一IGBT的发射极E与所述第二IGBT的发射极E连接,所述第一IGBT的集电极与输入电压连接。内含比较器的驱动芯片IC输出端输出PWM驱动信号,且与所述第一IGBT和第二IGBT的栅端连接,以同时控制所述第一IGBT和第二IGBT的导通。驱动芯片IC内的比较器具有阈值引脚和检测引脚Vdesat,所述阈值引脚与阈值电压连接,所述检测引脚Vdesat分别通过第一高压隔离二极管D1和第二高压隔离二极管D3与所述第一IGBT和第二IGBT的集电极连接,所述 检测引脚Vdesat为所述第一高压隔离二极管D1和第二高压隔离二极管D3提供检测电流,所述第一高压隔离二极管D1和第二高压隔离二极管D3的阴极分别与所述第一IGBT和第二IGBT的集电极C连接。
此外,在所述第一IGBT和第二IGBT的集电极C和发射极E之间分别反向并联第一续流二极管D2和第二续流二极管D4。此处的所谓反向并联,即所述IGBT和所述续流二极管之间只有一个可以导通。
其中,所述检测引脚Vdesat输入的电压大于所述阈值电压时,所述驱动芯片IC输出的PWM驱动信号变为低电平,所述第一IGBT和第二IGBT关断。具体地,当电流按照IGBT1→续流二极管D4方向流动时,第一方向电流的Vce电压获取单元D1会实时获取IGBT1两端的压降,并将其送入比较器的同相输入端Vdesat与反向输入端的阀值进行比较,从而实现第一方向电流的短路保护;当电流按照IGBT2→续流二极管单元D2方向流动时,第二方向电流的Vce电压获取单元D3会实时获取IGBT2两端的压降,并将其送入比较器的同相输入端Vdesat与反向输入端的阀值进行比较,从而实现第二方向电流的短路保护。
进一步地,本发明上述电路提供了一种基于IGBT的可控整流电路,如图3所示,该整流电路包括三相交流电源,该三相交流电源具有三相输入R、S和T,每一相输入分别连接对应的储能电感L1、L2、L3,并且每相输出分别与一组反向串联的IGBT单元连接。
如图3所示,R相输出通过电感L1与第一组反向串联的IGBT单元连接,第一组IGBT单元包括第一IGBT(IGBT 1)和第二IGBT(IGBT 2),所述第一IGBT(IGBT 1)的发射极与所述第二IGBT(IGBT 2)的发射极极连接,所述第一IGBT(IGBT 1)的集电极与R相连接,第二IGBT(IGBT 1)的集电极与另外两组的IGBT单元的其中之一的集电极连接。第一组IGBT单元还包括短路检测保护电路,该短路检测保护电路包括内含比较器的第一驱动芯片IC1以及高压隔离二极管和续流二极管。其中第一驱动芯片IC1输出端输出PWM1驱动信号,且与所述第一IGBT和第二IGBT的栅端连接,以同时控制所述第一IGBT和第二IGBT的导通。第一驱动芯片IC1内的比较器具有阈值引脚和检测引脚Vdesat,所述阈值引脚与阈值电压连接,所述检测引脚Vdesat分别通过第一二极管D1和第二二极管D3与所述第一IGBT和第二IGBT的集电极连接,所述检测引脚Vdesat为所述第一二极管D1和第二二极管D3提供检测电流,所述第一二极管D1和第二二极管D3的阴极分别与所述第一IGBT和第二IGBT的集电极C连接。在所述第一IGBT和第二IGBT的集电极C和发射极 E之间分别反向并联第一续流二极管D2和第二续流二极管D4。
类似地,L相输出通过电感L2与第二组反向串联的IGBT单元连接,T相输出通过电感L3与第三组反向串联的IGBT单元连接,第二组反向串联的IGBT单元由第三IGBT(IGBT 3)、第四IGBT(IGBT 4)、第三高压隔离二极管D5、第四高压隔离二极管D7,第三续流二极管D6、第四续流二极管D8以及第二驱动芯片IC2构成。第三组反向串联的IGBT单元由第五IGBT(IGBT 5)、第六IGBT(IGBT 5)、第五高压隔离二极管D9、第六高压隔离二极管D11,第五续流二极管D10、第六续流二极管D12以及第三驱动芯片IC3构成。第二和第三组反向串联的IGBT单元的连接与第一组反向串联的IGBT单元的连接类似,在此不再赘述。
此外,第二IGBT、第四IGBT、第六IGBT的集电极彼此连接。
上述构成了本发明的基于IGBT的可控整流电路,其与常规三开关两电平的APFC电路的整流原理类似,在此不再赘述。下面结合图4图和图5来说明本实施例中可控整流电路的IGBT的短路检测保护。
在此,以R相和S相之间的电流为例进行说明,其它相之间的情形类似。如图4所示,当PWM1、PWM2均为高电平且RS之间电压为正半周时,电流方向为R→L1→IGBT1→D4→IGBT4→D6→L2→S(图4虚线箭头所示方向)。由于PWM1为高电平,因此IGBT1和IGBT2均处于导通状态,但是根据RS之间的电压极性,IGBT1中有电流流过,此时二极管D1导通,而IGBT2中无电流流过,二极管D3截止,因此第一驱动芯片IC1内的比较器的同相输入端Vdesat的电压=二极管D1上的电压+IGBT1两端的压降;同理,二极管D7导通,而二极管D5截止,第二驱动芯片IC2内的比较器的同相输入端Vdesat=二极管D7上的电压+IGBT4两端的压降;
当IGBT出现短路时,IGBT两端的压降急剧增大,当驱动芯片IC1/IC2的同相输入端Vdesat的电压大于反向输入端设定的阀值时,驱动芯片IC1/IC2自动对驱动信号PWM软关断(即,变为低电平),从而实现电流从R→S方向的短路保护。
如图5所示,当PWM1、PWM2均为高电平且RS之间电压为负半周时,电流方向由S→L2→IGBT3→D8→IGBT2→D2→L1→R(图5虚线箭头所示方向)。由于PWM2为高电平,因此IGBT3和IGBT4均处于导通状态,但是根据RS之间的电压极性,IGBT3中有电流流过,此时二极管D5导通,而IGBT4中无电流流过,二极管D7截止,第二驱动芯片IC2内的比较器的同相输入端Vdesat的电压=二极管D5上的电压+IGBT3两端的压降;
同理,二极管D3导通,而二极管D1截止,第一驱动芯片IC1内的比较器的同相输入端Vdesat=二极管D3上的电压+IGBT2两端的压降;
当IGBT出现短路时,IGBT两端的压降急剧增大,当驱动芯片IC1/IC2的同相输入端的电压大于反向输入端设定的阀值时,驱动光耦自动对驱动信号软关断,从而实现电流从S→R方向的短路保护。
可以理解的是,在上述实施例中,用于控制IGBT导通的驱动信号和比较器集成在驱动芯片IC内,这样可以简化电路,提供稳定性,但是也可以根据需要使用分立的器件,即IGBT的驱动信号和集电极和发射极之间电压的检测分别通过提供驱动信号PWM的驱动单元和比较单元实现,其同样可以实现上述IGBT的短路检测保护功能,具体电路如图6所示,本领域技术人员根据前述说明,易于明白,在此不再赘述。
本发明已经通过上述实施例进行了说明,但应当理解的是,上述实施例只是用于举例和说明的目的,而非意在将本发明限制于所描述的实施例范围内。此外本领域技术人员可以理解的是,本发明并不局限于上述实施例,根据本发明的教导还可以做出更多种的变型和修改,这些变型和修改均落在本发明所要求保护的范围以内。本发明的保护范围由附属的权利要求书及其等效范围所界定。

Claims (10)

  1. 一种IGBT短路检测保护电路,用于IGBT的短路检测以及保护,其特征在于,该电路包括:
    驱动单元,其用于生成PWM驱动信号以控制所述IGBT的导通;
    比较单元,其具有阈值引脚和检测引脚,所述阈值引脚与阈值电压连接,所述检测引脚通过二极管与所述IGBT的集电极连接,所述检测引脚为所述二极管提供检测电流,所述二极管的阴极与所述IGBT的集电极连接,
    其中,所述检测引脚处的电压大于所述阈值电压时,所述驱动单元控制所述IGBT关断。
  2. 如权利要求1所述的IGBT短路检测保护电路,其特征在于,所述IGBT的发射极与所述驱动信号的参考地电压连接。
  3. 如权利要求1所述的IGBT短路检测保护电路,其特征在于,所述驱动单元与比较单元集成在单一芯片内。
  4. 一种IGBT短路检测保护电路,用于对反向串联的一对IGBT进行短路检测保护,所述一对IGBT包括第一IGBT和第二IGBT,所述第一IGBT的发射极与所述第二IGBT的发射极连接,其特征在于,该电路包括:
    驱动单元,其输出端输出PWM驱动信号,且与所述第一IGBT和第二IGBT的栅端连接,以同时控制所述第一IGBT和第二IGBT的导通;
    比较单元,其具有阈值引脚和检测引脚,所述阈值引脚与阈值电压连接,所述检测引脚分别通过第一二极管和第二二极管与所述第一IGBT和第二IGBT的集电极连接,所述检测引脚为所述第一二极管和第二二极管提供检测电流,所述第一二极管和第二二极管的阴极分别与所述第一IGBT和第二IGBT的集电极连接,
    其中,所述检测引脚处的电压大于所述阈值电压时,所述驱动单元控制所述第一IGBT和第二IGBT关断。
  5. 如权利要求4所述的IGBT短路检测保护电路,其特征在于,在所述第一IGBT和第二IGBT的集电极和发射极之间分别反向并联第一续流二极管和第二续流二极管。
  6. 如权利要求4所述的IGBT短路检测保护电路,其特征在于,所述驱动单元与比较单元集成在单一芯片内。
  7. 一种基于IGBT的可控整流电路,其特征在于,包括:三相交流电源 以及三组反相串联的IGBT单元,其中,每组反向串联的IGBT单元包括第一IGBT和第二IGBT,所述第一IGBT的发射极与所述第二IGBT的发射极连接,所述第一IGBT和第二IGBT其中之一的集电极与三相交流电源的其中一相连接,所述第一IGBT和第二IGBT其中另一的集电极与另外两组的IGBT单元的其中之一的集电极连接,
    其中每组IGBT单元还包括:
    驱动单元,其输出端输出PWM驱动信号,且与所述第一IGBT和第二IGBT的栅端连接,以同时控制所述第一IGBT和第二IGBT的导通;
    比较单元,其具有阈值引脚和检测引脚,所述阈值引脚与阈值电压连接,所述检测引脚分别通过第一二极管和第二二极管与所述第一IGBT和第二IGBT的集电极连接,所述检测引脚为所述第一二极管和第二二极管提供检测电流,所述第一二极管和第二二极管的阴极分别与所述第一IGBT和第二IGBT的集电极连接,
    其中,所述检测引脚处的电压大于所述阈值电压时,所述驱动单元控制所述第一IGBT和第二IGBT关断。
  8. 如权利要求7所述的基于IGBT的可控整流电路,其特征在于,在所述第一IGBT和第二IGBT的集电极和发射极之间分别反向并联第一续流二极管和第二续流二极管。
  9. 如权利要求7所述的基于IGBT的可控整流电路,其特征在于,所述三相交流电源的每一相均通过电感与所述一组IGBT单元连接。
  10. 如权利要求7所述的基于IGBT的可控整流电路,其特征在于,所述驱动单元与比较单元集成在单一芯片内。
PCT/CN2016/079835 2015-09-25 2016-04-21 Igbt短路检测保护电路及基于igbt的可控整流电路 WO2017049900A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020187011172A KR20180095503A (ko) 2015-09-25 2016-04-21 Igbt 단락 검출 및 보호 회로 및 igbt-기반 제어 가능한 정류 회로
EP16847782.6A EP3355433A4 (en) 2015-09-25 2016-04-21 IGBT SHORT-CIRCUIT DETECTION AND PROTECTION CIRCUIT AND IGBT-BASED CONTROLLED RECTIFIER CIRCUIT
US15/762,509 US20180287372A1 (en) 2015-09-25 2016-04-21 Igbt short-circuit detection and protection circuit and igbt-based controllable rectifier circuit
JP2018516031A JP2018530297A (ja) 2015-09-25 2016-04-21 Igbt短絡検出および保護回路ならびにibgtベースの制御可能な整流回路
US16/452,313 US20190386483A1 (en) 2015-09-25 2019-06-25 Igbt short-circuit detection and protection circuit and igbt-based controllable rectifier circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520755608.5 2015-09-25
CN201520755608.5U CN204967246U (zh) 2015-09-25 2015-09-25 Igbt短路检测保护电路及基于igbt的可控整流电路

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/762,509 A-371-Of-International US20180287372A1 (en) 2015-09-25 2016-04-21 Igbt short-circuit detection and protection circuit and igbt-based controllable rectifier circuit
US16/452,313 Continuation US20190386483A1 (en) 2015-09-25 2019-06-25 Igbt short-circuit detection and protection circuit and igbt-based controllable rectifier circuit

Publications (1)

Publication Number Publication Date
WO2017049900A1 true WO2017049900A1 (zh) 2017-03-30

Family

ID=55062287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079835 WO2017049900A1 (zh) 2015-09-25 2016-04-21 Igbt短路检测保护电路及基于igbt的可控整流电路

Country Status (7)

Country Link
US (2) US20180287372A1 (zh)
EP (1) EP3355433A4 (zh)
JP (1) JP2018530297A (zh)
KR (1) KR20180095503A (zh)
CN (1) CN204967246U (zh)
TW (1) TWM531088U (zh)
WO (1) WO2017049900A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679353A (zh) * 2017-11-20 2018-02-09 重庆大学 模拟压接式igbt器件失效短路机理的有限元建模方法
CN116953464A (zh) * 2023-07-31 2023-10-27 荣信汇科电气股份有限公司 一种igbt功率模块全工况短路试验方法及装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204967246U (zh) * 2015-09-25 2016-01-13 江森自控空调冷冻设备(无锡)有限公司 Igbt短路检测保护电路及基于igbt的可控整流电路
CN110445100A (zh) * 2019-07-22 2019-11-12 江苏云意电气股份有限公司 一种igbt退饱和保护和驱动电源欠压保护电路
CN111257716B (zh) * 2020-02-24 2022-06-10 漳州科华技术有限责任公司 Igbt过流检测电路及芯片和电子设备
CN112670955A (zh) * 2020-12-10 2021-04-16 合肥同智机电控制技术有限公司 一种基于双n沟道igbt串联的电机继电保护装置
WO2022149321A1 (ja) * 2021-01-07 2022-07-14 株式会社村田製作所 スイッチングモジュール

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222367A (ja) * 2003-01-10 2004-08-05 Toshiba Corp ゲート駆動装置及び電力変換装置
US20040252432A1 (en) * 2003-06-13 2004-12-16 Hitachi, Ltd. Protection circuit for power management semiconductor devices and power converter having the protection circuit
CN102332705A (zh) * 2011-10-25 2012-01-25 杭州日鼎控制技术有限公司 大功率变频装置igbt短路保护电路
CN103973277A (zh) * 2013-02-05 2014-08-06 通用电气公司 绝缘栅双极型晶体管的短路保护电路和方法
CN204536486U (zh) * 2014-11-19 2015-08-05 湖南南车时代电动汽车股份有限公司 一种igbt退饱和检测电路
CN204967246U (zh) * 2015-09-25 2016-01-13 江森自控空调冷冻设备(无锡)有限公司 Igbt短路检测保护电路及基于igbt的可控整流电路

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4429339A (en) * 1982-06-21 1984-01-31 Eaton Corporation AC Transistor switch with overcurrent protection
US4620258A (en) * 1984-03-30 1986-10-28 General Electric Company Circuit for self-commutated turn-off of latched devices, such as of the insulated-gate transistor/rectifier type
FR2735299B1 (fr) * 1995-06-09 1997-08-22 Legrand Sa Interrupteur statique a protection integree
DE10014641C2 (de) * 2000-03-24 2002-03-07 Siemens Ag Schaltungsanordnung mit einem bidirektionalen Leistungsschalter in Common Kollektor Mode und mit einer aktiven Überspannungsschutzvorrichtung
US6549438B2 (en) * 2001-04-30 2003-04-15 Precision Automation, Inc. AC-to-DC converter circuit utilizing IGBT's for improved efficiency
JP3932841B2 (ja) * 2001-08-29 2007-06-20 株式会社日立製作所 半導体電力変換装置
FR2845480A1 (fr) * 2002-10-07 2004-04-09 St Microelectronics Sa Protection d'un interrupteur en alternatif
JP2006033723A (ja) * 2004-07-21 2006-02-02 Sharp Corp 電力制御用光結合素子およびこの電力制御用光結合素子を用いた電子機器
JP5115829B2 (ja) * 2010-06-09 2013-01-09 株式会社デンソー スイッチング装置
JP5895319B2 (ja) * 2012-01-18 2016-03-30 九州電力株式会社 Smrコンバータ
US9571091B2 (en) * 2013-12-06 2017-02-14 Astec International Limited Methods for overdriving a base current of an emitter switched bipolar junction transistor and corresponding circuits
CN104078939B (zh) * 2014-06-25 2018-02-27 台达电子企业管理(上海)有限公司 功率变换器、短路保护电路与控制方法
US9435833B2 (en) * 2014-07-23 2016-09-06 Freescale Semiconductor, Inc. Resistance detection for integrated circuit driver based on parasitic inductance
US9331474B1 (en) * 2014-10-08 2016-05-03 Stmicroelectronics International N.V. Over-voltage protection circuit for a drive transistor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004222367A (ja) * 2003-01-10 2004-08-05 Toshiba Corp ゲート駆動装置及び電力変換装置
US20040252432A1 (en) * 2003-06-13 2004-12-16 Hitachi, Ltd. Protection circuit for power management semiconductor devices and power converter having the protection circuit
CN102332705A (zh) * 2011-10-25 2012-01-25 杭州日鼎控制技术有限公司 大功率变频装置igbt短路保护电路
CN103973277A (zh) * 2013-02-05 2014-08-06 通用电气公司 绝缘栅双极型晶体管的短路保护电路和方法
CN204536486U (zh) * 2014-11-19 2015-08-05 湖南南车时代电动汽车股份有限公司 一种igbt退饱和检测电路
CN204967246U (zh) * 2015-09-25 2016-01-13 江森自控空调冷冻设备(无锡)有限公司 Igbt短路检测保护电路及基于igbt的可控整流电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3355433A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107679353A (zh) * 2017-11-20 2018-02-09 重庆大学 模拟压接式igbt器件失效短路机理的有限元建模方法
CN116953464A (zh) * 2023-07-31 2023-10-27 荣信汇科电气股份有限公司 一种igbt功率模块全工况短路试验方法及装置

Also Published As

Publication number Publication date
JP2018530297A (ja) 2018-10-11
EP3355433A4 (en) 2019-06-19
TWM531088U (zh) 2016-10-21
KR20180095503A (ko) 2018-08-27
CN204967246U (zh) 2016-01-13
US20180287372A1 (en) 2018-10-04
US20190386483A1 (en) 2019-12-19
EP3355433A1 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
WO2017049900A1 (zh) Igbt短路检测保护电路及基于igbt的可控整流电路
TWI740837B (zh) 自動增強自驅動同步整流控制電路、主動箝位順向轉換器及主動箝位功率轉換器
US9912252B2 (en) Pre-charge circuit and photovoltaic inverter
TWI539735B (zh) 逆變裝置
CN107086770B (zh) Pfc电路及变频空调器
JP5320594B2 (ja) 電力変換装置
US8547072B2 (en) Phase control apparatus
TWI689153B (zh) 供電電壓產生電路及其積體電路
WO2014067271A1 (zh) 三电平逆变器和供电设备
WO2021003886A1 (zh) 驱动控制电路和家电设备
WO2012136042A1 (zh) 一种两线调光器的辅助电源电路
US20170302194A1 (en) Synchronous rectification circuit and switching power supply thereof
US7248093B2 (en) Bipolar bootstrap top switch gate drive for half-bridge semiconductor power topologies
JP5678860B2 (ja) 交流直流変換器
TWI539736B (zh) 五電平變換裝置
JP2015208109A (ja) 直流電源装置およびそれを用いた空気調和機
WO2022028168A1 (zh) 过零检测电路、pfc电路及两路交错并联pfc电路
JP2017212837A (ja) 電圧駆動型半導体スイッチング素子の駆動電源装置及びその制御方法
CN107104589B (zh) Pfc电路及变频空调器
TWI519053B (zh) 逆變器及其控制方法
JP2015216710A (ja) 半導体装置及び電力変換装置
US20200328695A1 (en) Ac-dc converting apparatus, motor drive control apparatus, blower, compressor, and air conditioner
CN209930126U (zh) 驱动控制电路和家电设备
JP2021126038A (ja) 電力変換装置
US7884663B2 (en) Gate-controlled rectifier and application to rectification circuits thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16847782

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2018516031

Country of ref document: JP

Ref document number: 15762509

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187011172

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016847782

Country of ref document: EP