WO2020230955A1 - 습식 나노 분말 제조방법 - Google Patents

습식 나노 분말 제조방법 Download PDF

Info

Publication number
WO2020230955A1
WO2020230955A1 PCT/KR2019/011217 KR2019011217W WO2020230955A1 WO 2020230955 A1 WO2020230955 A1 WO 2020230955A1 KR 2019011217 W KR2019011217 W KR 2019011217W WO 2020230955 A1 WO2020230955 A1 WO 2020230955A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
powder
reactant
wet
nano
Prior art date
Application number
PCT/KR2019/011217
Other languages
English (en)
French (fr)
Inventor
박춘성
하재상
이규석
Original Assignee
(주)다인스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)다인스 filed Critical (주)다인스
Publication of WO2020230955A1 publication Critical patent/WO2020230955A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a wet nano-powder manufacturing method, and in particular, to a method of manufacturing a silicon oxide (SiO x ) powder for a secondary battery negative electrode material as a nano-powder.
  • the dry vapor phase spraying method produces silicon oxide (SiO x ) by reacting a trace amount of oxygen with metallic silicon, so it is easy to control the particle size, have good particle size distribution, and have a clean surface in the control of the reaction conditions.
  • the particle size of ultra-fine particles and it requires repetitive sintering and pulverization processes to increase manufacturing cost and greatly increase manufacturing time, and there is a problem with uniformity of particle size or homogeneity of chemical composition.
  • the wet liquid manufacturing method is a method of growing silicon oxide (SiO x ) crystals by reacting STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol).
  • STC SiCl 4
  • EG ethylene glycol
  • the particles are very It is small, has a large surface area, has a uniform particle size distribution, and has the advantage of obtaining a homogeneous composition ratio.
  • silicon oxide (SiO x ) As a nano powder by a wet liquid manufacturing method, but crystal growth of silicon oxide (SiO x ), uniformity of crystal grain size, heat control, by-product treatment, etc. There is an urgent need for a method for producing silicon oxide (SiO x ) having excellent physical properties by further improving
  • an object of the present invention is the exothermic reaction conditions of STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol), especially STC (SiCl 4 ) and ethylene glycol
  • An object of the present invention is to provide a method of producing SiO x powder for a negative electrode material of a secondary battery effectively as a nano-powder having excellent physical properties by precisely controlling the order and speed of injecting (EG, Ethylene Glycol) into a reaction vessel.
  • the wet nano-powder manufacturing method for producing a metal oxide nano-powder for producing a gel-like metal oxide by wet-reacting a metal chloride as a first reactant and a polyhydric alcohol or water as a second reactant in a reaction vessel Reaction step; And a heat treatment step of heat-treating the gel metal oxide to generate a solid metal oxide, wherein in the reaction step, the first reactant is first added to the reaction vessel, and then the second reactant is It provides a method for producing a wet nanopowder that reacts while being added at an input rate.
  • the volume mixing ratio of the first reactant and the second reactant is less than 1:1.5, and the input rate of the second reactant is less than 5.0 vol%/min.It provides a method for producing a wet nanopowder. .
  • the volume mixing ratio of the first reactant material and the second reactant material is 1:0.5 to 1:1.0, characterized in that, it provides a method for producing a wet nanopowder.
  • the first reactant material includes STC (SiCl 4 ), and the second reactant material includes ethylene glycol (EG, Ethylene Glycol). It provides a method for manufacturing a wet nano powder.
  • reaction step The reaction step; And the heat treatment step.
  • an inert gas is supplied to the outside of the reaction vessel to provide a wet nano-powder manufacturing method, characterized in that the generation of by-products is suppressed.
  • a wet nano-powder manufacturing method characterized in that discharging the acidic gas so that the acidic gas does not remain in the reaction vessel in at least one step selected from the group consisting of the reaction step, the cover step, and the heat treatment step. do.
  • the first reactant material includes titanium tetrachloride (TiCl 4 )
  • the second reactant material includes polyhydric alcohol or water (H 2 O)
  • the gel-like metal oxide is titanium dioxide (TiO 2 ) It provides a wet nano-powder manufacturing method comprising a.
  • STC SiCl 4
  • ethylene glycol exothermic reaction conditions of the (EG, Ethylene Glycol), especially STC (SiCl 4) and ethylene glycol (EG, Ethylene Glycol) and the reaction vessel By precisely controlling the order and speed of addition to the material, silicon oxide (SiO x ) powder for a secondary battery negative electrode material as a nano powder having excellent physical properties can be effectively prepared.
  • FIG. 1 is a flow chart schematically showing a method of manufacturing a wet nanopowder according to an embodiment of the present invention.
  • FIG. 2 is a detailed flowchart of a reaction step in FIG. 1.
  • FIG. 4 is a detailed flowchart of a heat treatment step in FIG. 1.
  • 5 and 6 show the reaction product produced by adding STC (SiCl 4 ) to a reaction vessel made of titanium (Ti) and then reacting ethylene glycol (EG) at the rate of addition shown in Table 1 below through a sintering step.
  • STC SiCl 4
  • EG ethylene glycol
  • FIG. 1 is a flow chart schematically showing a method of manufacturing a wet nanopowder according to an embodiment of the present invention.
  • SiO x powder for a secondary battery anode material may be SiO x powder for a secondary battery negative electrode material, in addition, may be titanium dioxide (TiO 2 ) powder, and as the reaction material, titanium tetrachloride (TiCl 4 ) and water It is to be understood that (H 2 O) or dihydric alcohol is applied and can be prepared in the same process.
  • SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol) may be SiO x powder for a secondary battery negative electrode material, in addition, may be titanium dioxide (TiO 2 ) powder, and as the reaction material, titanium tetrachloride (TiCl 4 ) and water It is to be understood that (H 2 O) or dihydric alcohol is applied and can be prepared in the same process.
  • a metal chloride such as STC (SiCl 4 ) and tetrachloride (TiCl 4 ) as a first reaction material is added to a reaction vessel that is equipped with a stirrer and can be sealed, and then ethylene as a second reaction material.
  • Polyhydric alcohol such as glycol or water (H 2 O) is added at a precisely controlled rate, and these reaction substances are stirred and reacted for 2 to 72 hours under a temperature of 50 to 300°C in a sealed state. It is possible to produce a reaction product capable of producing a nano-powder having physical properties.
  • FIG. 2 is a detailed flowchart of a reaction step in FIG. 1.
  • the reaction product in the reaction vessel is shown in FIG. 3(d). As described above, it is formed in the form of white sugar powder, and only a small amount of unreacted polyhydric alcohol or water remains around the product, and as shown in Fig.
  • the heat treatment step (S200) of the wet nano-powder manufacturing method includes a first waiting step (S210), a preheating step (S220), a firing step (S230), and a second waiting step. It may include a step S240, a cooling step S250, an unloading step S260, and a crushing step S270.
  • the first waiting step (S210) is performed to prevent heat generated in the preheating step (S220) and the firing step (S230) from being transferred to the outside, and to minimize heat loss, and the preheating step (S220) May be performed to remove 90% or more of gas such as HCl generated from the gel-like reactant in the reaction vessel.
  • the gel reaction product is heat-treated at 600 to 900°C for 1 to 5 hours, and wet nano Allows powder crystal growth to occur.
  • reaction vessel transferred from the second waiting step (S240) to the cooling step (S250) is cooled before being discharged and discharged to the outside in the unloading step (S260) so that the worker can handle the product.
  • the reaction conditions of an exothermic reaction of a metal chloride and a polyhydric alcohol or water for example, STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol)
  • STC SiCl 4
  • ethylene glycol EG, Ethylene Glycol
  • the exothermic reaction conditions, in particular STC (SiCl 4 ) and ethylene glycol (EG, Ethylene Glycol) are precisely controlled in the order and rate of addition to the reaction vessel to control the crystal growth of wet nano powders and the uniformity of crystal particle size.
  • ethylene glycol (EG) was added at a rate of 1 vol%/min at the volume mixing ratio shown in Table 2 below to generate a reaction product.
  • Nano powder was prepared through heat treatment and applied as a negative electrode material of the secondary battery to produce a secondary battery, and the capacity of each secondary battery and the specific capacity according to the number of charging cycles were measured. The measurement results are as shown in the graphs of FIGS. 7 and 8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 습식 나노 분말 제조방법에 관한 것으로서, 특히, 나노 분말로서의 이차전지 음극재용 실리콘 산화물(SiOx) 분말을 제조하는 방법에 관한 것이다.

Description

습식 나노 분말 제조방법
본 발명은 습식 나노 분말 제조방법에 관한 것으로서, 특히, 나노 분말로서의 이차전지 음극재용 실리콘 산화물(SiOx) 분말을 제조하는 방법에 관한 것이다.
나노 분말로서의 이차전지 음극재용 실리콘 산화물(SiOx) 분말을 제조하는 방법으로는 건식의 기상분무법 또는 습식의 액상제조법 등이 있다. 일반적으로 건식의 기상분무법은 금속실리콘에 미량의 산소를 반응시켜 실리콘 산화물(SiOx)을 제조하여 생성반응 조건의 조절에서 입경의 컨트롤이 용이하고, 입도 분포가 양호하며, 깨끗한 표면을 갖는다는 장점이 있으나, 초미립자의 입도선별이 곤란하고, 반복적인 소결과 분쇄 과정이 필요하여 제조단가의 상승 및 제조시간이 크게 늘어나는 단점이 있고, 입자크기의 균일성이나 화학조성의 균질성에 문제가 있다.
반면, 습식의 액상제조법은 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응시켜 실리콘 산화물(SiOx) 결정을 성장시키는 방법으로서 고상반응법에 의해 제조된 분말에 비해, 입자가 매우 작으며 표면적이 크고 입자크기의 분포가 균일하며 균질한 조성비를 얻을 수 있는 장점이 있다.
그러나, 나노 분말로서 실리콘 산화물(SiOx)을 습식의 액상제조법으로 제조하기 위한 많은 시도가 이루어지고 있으나, 실리콘 산화물(SiOx)의 결정 성장, 결정 입자 크기의 균일성, 발열 제어, 부산물 처리 등을 더욱 향상시켜서 안정적으로 물성이 우수한 실리콘 산화물(SiOx)을 제조하기 위한 방법이 절실히 요구되고 있다.
따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)의 발열 반응 조건, 특히 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응 용기에 투입하는 순서 및 투입 속도 등을 정밀하게 조절하여 효과적으로 물성이 우수한 나노 분말로서의 이차전지 음극재용 SiOx 분말을 제조하는 방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은,
금속산화물의 나노 분말을 제조하기 위한 습식 나노 분말 제조방법에 있어서, 반응 용기에서 제1 반응 물질인 금속염화물과 제2 반응 물질인 다가 알코올 또는 물을 습식 반응시켜 겔 상태의 금속산화물을 생성하기 위한 반응 단계; 및 상기 겔 상태의 금속산화물을 열처리하여 고상 금속산화물을 생성하기 위한 열처리 단계;를 포함하고, 상기 반응 단계에서 상기 제1 반응 물질을 먼저 상기 반응 용기에 전량 투입한 후 상기 제2 반응 물질을 일정한 투입 속도로 투입하면서 반응시키는, 습식 나노 분말 제조방법을 제공한다.
여기서, 상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:1.5 미만이고, 상기 제2 반응 물질의 투입 속도는 5.0 vol%/min 미만인 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.
그리고, 상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:0.5 내지 1:1.0인 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.
나아가, 상기 제2 반응 물질의 투입 속도는 0.5 vol% 내지 2.0 vol%/min 인 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.
한편, 상기 제1 반응 물질은 STC(SiCl4)을 포함하고, 상기 제2 반응 물질은 에틸렌글리콜(EG, Ethylene Glycol)을 포함하는 것을 특징으로 하는, 습식 나노 분말 제조방법을 제공한다.
여기서, 상기 반응 단계; 및 상기 열처리 단계; 사이에 상기 반응 용기를 이송받아 내열성 커버를 덮기 위한 커버 단계; 를 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.
그리고, 상기 반응 단계에서 상기 반응 용기 내로 불활성 기체가 공급되는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.
나아가, 상기 열처리 단계에서 상기 열처리가 이루어지는 동안 상기 반응 용기 외부에 불활성 기체를 공급하여 부산물 발생을 억제하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.
한편, 상기 반응 단계, 상기 커버 단계 및 상기 열처리 단계로 이루어진 그룹으로부터 선택되는 하나 이상의 단계에서 상기 반응 용기 내에 산성 가스가 잔존하지 않도록 상기 산성 가스를 배출하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.
한편, 상기 제1 반응 물질은 사염화티탄(TiCl4)을 포함하고, 상기 제2 반응 물질은 다가 알코올 또는 물(H2O)을 포함하며, 상기 겔 상태의 금속산화물은 이산화티타늄(TiO2)을 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법을 제공한다.
본 발명에 따른 나노 분말을 제조하는 방법에 따르면, STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)의 발열 반응 조건, 특히 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응 용기에 투입하는 순서 및 투입 속도 등을 정밀하게 조절하여 효과적으로 물성이 우수한 나노 분말로서의 이차전지 음극재용 실리콘 산화물(SiOx) 분말을 제조할 수 있다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는 첨부도면은, 본 발명에 대한 실시예를 제공하고 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법을 개략적으로 나타내는 흐름도이다.
도 2는 도 1에서 반응 단계를 세분화한 흐름도이다.
도 3은 상기 반응 단계에서 반응 생성물 및 반응 생성물의 소성 후 소성 물질 상태를 도시한다.
도 4은 도 1에서 열처리 단계를 세분화한 흐름도이다.
도 5 및 도 6은 티타늄(Ti) 재질의 반응 용기에 STC(SiCl4) 투입 후 에틸렌글리콜(EG)를 아래 표 1에 기재된 투입 속도로 반응 단계에서 반응되어 생성된 반응 생성물을 소성 단계를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)의 측정 결과를 도시한다.
도 7 및 도 8은 티타늄(Ti) 재질의 반응 용기에 STC(SiCl4) 투입 후 1.0 vol%/min 의 투입 속도로 에틸렌글리콜(EG)을 표 2에 기재된 체적 배합비로 투입하여 반응 생성물을 생성한 후 열처리를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)을 측정의 측정 결과를 도시한다.
이하에서는 첨부된 도면들을 참조하여 본 발명에 대해서 자세히 설명한다. 이때, 각각의 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타낸다. 또한, 이미 공지된 기능 및/또는 구성에 대한 상세한 설명은 생략한다. 이하에 개시된 내용은, 다양한 실시 예에 따른 동작을 이해하는데 필요한 부분을 중점적으로 설명하며, 그 설명의 요지를 흐릴 수 있는 요소들에 대한 설명은 생략한다. 또한 도면의 일부 구성요소는 과장되거나 생략되거나 또는 개략적으로 도시될 수 있다. 각 구성요소의 크기는 실제 크기를 전적으로 반영하는 것이 아니며, 따라서 각각의 도면에 그려진 구성요소들의 상대적인 크기나 간격에 의해 여기에 기재되는 내용들이 제한되는 것은 아니다.
도 1은 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법을 개략적으로 나타내는 흐름도이다.
본 발명에 따른 습식 나노 분말 제조방법에 의하여 제조되는 나노 분말은 이차전지 음극재용 SiOx 분말일 수 있으며, 상기 나노 분말은 이차전지 음극재용 SiOx 분말 이외에도 도료, 선블록, 태양전지 투명전극에 사용되는 이산화티타늄(TiO2) 분말 등일 수 있다.
따라서, 도 1 이하의 도면을 참조하여 이차전지 음극재용 SiOx 분말을 제조하는 과정을 참조하여 설명하지만, 이하에서 설명되는 습식 나노 분말 제조방법에 의하여 제조될 수 있는 나노 분말은 반응물질로 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)가 사용되는 이차전지 음극재용 SiOx 분말일 수 있으며, 이외에도 이산화티타늄(TiO2) 분말일 수 있으며, 상기 반응물질로 사염화티탄(TiCl4)와 물(H2O) 또는 2가 알코올이 적용되며, 동일한 공정으로 제조될 수 있음이 이해되어야 한다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법은, 반응 단계(S100) 및 열처리 단계(S200)를 포함한다. 이외에도, 상기 열처리 단계(S200) 종료 후 생성물을 분쇄, 카본 블랜딩 등 후속 공정을 수행하는 단계가 더 포함될 수 있다.
상기 반응 단계(S100)는 내부에 교반기가 구비되고 밀폐 가능한 반응 용기에 제1 반응 물질로서 STC(SiCl4), 테트라클로라이드(TiCl4) 등과 같은 금속염화물을 첨가한 후 또 제2 반응 물질로서 에틸렌글리콜 등의 다가 알코올 또는 물(H2O)을 정밀하게 조절된 속도로 첨가하고 이러한 반응 물질들을 밀폐된 상태로 예를 들어 50 내지 300℃의 온도 하에서 2 내지 72시간 동안 교반 및 반응시킴으로써 목적한 물성을 보유하는 나노 분말을 제조할 수 있는 반응 생성물을 생성할 수 있다.
그리고, 상기 반응 단계(S100)는 상기 제1 반응 물질과 상기 제2 반응 물질 사이의 발열 반응 과정에서 반응성 조절을 위하여 에탄올을 추가로 공급하거나 불필요하고 목적하지 않은 반응을 억제하기 위해 N2/Ar와 같은 불활성 가스를 추가로 공급할 수 있으며, 또한 반응 과정에서 발생되는 염산(HCl) 가스 등의 산성 가스를 배출하면서 수행될 수 있다.
도 2는 도 1에서 반응 단계를 세분화한 흐름도이다.
도 2를 참조하면, 본 발명자들은 제1 반응 물질로서 금속염화물과 제2 반응 물질로서 다가 알코올 또는 물의 발열 반응을 통해 나노 분말을 제조함에 있어서 반응 용기에 제2 반응 물질인 다가 알코올 또는 물을 먼저 전량 투입한 후 제1 반응 물질인 금속염화물을 후속적으로 첨가하는 경우 여러 가지 문제가 발생할 수 있고, 반응 용기에 제1 반응 물질인 금속염화물을 먼저 전량 투입한 후 제2 반응 물질인 다가 알코올 또는 물을 후속적으로 첨가하는 경우에도 제1 반응 물질과 제2 반응 물질의 배합비 및 후속적으로 첨가되는 제2 반응 물질의 첨가 속도에 따라 제조되는 생성물의 물성이 상이할 수 있음을 실험적으로 확인함으로써 본 발명을 완성하게 되었다.
도 3은 상기 반응 단계에서 반응 생성물 및 반응 생성물의 소성 후 소성 물질 상태를 도시한다.
구체적으로, 도 3(a)는 다가 알코올 또는 물을 먼저 전량 투입 후 금속염화물을 후속적으로 투입하는 경우 반응 생성물의 상태이며, 도 3(b)는 상기 반응 물질의 체적 배합비가 1:1.5 이상이거나 후속적으로 투입되는 반응 물질의 투입 속도가 5 vol%/min 이상인 경우의 반응 생성물의 상태를 도시하며, 도 3(c)는 도 3(b)에 도시된 반응 생성물을 소성 단계를 거친 소성 물질의 상태를 도시하며, 도 3(d)는 상기 반응 물질로서 금속염화물과 다가 알코올 또는 물의 체적 배합비는 1:1.5 미만이고, 상기 반응 물질 중 후속적으로 투입되는 다가 알코올 또는 물의 투입 속도는 5 vol%/min 미만인 경우의 반응 생성물의 상태를 도시하며, 도 3(e)는 도 3(d)에 도시된 반응 생성물을 소성 단계를 거친 소성 물질의 상태를 도시한다.
도 3(a)에 도시된 바와 같이, 상기 반응 단계(S100)에서 다가 알코올 또는 물을 먼저 전량 투입 후 금속염화물을 후속적으로 투입하는 경우 상기 다가 알코올 또는 물의 액층 상부에서 금속염화물과의 급격한 반응이 일어나 액층 하부에서 급격한 온도 상승(60 내지 100℃이 일어나고 다량의 산성 가스가 배출될 수 있다.
또한, 이러한 경우 상기 액층의 상부에 스폰지상의 금속산화물이 생성되고 상기 액층의 하부에는 미반응 다가 알코올 또는 물이 잔존하게 되며, 추가적인 반응을 위해 교반 시간을 증가시키는 경우 상기 상부의 스폰지상의 금속산화물이 분해되면서 하부의 다가 알코올 또는 물에 다량 흡수되어 겔화되는 문제가 발생할 수 있다.
한편, 상기 하부의 미반응 다가 알코올 또는 물을 걸러내고 상기 상부의 스폰지상의 금속산화물을 상기 열처리 단계(S100) 중 후술하는 소성 단계에서 소성하게 되면 백색의 금속산화물이 생성되는 이는 2차 전지용 음극재 소재로 사용할 수 없다.
따라서, 상기 반응 단계(S100)에서 반응 물질의 투입은 금속염화물을 먼저 전량 투입한 후 다가 알코올 또는 물을 후속적으로 투입함으로써 상기와 같은 문제를 해결할 수 있다.
다만, 상기 반응 단계(S100)에서 반응 물질 중 금속염화물을 먼저 투입 후 다가 알코올 또는 물을 후속적으로 투입하는 경우에도 반응 물질들의 배합비와 후속 투입되는 반응 물질의 투입 속도에 따라 반응에 의해 생성되는 생성물의 물성 및 이로부터 제조되는 나노 분말의 물성이 상이할 수 있다.
구체적으로, 상기 반응 물질로서 금속염화물과 다가 알코올 또는 물의 체적 배합비는 1:1.5 미만, 예를 들어, 1:0.2 내지 1:1 , 바람직하게는 1:0.5 내지 1:1.0, 더욱 바람직하게는 1:0.3 내지 1:0.6 일 수 있고, 상기 반응 물질 중 후속적으로 투입되는 다가 알코올 또는 물의 투입 속도는 금속염화물대비 5vol%/min 미만, 바람직하게는 2 vol%/min 이하, 예를 들어, 0.5 vol%/min 내지 2 vol%/min , 더욱 바람직하게는 0.5 vol%/min 내지 1 vol%/min 로 조절될 수 있다.
여기서, 상기 반응 물질의 체적 배합비가 1:1.5 이상이거나 후속적으로 투입되는 반응 물질의 투입 속도가 5 vol%/min 이상인 경우, 도 3(b)에 도시된 바와 같이, 반응 용기 내의 반응 생성물이 겔 형태로 존재하여 생성물 주변에 미반응 다가 알코올 또는 물이 과량 잔류하며, 도 3(c)에 도시된 바와 같이, 반응 생성물을 소성하여 생성되는 소성 생성물 또는 이를 통해 제조되는 나노 입자는 흑갈색을 띠고, 특히 산화규소(SiOx)의 경우 x값이 1.7 초과 1.8 이하로 과도하여 입경이 증가하고, 리튬이온전지인 코인셀에 적용시 가역용량이 900 내지 1,100 mAh/g이고 가역비가 50% 수준으로 불충분하다.
반면, 상기 반응 물질의 체적 배합비가 1:0.5 내지 1:1.0이고 후속적으로 투입되는 반응 물질의 투입 속도가 1 내지 2 vol%/min 인 경우 반응 용기 내의 반응 생성물이 도 3(d)에 도시된 바와 같이, 백색 설탕 분말 형태로 형성되고 생성물 주변에 미반응 다가 알코올 또는 물이 소량만 잔류하며, 도 3(e)에 도시된 바와 같이, 반응 생성물을 소성하여 생성되는 소성 생성물 또는 이를 통해 제조되는 나노 입자는 흑색을 띠고, 특히 산화규소(SiOx)의 경우 x값이 1.4 내지 1.7로 범위를 만족하는 미립자로 형성될 수 있으며, 리튬이온전지인 코인셀에 적용시 가역용량이 1,700 내지 1,900 mAh/g이고 가역비가 65% 수준으로 충분한 성능을 확보할 수 있다.
본 발명의 일 실시예에 따른 습식 나노 분말 제조방법은, 상기 반응 단계(S100) 및 상기 열처리 단계(S200) 사이에 상기 반응 용기를 이송받아 내열성 커버를 덮어 상기 열처리 단계(S200)에서의 상기 반응 용기의 열화 및 손상을 방지하고 상기 반응 용기의 열화 또는 손상에 따른 이물질, 부산물 등이 생성물에 첨가되지 않도록 하기 위한 커버 단계(미도시)를 추가로 포함할 수 있다.
도 4은 도 1에서 열처리 단계를 세분화한 흐름도이다.
도 4을 참조하면, 본 발명의 일 실시예에 따른 습식 나노 분말 제조방법의 열처리 단계(S200)는, 제1 대기 단계(S210), 예열 단계(S220), 소성 단계(S230), 제2 대기 단계(S240), 냉각 단계(S250), 언로딩 단계(S260) 및 분쇄 단계(S270)를 포함할 수 있다.
상기 반응 단계(S100) 또는 상기 커버 단계로부터 이송된 반응 용기는 100℃정도의 분위기 상태의 제1 대기 단계(S210)에서 대기한 후, 400℃정도의 분위기 상태의 예열 단계(S220)에서 소정의 시간 동안의 예열을 거쳐, 소성 단계(S230)로 이송될 수 있다.
상기 제1 대기 단계(S210)는 상기 예열 단계(S220)와 상기 소성 단계(S230)에서 발생되는 열이 외부로 전달되는 것을 방지하고, 열손실을 최소화하기 위해 수행되며, 상기 예열 단계(S220)는 상기 반응 용기 내의 겔 형태의 반응물에서 발생되는 HCl 등의 가스를 90% 이상 제거해주기 위해 수행될 수 있다.
상기 소성 단계(S230)는 소성로 내부에 N2/Ar와 같은 같은 불활성 기체가 공급되는 분위기 상태에서, 겔 상태의 반응 생성물을 예를 들어 600 내지 900 ℃에서 1 내지 5시간 동안 열처리하여, 습식 나노 분말 결정 성장이 이루어질 수 있도록 한다.
상기 소성 단계(S230)에서 열처리 온도가 600 ℃미만에서는 결정화가 이루어지지 않아, 상기 나노 분말을 이차전지의 음극재로 사용시에 리튬과의 반응이 용이치 않으며, 900 ℃를 초과하는 경우에는 겔내 탄화반응으로 인해 습식 나노 분말 결정 성장이 일어나지 않을 수 있다.
또한, 상기 소성로 내부에 N2/Ar와 같은 같은 불활성 기체의 공급이 부족하면, 상기 생성물이 대기중의 O2와 반응하여 반응 용기 내에 SiO2 등의 발생으로 습식 나노 분말의 품질이 저하될 수 있으므로, 위와 같이 불활성 기체의 공급이 필요하다.
상기 제2 대기 단계(S240)는 상기 소성 단계(S230)에서 처리가 종료된 반응 용기의 이송을 대기시키며, 상기 소성 단계(S230)에서 발생되는 열이 외부로 전달되는 것을 방지하고, 상기 소성 반응을 마무리하기 위하여 수행될 수 있다.
상기 제2 대기 단계(S240)에서 상기 냉각 단계(S250)로 이송된 반응 용기는 배출 전에 냉각되고, 언로딩 단계(S260)에서 밖으로 배출되어 작업자가 제품 취급이 가능하도록 한다.
상기 언로딩 단계(S260)에서 반응 용기가 밖으로 배출되면 상기 분쇄 단계(S270)에서 고상 습식 나노 분말로 분쇄가 이루어지고, 블랜딩 단계(미도시)에서 카본 블랜딩이 이루어질 수 있다. 분쇄는 ADM(Air Dry Mill) 분쇄기를 이용한 건식 분쇄 및 카본 블랜딩이 수행될 수 있으며 입경 100 나노미터(nm) 내지 10 마이크로미터(μm)로 분쇄되어 카본과 블랜딩될 수 있도록 할 수 있다.
상술한 바와 같이, 본 발명에 따른 나노 분말을 제조하는 방법에 따르면, 금속염화물과 다가 알코올 또는 물, 예를 들어 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)의 발열 반응의 반응 조건, 발열 반응 조건, 특히 STC(SiCl4)와 에틸렌글리콜(EG, Ethylene Glycol)을 반응 용기에 투입하는 순서 및 투입 속도 등을 정밀하게 조절하여 습식 나노 분말의 결정 성장, 결정 입자 크기의 균일성 등을 향상시켜서 안정적으로 물성이 우수한 습식 나노 분말을 제조할 수 있다.
[실시예]
1. 다가 알코올 투입 속도에 따른 2차 전지 용량 및 수명 평가
티타늄(Ti) 재질의 반응 용기에 STC(SiCl4) 투입 후 에틸렌글리콜(EG)를 아래 표 1에 기재된 투입 속도로 투입하면서 반응 생성물을 생성한 후 열처리를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)을 측정했으며, 측정결과는 도 5 및 도 6의 그래프에 도시된 바와 같다.
Figure PCTKR2019011217-appb-T000001
도 5 및 도 6에 나타난 바와 같이, 다가 알코올의 투입 속도가 5 vol%/min 이상인 조건-A의 경우 2차 전지의 용량이 불충분하고 충전 사이클 수가 50회 근방에서 가역용량이 거의 없어져 전지의 수명이 다하는 것으로 확인된 반면, 다가 알코올의 투입 속도가 5 vol%/min 미만인 조건-B 및 조건-C의 경우 2차 전지의 용량이 증가하고 수명이 연장되었으며, 특히 투입 속도가 1.0 vol%/min 이하인 조건-B의 경우 2차 전지의 용량이 가장 크고 수명이 가장 긴 것으로 확인되었다.
2. 반응 물질 배합비에 따른 2차 전지 용량 및 수명 평가
티타늄(Ti) 재질의 반응 용기에 반응 물질인 STC(SiCl4) 투입 후 1 vol%/min 의 투입 속도로 에틸렌글리콜(EG)을 아래 표 2에 기재된 체적 배합비로 투입하여 반응 생성물을 생성한 후 열처리를 통해 나노 분말을 제조하여 이를 2차 전지의 음극재로 적용하여 2차 전지를 제조했고 각각의 2차 전지의 용량(capacity) 및 충전 사이클 수에 따른 가역용량(specific capacity)을 측정했으며, 측정결과는 도 7 및 도 8의 그래프에 도시된 바와 같다.
Figure PCTKR2019011217-appb-T000002
도 7 및 도 8에 나타난 바와 같이, 반응 물질의 체적 배합비가 1:1.5 이상인 조건-D의 경우 2차 전지의 용량이 불충분하고 충전 사이클 수가 50회 근방에서 가역용량이 거의 없어져 전지의 수명이 다하는 것으로 확인된 반면, 반응 물질의 체적 배합비가 1:1.5 미만인 조건-A 내지 조건-C의 경우 2차 전지의 용량이 증가하고 수명이 연장되었으며, 특히 반응 물질의 체적 배합비가 1:0.5 인 조건-B의 경우 2차 전지의 용량이 가장 크고 수명이 가장 긴 것으로 확인되었다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (10)

  1. 금속산화물의 나노 분말을 제조하기 위한 습식 나노 분말 제조방법에 있어서,
    반응 용기에서 제1 반응 물질인 금속염화물과 제2 반응 물질인 다가 알코올 또는 물을 습식 반응시켜 겔 상태의 금속산화물을 생성하기 위한 반응 단계; 및
    상기 겔 상태의 금속산화물을 열처리하여 고상 금속산화물을 생성하기 위한 열처리 단계; 를 포함하고,
    상기 반응 단계에서 상기 제1 반응 물질을 먼저 상기 반응 용기에 전량 투입한 후 상기 제2 반응 물질을 일정한 투입 속도로 투입하면서 반응시키는, 습식 나노 분말 제조방법.
  2. 제1항에 있어서,
    상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:1.5 미만이고,상기 제2 반응 물질의 투입 속도는 5 vol%/min 미만인 것을 특징으로 하는, 습식 나노 분말 제조방법.
  3. 제2항에 있어서,
    상기 제1 반응 물질과 제2 반응 물질의 체적 배합비는 1:0.5 내지 1:1.0 인 것을 특징으로 하는, 습식 나노 분말 제조방법.
  4. 제2항에 있어서,
    상기 제2 반응 물질의 투입 속도는 0.5 vol% 내지 2 vol%/min인 것을 특징으로 하는, 습식 나노 분말 제조방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 제1 반응 물질은 STC(SiCl4)을 포함하고, 상기 제2 반응 물질은 에틸렌글리콜(EG, Ethylene Glycol)을 포함하는 것을 특징으로 하는, 습식 나노 분말 제조방법.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 반응 단계; 및
    상기 열처리 단계; 사이에 상기 반응 용기를 이송받아 내열성 커버를 덮기 위한 커버 단계; 를 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법.
  7. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 반응 단계에서 상기 반응 용기 내로 불활성 기체가 공급되는 것을 특징으로 하는 습식 나노 분말 제조방법.
  8. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 열처리 단계에서 상기 열처리가 이루어지는 동안 상기 반응 용기 외부에 불활성 기체를 공급하여 부산물 발생을 억제하는 것을 특징으로 하는 습식 나노 분말 제조방법.
  9. 제6항에 있어서,
    상기 반응 단계, 상기 커버 단계 및 상기 열처리 단계로 이루어진 그룹으로부터 선택되는 하나 이상의 단계에서 상기 반응 용기 내에 산성 가스가 잔존하지 않도록 상기 산성 가스를 배출하는 것을 특징으로 하는 습식 나노 분말 제조방법.
  10. 제1항 내지 제4항 중 어느 하나의 항에 있어서,
    상기 제1 반응 물질은 사염화티탄(TiCl4)을 포함하고, 상기 제2 반응 물질은 다가 알코올 또는 물(H2O)을 포함하며, 상기 겔 상태의 금속산화물은 이산화티타늄(TiO2)을 포함하는 것을 특징으로 하는 습식 나노 분말 제조방법.
PCT/KR2019/011217 2019-05-15 2019-08-30 습식 나노 분말 제조방법 WO2020230955A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0056938 2019-05-15
KR1020190056938A KR102199812B1 (ko) 2019-05-15 2019-05-15 습식 나노 분말 제조방법

Publications (1)

Publication Number Publication Date
WO2020230955A1 true WO2020230955A1 (ko) 2020-11-19

Family

ID=73289892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011217 WO2020230955A1 (ko) 2019-05-15 2019-08-30 습식 나노 분말 제조방법

Country Status (3)

Country Link
KR (1) KR102199812B1 (ko)
CN (1) CN111943212A (ko)
WO (1) WO2020230955A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113299868B (zh) * 2021-03-02 2023-01-06 南京理工大学 基于湿度调控无氧热处理技术的钒氧化物表面改性方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064047A2 (ko) * 2010-11-11 2012-05-18 타운마이닝 컴퍼니., 리미티드 고순도 실리콘 미세분말의 제조 장치
KR101280153B1 (ko) * 2012-01-03 2013-06-28 군산대학교산학협력단 아나타제 이산화티타늄 나노 분말 제조 방법
KR20130076935A (ko) * 2011-12-29 2013-07-09 주식회사 포스코 이산화티타늄 나노분말, 타이타네이트, 리튬 타이타네이트 나노 분말 및 이들의 제조 방법
KR20130139554A (ko) * 2012-06-13 2013-12-23 주식회사 예일전자 이차전지의 음극재용 실리콘산화물의 제조방법
KR20140033515A (ko) * 2012-01-09 2014-03-18 주식회사 예일전자 이차전지 음극재용 실리콘 산화물과 그 제조방법 및 이를 이용한 이차전지 음극재

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012064047A2 (ko) * 2010-11-11 2012-05-18 타운마이닝 컴퍼니., 리미티드 고순도 실리콘 미세분말의 제조 장치
KR20130076935A (ko) * 2011-12-29 2013-07-09 주식회사 포스코 이산화티타늄 나노분말, 타이타네이트, 리튬 타이타네이트 나노 분말 및 이들의 제조 방법
KR101280153B1 (ko) * 2012-01-03 2013-06-28 군산대학교산학협력단 아나타제 이산화티타늄 나노 분말 제조 방법
KR20140033515A (ko) * 2012-01-09 2014-03-18 주식회사 예일전자 이차전지 음극재용 실리콘 산화물과 그 제조방법 및 이를 이용한 이차전지 음극재
KR20130139554A (ko) * 2012-06-13 2013-12-23 주식회사 예일전자 이차전지의 음극재용 실리콘산화물의 제조방법

Also Published As

Publication number Publication date
KR20200132076A (ko) 2020-11-25
KR102199812B1 (ko) 2021-01-07
CN111943212A (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
WO2012093798A2 (ko) 입자 전체 농도 구배 리튬이차전지 양극활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
EP2899793B1 (en) Secondary battery comprising solid electrolyte layer
CN1302075C (zh) 导电硅复合物、其制备和非水电解质二次电池的负极材料
EP3089245B1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries and method for producing same
WO2015012651A1 (ko) 양극 활물질 및 이의 제조방법
WO2015060686A1 (ko) 고체 전해질 입자, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2013081231A1 (ko) 이종 금속이 도핑된 리튬 티탄 복합 산화물의 제조 방법, 및 이에 의하여 제조된 이종 금속이 도핑된 리튬 티탄 복합 산화물
WO2016108376A1 (ko) 양극활물질 및 이의 제조 방법
KR20130009739A (ko) 니켈 망간 복합 수산화물 입자와 그 제조 방법, 비수계 전해질 이차 전지용 양극 활물질 및 제조 방법과 비수계 전해질 이차 전지
WO2015133692A1 (ko) 양극 활물질, 그를 갖는 리튬이차전지 및 그의 제조 방법
WO2016108385A1 (ko) 리튬이차전지용 양극 활물질의 전구체, 그 제조방법, 리튬이차전지용 양극 활물질, 그 제조방법, 및 상기 양극 활물질을 포함하는 리튬이차전지
CN106558699A (zh) 锂离子二次电池用电极材料、其制造方法、锂离子二次电池用电极及锂离子二次电池
WO2019004714A1 (ko) 황화물계 고체전해질 재료 및 그 제조방법, 황화물계 고체전해질 재료를 포함하는 고체전해질층 및 전극복합체층의 제조방법, 및 이를 포함하는 전고체전지
WO2016175426A1 (ko) 리튬 코발트 산화물의 표면처리 방법 및 이를 포함하는 리튬이차전지
WO2013115544A1 (ko) 리튬 이차전지용 리튬 복합 전이금속 산화물의 전구체 입자들 및 이를 포함하는 양극 활물질
US6699456B1 (en) Method for producing lithium metal oxides
WO2020230955A1 (ko) 습식 나노 분말 제조방법
WO2013085306A1 (ko) 리튬이차전지용 양극 활물질의 제조방법
WO2012020998A2 (ko) 리튬티탄산화물 제조방법, 이에 의하여 제조된 리튬티탄산화물 및 이를 포함하는 리튬 이차전지
WO2020040353A1 (ko) 텅스텐과 티타늄 복합 탄화물 분말의 제조 방법
JP2021012807A (ja) ニッケルマンガンコバルト含有複合水酸化物およびその製造方法、リチウムイオン二次電池用正極活物質およびその製造方法、並びに、リチウムイオン二次電池
EP4012797A1 (en) Precursor solution, precursor powder, method for producing electrode, and electrode
WO2013157734A1 (ko) 구형의 수산화코발트를 이용한 비수계 리튬이차전지용 양극재료
WO2016114586A1 (ko) 리튬이차전지용 양극활물질 및 이를 포함하는 리튬이차전지
KR102381256B1 (ko) 2차 전지 음극재용 실리콘 산화물 분말의 제조방법 및 그를 이용한 2차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19929025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19929025

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/04/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19929025

Country of ref document: EP

Kind code of ref document: A1