WO2020230815A1 - 潤滑油組成物の検査方法およびその潤滑油組成物の製造方法 - Google Patents

潤滑油組成物の検査方法およびその潤滑油組成物の製造方法 Download PDF

Info

Publication number
WO2020230815A1
WO2020230815A1 PCT/JP2020/019104 JP2020019104W WO2020230815A1 WO 2020230815 A1 WO2020230815 A1 WO 2020230815A1 JP 2020019104 W JP2020019104 W JP 2020019104W WO 2020230815 A1 WO2020230815 A1 WO 2020230815A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating oil
oil composition
particle size
particles
average particle
Prior art date
Application number
PCT/JP2020/019104
Other languages
English (en)
French (fr)
Inventor
門田 隆二
坂口 泰之
眸 金
近藤 邦夫
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to CN202080031989.6A priority Critical patent/CN113748340B/zh
Priority to JP2021519457A priority patent/JP7027676B2/ja
Priority to EP20805184.7A priority patent/EP3971268B1/en
Publication of WO2020230815A1 publication Critical patent/WO2020230815A1/ja
Priority to US17/526,346 priority patent/US20220074840A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/30Oils, i.e. hydrocarbon liquids for lubricating properties
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/02Carbon; Graphite
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M171/00Lubricating compositions characterised by purely physical criteria, e.g. containing as base-material, thickener or additive, ingredients which are characterised exclusively by their numerically specified physical properties, i.e. containing ingredients which are physically well-defined but for which the chemical nature is either unspecified or only very vaguely indicated
    • C10M171/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2888Lubricating oil characteristics, e.g. deterioration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/041Carbon; Graphite; Carbon black
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2203/00Organic non-macromolecular hydrocarbon compounds and hydrocarbon fractions as ingredients in lubricant compositions
    • C10M2203/10Petroleum or coal fractions, e.g. tars, solvents, bitumen
    • C10M2203/102Aliphatic fractions
    • C10M2203/1025Aliphatic fractions used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0053Investigating dispersion of solids in liquids, e.g. trouble
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means
    • G01N15/0211Investigating a scatter or diffraction pattern
    • G01N2015/0222Investigating a scatter or diffraction pattern from dynamic light scattering, e.g. photon correlation spectroscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/201Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials by measuring small-angle scattering

Definitions

  • the present invention relates to a method for inspecting a lubricating oil composition and a method for producing the lubricating oil composition.
  • the present application claims priority based on Japanese Patent Application No. 2019-092842 filed in Japan on May 16, 2019, the contents of which are incorporated herein by reference.
  • a lubricating oil composition that simultaneously improves multiple performances such as low friction, torque increase, and fuel efficiency is required.
  • a lubricating oil composition is for an engine lubricating oil in which nanocarbon particles fullerene, an organic solvent, a viscosity index improver, an abrasion adjusting agent, and a cleaning dispersant are mixed with a lubricating base oil such as mineral oil or ester oil.
  • Additive compositions are known (see, for example, Patent Document 1).
  • fullerenes may be added to the lubricating oil composition used in the refrigerant compressor (see, for example, Patent Document 2).
  • an important property of a lubricating oil composition is a wear coefficient, etc., but it takes time and effort to measure. Therefore, in the manufacturing process of the lubricating oil composition, the properties of the lubricating oil composition are specified by using the density, kinematic viscosity, viscosity index, pour point, total acid value, etc., which are easy to measure, as indexes (for example). See Non-Patent Document 1).
  • the present invention has been made in view of the above circumstances, and even a lubricating oil composition containing fullerene can stably reproduce wear resistance characteristics by using a method that is relatively easy to measure. It is an object of the present invention to provide a method for inspecting a lubricating oil composition and a method for producing a lubricating oil composition.
  • the present invention provides the following means for solving the above problems.
  • the particle size (r) of the particles present in the lubricating oil composition containing the base oil and fullerene is measured, and the measured value of the particle size (r) and the wear coefficient of the lubricating oil composition are measured.
  • a method for inspecting a lubricating oil composition which comprises selecting a lubricating oil composition based on a predetermined range of particle diameter (r) set by correlation with a value.
  • SAXS small-angle X-ray scattering method
  • [6] A method of calculating the average particle size (R) of the particles from the value of the scattering vector at which the scattering intensity ratio of the lubricating oil composition and the base oil is the maximum value with respect to the scattering vector (hereinafter, method S).
  • [7] A method for producing a lubricating oil composition, which comprises a step of sorting by the inspection method for the lubricating oil composition according to any one of the above [1] to [6].
  • a method for inspecting a lubricating oil composition capable of stably reproducing wear resistance characteristics by using a method that is relatively easy to measure even for a lubricating oil composition containing fullerene, and a method thereof.
  • a method for producing a lubricating oil composition can be provided.
  • the method for inspecting the lubricating oil composition according to the present embodiment may refer to the particle size (r) of the particles present in the lubricating oil composition containing the base oil and fullerene (hereinafter, simply referred to as the particle size (r)). ), And the lubricating oil composition is selected based on a predetermined range set by the correlation between the measured value of the particle size (r) and the measured value of the wear coefficient of the lubricating oil composition. .. That is, the method for inspecting the lubricating oil composition according to the present embodiment includes the following three steps.
  • Second step A predetermined range of particle size (r) is set.
  • the lubricating oil composition inspected by the method for inspecting the lubricating oil composition according to the present embodiment contains a base oil and a fullerene.
  • the base oil contained in the lubricating oil composition in the present embodiment is not particularly limited, and usually, mineral oil and synthetic oil widely used as the base oil of the lubricating oil are preferably used.
  • Mineral oil used as a lubricating oil is generally a carbon-carbon double bond contained inside saturated by hydrogenation and converted into saturated hydrocarbon.
  • mineral oils include paraffin-based base oils and naphthenic base oils.
  • synthetic oils include synthetic hydrocarbon oils, ether oils, ester oils, and the like.
  • synthetic oils are poly ⁇ -olefin, diester, polyalkylene glycol, polyalphaolefin, polyalkylvinyl ether, polybutene, isoparaffin, olefin copolymer, alkylbenzene, alkylnaphthalene, diisodecyl adipate, monoester, dibasic acid ester, and tri.
  • Basic acid ester polyol ester (trimethylolpropane caprilate, trimethylolpropane pelargonate, pentaerythritol 2-ethylhexanoate, pentaerythritol pelargonate, etc.), dialkyldiphenyl ether, alkyldiphenyl sulfide, polyphenyl ether, silicone lubricating oil ( Dimethyl silicone, etc.), perfluoropolyether, etc. are included.
  • poly ⁇ -olefins, diesters, polyol esters, polyalkylene glycols, and polyalkyl vinyl ethers are preferable.
  • mineral oils and synthetic oils one type may be used alone, or two or more types selected from these may be mixed and used at an arbitrary ratio.
  • the fullerene contained in the lubricating oil composition in the present embodiment is not particularly limited in structure and production method, and various fullerenes can be used.
  • fullerenes include C 60 and C 70 , which are relatively easily available, higher-order fullerenes, and mixtures thereof.
  • C 60 and C 70 are preferable from the viewpoint of high solubility in lubricating oil, and C 60 is more preferable from the viewpoint of less coloring in lubricating oil.
  • C 60 is contained in an amount of 50% by mass or more.
  • the fullerene may be chemically modified for the purpose of further enhancing the solubility in the base oil.
  • the chemically modified fullerene include phenyl C61 butyric acid methyl ester ([60] PCBM), diphenyl C62 dibutyric acid methyl ester (Bis [60] PCBM), phenyl C71 butyric acid methyl ester ([70] PCBM), and phenyl C85.
  • Examples thereof include butyric acid methyl ester ([85] PCBM), phenyl C61 butyric acid butyl ester ([60] PCBB), phenyl C61 butyric acid octyl ester ([60] PCBO), an inden adduct of fullerene, and a pyrrolidine derivative of fullerene.
  • the lubricating oil composition in the present embodiment may contain additives as long as the effects of the present embodiment are not impaired.
  • the additives to be blended in the lubricating oil composition in the present embodiment are not particularly limited.
  • the additive include a commercially available antioxidant, a viscosity index improver, an extreme pressure additive, a cleaning dispersant, a pour point lowering agent, a corrosion inhibitor, a solid lubricant, an oiliness improver, a rust preventive additive, and an anti.
  • examples thereof include emulsifiers, antifoaming agents and hydrolysis inhibitors.
  • One of these additives may be used alone, or two or more of these additives may be used in combination.
  • antioxidants examples include dibutylhydroxytoluene (BHT), butylhydroxyanisole (BHA), 2,6-di-tert-butyl-p-cresol (DBPC), and 3-arylbenzofuran-2-one (hydroxycarboxylic acid). (Intramolecular cyclic ester of acid), phenyl- ⁇ -naphthylamine, dialkyldiphenylamine, benzotriazole and the like.
  • viscosity index improver examples include polyalkylstyrene and hydride additives of styrene-diene copolymer.
  • Examples of the extreme pressure additive include dibenzyldisulfide, allyl phosphate, allyl phosphite, amine salt of allyl phosphate, allyl thiophosphate, amine salt of allyl thiophosphate, and naphthenic acid.
  • Examples of the cleaning dispersant include benzylamine succinic acid derivatives, alkylphenol amines and the like.
  • Examples of the pour point lowering agent include chlorinated paraffin-naphthalene condensate, chlorinated paraffin-phenol condensate, polyalkyl styrene type and the like.
  • Examples of the anti-emulsifier include alkylbenzene sulfonate and the like.
  • Examples of the corrosion inhibitor include dialkylnaphthalene sulfonate and the like.
  • the lubricating oil composition in the present embodiment is plastic processing such as industrial gear oil; hydraulic hydraulic oil; compressor oil; refrigerating machine oil; cutting oil; rolling oil, pressing oil, forging oil, drawing oil, drawing oil, punching oil and the like. It can be used for various purposes such as oil; metal processing oil such as heat treatment oil and discharge processing oil; slip guide surface oil; bearing oil; rust preventive oil; heat transfer oil.
  • Examples of the particles in the lubricating oil composition according to the present embodiment include particles derived from fullerenes such as aggregates of fullerenes and aggregates of fullerenes and base oil molecules.
  • the method for measuring the particle size (r) of the particles may be any method that can measure the particle size in the nanometer region. Specific examples thereof include a dynamic light scattering method, a laser diffraction method, and a small-angle X-ray scattering method.
  • the small-angle X-ray scattering method (hereinafter, may be referred to as the SAXS method) is used. It is preferable to use it.
  • SAXS method small-angle X-ray scattering method
  • the measured particle size (r) is the average particle size (R)
  • R the average particle size
  • the particle size and distribution of the particles in the lubricating oil composition can be obtained by analyzing the intensity of the scattered X-rays from the particles in the lubricating oil composition.
  • the region where the scattered X-rays are generated is, for example, in the case of X-rays having a wavelength of 1.54 ⁇ using a Cu target, the measurement angle 2 ⁇ is about 0.1 to 10 degrees.
  • the basic principles of the small-angle X-ray scattering method can be referred to in the book "Glatter & Kratky eds (1982) Small Angle X-ray Scattering, Academic Press, London (1982), Pages 17-51.” ..
  • the X-ray scattering intensity profile of the particles in the lubricating oil composition is obtained by the SAXS method.
  • the vertical axis of the X-ray scattering intensity profile of the particle is the X-ray scattering intensity ISAXS (Q), and the horizontal axis is the scattering vector Q (nm -1 ) depending on the measurement angle 2 ⁇ and the wavelength ⁇ .
  • the magnitude of the scattering vector Q is defined by the following equation (1).
  • the average particle size (R) of the particles in the lubricating oil composition is calculated using the following G method or S method.
  • ISAXS (Q) is the scattering intensity of the particles
  • is the electron density difference of the particles with respect to the base oil
  • V p is the volume of the particles.
  • the X-ray scattering intensity profile of the particles in the lubricating oil composition measured by the SAXS method and the X-ray scattering intensity profile of the base oil are obtained.
  • the following equation (3) is used by obtaining the ratio of the X-ray scattering intensity of the particles to the X-ray scattering intensity of the base oil with respect to the scattering vector Q and using the scattering vector Q max that maximizes the X-ray scattering intensity ratio. ),
  • the average particle size (R) of the particles can be calculated.
  • the average particle size (R) of the particles is calculated from the X-ray scattering intensity profile by the above-mentioned SAXS method.
  • the accuracy of sorting can be further improved by sorting the lubricating oil composition in which the calculated value from the SAXS method is within the set predetermined range. As a result, the wear resistance characteristics of the lubricating oil composition can be predicted more stably.
  • the average particle size (R) of the particles may be calculated by using the G method alone, the S method alone, or the G method and the S method at the same time.
  • the selection criterion can be that the average particle diameter (R) calculated by the two methods is within a predetermined range. In that case, the accuracy of selecting the lubricating oil composition can be improved.
  • the method for producing a lubricating oil composition of the present embodiment includes a step of selecting a lubricating oil composition obtained by mixing base oil and fullerene by the inspection method of the lubricating oil composition of the present embodiment.
  • the method for producing the lubricating oil composition of the present embodiment preferably includes the following steps in detail.
  • a step of mixing a base oil and a fullerene, dissolving a dissolved component of the fullerene in the base oil, and if necessary, performing filtration, heat treatment, etc. to obtain a lubricating oil composition containing the base oil and the fullerene ( Hereinafter referred to as "dissolving step”).
  • the average particle size (R) of the lubricating oil composition is calculated from the X-ray scattering intensity profile by the SAXS method, and the lubricant composition whose value is within the set range is passed and is out of the set range.
  • a step of selecting a lubricating oil composition by rejecting the lubricating oil composition of (hereinafter referred to as "inspection step”).
  • the method for producing the lubricating oil composition of the present embodiment may further include the following steps, if necessary. (3) A step of mixing lubricating oil compositions produced in a plurality of different batches to obtain a new lubricating oil composition so that they can be selected as acceptable in the "inspection step” (hereinafter referred to as “readjustment step”). .).
  • readjustment step a method for producing the lubricating oil composition of the present embodiment will be described in detail.
  • the raw material fullerene is put into the base oil, and the dispersion treatment is carried out for 1 to 48 hours using a dispersion means such as a stirrer while heating at around room temperature or as necessary.
  • a dispersion means for dispersing fullerene in the base oil include a stirrer, an ultrasonic disperser, a homogenizer, a ball mill, and a bead mill. In this way, a liquid in which fullerene is dissolved or dispersed in the base oil (sometimes referred to as "fullerene solution”) is obtained.
  • the amount of fullerene added may be any amount as long as the fullerene concentration in the fullerene solution is a desired concentration. Further, when a step of removing the insoluble component described later is provided during the dissolution step, it is advisable to add a large amount of fullerene in consideration of the amount of fullerene removed by this step. Although it depends on the solvent, in general, the fullerene concentration in the fullerene solution in which fullerene is difficult to precipitate as an insoluble component is preferably in the range of 1 mass ppm to 1 mass%.
  • a fullerene solution having a desired concentration may be obtained by obtaining a fullerene solution having a higher concentration than desired and diluting with a base oil.
  • the fullerene solution obtained as described above may be used as it is as a lubricating oil composition. Further, it is preferable that a step of removing the insoluble component is provided during the dissolution step, and the fullerene solution from which the insoluble component is removed is used as a lubricating oil composition.
  • the step of removing the insoluble component is preferably provided after the dispersion treatment of dispersing the fullerene in the base oil in the dissolution step. Examples of the step of removing the insoluble component include (1) a removal step using a membrane filter, (2) a removal step using a centrifuge, and (3) a removal step using a combination of a membrane filter and a centrifuge. Can be mentioned.
  • a removal step using a membrane filter is preferable when a small amount of lubricating oil composition is obtained, and (2) centrifugation is used when a large amount of lubricating oil composition is obtained.
  • a removal step using a separator is preferred.
  • the dissolution step especially when the fullerene solution is heated, it is preferable to carry out in a non-oxidizing atmosphere.
  • a non-oxidizing atmosphere for example, by substituting the inside of the container containing the fullerene solution with an inert gas such as nitrogen gas or argon gas, or by bubbling the fullerene solution in the container with an inert gas, the fullerene solution becomes an inert gas. It is preferable to achieve an equilibrium state.
  • the inspection step is a step of calculating the average particle size (R) of the particles in the lubricating oil composition and selecting the lubricating oil composition.
  • the average particle size (R) of the particles in the lubricating oil composition is calculated from the X-ray scattering intensity profile of the lubricating oil composition obtained in the dissolution step by the SAXS method.
  • Lubricating oil compositions whose average particle size (R) is within a predetermined range are selected as acceptable, and lubricating oil compositions outside the predetermined range are selected as rejected.
  • the predetermined range of the average particle size (R) is the average particle size (R) in which the wear coefficient becomes a desired range from the correlation between the wear coefficient of the lubricating oil composition and the average particle size (R). Can be set by finding.
  • the average particle size (R) is measured for each of the lubricating oil compositions produced in a plurality of different batches. Thereby, the predetermined range of the average particle size (R) can be determined in consideration of the wear resistance characteristics, and the lubricating oil composition can be classified into a pass product and a reject product.
  • the readjustment step is a step of obtaining a passing lubricating oil composition by mixing an appropriate amount of the rejected lubricating oil composition with the passing lubricating oil composition. Specifically, the newly prepared lubricating oil composition is measured again in the above inspection step for the average particle size (R) of the particles, and an appropriate amount is mixed so that the measured value falls within a predetermined range. Obtain a lubricating oil composition. The amount of the rejected lubricating oil composition to be mixed with the accepted product may be determined by measuring the average particle size (R) of the particles in the mixed lubricating oil composition. By classifying the lubricating oil composition, the following effects can be obtained.
  • the method for producing a lubricating oil composition of the present embodiment even if the lubricating oil composition contains fullerenes, wear resistance can be predicted by using a method that is relatively easy to measure. It becomes possible to accurately sort the lubricating oil composition into a pass product and a reject product.
  • the above method is a method for measuring the average particle size (R) of particles in a lubricating oil composition by the SAXS method.
  • fullerene are added to the mineral oil to prepare three types of fullerene solutions having a fullerene concentration of 2.5 mass ppm, 25.0 mass ppm, and 250.0 mass ppm. did.
  • the fullerene concentration of the solution was calculated from the amount of fullerene charged. Further, 100 ml of the obtained fullerene solution was taken out and transferred to a 250 ml stainless steel pressure-resistant container. Next, the inside was replaced with nitrogen gas and then sealed, and this was not heat-treated. Alternatively, the heat treatment was performed by immersing the product in an oil bath at 150 ° C. for 2 hours or 15 hours.
  • Nine kinds of lubricating oil compositions shown in Table 1 were obtained. Three points of each type of lubricating oil composition were prepared, that is, a total of 27 samples were prepared.
  • the wear resistance characteristics of the obtained lubricating oil composition were evaluated using a friction and wear tester (manufactured by Antonio Par, product name "ball-on-disc tribometer").
  • the material of the substrate and balls constituting the friction and wear tester was SUJ2, which is a high carbon chrome bearing steel material.
  • the ball had a diameter of 6 mm and the substrate used was a 15 mm square.
  • the lubricating oil composition was applied to one main surface of the substrate.
  • the balls were slid on one main surface of the substrate through the lubricating oil composition so that the balls would draw concentric orbits.
  • the velocity of the ball on one main surface of the substrate was 20 mm / sec, and the load of the ball on one main surface of the substrate was 25 N.
  • the maximum diameter of the circle was D ( ⁇ m).
  • the maximum diameter D is defined as the wear coefficient. That is, the smaller the number of the maximum diameter D, the more the wear is suppressed, which is a preferable state as the lubricating property of the lubricating oil composition. It usually wears out in a circular shape, but may be oval. In that case, the portion having the maximum diameter is defined as the maximum diameter D. This measurement was performed in an environment of 25 ⁇ 2 ° C.
  • Example 1 Small-angle X-ray scattering measurements were performed on 27 samples of the lubricating oil composition and the base oil (mineral oil A) to obtain a scattering intensity profile of particles.
  • the average particle size ( RG ) was calculated by the above-mentioned G method using the scattering intensity profile of the obtained particles. Then, the wear coefficient of 27 samples of the lubricating oil composition was measured, and the relationship between the average particle size ( RG ) and the wear coefficient is shown in FIG. Table 2 shows the values of the average particle size ( RG ) and the wear coefficient.
  • the correlation coefficient between the average particle size ( RG ) and the wear coefficient was ⁇ 0.80, and a correlation was observed between the average particle size ( RG ) and the wear coefficient.
  • the correlation coefficient was determined by the method of least squares. When the absolute value of the correlation coefficient is 0.70 or more, it is judged that the correlation exists.
  • a lubricating oil composition having an average particle size ( RG ) within a specific range is selected, thereby selecting a lubricating oil composition having a wear coefficient within a desired range. Can be done.
  • the lubricating oil composition having the wear coefficient exceeding the value B can be selected as a rejected product. Further, in FIG. 1, if a small amount even reject lubricating oil composition in the region C 1, the following method, the wear coefficient is adjusted in the lubricating oil composition of the following acceptable product value B be able to. To reject the lubricating oil composition, by adding the lubricating oil composition of accepted products in the region D 1, it is possible to average particle diameter (R G) is set to a value A 1 or more.
  • Example 2 Using scattering intensity profile of the scattered intensity profile and mineral oil A of particles, wherein except for calculating the average particle diameter of the particles (R S) in Method S, in the same manner as in Example 1, the average particle diameter of the particles (R S ) And the wear coefficient were evaluated.
  • the correlation coefficient between the average particle size ( RS ) and the wear coefficient is ⁇ 0.89, and the absolute value is 0.70 or more, so that the average particle size ( RS ) is used.
  • a correlation was found in the wear coefficient. Therefore, also in Example 2, by selecting a lubricating oil composition having an average particle diameter ( RS ) within a specific range, it is possible to select a lubricating oil composition having a wear coefficient within a desired range. I found out.
  • the lubricating oil composition having the wear coefficient exceeding the value B can be selected as a rejected product. Further, in FIG. 2, if the amount of the rejected lubricating oil composition in region C 2 is small, the lubricating oil composition of the accepted product having a wear coefficient of B or less is adjusted by the following method. Can be done.
  • the addition of accepted products in the lubricating oil composition to reject the lubricating oil composition is in the region D 2, it is possible to average particle diameter (R S) is a value A 2 or more.
  • the correlation coefficient between the kinematic viscosity and the wear coefficient was 0.11, and the absolute value was less than 0.70. Therefore, no correlation was observed between the kinematic viscosity and the wear coefficient. Therefore, it was found that the wear coefficient of the lubricating oil composition cannot be estimated from the kinematic viscosity of the lubricating oil composition to select the lubricating oil composition.
  • wear resistance can be predicted by measuring the average particle size (R) of particles present in the lubricating oil composition, and lubrication can be predicted.
  • the oil composition can be sorted into acceptable and unacceptable products with high accuracy. Therefore, the acceptable lubricating oil composition selected in the present invention is effective for suppressing scratches and wear of metal parts in sliding parts of automobiles, home appliances, industrial machines and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

フラーレンを含む潤滑油組成物であっても、比較的測定が容易な方法を用いて、耐摩耗特性を安定して再現することができる潤滑油組成物の検査方法および潤滑油組成物の製造方法を提供する。潤滑油組成物の検査方法において、基油とフラーレンとを含む潤滑油組成物中に存在する粒子の粒径(r)を測定し、前記粒子の粒径(r)の測定値と前記潤滑油組成物の摩耗係数の測定値との相関によって設定された粒径(r)の所定範囲に基づいて潤滑油組成物を選別する。

Description

潤滑油組成物の検査方法およびその潤滑油組成物の製造方法
 本発明は、潤滑油組成物の検査方法およびその潤滑油組成物の製造方法に関する。
 本願は、2019年5月16日に、日本に出願された特願2019-092842号に基づき優先権を主張し、その内容をここに援用する。
 近年、高速化、高効率化、省エネルギーに伴い、自動車、家電、工業機械等に使用される潤滑油の性能向上が強く求められている。その用途に適するように特性を改善するために、潤滑油組成物には、酸化防止剤、極圧添加剤、錆び止め添加剤、腐食防止剤等様々な添加剤が配合されている。
 これらの要求に応えるため、低フリクション、トルクアップ、省燃費化といった複数の性能を同時に改善する潤滑油組成物が求められている。そのような潤滑油組成物としては、鉱油やエステル油等の潤滑基油に、ナノカーボン粒子であるフラーレン、有機溶媒、粘度指数向上剤、摩耗調整剤、清浄分散剤を配合したエンジン潤滑油用添加剤組成物が知られている(例えば、特許文献1参照)。
 さらに、冷媒圧縮機に用いられる潤滑油組成物にもフラーレンが添加されることがある(例えば、特許文献2参照)。
 一般に、潤滑油組成物の重要な特性として、摩耗係数等が挙げられるが、測定に手間がかかる。そのため、潤滑油組成物の製造工程においては、測定が容易な、密度、動粘度、粘度指数、流動点、全酸価等を指標として、潤滑油組成物の性状を特定している(例えば、非特許文献1参照)。
特開2008-266501号公報 国際公開第2017/141825号
インターネット<URL:https://www.noe.jxtg-group.co.jp/english/products/lubricants/industrial.html>
 しかしながら、非特許文献1等に記載されている潤滑油組成物にフラーレンを添加した系では、上記の指標で製品管理を行っても、摩耗係数等の潤滑特性を安定して再現した製品が得られなかった。つまり、上記の指標で製品の特性を数値化し、一定範囲内に入る製品を合格とした場合であっても、潤滑特性については、許容範囲を超えてばらつくことがあった。
 また、潤滑油組成物の製品の潤滑特性を測定することで、潤滑特性が許容範囲にある製品を選別することができるが、そのためには、製品ロット毎にボールオンディスク等の摩耗試験を行う必要がある。この場合、手間と時間がかかり、また試験基板等の費用が嵩むため、摩耗試験は製造ロット毎に実施するには適さない。
 本発明は、上記事情に鑑みてなされたものであって、フラーレンを含む潤滑油組成物であっても、比較的測定が容易な方法を用いて、耐摩耗特性を安定して再現することができる潤滑油組成物の検査方法および潤滑油組成物の製造方法を提供することを目的とする。
 本発明は、上記課題を解決するため、以下の手段を提供する。
[1] 基油とフラーレンとを含む潤滑油組成物の中に存在する粒子の粒径(r)を測定し、前記粒径(r)の測定値と前記潤滑油組成物の摩耗係数の測定値との相関によって設定された粒径(r)の所定範囲に基づいて潤滑油組成物を選別することを特徴とする潤滑油組成物の検査方法。
[2] 前記粒子の粒径(r)を、動的光散乱法、レーザー回折法、または、X線小角散乱法(SAXS)法によって測定する[1]に記載の潤滑油組成物の検査方法。
[3] 前記粒径(r)が、前記潤滑油組成物の中に存在する粒子の平均粒径(R)である[1]または[2]に記載の潤滑油組成物の検査方法。
[4] 前記粒子の平均粒径(R)を、X線小角散乱法(SAXS法)によって測定する上記[3]に記載の潤滑油組成物の検査方法。
[5] 前記粒子の平均粒径(R)を、Guinierプロットの傾きから算出する方法(以下、G法ということがある)により、求める上記[4]に記載の潤滑油組成物の検査方法。
[6]前記粒子の平均粒径(R)を、散乱ベクトルに対して前記潤滑油組成物と前記基油の散乱強度比が最大値となる散乱ベクトルの値から算出する方法(以下、S法ということがある)により、求める上記[4]に記載の潤滑油組成物の検査方法。
[7]上記[1]~[6]のいずれかに記載の潤滑油組成物の検査方法により選別する工程を含む、潤滑油組成物の製造方法。
 本発明によれば、フラーレンを含む潤滑油組成物であっても、比較的測定が容易な方法を用いて、耐摩耗特性を安定して再現することができる潤滑油組成物の検査方法およびその潤滑油組成物の製造方法を提供することができる。
G法で得られた粒子の平均粒径(R)と摩耗係数の関係を示す図である。 S法で得られた粒子の平均粒径(R)と摩耗係数の関係を示す図である。 動粘度と摩耗係数の関係を示す図である。
 以下、本発明の実施形態に係る潤滑油組成物の検査方法および潤滑油組成物の製造方法を説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
[潤滑油組成物の検査方法]
 本実施形態に係る潤滑油組成物の検査方法は、基油とフラーレンとを含む潤滑油組成物の中に存在する粒子の粒径(r)(以下単なる粒径(r)と称する場合がある)を測定し、前記粒径(r)の測定値と前記潤滑油組成物の摩耗係数の測定値との相関によって設定された所定範囲に基づいて潤滑油組成物を選別することを特徴とする。すなわち、本実施形態に係る潤滑油組成物の検査方法は、以下の3つのステップを含む。
 第一ステップ:複数の潤滑油組成物中に存在する粒子の粒径(r)と潤滑油組成物の摩耗係数を測定し、粒径(r)と摩耗係数の相関関係(例えば、摩耗係数(B)―粒径(r)の近似直線:B=kR+c)を算出する。
 第二ステップ:粒径(r)の所定範囲を設定する。
 第三ステップ:検査対象となる潤滑油組成物に存在する粒子の粒径(r)を測定し、粒径(r)が所定の範囲内であれば、合格品とし、粒径(r)が所定範囲外であれば、不合格品とする。
 前記粒径(r)が前記潤滑油組成物の中に存在する粒子の平均粒径(R)(以下単なる平均粒径(R)と称する場合がある)であることが好ましい。
(潤滑油組成物)
 本実施形態に係る潤滑油組成物の検査方法で検査される潤滑油組成物は、基油とフラーレンとを含む。
(基油)
 本実施形態における潤滑油組成物に含まれる基油は、特に限定されるものではなく、通常、潤滑油の基油として広く使用されている鉱油および合成油が好適に用いられる。
 潤滑油として用いられる鉱油は、一般的に、内部に含まれる炭素-炭素二重結合を水素添加により飽和して、飽和炭化水素に変換したものである。このような鉱油としては、パラフィン系基油、ナフテン系基油等が挙げられる。
 合成油としては、合成炭化水素油、エーテル油、エステル油等が挙げられる。合成油の具体例は、ポリα-オレフィン、ジエステル、ポリアルキレングリコール、ポリアルファオレフィン、ポリアルキルビニルエーテル、ポリブテン、イソパラフィン、オレフィンコポリマー、アルキルベンゼン、アルキルナフタレン、ジイソデシルアジペート、モノエステル、二塩基酸エステル、三塩基酸エステル、ポリオールエステル(トリメチロールプロパンカプリレート、トリメチロールプロパンペラルゴネート、ペンタエリスリトール2-エチルヘキサノエート、ペンタエリスリトールペラルゴネート等)、ジアルキルジフェニルエーテル、アルキルジフェニルサルファイド、ポリフェニルエーテル、シリコーン潤滑油(ジメチルシリコーン等)、パーフルオロポリエーテル等を含む。これらの中でも、ポリα-オレフィン、ジエステル、ポリオールエステル、ポリアルキレングリコール、ポリアルキルビニルエーテルが好ましい。
 これらの鉱油や合成油は、1種を単独で用いてもよく、これらの中から選ばれる2種以上を任意の割合で混合して用いてもよい。
(フラーレン)
 本実施形態における潤滑油組成物に含まれるフラーレンは、構造や製造法が特に限定されず、種々のものを用いることができる。フラーレンとしては、例えば、比較的入手しやすいC60やC70、さらに高次のフラーレン、あるいはそれらの混合物が挙げられる。フラーレンの中でも、潤滑油への溶解性の高さの点から、C60およびC70が好ましく、潤滑油への着色が少ない点から、C60がより好ましい。C60を含む混合物の場合は、C60が50質量%以上含まれることが好ましい。
 また、フラーレンは、基油への溶解性をさらに高める等の目的で、化学修飾されたものであってもよい。化学修飾されたフラーレンとしては、例えば、フェニルC61酪酸メチルエステル([60]PCBM)、ジフェニルC62ジ酪酸メチルエステル(Bis[60]PCBM)、フェニルC71酪酸メチルエステル([70]PCBM)、フェニルC85酪酸メチルエステル([85]PCBM)、フェニルC61酪酸ブチルエステル([60]PCBB)、フェニルC61酪酸オクチルエステル([60]PCBO)、フラーレンのインデン付加体、フラーレンのピロリジン誘導体等が挙げられる。
(添加剤)
 本実施形態における潤滑油組成物は、基油とフラーレン以外にも、本実施形態の効果を損なわない範囲で、添加剤を含有することができる。
 本実施形態における潤滑油組成物に配合する添加剤は、特に限定されない。添加剤としては、例えば、市販の酸化防止剤、粘度指数向上剤、極圧添加剤、清浄分散剤、流動点降下剤、腐食防止剤、固体潤滑剤、油性向上剤、錆び止め添加剤、抗乳化剤、消泡剤、加水分解抑制剤等が挙げられる。これらの添加剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 酸化防止剤としては、例えば、ジブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)、2,6-ジ-tert-ブチル-p-クレゾール(DBPC)、3-アリールベンゾフラン-2-オン(ヒドロキシカルボン酸の分子内環状エステル)、フェニル-α-ナフチルアミン、ジアルキルジフェニルアミン、ベンゾトリアゾール等が挙げられる。
 粘度指数向上剤としては、例えば、ポリアルキルスチレン、スチレン-ジエンコポリマーの水素化物添加剤等が挙げられる。
 極圧添加剤としては、ジベンジルジサルファイド、アリルリン酸エステル、アリル亜リン酸エステル、アリルリン酸エステルのアミン塩、アリルチオリン酸エステル、アリルチオリン酸エステルのアミン塩、ナフテン酸等が挙げられる。
 清浄分散剤としては、ベンジルアミンコハク酸誘導体、アルキルフェノールアミン類等が挙げられる。
 流動点降下剤としては、塩素化パラフィン-ナフタレン縮合物、塩素化パラフィン-フェノール縮合物、ポリアルキルスチレン系等が挙げられる。
 抗乳化剤としては、アルキルベンゼンスルホン酸塩等が挙げられる。
 腐食防止剤としては、ジアルキルナフタレンスルホン酸塩等が挙げられる。
 本実施形態における潤滑油組成物は、工業用ギヤ油;油圧作動油;圧縮機油;冷凍機油;切削油;圧延油、プレス油、鍛造油、絞り加工油、引き抜き油、打ち抜き油等の塑性加工油;熱処理油、放電加工油等の金属加工油;すべり案内面油;軸受け油;錆止め油;熱媒体油等の各種用途に使用することができる。
(粒子の粒径(r)の測定)
 本実施形態に係る潤滑油組成物中の粒子は、例えば、フラーレンの凝集体、フラーレンと基油分子の会合体等、フラーレン由来の粒子が挙げられる。上記粒子の粒径(r)の測定方法は、ナノメートル領域の粒径を測定することができる方法であればよい。具体的には、例えば、動的光散乱法、レーザー回折法、X線小角散乱法等が挙げられる。なお、本実施形態の潤滑油組成物中に存在する粒子は、粒子径が1nm~100nm領域のものが多いと推定されるため、X線小角散乱法(以下、SAXS法ということがある)を用いることが好ましい。
 前記各測定法において、測定される粒径(r)が平均粒径(R)であると、粒径(r)と摩耗係数との強い相関関係を得やすく好ましい。
 X線を用いた小角散乱法は、潤滑油組成物中の粒子からの散乱X線の強度を解析することで、潤滑油組成物中の粒子の粒径や分布を求めることができる。この散乱X線が発生する領域は、例えば、Cuターゲットを用いた波長1.54ÅのX線の場合、測定角度2θは0.1~10度程度である。なお、X線小角散乱法の基本原理等については、著書「Glatter & Kratky eds(1982) Small Angle X-ray Scattering, Academic Press, London (1982), Pages 17-51.」に参照することができる。
 潤滑油組成物中の粒子の平均粒径(R)を測定するため、先ずは、SAXS法で潤滑油組成物中の粒子のX線散乱強度プロファイルを求める。粒子のX線散乱強度プロファイルの縦軸は、X線散乱強度ISAXS(Q)であり、横軸は測定角度2θと波長λに依存する散乱ベクトルQ(nm-1)である。散乱ベクトルQの大きさは下記の式(1)のように定義される。続いて、下記のG法又はS法を用いて、潤滑油組成物中の粒子の平均粒径(R)を算出する。
Figure JPOXMLDOC01-appb-M000001
〔G法〕
 潤滑油組成物において、基油に対する粒子の電子密度差が一定であるとし、粒子の形状を球状、かつ粒径(r)が均一であると仮定すると、Q<1/rの小角領域では、Guinier近似を用いることができる。Guinier近似により、粒子の散乱強度ISAXS(Q)は下記の式(2)で表すことができる。
Figure JPOXMLDOC01-appb-M000002
 式(2)中、ISAXS(Q)は粒子の散乱強度、Δρは基油に対する粒子の電子密度差、Vは粒子の体積である。
 SAXS測定で得た潤滑油組成物中の粒子の散乱強度プロファイルをもとに、Guinierプロットという縦軸にLogISAXS(Q)、横軸にQをプロットすることで、直線の傾きから粒子の平均粒径(R)を求めることができる。
〔S法〕
 Guinier近似において、粒子の形状などの仮定を設けることがあるが、これらの仮定が要らない観点から、より簡便なS法を用いて、粒子の平均粒径を解析することが好ましい。
 S法では、SAXS法による測定された潤滑油組成物中の粒子のX線散乱強度プロファイルと、基油のX線散乱強度プロファイルが求められる。散乱ベクトルQに対して、粒子のX線散乱強度と基油のX線散乱強度の比を得て、X線散乱強度比が最大値となる散乱ベクトルQmaxを用いて、下記の式(3)により、粒子の平均粒径(R)を算出することができる。
Figure JPOXMLDOC01-appb-M000003
 本実施形態の潤滑油組成物の検査方法では、上記のSAXS法により、X線散乱強度プロファイルから粒子の平均粒径(R)を算出する。このSAXS法からの算定値が、設定された所定範囲内にある潤滑油組成物を選別することにより、より選別の精度を向上することができる。その結果、潤滑油組成物の耐摩耗特性をより安定して予測することができる。
 本発明に係る潤滑油組成物の検査方法において、粒子の平均粒径(R)の算出は、G法単独、S法単独、あるいはG法とS法を同時に用いてもよい。同時に用いる場合、例えば、2つの方法で算出される平均粒径(R)がそれぞれ所定範囲内にあることを選別基準とすることができる。その場合、潤滑油組成物を選別する精度を向上することができる。
[潤滑油組成物の製造方法]
 本実施形態の潤滑油組成物の製造方法は、基油とフラーレンとを混合して得た潤滑油組成物を、本実施形態の潤滑油組成物の検査方法により選別する工程を含む。
 本実施形態の潤滑油組成物の製造方法は、詳細には、以下の工程を含むことが好ましい。
 (1)基油とフラーレンとを混合し、フラーレンの溶解成分を基油中に溶解し、必要に応じてろ過、加熱処理等を経て、基油とフラーレンを含む潤滑油組成物を得る工程(以下、「溶解工程」という。)。
 (2)SAXS法により、X線散乱強度プロファイルから潤滑油組成物の平均粒径(R)を算出し、その値が設定された範囲内にある潤滑剤組成物を合格、設定された範囲外の潤滑油組成物を不合格として、潤滑油組成物を選別する工程(以下、「検査工程」という。)。
 本実施形態の潤滑油組成物の製造方法は、さらに必要に応じて、以下の工程を含んでいてもよい。
 (3)「検査工程」で合格として選別され得るように、複数の異なるバッチで製造した潤滑油組成物を混合して、新たな潤滑油組成物を得る工程(以下、「再調整工程」という。)。
 以下、本実施形態の潤滑油組成物の製造方法を詳細に説明する。
(溶解工程)
 原料のフラーレンを基油に投入して攪拌機等の分散手段を用いて、室温付近または必要に応じて加温しながら1時間~48時間の分散処理を施す。
 基油にフラーレンを分散させるための分散手段としては、例えば、撹拌機、超音波分散装置、ホモジナイザー、ボールミル、ビーズミル等が挙げられる。
 このようにして基油中にフラーレンが溶解または分散した液(「フラーレン溶液」ということがある。)を得る。
 なお、フラーレンの投入量は、フラーレン溶液中のフラーレン濃度が所望する濃度となる量であればよい。また、溶解工程中に、後述する不溶成分を除去する工程を設ける場合には、この工程によって除去されるフラーレン量も考慮して、フラーレンを多めに投入すると良い。溶媒によっても異なるが、一般に、フラーレンが不溶成分として析出しにくいフラーレン溶液中のフラーレン濃度としては、1質量ppm~1質量%の範囲が好ましい。
 また、所望するより高濃度のフラーレン溶液を得て、基油で希釈することにより、所望する濃度のフラーレン溶液を得てもよい。
 上記のようにして得られたフラーレン溶液をそのまま潤滑油組成物として用いてもよい。
 さらに、不溶成分を除去する工程を、溶解工程中に設け、不溶成分を除去したフラーレン溶液を潤滑油組成物とすることが好ましい。不溶成分を除去する工程は、溶解工程において、基油にフラーレンを分散させる分散処理後に設けることが好ましい。不溶成分を除去する工程としては、例えば、(1)メンブランフィルターを用いた除去工程、(2)遠心分離器を用いた除去工程、(3)メンブランフィルターと遠心分離器を組み合わせて用いる除去工程等が挙げられる。これらの除去工程の中でも、濾過時間の点から、少量の潤滑油組成物を得る場合は(1)メンブランフィルターを用いた除去工程が好ましく、大量の潤滑油組成物を得る場合は(2)遠心分離器を用いた除去工程が好ましい。
 なお、溶解工程において、特にフラーレン溶液を加温する場合、非酸化雰囲気で行うことが好ましい。例えば、窒素ガスやアルゴンガス等の不活性ガスでフラーレン溶液を収容する容器内を置換するか、あるいは、さらに容器内のフラーレン溶液を不活性ガスでバブリングすることにより、フラーレン溶液を不活性ガスと平衡状態にすることが好ましい。
(検査工程)
 検査工程は、潤滑油組成物中の粒子の平均粒径(R)を算出し、潤滑油組成物を選別する工程である。溶解工程で得られた潤滑油組成物についてSAXS法により、X線散乱強度プロファイルから潤滑油組成物中の粒子の平均粒径(R)を算出する。その平均粒径(R)の値が所定範囲内にある潤滑油組成物を合格、所定範囲外の潤滑油組成物を不合格として選別する。この平均粒径(R)の所定範囲は、上述したように潤滑油組成物の摩耗係数と、平均粒径(R)との相関から、摩耗係数が所望の範囲になる平均粒径(R)を求めることにより設定することができる。複数の異なるバッチで製造した潤滑油組成物毎に、平均粒径(R)の測定を行う。これにより、耐摩耗特性を考慮して平均粒径(R)の所定範囲を決定し、潤滑油組成物を合格品と不合格品等に分類することができる。
(再調整工程)
 再調整工程は、不合格になった潤滑油組成物を合格品の潤滑油組成物へ適量混合することにより、合格品の潤滑油組成物を得る工程である。具体的には、新たに調整された潤滑油組成物を再度上記検査工程にて粒子の平均粒径(R)の測定をし、測定値が所定範囲に入るように適量混合し、合格品の潤滑油組成物を得る。合格品に混合する不合格品の潤滑油組成物の量は、混合後の潤滑油組成物中の粒子の平均粒径(R)を測定して判断すると良い。
 潤滑油組成物を分類することにより、次のような効果が得られる。(1)粒子の平均粒径(R)が不合格となる潤滑油組成物を排除することができる。(2)粒子の平均粒径(R)が不合格の範囲に含まれる潤滑油組成物を合格品の潤滑油組成物に混合することにより、新たに合格となり得る潤滑油組成物を得ることができる。
 このように、本実施形態の潤滑油組成物の製造方法によれば、フラーレンを含む潤滑油組成物であっても、比較的測定が容易な方法を用いることにより、耐摩耗性が予測でき、潤滑油組成物が合格品と不合格品に精度高く選別されることが可能になる。上記の方法は、SAXS法による潤滑油組成物中の粒子の平均粒径(R)を測定する方法である。
 以上、本発明の好ましい実施の形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
 以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[潤滑油組成物の作製]
 鉱油A(製品名:ダイアナフレシアP-46、出光興産社製)2Lと、フラーレン(フロンティアカーボン社製、nanomTM purple SUT、C60)を下記所定量混合し、室温にて、スターラーを用いて6時間で撹拌した。攪拌終了後、0.1μmのメンブランフィルターを通して濾過することで、フラーレン溶液を得た。ここで鉱油に対してフラーレンを0.5mg、5.0mg、50.0mg加えて、フラーレン濃度が2.5質量ppm、25.0質量ppm、250.0質量ppmの3種類のフラーレン溶液を調製した。なお、溶液のフラーレン濃度がフラーレンの仕込み量より算出した。
 さらに、得られたフラーレン溶液を100ml取り出し、これを250mlのステンレス製の耐圧容器に移した。次に内部を窒素ガスで置換した後に密栓し、これを熱処理しなかった。または、150℃のオイルバスに2時間あるいは15時間浸漬させて熱処理を行なった。表1に示す潤滑油組成物1~9の9種類の潤滑油組成物を得た。各種類の潤滑油組成物をそれぞれ3点調製し、すなわち、合計27サンプルを調製した。
Figure JPOXMLDOC01-appb-T000004
[測定方法]
(X線小角散乱測定)
 潤滑油組成物に対して、X線小角散乱測定を実施した。詳細は以下となる。
 測定システム:SAXSpace(AntonPaar製)
 X線:波長(λ):0.1524nm
 検出器:Mythen(1次元計数型検出器)
 適正な露光条件(アッテネーター及び露光時間)を選定の上、潤滑油組成物と基油(バックグラウンド)の二次元散乱パターンを記録した。画像処理ソフトFit2d(Europeansynchrotron research facility)を用い、それぞれ、横軸が散乱ベクトル、縦軸が散乱強度の散乱強度プロファイルを得た。潤滑油組成物の散乱強度から、基油の散乱強度を引くことにより、粒子の散乱強度プロファイルを得ることができた。
 (摩耗係数の測定)
 得られた潤滑油組成物について、摩擦摩耗試験機(Anton Paar社製、製品名「ボールオンディスクトライボメーター」)を用いて、耐摩耗特性を評価した。
 摩擦摩耗試験機を構成する基板およびボールの材質を、高炭素クロム軸受鋼鋼材であるSUJ2とした。なお、ボールは直径が6mm、基板は15mm角を用いた。
 まず、基板の一主面に潤滑油組成物を塗布した。次に、潤滑油組成物を介して、基板の一主面上にて、ボールが同心円状の軌道を描くように、ボールを摺動させた。基板の一主面上におけるボールの速度を20mm/秒、ボールによる基板の一主面に対する荷重を25Nとした。基板の一主面上におけるボールの摺動距離が積算15mに到達した時点で、ボールを装置より取り出し、ボールの基板との接触面を、光学顕微鏡で観察し、表面のすり減りを、すり減り面の円の最大直径をD(μm)とした。ここで最大直径Dを摩耗係数と定義した。つまり、最大直径Dの数字が小さいほど、摩耗が抑制されており、潤滑油組成物の潤滑特性として好ましい状態である。通常、円形にすり減るが、楕円を帯びる場合がある。その場合は、最大径になる部分を最大直径Dとした。なお、この測定は25±2℃の環境下で行った。
(動粘度の測定)
 約50mLの潤滑油組成物をガラス製ビーカーに取り出し、これを40℃の水浴に30分間浸漬した。
 次に、日本工業規格 JIS Z8803:2011に規定されている液体の粘度測定方法細管粘度計による粘度測定方法に準ずる方法により、潤滑油組成物の動粘度を測定した。
[実施例1]
 前記潤滑油組成物の27サンプルと基油(鉱油A)について、X線小角散乱測定を行い、粒子の散乱強度プロファイルを得た。得た粒子の散乱強度プロファイルを用いて、前記G法で、平均粒径(R)を算出した。そして、潤滑油組成物27サンプルの摩耗係数測定を行い、平均粒径(R)と摩耗係数の関係を図1に示す。平均粒径(R)と摩耗係数の値を表2に示す。
Figure JPOXMLDOC01-appb-T000005
 図1に示す結果から、平均粒径(R)と摩耗係数との相関係数が-0.80となり、平均粒径(R)と摩耗係数に相関関係が認められた。相関係数は、最小二乗法により求めた。相関係数の絶対値が0.70以上であるときに、相関関係が存すると判断した。相関関係が存する実施例1では、平均粒径(R)が特定の範囲内にある潤滑油組成物を選別することにより、摩耗係数が所望する範囲内にある潤滑油組成物を選別することができる。
 例えば、図1において、潤滑油組成物の摩耗係数が値B(=200)以下を合格品とする場合には、平均粒径(R)が値A(=1.75)以上の潤滑油組成物を合格品として選別すると良い。この場合、平均粒径(R)が値A以上を所定の範囲として設定して、値A以上の潤滑油組成物を合格品として選別すれば、摩耗係数が値Bを越える不合格品が含まれる可能性が低くなることがわかる。また、図1において、潤滑油組成物の平均粒径(R)が値A未満の場合には、摩耗係数が値Bを超える潤滑油組成物を不合格品として選別することができる。また、図1において、領域Cにある不合格品の潤滑油組成物であっても少量であれば、以下の方法で、摩耗係数が値B以下の合格品の潤滑油組成物に調整することができる。不合格品の潤滑油組成物に、領域Dにある合格品の潤滑油組成物を添加することで、平均粒径(R)が値A以上とすることができる。
[実施例2]
 粒子の散乱強度プロファイルと鉱油Aの散乱強度プロファイルを用い、前記S法で粒子の平均粒径(R)を算出したこと以外は、実施例1と同様に、粒子の平均粒径(R)と摩耗係数の関係を評価した。
 平均粒径(R)と摩耗係数の値を表3に、平均粒径(R)と摩耗係数の関係を図2に示す。
Figure JPOXMLDOC01-appb-T000006
 図2に示す結果から、平均粒径(R)と摩耗係数との相関係数が-0.89となり、その絶対値が0.70以上であることから、平均粒径(R)と摩耗係数に相関関係が認められた。よって、実施例2でも、平均粒径(R)が特定の範囲内にある潤滑油組成物を選別することにより、摩耗係数が所望する範囲内にある潤滑油組成物を選別することができることが分かった。
 例えば、図2において、潤滑油組成物の摩耗係数が値B(=200)以下の潤滑油組成物を合格品とする場合には、平均粒径(R)が値A(=13)以上の潤滑油組成物を合格品として選別すると良い。この場合、平均粒径(R)が値A以上を所定の範囲として設定して、値A以上の潤滑油組成物を合格品として選別すれば、摩耗係数が値Bを越える不合格品が含まれる可能性が低くなることがわかる。また、図2において、潤滑油組成物の平均粒径(R)が値A未満の場合には、摩耗係数が値Bを超える潤滑油組成物を不合格品として選別することができる。また、図2において、領域Cにある不合格品の潤滑油組成物であっても少量であれば、以下の方法で、摩耗係数がB以下の合格品の潤滑油組成物に調整することができる。不合格品の潤滑油組成物に領域Dにある合格品の潤滑油組成物を添加することで、平均粒径(R)が値A以上とすることができる。
[比較例1]
 前記潤滑油組成物の27サンプルについて、動粘度(mm/s)および摩耗係数を測定し、動粘度と摩耗係数の関係を評価した。動粘度と摩耗係数の測定結果を表4に、動粘度と摩耗係数の関係を図3に示す。
Figure JPOXMLDOC01-appb-T000007
 図3に示す結果から、動粘度と摩耗係数との相関係数が0.11となり、その絶対値が0.70未満であることから、動粘度と摩耗係数に相関関係が認められなかった。このため、潤滑油組成物の動粘度から、潤滑油組成物の摩耗係数を推測して、潤滑油組成物を選別することができないことが分かった。
 本発明は、基油とフラーレンとを含む潤滑油組成物の製造工程において、潤滑油組成物中に存在する粒子の平均粒径(R)を測定することにより、耐摩耗性が予測でき、潤滑油組成物を合格品と不合格品に精度高く選別できる。従って、本発明で選別した合格品の潤滑油組成物は、自動車、家電、工業機械等の摺動部において、金属部分が傷付いたり、摩耗したりすることを抑制するために有効である。

Claims (7)

  1.  基油とフラーレンとを含む潤滑油組成物の中に存在する粒子の粒径(r)を測定し、前記粒径(r)の測定値と前記潤滑油組成物の摩耗係数の測定値との相関によって設定された粒径(r)の所定範囲に基づいて潤滑油組成物を選別することを特徴とする潤滑油組成物の検査方法。
  2.  前記粒子の粒径(r)を、動的光散乱法、レーザー回折法、または、X線小角散乱法(SAXS)法によって測定する請求項1に記載の潤滑油組成物の検査方法。
  3.  前記粒径(r)が、前記潤滑油組成物の中に存在する粒子の平均粒径(R)である請求項1または2に記載の潤滑油組成物の検査方法。
  4.  前記粒子の平均粒径(R)を、X線小角散乱法(SAXS)法によって測定する請求項3に記載の潤滑油組成物の検査方法。
  5.  前記粒子の平均粒径(R)を、Guinierプロットの傾きから算出する請求項4に記載の潤滑油組成物の検査方法。
  6.  前記粒子の平均粒径(R)を、散乱ベクトルに対して前記潤滑油組成物と前記基油の散乱強度比が最大値となる散乱ベクトルの値から算出する請求項4に記載の潤滑油組成物の検査方法。
  7.  請求項1~請求項6のいずれか1項に記載の潤滑油組成物の検査方法により選別する工程を含む、潤滑油組成物の製造方法。
PCT/JP2020/019104 2019-05-16 2020-05-13 潤滑油組成物の検査方法およびその潤滑油組成物の製造方法 WO2020230815A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080031989.6A CN113748340B (zh) 2019-05-16 2020-05-13 润滑油组合物的检查方法及该润滑油组合物的制造方法
JP2021519457A JP7027676B2 (ja) 2019-05-16 2020-05-13 潤滑油組成物の検査方法およびその潤滑油組成物の製造方法
EP20805184.7A EP3971268B1 (en) 2019-05-16 2020-05-13 Testing method for lubricating oil composition and production method for said lubricating oil composition
US17/526,346 US20220074840A1 (en) 2019-05-16 2021-11-15 Method of inspecting lubricating oil composition and method of producing lubricating oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-092842 2019-05-16
JP2019092842 2019-05-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/526,346 Continuation-In-Part US20220074840A1 (en) 2019-05-16 2021-11-15 Method of inspecting lubricating oil composition and method of producing lubricating oil composition

Publications (1)

Publication Number Publication Date
WO2020230815A1 true WO2020230815A1 (ja) 2020-11-19

Family

ID=73288854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/019104 WO2020230815A1 (ja) 2019-05-16 2020-05-13 潤滑油組成物の検査方法およびその潤滑油組成物の製造方法

Country Status (5)

Country Link
US (1) US20220074840A1 (ja)
EP (1) EP3971268B1 (ja)
JP (1) JP7027676B2 (ja)
CN (1) CN113748340B (ja)
WO (1) WO2020230815A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11499454B2 (en) * 2020-02-14 2022-11-15 Cummins Inc. Systems and methods for reliably detecting wear metal particles in lubrication systems to avoid progressive damage
CN114925335B (zh) * 2022-07-21 2022-09-20 济宁昆仑石油化工有限公司 一种工业用油生产配比调控方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139680A (ja) * 2001-11-05 2003-05-14 Denki Kagaku Kogyo Kk 粒度分布測定方法
JP2006113042A (ja) * 2004-09-17 2006-04-27 Dainippon Ink & Chem Inc 有機顔料の平均一次粒子径、粒径分布、及び凝集粒子径の測定方法
JP2008164294A (ja) * 2006-12-26 2008-07-17 Toribotex Co Ltd 潤滑状態評価装置、潤滑状態評価方法、プログラム及び記録媒体
JP2008266501A (ja) 2007-04-24 2008-11-06 Sumikou Junkatsuzai Kk エンジンオイル用添加剤組成物
JP2011145162A (ja) * 2010-01-14 2011-07-28 Japan Atomic Energy Agency 流体中微粒子のx線検出法
WO2017141825A1 (ja) 2016-02-19 2017-08-24 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
JP2019045390A (ja) * 2017-09-05 2019-03-22 昭和電工株式会社 針状物質の物性の測定方法
JP2019092842A (ja) 2017-11-22 2019-06-20 テルモ株式会社 医療器具の留置方法、医療器具、及び医療器具の留置装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4730714B2 (ja) * 2008-08-28 2011-07-20 日産自動車株式会社 グリース組成物
JP5747230B2 (ja) * 2011-06-17 2015-07-08 Nokクリューバー株式会社 導電性グリース組成物
JP2013234869A (ja) * 2012-05-07 2013-11-21 Ihi Corp 油中不溶解物検出装置
CN103820193A (zh) * 2014-02-24 2014-05-28 广东美芝制冷设备有限公司 润滑油组合物及其应用
CN104560307A (zh) * 2014-12-30 2015-04-29 中国人民解放军空军勤务学院 含纳米二硫化钨的抗磨减摩润滑油添加剂
WO2016125859A1 (ja) * 2015-02-05 2016-08-11 出光興産株式会社 グリースおよびグリースの製造方法
JP2018168356A (ja) * 2017-03-29 2018-11-01 昭和電工株式会社 潤滑油組成物及びその製造方法
WO2019082883A1 (ja) * 2017-10-25 2019-05-02 昭和電工株式会社 フラーレン含有潤滑油組成物及びその製造方法
US11220652B2 (en) * 2017-12-06 2022-01-11 Showa Denko K.K. Method for inspecting lubricating oil composition and method for producing lubricating oil composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139680A (ja) * 2001-11-05 2003-05-14 Denki Kagaku Kogyo Kk 粒度分布測定方法
JP2006113042A (ja) * 2004-09-17 2006-04-27 Dainippon Ink & Chem Inc 有機顔料の平均一次粒子径、粒径分布、及び凝集粒子径の測定方法
JP2008164294A (ja) * 2006-12-26 2008-07-17 Toribotex Co Ltd 潤滑状態評価装置、潤滑状態評価方法、プログラム及び記録媒体
JP2008266501A (ja) 2007-04-24 2008-11-06 Sumikou Junkatsuzai Kk エンジンオイル用添加剤組成物
JP2011145162A (ja) * 2010-01-14 2011-07-28 Japan Atomic Energy Agency 流体中微粒子のx線検出法
WO2017141825A1 (ja) 2016-02-19 2017-08-24 パナソニックIpマネジメント株式会社 冷媒圧縮機およびそれを用いた冷凍装置
JP2019045390A (ja) * 2017-09-05 2019-03-22 昭和電工株式会社 針状物質の物性の測定方法
JP2019092842A (ja) 2017-11-22 2019-06-20 テルモ株式会社 医療器具の留置方法、医療器具、及び医療器具の留置装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Small-Angle X-Ray Scattering", 1982, ACADEMIC PRESS, pages: 17 - 51
See also references of EP3971268A4

Also Published As

Publication number Publication date
CN113748340A (zh) 2021-12-03
EP3971268A1 (en) 2022-03-23
EP3971268B1 (en) 2024-06-19
JP7027676B2 (ja) 2022-03-02
JPWO2020230815A1 (ja) 2020-11-19
US20220074840A1 (en) 2022-03-10
EP3971268A4 (en) 2023-03-01
CN113748340B (zh) 2024-05-14

Similar Documents

Publication Publication Date Title
EP3722805B1 (en) Method for inspecting lubricating oil composition and method for producing lubricating oil composition
Khemchandani et al. A biocompatible ionic liquid as an antiwear additive for biodegradable lubricants
JP6440685B2 (ja) 金属ナノ粒子をベースとする潤滑剤組成物
US20220074840A1 (en) Method of inspecting lubricating oil composition and method of producing lubricating oil composition
JP2018168356A (ja) 潤滑油組成物及びその製造方法
JP6623503B2 (ja) 潤滑油組成物及びその製造方法
JP2010535276A (ja) 改善された脱泡性を有する異性化基油の金属加工流体組成物及びその調製
JP7001899B2 (ja) フラーレン含有潤滑油組成物及びその製造方法
JP5455480B2 (ja) 潤滑油組成物
JP7384175B2 (ja) 潤滑油組成物及びその製造方法
WO2013055419A1 (en) Gear lubricant
JP6728511B1 (ja) 潤滑油組成物の検査方法および潤滑油組成物の製造方法
US20230257671A1 (en) Lubricating oil composition
Kumar et al. Experimental Investigation of MoS2 Micro-Particles as Additive for Bearing Oils
Graf et al. Influence of Parasitic Currents on an Exemplary Mineral Oil-Based Lubricant and the Raceway Surface of a Thrust Bearing
WO2022168935A1 (ja) 潤滑油組成物
CN113736541A (zh) 含氟化石墨烯的抗磨减摩锂基润滑脂及其制备方法
WO2022209942A1 (ja) 潤滑油組成物
Tomala et al. Mechanism of interactions between MoS2 nanotubes and conventional oil additives under various contact conditions
BR112023002718B1 (pt) Uso de um lubrificante de refrigeração, e método para laminação a frio de um produto de alumínio isento de padrões de defeitos visualmente discerníveis causados por ácidos graxos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20805184

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021519457

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020805184

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020805184

Country of ref document: EP

Effective date: 20211216