WO2020230339A1 - 回転電機の制御装置 - Google Patents

回転電機の制御装置 Download PDF

Info

Publication number
WO2020230339A1
WO2020230339A1 PCT/JP2019/022161 JP2019022161W WO2020230339A1 WO 2020230339 A1 WO2020230339 A1 WO 2020230339A1 JP 2019022161 W JP2019022161 W JP 2019022161W WO 2020230339 A1 WO2020230339 A1 WO 2020230339A1
Authority
WO
WIPO (PCT)
Prior art keywords
estimation
voltage command
phase
current
carrier wave
Prior art date
Application number
PCT/JP2019/022161
Other languages
English (en)
French (fr)
Inventor
潤 北川
辰也 森
勲 家造坊
誠晋 澤田
建太 久保
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP19928989.3A priority Critical patent/EP3972118A4/en
Priority to CN201980096130.0A priority patent/CN113826317B/zh
Priority to US17/598,429 priority patent/US20220166356A1/en
Publication of WO2020230339A1 publication Critical patent/WO2020230339A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/183Circuit arrangements for detecting position without separate position detecting elements using an injected high frequency signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/185Circuit arrangements for detecting position without separate position detecting elements using inductance sensing, e.g. pulse excitation

Definitions

  • the present application relates to a control device for a rotary electric machine.
  • a control device that controls the power supply to the winding is required based on the magnetic pole position information (rotation angle information) of the rotor of the rotating electric machine.
  • the magnetic pole position information of the rotor is acquired from the rotation sensor attached to the rotating electric machine.
  • the installation of the rotation sensor has many disadvantages, such as an increase in cost, a need to secure an installation space, and a need to deal with an abnormality in the rotation sensor. Therefore, many sensorless magnetic pole position estimation methods for estimating the magnetic pole position information of the rotor without installing a rotation sensor have been proposed.
  • the first estimation method is an induced voltage method in which the magnetic pole position of the rotor is estimated by estimating the induced voltage of the rotating electric machine.
  • the induced voltage method when the rotating electric machine is rotating to the extent that the induced voltage is generated, the magnetic pole position can be estimated accurately, but the induced voltage is not generated or almost the induced voltage is generated. In the region where the rotation speed is low, it is difficult to estimate the magnetic pole position.
  • the second estimation method is a high-frequency superposition method in which the magnetic pole position of the rotor is estimated using the polarity of the rotating electric machine.
  • a high-frequency voltage for estimating the magnetic pole position is superimposed on the rotating electric machine, and the magnetic pole position is estimated from the change in the amplitude of the current due to the position dependence of the inductance. Therefore, it can be used even in a region where the rotation speed is low.
  • a high-frequency voltage is applied in order to estimate the magnetic pole position, so that there is a problem that noise corresponding to the frequency of the high-frequency voltage is generated.
  • a high frequency voltage based on the dq axis (alternating voltage) that rotates in synchronization with the rotation of the rotor is used for position estimation control. Since this method uses a high-frequency voltage having a period equal to the period of the carrier wave (carrier wave) (one triangular wave), it has a feature that the high-frequency voltage can be easily increased in frequency. That is, it is possible to reduce noise by setting the frequency of the high frequency voltage outside the human audible range.
  • a high frequency voltage based on the UVW axis is used for position estimation control.
  • a voltage vector that rotates at a fixed cycle is applied in the UVW axis coordinate system, which is a stationary coordinate system fixed to the stator winding of a rotating electric machine, and the high-frequency current amplitude that is the response is the position of the inductance.
  • the magnetic pole position is directly estimated by utilizing the fact that it has a position dependency similar to that of the dependency. Therefore, unlike the first estimation method, it is not necessary to control the position error by PID, and no response delay occurs at the time of estimation.
  • Patent Document 1 which uses a high-frequency voltage based on the dq axis, an observer including PID control using an error ⁇ between the actual rotor position and the estimated position is used for estimating the magnetic pole position. That is, the latest estimated position is updated by feeding back the error ⁇ and integrating it. Therefore, the position can be estimated only with the responsiveness equal to or lower than the feedback response frequency set by the PID control gain. Further, the responsiveness of the magnetic pole position estimation must be lower than the responsiveness of the current control, and the position estimation cannot be made highly responsive.
  • the position estimation device as in Patent Document 2 uses a high frequency voltage based on the UVW axis of the rotating electric machine.
  • a carrier wave for three triangular waves is required to generate a high frequency voltage. This is because, when the half cycle of the triangular wave is set to one section, the output voltage of the PWM inverter changes only once during this half cycle. That is, when one cycle of the high frequency voltage is 360 °, in order to generate a high frequency voltage of three-phase alternating current in which each phase is shifted by 120 °, the phases are shifted by two sections and then one cycle is formed in six sections.
  • the number of switchings per unit time increases, and switching loss and electromagnetic noise increase.
  • the switching loss is an energy loss that occurs when the switching element of the inverter is switched, and the loss increases in proportion to the number of switchings, so that it is important from the viewpoint of energy saving.
  • electromagnetic noise is important from the viewpoint of EMI (radio interference) because the frequency of noise increases and the magnitude of noise increases as the number of switching times per unit time, that is, the switching frequency increases. That is, it is important to reduce the switching frequency.
  • the high frequency voltage based on the dq axis of Patent Document 1 can suppress the increase in the switching frequency due to the high frequency voltage, but the response of the position estimation is poor, and the high frequency voltage based on the UVW axis of Patent Document 2 is used. Although the responsiveness of position estimation can be improved, the switching frequency is increased by the high frequency voltage. Therefore, both technologies have advantages and disadvantages, and there is a trade-off between advantages and disadvantages.
  • a control device for a rotating electric machine that can suppress an increase in the switching frequency due to an estimation voltage command while reducing the estimation delay of the magnetic pole position (rotation angle) is desired.
  • the control device for the rotary electric machine is It is a control device for a rotating electric machine that controls a rotating electric machine having a salient polarity in the rotor via an inverter.
  • a current detection unit that detects the current flowing through the windings provided in the stator of the rotary electric machine, and
  • An angle estimation unit that estimates the rotation angle of the rotor based on the detected value of the current
  • a current control unit that calculates a drive voltage command for driving the rotary electric machine based on the detected value of the current.
  • An estimation command generator that generates an estimation voltage command, A voltage command calculation unit that calculates a voltage command by adding the estimation voltage command to the drive voltage command, A carrier wave generator that generates a carrier wave and Based on the result of comparison between the voltage command and the carrier wave, a voltage application unit for turning on / off the switching element of the inverter to apply a voltage to the winding is provided.
  • the estimation command generation unit generates the estimation voltage command with a preset period on the stationary coordinate system fixed to the winding.
  • the carrier wave generator generates the carrier wave having the same period as the period of the estimation voltage command.
  • the angle estimation unit extracts the frequency component of the period of the estimation voltage command from the detected value of the current, and estimates the rotation angle based on the frequency component.
  • the period of the estimation voltage command and the period of the carrier wave are the same period, so that the number of switchings per period of the estimation voltage command can be reduced. .. Therefore, switching loss and electromagnetic noise caused by switching can be reduced.
  • the voltage command for estimation is generated on the static coordinate system fixed to the winding, the magnetic pole position dependence of the inductance of the rotor with salient polarity is used to determine the current detection value.
  • the frequency component of the period of the voltage command for estimation can be extracted, and the rotation angle can be directly estimated based on the frequency component, and the estimation delay can be reduced.
  • FIG. It is a schematic block diagram of the rotary electric machine, the inverter, and the control device of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram of the control device of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a hardware block diagram of the control device of the rotary electric machine which concerns on Embodiment 1.
  • FIG. It is a time chart of the voltage command for estimation of three phases which concerns on Embodiment 1.
  • 9 is a time chart of a three-phase carrier wave according to the first embodiment. It is a time chart for demonstrating the generation of a PWM control signal by the comparison between the estimation voltage command which concerns on Embodiment 1 and a carrier wave.
  • FIG. It is a time chart for demonstrating the behavior of the detection value of the estimation voltage command, the carrier wave, and the current which concerns on Embodiment 1.
  • FIG. It is a schematic block diagram of the angle estimation part which concerns on Embodiment 1.
  • FIG. It is a time chart for demonstrating the behavior of the detected value of the U-phase estimation voltage command, the carrier wave, and the current which concerns on Embodiment 1.
  • FIG. It is a time chart of the voltage command for estimation of three phases which concerns on Embodiment 2.
  • FIG. 2 It is a time chart for demonstrating the behavior of the detected value of the current with respect to the phase setting of the estimation voltage command and a carrier wave which concerns on Embodiment 2.
  • FIG. It is a time chart for demonstrating the behavior of the detected value of the current with respect to the phase setting of the estimation voltage command and a carrier wave which concerns on Embodiment 2.
  • FIG. It is a time chart for demonstrating the generation of a PWM control signal by the comparison between the estimation voltage command which concerns on Embodiment 3 and a carrier wave.
  • FIG. It is a time chart for demonstrating the behavior of the detected value of the U-phase estimation voltage command, the carrier wave, and the current which concerns on Embodiment 3.
  • FIG. 1 is a schematic configuration diagram of a rotary electric machine 1, an inverter 2, and a control device 10 according to the present embodiment.
  • the rotating electric machine 1 is a permanent magnet synchronous rotating electric machine having a stator provided with U-phase, V-phase, and W-phase three-phase windings Cu, Cv, and Cw, and a rotor provided with a permanent magnet. Has been done.
  • the three-phase windings Cu, Cv, and Cw are star-connected.
  • the three-phase winding may be a delta connection.
  • the rotor has a salient polarity, and the d-axis inductance and the q-axis inductance are different.
  • the permanent magnet is an embedded magnet synchronous rotating electric machine embedded inside the rotor.
  • the inverter 2 has a plurality of switching elements and performs DC-AC conversion between the DC power supply 25 and the three-phase winding.
  • the inverter 2 is a three-phase series circuit in which a switching element 22a on the positive electrode side connected to the positive electrode side of the DC power supply 25 and a switching element 22b on the negative electrode side connected to the negative electrode side of the DC power supply 25 are connected in series. Three sets are provided corresponding to the phase windings.
  • the inverter 2 includes three switching elements 22a on the positive electrode side and three switching elements 22b on the negative electrode side, for a total of six switching elements. A connection point in which the switching element 22a on the positive electrode side and the switching element 22b on the negative electrode side are connected in series is connected to the winding of the corresponding phase.
  • an IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the smoothing capacitor 24 is connected between the positive electrode side and the negative electrode side of the inverter 2.
  • the voltage sensor 3 outputs an electric signal corresponding to the DC voltage of the DC power supply 25.
  • the output signal of the voltage sensor 3 is input to the control device 10.
  • the inverter 2 is provided with a current sensor 4 for detecting the current flowing through the winding.
  • the current sensor 4 is provided on a series circuit of the switching element 22a on the positive electrode side and the switching element 22b on the negative electrode side.
  • shunt resistors 4U, 4V, and 4W are connected in series to the negative electrode side of the switching element 22b on the negative electrode side on the series circuit of each phase.
  • the potential difference between both ends of the shunt resistors 4U, 4V, and 4W of each phase is input to the control device 10.
  • the shunt resistors 4U, 4V, and 4W may be connected in series to the positive electrode side of the switching element 22a on the positive electrode side on the series circuit of each phase.
  • the current sensor 4 may be a Hall element or the like provided on the electric wire of each phase connecting the series circuit of the switching element and the winding.
  • a charge / dischargeable power storage device for example, a lithium ion battery, a nickel hydrogen battery, or an electric double layer capacitor
  • the DC power supply 25 may be provided with a DC-DC converter, which is a DC power converter that boosts or lowers the DC voltage.
  • control device 10 controls the rotary electric machine 1 via the inverter 2.
  • the control device 10 includes a current detection unit 31, an angle estimation unit 32, a voltage detection unit 33, a current control unit 34, an estimation command generation unit 35, a voltage command calculation unit 36, and a carrier wave generation unit, which will be described later. 37, a voltage application unit 38, and the like are provided.
  • Each function of the control device 10 is realized by a processing circuit provided in the control device 10.
  • the control device 10 includes an arithmetic processing unit 90 (computer) such as a CPU (Central Processing Unit), a storage device 91 for exchanging data with the arithmetic processing unit 90, as a processing circuit.
  • An input circuit 92 for inputting an external signal to the arithmetic processing unit 90, an output circuit 93 for outputting a signal from the arithmetic processing unit 90 to the outside, and the like are provided.
  • the arithmetic processing device 90 includes an ASIC (Application Specific Integrated Circuit), an IC (Integrated Circuit), a DSP (Digital Signal Processor), an FPGA (Field Programmable Gate Array), various logic circuits, and various signal processing circuits. You may. Further, a plurality of arithmetic processing units 90 of the same type or different types may be provided, and each processing may be shared and executed.
  • the storage device 91 includes a RAM (Random Access Memory) configured to be able to read and write data from the arithmetic processing device 90, a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing device 90, and the like. Has been done.
  • the input circuit 92 includes an A / D converter and the like to which various sensors and switches such as a voltage sensor 3 and a current sensor 4 are connected and the output signals of these sensors and switches are input to the arithmetic processing device 90.
  • the output circuit 93 is provided with a drive circuit or the like to which an electric load such as a gate drive circuit for driving the switching element on and off is connected and a control signal is output from the arithmetic processing device 90 to the electric load.
  • the arithmetic processing unit 90 executes software (program) stored in the storage device 91 such as ROM, and the storage device 91, It is realized by cooperating with other hardware of the control device 10 such as the input circuit 92 and the output circuit 93.
  • the setting data used by the control units 31 to 38 and the like is stored in a storage device 91 such as a ROM as a part of software (program).
  • a storage device 91 such as a ROM as a part of software (program).
  • Each detection unit voltage detection unit 33 detects the power supply voltage VDC of the DC power supply 25. In the present embodiment, the voltage detection unit 33 detects the power supply voltage VDC based on the output signal of the voltage sensor 3.
  • the current detection unit 31 detects the winding currents Iu, Iv, and Iw flowing through the three-phase windings. In the present embodiment, the current detection unit 31 detects the currents Iu, Iv, and Iw flowing from the inverter 2 to the windings Cu, Cv, and Cw of each phase based on the output signal of the current sensor 4.
  • the current sensor 4 is provided on the negative electrode side of the negative electrode side switching element 22b on the series circuit of each phase, the negative electrode side switching element 22b is turned on, and the current sensor 4 has a current. It is necessary to detect the current at the timing when the current flows. Therefore, the current detection unit 31 detects the current for each phase based on the output signal of the current sensor when the switching element 22b on the negative electrode side is turned on. In the present embodiment, the current detection unit 31 detects the currents Iu, Iv, and Iw of each phase based on the output signal of the current sensor 4 of each phase at the peak of the carrier wave of each phase. Depending on the influence of ringing due to switching and the processing order of the arithmetic processing unit 90, the current detection may be executed with a delay of several us to several tens of us from the top of the mountain.
  • the current detection unit 31 turns on the switching element 22a on the positive side for each phase.
  • the current may be detected based on the output signal of the current sensor, and the current detection unit 31 is based on the output signal of the current sensor 4 of each phase at the peak of the valley of the carrier of each phase.
  • the currents Iu, Iv, and Iw of each phase may be detected.
  • the current control unit 34 calculates a drive voltage command for driving the rotary electric machine 1 based on the detected value of the current.
  • the current control unit 34 includes a current command calculation unit 34a, a current coordinate conversion unit 34b, a feedback control unit 34c, and a voltage coordinate conversion unit 34d.
  • the current command calculation unit 34a calculates the d-axis current command Id_ref and the q-axis current command Iq_ref.
  • the current coordinate conversion unit 34b performs three-phase two-phase conversion and rotational coordinate conversion on the three-phase current detection values Iu, Iv, and Iw based on the magnetic pole position ⁇ estimated by the angle estimation unit 32 described later.
  • the d-axis current detection value Id and the q-axis current detection value Iq are calculated.
  • the d-axis is set in the direction (pole position) of the N pole of the permanent magnet provided on the rotor
  • the q-axis is set in the direction advanced by 90 ° ( ⁇ / 2) in electrical angle from the d-axis. Has been done.
  • the feedback control unit 34c calculates the current deviation between the dq-axis current commands Id_ref and Iq_ref and the dq-axis current detection values Id and Iq, performs control calculations such as PID control based on the current deviation, and drives the d-axis.
  • the voltage command Vd_ref and the drive voltage command Vq_ref for the q-axis are calculated.
  • the voltage coordinate conversion unit 34d performs fixed coordinate conversion and two-phase three-phase conversion on the dq-axis drive voltage commands Vd_ref and Vq_ref based on the magnetic pole position ⁇ , and performs U-phase drive voltage commands Vd_ref and V-phase.
  • the drive voltage command Vv_ref and the W-phase drive voltage command Vw_ref are calculated.
  • the main components of the three-phase drive voltage commands Vu_ref, Vv_ref, and Vw_ref are three-phase AC voltages (sine waves) for driving the rotary electric machine 1, and are called fundamental waves.
  • the fundamental wave has the same period as one period of the electric angle of the rotating electric machine.
  • Estimating command generation unit The estimation command generation unit 35 generates an estimation voltage command having a preset period Th on the resting coordinate system fixed to the winding.
  • the frequency fh of the period Th of the estimation voltage command is higher than the frequency of the three-phase drive voltage command (primary wave).
  • the frequency fh of the period Th of the estimation voltage command is set to 18000 Hz or higher.
  • the frequency fh of the estimation voltage command can be set to be equal to or higher than the human audible range (18000 Hz), and the noise generated by superimposing the estimation voltage command on the voltage command can be reduced.
  • the estimation command generation unit 35 generates three estimation voltage commands Vuh, Vvh, and Vwh corresponding to each of the three phases.
  • the three-phase estimation voltage commands Vuh, Vvh, and Vwh are provided with a phase difference of 1/3 of the period of the estimation voltage command between the phases.
  • the V-phase estimation voltage command Vvh has a phase delay of 120 ° with respect to the U-phase estimation voltage command Vuh
  • the W-phase estimation The voltage command Vwh for V phase has a phase lag of 120 ° with respect to the voltage command Vvh for estimation of V phase
  • the voltage command Vuh for estimation of U phase is 120 ° with respect to the voltage command Vwh for estimation of W phase. It has a phase lag.
  • the three-phase estimation voltage commands Vuh, Vvh, and Vwh have the same waveforms having phase differences with each other.
  • the estimation voltage command may be a cosine wave (or a sine wave), but the processing load increases in order to generate a high frequency cosine wave. Therefore, it is desirable to generate an estimation voltage command having a phase difference of 120 ° between the phases and having a component of a predetermined frequency fh while reducing the processing load.
  • one cycle Th is evenly divided into three, which is the minimum required number of divisions. Then, the estimation voltage command of each phase is set so that the values of at least two division periods are different from each other in the three division periods. In the present embodiment, the values of the two division periods are set so as to be different from each other in the three division periods. Therefore, the value of one division period and the value of the remaining two division periods are set to be different from each other.
  • Each division period is a period of 120 °, and the estimation voltage command of each phase is deviated by one division period between the phases.
  • the voltage command for estimation of each phase has two different values in one cycle Th, and has a component of the frequency fh of this cycle Th. Therefore, the frequency fh component of the estimation voltage command can be generated in the current flowing through the winding, and the rotation angle can be estimated based on the detected value of the current. It is the minimum voltage command for estimating the rotation angle that two different values are obtained in this one cycle, and the processing load for generating the estimation voltage command can be minimized.
  • the estimation voltage command of each phase may have three or more different values in one cycle Th.
  • the estimation voltage command of each phase may be offset offset, and the total value of the three-phase estimation voltage commands Vuh, Vvh, and Vwh may be offset offset from 0.
  • ⁇ h is the angular frequency of the estimation voltage command
  • t is the time
  • L is the inductance of the rotary electric machine.
  • the angular frequency ⁇ h of the estimation voltage command is a value obtained by dividing 2 ⁇ by the period Th of the estimation voltage command.
  • the inductance L changes according to the magnetic pole position ⁇ , and there is a predetermined relationship between the inductance L and the magnetic pole position ⁇ . Therefore, it can be seen from the third equation of the equation (2) that the magnetic pole position ⁇ can be estimated based on the amplitude A of the frequency component Ih of the estimation voltage command included in the current.
  • the estimation voltage falls within the limit of the power supply voltage VDC under the operating conditions where the amplitude of the three-phase drive voltage command is maximized.
  • the maximum value of the command amplitude may be set to the amplitude of the estimation voltage command.
  • a value that is smaller than the maximum value of the amplitude of the estimation voltage command that falls within the limit of the power supply voltage VDC but that can secure noise immunity may be set to the amplitude of the estimation voltage command.
  • Voltage command calculation unit 36 adds the estimation voltage command to the drive voltage command to calculate the voltage command.
  • the voltage command calculation unit 36 adds the three-phase estimation voltage commands Vuh, Vvh, and Vwh to the three-phase drive voltage commands Vu_ref, Vv_ref, and Vw_ref, respectively, as shown in the following equation. Then, the three-phase voltage commands Vu *, Vv *, and Vw * are calculated.
  • Vu * Vu_ref + Vuh
  • Vv * Vv_ref + Vvh ...
  • Vw * Vw_ref + Vwh
  • Carrier wave generation unit The carrier wave generation unit 37 generates a carrier wave having the same period Th as the period Th of the estimation voltage command.
  • the carrier wave oscillates around 0 with an amplitude of the power supply voltage VDC / 2.
  • the carrier wave generation unit 37 generates three carrier waves Cau, Cav, and Caw corresponding to each of the three phases.
  • the three-phase carrier waves Cau, Cav, and Caw are provided with a phase difference of 1/3 of the carrier wave period Th between the phases. That is, assuming that one period Th of the carrier wave is 360 °, the V-phase carrier wave Cav has a phase delay of 120 ° with respect to the U-phase carrier wave Cau, and the W-phase carrier wave Caw becomes the V-phase carrier wave Cav.
  • the U-phase carrier wave Cau has a phase delay of 120 ° with respect to the W-phase carrier wave Caw.
  • the three-phase carrier waves Cau, Cav, and Caw have the same waveform having a phase difference from each other.
  • the voltage command to which the estimation voltage command is added is compared with the carrier wave, and a PWM control signal for turning on / off the switching element is generated. Therefore, by providing the same phase difference between the phases as the estimation voltage command on the carrier wave, the phase difference between the phases can be given to the PWM control signal of the comparison result, and the position of the estimation voltage command is given to the PWM control signal. A lot of information on the phase difference can be left. Therefore, the frequency component Ih of the estimation voltage command required for angle estimation can be effectively superimposed on the winding current of each phase.
  • the current detection unit 31 detects the currents Iu, Iv, and Iw of each phase at the apex of the peak of the carrier wave of each phase, and during one cycle Th of the estimation voltage command, the peak of the carrier wave There are two vertices. Therefore, the current detection unit 31 can detect the current twice during one cycle Th of the estimation voltage command. Therefore, it is easy to detect the amplitude A of the frequency component Ih of the estimation voltage command included in the current.
  • the voltage application unit 38 applies a voltage to the winding based on the comparison result between the voltage command and the carrier wave.
  • the voltage application unit 38 applies a voltage to the winding by turning on and off a plurality of switching elements included in the inverter 2.
  • the voltage application unit 38 compares the three-phase voltage commands Vu *, Vv *, Vw * with the three-phase carrier waves Cau, Cav, and Caw between the corresponding phases, and compares the three-phase PWM control signals SWu, SWv. , SWw is generated. As shown in FIG. 6, the voltage application unit 38 turns on the PWM control signal when the voltage command exceeds the carrier wave and turns off the PWM control signal when the voltage command falls below the carrier wave for each phase. .. The voltage application unit 38 outputs the three-phase PWM control signals SWu, SWv, and SWw to the inverter 2.
  • the switching element 22a on the positive electrode side is turned on and the switching element 22b on the negative electrode side is turned off, and when the PWM control signal is off, the switching element 22a on the positive electrode side is turned on. At the same time as it is turned off, the switching element 22b on the negative electrode side is turned on.
  • FIG. 6 shows an example of generating three-phase PWM control signals SWu, SWv, and SWw.
  • the three-phase drive voltage commands Vu_ref, Vv_ref, and Vw_ref are set to zero
  • the three-phase voltage commands Vu *, Vv *, and Vw * are the three-phase estimation voltage commands Vuh, Vvh, and Vwh. Is equal to.
  • switching is performed four times for each phase during one cycle Th of the estimation voltage command.
  • switching is performed 6 times in one cycle of the position estimation voltage, but in the present embodiment, it can be reduced to 2/3, and switching loss and electromagnetic noise caused by switching can be reduced. Can be reduced.
  • the waveforms of the three-phase PWM control signals are similar waveforms having phase differences with each other. .. Therefore, even with a small number of switchings, a large amount of information on the phase difference of the three-phase estimation voltage command can be left in the three-phase PWM control signal.
  • the period of the PWM control signal is also the period Th of the estimation voltage command. It is possible to suppress the superposition of frequency components below the audible range on the current, and it is possible to reduce the noise caused by superimposing the estimation voltage command.
  • Angle estimation unit The angle estimation unit 32 estimates the rotation angle ⁇ (magnetic pole position ⁇ ) at the electric angle of the rotor based on the detected value of the current.
  • the angle estimation unit 32 extracts the frequency component Ih of the period Th of the estimation voltage command from the detected value of the current, and estimates the rotation angle ⁇ (magnetic pole position ⁇ ) based on the frequency component Ih.
  • the amplitude A of the frequency component Ih of the estimation voltage command included in the current changes according to the inductance L which changes according to the magnetic pole position ⁇ .
  • the magnetic pole position ⁇ is estimated by using it. Since the rotor has a salient pole, the inductance L in the stationary coordinate system changes according to the magnetic pole position ⁇ , and there is a predetermined relationship between the inductance L and the magnetic pole position ⁇ .
  • the current sensor 4 is provided on the negative electrode side of the switching element 22b on the negative electrode side, and the current detection is executed at the apex of the carrier wave when the switching element 22b on the negative electrode side is turned on.
  • the peak of the carrier wave peak exists twice. As long as the PWM control signal is off and the switching element 22b on the negative electrode side is on, the current can be detected and the number of current detections can be increased even at a timing other than the peak of the carrier wave. Good.
  • the angle estimation unit 32 is used for estimation included in the current based on the current detection values detected at least twice (twice in this example) within one cycle Th of the estimation voltage command.
  • the amplitude A of the frequency component Ih of the voltage command is calculated, and the rotation angle ⁇ (magnetic pole position ⁇ ) is estimated based on the amplitude A.
  • the angle estimation unit 32 includes an amplitude calculation unit 32au, 32av, 32aw, and an angle calculation unit 32b for each of the three phases.
  • the U-phase amplitude calculation unit 32au extracts the frequency component Ihu of the estimation voltage command from the U-phase current detection value Iu, and based on the frequency component Ihu, the frequency component of the estimation voltage command included in the U-phase current. Calculate the amplitude Au.
  • the V-phase amplitude calculation unit 32av extracts the frequency component Ihv of the estimation voltage command from the V-phase current detection value Iv, and based on the frequency component Ihv, the frequency component of the estimation voltage command included in the V-phase current. Calculate the amplitude Av.
  • the W-phase amplitude calculation unit 32aw extracts the frequency component Ihw of the estimation voltage command from the W-phase current detection value Iw, and based on the frequency component Ihw, the frequency component of the estimation voltage command included in the W-phase current. Calculate the amplitude Aw.
  • a bandpass filter process may be used in which the component of the frequency fh of the estimation voltage command is passed and the components other than the frequency fh of the estimation voltage command are attenuated.
  • the self-phase integral may be used in the amplitude calculation process, or the difference between the maximum value and the minimum value may be simply calculated as the amplitude.
  • a Fourier transform that extracts only the frequency fh of the estimation voltage command may be used in the frequency component extraction process and the amplitude calculation process.
  • the amplitude Au of the frequency component Ihu of the estimation voltage command is the difference between the two current detection values detected within one cycle Th of the estimation voltage command. Proportional. Therefore, the amplitude calculation units 32au, 32av, and 32aw of each of the three phases calculate the difference between the two current detection values detected within one cycle Th of the estimation voltage command for each phase, and calculate the difference between the current detection values. , May be calculated as the amplitude of the frequency component of the estimation voltage command included in the current.
  • the U-phase amplitude calculation unit 32au is the second current detection timing within one cycle Th of the estimation voltage command, and the first current.
  • the angle calculation unit 32b estimates the magnetic pole position ⁇ based on the amplitudes Au, Av, and Aw of the frequency components of the estimation voltage command included in the current of each of the three phases. For example, the angle calculation unit 32b may calculate the magnetic pole position ⁇ by performing an inverse tangent calculation after converting the three-phase amplitudes Au, Av, and Aw from three-phase to two-phase, or the three-phase amplitude.
  • the magnetic pole position ⁇ may be calculated by performing the inverse tangent calculation on any one of Au, Av, and Aw, or the inverse tangent calculation is performed on each of the three-phase amplitudes Au, Av, and Aw.
  • the three magnetic pole positions ⁇ may be calculated and the average value may be used as the final magnetic pole position ⁇ .
  • Embodiment 2 Next, the control device 10 of the rotary electric machine according to the second embodiment will be described. The description of the same components as in the first embodiment will be omitted.
  • the basic configuration of the control device 10 according to the present embodiment is the same as that of the first embodiment, but the configuration of the estimation command generation unit 35 is different from that of the first embodiment.
  • one cycle Th of the estimation voltage command is evenly divided into three, which is the minimum required number of divisions.
  • the estimation voltage command of each phase is set so that the values of the three division periods are different from each other in the three division periods.
  • Each division period is a period of 120 °, and the estimation voltage command of each phase is deviated by one division period between the phases.
  • the total value of the three-phase estimation voltage commands Vuh, Vvh, and Vwh is set to be 0 at each time.
  • the integrated value of the estimation voltage command of each phase in one cycle is set to be 0.
  • the estimation voltage command for the second division period within one cycle Th of the estimation voltage command is set to zero, and the estimation voltage command for the first division period is set to a negative value.
  • the third divided period estimation voltage command is set to a positive / negative inverted value (positive value) of the negative value of the first divided period. If the total value of the three phases becomes zero and the integral value of one cycle of each phase becomes zero, the values of each division period may be replaced.
  • the carrier wave generation unit 37 generates a 1.5-cycle triangular wave starting from the apex of the mountain and ending at the apex of the valley as a carrier wave of 1-cycle Th. 11, 12, and 13 show examples of U-phase control behavior. In FIGS. 11 to 13, the phases of the estimation voltage commands with respect to the carrier wave are different by 120 °.
  • control device 10 of the rotary electric machine according to the third embodiment will be described.
  • the description of the same components as in the first embodiment will be omitted.
  • the basic configuration of the control device 10 according to the present embodiment is the same as that of the first embodiment, but the configuration of the carrier wave generation unit 37 is different from that of the first embodiment.
  • the carrier wave generation unit 37 generates a one-cycle asymmetric triangular wave as a carrier wave of one cycle Th.
  • An asymmetric triangle wave is a triangle wave in which the slope when increasing and the slope when decreasing are different.
  • a symmetrical triangular wave is used, and the slope at the time of increase and the slope at the time of decrease are the same.
  • the three-phase carrier Cau, Cav, and Caw are provided with a phase difference of 1/3 cycle of the carrier cycle Th between the phases.
  • the number of switchings of the estimation voltage command per cycle Th is four, whereas in the present embodiment, the number of switchings of the estimation voltage command per cycle Th is two. It has become. By further reducing the number of switchings, switching loss and electromagnetic noise caused by switching can be further reduced.
  • the current detection unit 31 uses the output signal of the current sensor 4 of each phase at both the peak and valley vertices of the carrier wave of each phase. Based on this, the currents Iu, Iv, and Iw of each phase are detected.
  • the current sensor 4 is provided on the electric wire of each phase connecting the series circuit of the switching element and the winding, and is provided at an arbitrary timing regardless of the period during which the switching element is turned on. The current can be detected.
  • the current sensor 4 may be provided on the positive electrode side of the switching element 22a on the positive electrode side.
  • the cycle Th of the estimation voltage command is based on the current detection value. (In this example, the difference between the two current detection values is calculated within one cycle Th of the estimation voltage command), and the rotation angle ⁇ can be estimated.
  • the PWM control signal is turned off and the switching on the negative electrode side is shown so that the U-phase current detection behavior is shown in FIG. If the current is detected twice during the period when the element 22b is off, the current can be detected twice within one cycle Th of the estimation voltage command. Therefore, the frequency component of the period Th of the estimation voltage command can be extracted, and the rotation angle ⁇ can be estimated.
  • the control device 10 of the rotary electric machine of each of the above-described embodiments may be applied to the control device of the electric power steering that assists the steering of the automobile. Even in that case, the rotation angle of the rotor can be estimated and the output torque of the rotating electric machine can be controlled without using the angle sensor. Further, even if the estimation voltage command is superimposed, it is possible to suppress the increase in noise and the increase in the number of switchings. Therefore, an inexpensive and comfortable electric power steering can be obtained.
  • control device 10 of the rotary electric machine of each of the above-described embodiments may be applied to the control device of the rotary electric machine for driving or the rotary electric machine for power generation of an electric vehicle or a hybrid vehicle. In that case as well, it is possible to obtain a highly efficient rotary electric machine that suppresses an increase in switching loss. Alternatively, it may be a control device 10 for a rotary electric machine that controls a rotary electric machine for various purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

磁極位置(回転角度)の推定遅れを低減しつつ、推定用電圧指令によるスイッチング周波数の高周波数化を抑制できる回転電機の制御装置を提供する。電圧指令と搬送波との比較結果に基づいて、インバータ(2)が有するスイッチング素子をオンオフして巻線に電圧を印加させ、巻線に固定された静止座標系上で、予め設定された周期の推定用電圧指令を生成し、推定用電圧指令の周期と同じ周期の搬送波を生成し、電流の検出値から、推定用電圧指令の周期の周波数成分を抽出し、周波数成分に基づいて、回転角度(θ)を推定する回転電機の制御装置(10)。

Description

回転電機の制御装置
 本願は、回転電機の制御装置に関するものである。
 回転電機の精緻な制御には、回転電機の回転子の磁極位置情報(回転角度情報)に基づいて、巻線への給電を制御する制御装置が必要である。従来、回転子の磁極位置情報は、回転電機に取り付けられた回転センサより取得している。しかし、回転センサの設置は、コストの上昇に加え、取り付けスペースの確保が必要になるほか、回転センサに異常が発生したときの対処が必要となるといった不利益も多い。そこで、回転センサを設置することなく、回転子の磁極位置情報を推定するセンサレス磁極位置推定方法が多数提案されている。
 センサレス磁極位置推定方法には大きく分けて2つの方法がある。第1の推定方法は、回転電機の誘起電圧を推定することにより回転子の磁極位置を推定する誘起電圧方式である。誘起電圧方式は、回転電機が誘起電圧を発生する程度に回転している場合には、精度良く磁極位置を推定することが可能であるが、誘起電圧を発生しない、或いは、誘起電圧をほとんど発生しない回転速度が低い領域では、磁極位置を推定することが困難である。
 第2の推定方法は、回転電機の突極性を利用して回転子の磁極位置を推定する高周波重畳方式である。高周波重畳方式は、磁極位置推定用の高周波電圧を回転電機に重畳し、インダクタンスの位置依存性に起因する電流の振幅変化から磁極位置を推定する。そのため、回転速度が低い領域でも利用することが可能である。
 しかし、突極性を利用した高周波重畳方式では磁極位置を推定するために、高周波電圧を印加することから、高周波電圧の周波数に応じた騒音が発生するという課題がある。例えば、特許文献1では、位置推定制御に、回転子の回転に同期して回転するdq軸(交番電圧)基準の高周波電圧を使用している。本方式は、搬送波(キャリア波)の周期(三角波1つ分)と等しい周期の高周波電圧を使用するため、高周波電圧を高周波数化し易い特徴を有する。すなわち、高周波電圧の周波数を人間の可聴域外に設定することで、騒音を低下することが可能である。
 特許文献2では、位置推定制御にUVW軸基準の高周波電圧を使用している。本方式は、回転電機の固定子巻線に固定された静止座標系であるUVW軸座標系において、一定周期で回転する電圧ベクトルを印加し、その応答である高周波の電流振幅が、インダクタンスの位置依存性と相似形の位置依存性を持つことを利用して磁極位置を直接推定する。そのため、第1の推定方法のように、位置誤差をPID制御する必要がなく、推定時に応答遅れが生じない。
特開2016-21800号公報 特許第6203435号
 しかしながら、dq軸基準の高周波電圧を使用している特許文献1では、磁極位置の推定に、実回転子位置と推定位置の誤差Δθを用いたPID制御を含むオブザーバを使用している。すなわち、誤差Δθをフィードバックして、積分することで最新の推定位置を更新している。よって、PID制御ゲインにより設定したフィードバックの応答周波数以下の応答性でしか位置を推定できない。また、磁極位置推定の応答性は電流制御の応答性よりも下げなければならず、位置推定を高応答化することができない。
 これに対して、特許文献2のような位置推定装置は、回転電機のUVW軸基準の高周波電圧を使用している。特許文献2の図6が示す位置推定用の電圧指令(高周波電圧指令)の波形図の通り、高周波電圧を生成するために三角波3つ分の搬送波を必要とする。なぜなら、三角波の半周期を1区間としたとき、PWMインバータではこの半周期の間に1回しか出力電圧が変化しない。つまり、高周波電圧の1周期を360°としたとき、各相が120°ずつずれた三相交流の高周波電圧を生成するために、相間で2区間ずらした上、6区間で1周期となるように高周波電圧を設定しなければならなかった。高周波波形を、最も簡素な矩形波で表現すると、180°ごとに立ち上りと立ち下がりを繰り返す。相間で120°の位相差を設定すると、各相の立ち上りは、相間で120°の位相差となり、ある相の立ち上りと異なる相の立下りは、60°の位相差となる。
 したがって、特許文献2の技術では、高周波電圧の1周期を、60°で6分割する必要があり、6区間が必要となる。そのため、1区間を三角状の搬送波の半周期とすると、高周波電圧の1周期に対して3周期の搬送波が必要となる。特許文献1の方式と比較すると、高周波電圧の1周期あたりに必要な搬送波(三角波)は3倍であり、スイッチング回数も3倍である。すなわち、特許文献2の技術では、高周波電圧の印加に起因する騒音を低減するために、高周波電圧の周波数を増加しようとすると、UVW軸基準の高周波電圧は、dq軸基準の高周波電圧に比べ、単位時間当たりのスイッチング回数が多くなり、スイッチング損失及び電磁ノイズが増大する。スイッチング損失は、インバータのスイッチング素子をスイッチする際に生じるエネルギ損失であり、スイッチング回数に比例して損失が増大するため、省エネルギの観点で重要である。また、電磁ノイズは、単位時間当たりのスイッチング回数すなわちスイッチング頻度が高い程、ノイズの周波数が高くなり、かつ、ノイズの大きさが増大するため、EMI(電波障害)の観点で重要である。つまり、スイッチング頻度を下げることが重要である。
 以上のことから、特許文献1のdq軸基準の高周波電圧では、高周波電圧によるスイッチング周波数の高周波数化を抑制できるが、位置推定の応答性が悪く、特許文献2のUVW軸基準の高周波電圧では、位置推定の応答性を向上できるが、高周波電圧によるスイッチング周波数の高周波数化を招く。よって、両技術とも、一長一短があり、利点と不利点とがトレードオフの関係にある。
 そこで、磁極位置(回転角度)の推定遅れを低減しつつ、推定用電圧指令によるスイッチング周波数の高周波数化を抑制できる回転電機の制御装置が望まれる。
 本願に係る回転電機の制御装置は、
 回転子に突極性を有する回転電機を、インバータを介して制御する回転電機の制御装置であって、
 前記回転電機の固定子に設けられた巻線に流れる電流を検出する電流検出部と、
 前記電流の検出値に基づいて、回転子の回転角度を推定する角度推定部と、
 前記電流の検出値に基づいて、前記回転電機を駆動するための駆動電圧指令を演算する電流制御部と、
 推定用電圧指令を生成する推定用指令生成部と、
 前記推定用電圧指令を前記駆動電圧指令に加算して電圧指令を算出する電圧指令算出部と、
 搬送波を生成する搬送波生成部と、
 前記電圧指令と前記搬送波との比較結果に基づいて、インバータが有するスイッチング素子をオンオフして前記巻線に電圧を印加させる電圧印加部と、を備え、
 前記推定用指令生成部は、前記巻線に固定された静止座標系上で、予め設定された周期の前記推定用電圧指令を生成し、
 前記搬送波生成部は、前記推定用電圧指令の周期と同じ周期の前記搬送波を生成し、
 前記角度推定部は、前記電流の検出値から、前記推定用電圧指令の周期の周波数成分を抽出し、前記周波数成分に基づいて、前記回転角度を推定するものである。
 本願に係る回転電機の制御装置によれば、推定用電圧指令の周期と、搬送波の周期とが同じ周期とされているので、推定用電圧指令の1周期あたりのスイッチング回数を低減することができる。よって、スイッチング損失及びスイッチングにより生じる電磁ノイズを軽減できる。加えて、巻線に固定された静止座標系上で、推定用電圧指令を生成しているため、突極性を有する回転子のインダクタンスの磁極位置依存性を利用して、電流の検出値から、推定用電圧指令の周期の周波数成分を抽出し、周波数成分に基づいて、直接的に回転角度を推定することができ、推定遅れを低減することができる。
実施の形態1に係る回転電機、インバータ、及び回転電機の制御装置の概略構成図である。 実施の形態1に係る回転電機の制御装置の概略ブロック図である。 実施の形態1に係る回転電機の制御装置のハードウェア構成図である。 実施の形態1に係る三相の推定用電圧指令のタイムチャートである。 実施の形態1に係る三相の搬送波のタイムチャートである。 実施の形態1に係る推定用電圧指令と搬送波との比較による、PWM制御信号の生成を説明するためのタイムチャートである。 実施の形態1に係る推定用電圧指令、搬送波、及び電流の検出値の挙動を説明するためのタイムチャートである。 実施の形態1に係る角度推定部の概略ブロック図である。 実施の形態1に係るU相の推定用電圧指令、搬送波、及び電流の検出値の挙動を説明するためのタイムチャートである。 実施の形態2に係る三相の推定用電圧指令のタイムチャートである。 実施の形態2に係る、推定用電圧指令と搬送波との位相設定に対する電流の検出値の挙動を説明するためのタイムチャートである。 実施の形態2に係る、推定用電圧指令と搬送波との位相設定に対する電流の検出値の挙動を説明するためのタイムチャートである。 実施の形態2に係る、推定用電圧指令と搬送波との位相設定に対する電流の検出値の挙動を説明するためのタイムチャートである。 実施の形態3に係る推定用電圧指令と搬送波との比較による、PWM制御信号の生成を説明するためのタイムチャートである。 実施の形態3に係る推定用電圧指令、搬送波、及び電流の検出値の挙動を説明するためのタイムチャートである。 実施の形態3に係るU相の推定用電圧指令、搬送波、及び電流の検出値の挙動を説明するためのタイムチャートである。
1.実施の形態1
 実施の形態1に係る回転電機の制御装置10(以下、単に制御装置10と称す)について図面を参照して説明する。図1は、本実施の形態に係る回転電機1、インバータ2、及び制御装置10の概略構成図である。
1-1.回転電機
 回転電機1は、U相、V相、W相の三相の巻線Cu、Cv、Cwを設けた固定子と、永久磁石を設けた回転子と、を有する永久磁石同期回転電機とされている。三相巻線Cu、Cv、Cwは、スター結線とされている。なお、三相巻線は、デルタ結線とされてもよい。回転子は、突極性を有しており、d軸インダクタンスとq軸インダクタンスとが異なる。例えば、永久磁石が、回転子の内部に埋め込まれた埋込磁石同期回転電機とされる。
1-2.インバータ
 インバータ2は、複数のスイッチング素子を有し、直流電源25と三相巻線との間で直流交流変換を行う。インバータ2は、直流電源25の正極側に接続される正極側のスイッチング素子22aと直流電源25の負極側に接続される負極側のスイッチング素子22bとが直列接続された直列回路を、三相各相の巻線に対応して3セット設けている。インバータ2は、3つの正極側のスイッチング素子22aと、3つの負極側のスイッチング素子22bとの、合計6つのスイッチング素子を備えている。そして、正極側のスイッチング素子22aと負極側のスイッチング素子22bとが直列接続されている接続点が、対応する相の巻線に接続されている。
 スイッチング素子には、ダイオード23が逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、又は逆並列接続されたダイオードの機能を有するMOSFET(Metal Oxide Semiconductor Field Effect Transistor)等が用いられる。各スイッチング素子のゲート端子は、制御装置10に接続されている。各スイッチング素子は、制御装置10から出力されるPWM制御信号SWu、SWv、SWwによりオンオフされる。
 平滑コンデンサ24は、インバータ2の正極側と負極側との間に接続される。電圧センサ3は、直流電源25の直流電圧に応じた電気信号を出力する。電圧センサ3の出力信号は、制御装置10に入力される。
 インバータ2には、巻線に流れる電流を検出するための電流センサ4が設けられている。本実施の形態では、電流センサ4は、正極側のスイッチング素子22a及び負極側のスイッチング素子22bの直列回路上に設けられている。本例では、各相の直列回路上における、負極側のスイッチング素子22bの負極側にシャント抵抗4U、4V、4Wが直列接続されている。各相のシャント抵抗4U、4V、4Wの両端電位差が、制御装置10に入力される。なお、各相の直列回路上における、正極側のスイッチング素子22aの正極側にシャント抵抗4U、4V、4Wが直列接続されてもよい。或いは、電流センサ4は、スイッチング素子の直列回路と巻線とをつなぐ各相の電線上に備えられた、ホール素子等とされてもよい。
 直流電源25には、充放電可能な蓄電装置(例えば、リチウムイオン電池、ニッケル水素電池、電気二重層キャパシタ)が用いられる。なお、直流電源25には、直流電圧を昇圧したり降圧したりする直流電力変換器であるDC-DCコンバータが設けられてもよい。
1-3.制御装置
 制御装置10は、インバータ2を介して回転電機1を制御する。図2に示すように、制御装置10は、後述する電流検出部31、角度推定部32、電圧検出部33、電流制御部34、推定用指令生成部35、電圧指令算出部36、搬送波生成部37、及び電圧印加部38等を備えている。制御装置10の各機能は、制御装置10が備えた処理回路により実現される。具体的には、制御装置10は、図3に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
 演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、電圧センサ3、電流センサ4等の各種のセンサ、スイッチが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
 そして、制御装置10が備える図2の各制御部31~38等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置10の他のハードウェアと協働することにより実現される。なお、各制御部31~38等が用いる設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置10の各機能について詳細に説明する。
1-3-1.各検出部
 電圧検出部33は、直流電源25の電源電圧VDCを検出する。本実施の形態では、電圧検出部33は、電圧センサ3の出力信号に基づいて、電源電圧VDCを検出する。
 電流検出部31は、三相の巻線に流れる巻線電流Iu、Iv、Iwを検出する。本実施の形態では、電流検出部31は、電流センサ4の出力信号に基づいて、インバータ2から各相の巻線Cu、Cv、Cwに流れる電流Iu、Iv、Iwを検出する。
 本実施の形態では、電流センサ4は、各相の直列回路上における、負極側のスイッチング素子22bの負極側に設けられており、負極側のスイッチング素子22bがオンになり、電流センサ4に電流が流れたタイミングで電流を検出する必要がある。そこで、電流検出部31は、各相について、負極側のスイッチング素子22bがオンにされたときに、電流センサの出力信号に基づいて、電流を検出する。本実施の形態では、電流検出部31は、各相の搬送波の山の頂点で、各相の電流センサ4の出力信号に基づいて、各相の電流Iu、Iv、Iwを検出する。なお、スイッチングによるリンギングの影響、演算処理装置90の処理順序により、電流検出は、山の頂点から数usから数十us遅れて実行されてもよい。
 なお、電流センサ4が、各相の直列回路上における、正極側のスイッチング素子22aの正極側に設けられている場合は、電流検出部31は、各相について、正極側のスイッチング素子22aがオンにされたときに、電流センサの出力信号に基づいて、電流を検出してもよく、電流検出部31は、各相の搬送波の谷の頂点で、各相の電流センサ4の出力信号に基づいて、各相の電流Iu、Iv、Iwを検出してもよい。
1-3-2.電流制御部
 電流制御部34は、電流の検出値に基づいて、回転電機1を駆動するための駆動電圧指令を演算する。電流制御部34は、電流指令算出部34a、電流座標変換部34b、及びフィードバック制御部34c、及び電圧座標変換部34dを備えている。
 電流指令算出部34aは、d軸の電流指令Id_ref及びq軸の電流指令Iq_refを算出する。dq軸の電流指令Id_ref、Iq_refの算出には、最大トルク電流制御、弱め磁束制御、及びId=0制御などの公知の電流ベクトル制御方法が用いられる。
 電流座標変換部34bは、三相の電流検出値Iu、Iv、Iwに対して、後述する角度推定部32が推定した磁極位置θに基づいて、三相二相変換及び回転座標変換を行って、d軸の電流検出値Id及びq軸の電流検出値Iqを算出する。ここで、d軸は、回転子に設けられた永久磁石のN極の向き(磁極位置)に定められ、q軸は、d軸より電気角で90°(π/2)進んだ方向に定められている。
 フィードバック制御部34cは、dq軸の電流指令Id_ref、Iq_refとdq軸の電流検出値Id、Iqとの電流偏差を算出し、電流偏差に基づくPID制御等の制御演算を行って、d軸の駆動電圧指令Vd_ref及びq軸の駆動電圧指令Vq_refを算出する。
 電圧座標変換部34dは、dq軸の駆動電圧指令Vd_ref、Vq_refに対して、磁極位置θに基づいて、固定座標変換及び二相三相変換を行って、U相の駆動電圧指令Vu_ref、V相の駆動電圧指令Vv_ref、及びW相の駆動電圧指令Vw_refを算出する。三相の駆動電圧指令Vu_ref、Vv_ref、Vw_refの主成分は、回転電機1を駆動するための三相の交流電圧(正弦波)であり、基本波と呼ぶ。基本波は、回転電機の電気角1周期と同じ周期となる。
1-3-3.推定用指令生成部
 推定用指令生成部35は、巻線に固定された静止座標系上で、予め設定された周期Thの推定用電圧指令を生成する。推定用電圧指令の周期Thの周波数fhは、三相の駆動電圧指令(基本波)の周波数よりも高い。
<周波数の設定>
 本実施の形態では、推定用電圧指令の周期Thの周波数fhは、18000Hz以上に設定されている。なお、周波数fhは、推定用電圧指令の周期Thの逆数である(fh=1/Th)。これにより、推定用電圧指令の周波数fhを、人間の可聴域以上(18000Hz)に設定することができ、推定用電圧指令を電圧指令に重畳することにより発生する騒音を低下させることができる。
<相間の位相差>
 本実施の形態では、図4に示すように、推定用指令生成部35は、三相の各相に対応する3つの推定用電圧指令Vuh、Vvh、Vwhを生成する。三相の推定用電圧指令Vuh、Vvh、Vwhは、相間で、推定用電圧指令の周期の1/3周期の位相差が設けられている。すなわち、推定用電圧指令の1周期Thを360°とすると、V相の推定用電圧指令Vvhは、U相の推定用電圧指令Vuhに対して120°の位相遅れを有し、W相の推定用電圧指令Vwhは、V相の推定用電圧指令Vvhに対して120°の位相遅れを有し、U相の推定用電圧指令Vuhは、W相の推定用電圧指令Vwhに対して120°の位相遅れを有している。なお、三相の推定用電圧指令Vuh、Vvh、Vwhは、互いに位相差を有する同じ波形とされている。
<1周期の3分割>
 推定用電圧指令は、余弦波(又は正弦波)とされてもよいが、高い周波数の余弦波を生成するためには、処理負荷が増加する。そこで、処理負荷を低減しつつ、相間で120°の位相差を有し、所定の周波数fhの成分を有する推定用電圧指令を生成することが望ましい。
 本実施の形態では、120°の位相差を設けるために、1周期Thが、必要最低限の分割数である3つに均等分割されている。そして、各相の推定用電圧指令は、3つの分割期間において、少なくとも2つの分割期間の値が互いに異なるように設定される。本実施の形態では、3つの分割期間において、2つの分割期間の値が互いに異なるように設定されている。よって、1つの分割期間の値と、残りの2つの分割期間の値とが、互いに異なるように設定されている。各分割期間は、120°の期間となっており、各相の推定用電圧指令は、相間で、1つの分割期間ずつずれている。
 このように、各相の推定用電圧指令は、1周期Thにおいて、異なる2つの値となり、この周期Thの周波数fhの成分を有することとなる。よって、巻線を流れる電流に推定用電圧指令の周波数fh成分を発生させることができ、電流の検出値に基づいて、回転角度を推定することが可能となる。この1周期において異なる2つの値となることが、回転角度を推定するための最低限の電圧指令であり、推定用電圧指令を生成するための処理負荷を最小にすることができる。なお、後述する実施の形態2のように、各相の推定用電圧指令が、1周期Thにおいて、異なる3つ以上の値になってもよい。
 次式に示すように、各時刻において、三相の推定用電圧指令Vuh、Vvh、Vwhの合計値が0になり、三相平衡になるように設定されている。また、1周期における各相の推定用電圧指令の積分値が0になるように設定されている。
 Vuh+Vvh+Vwh=0    ・・・(1)
 なお、各相の推定用電圧指令をオフセット的にずらし、三相の推定用電圧指令Vuh、Vvh、Vwhの合計値が、0からオフセット的にずれてもよい。
<推定用電圧指令と電流の周波数成分との関係>
 ここで、推定用電圧指令に含まれる推定用電圧指令の周波数fhの成分が振幅Bの余弦波であると仮定した場合、推定用電圧指令Vh(t)と、巻線に流れる交流電流に含まれる推定用電圧指令の周波数fhの成分Ihと、電流の周波数成分Ihの振幅Aと、の間には次式の関係がある。
 Ih(t)=A×sin(ωh×t)
 Vh(t)=B×cos(ωh×t)
      =L×dIh(t)/dt     ・・・(2)
 A=B/(L×ωh)
 ここで、ωhは、推定用電圧指令の角周波数であり、tは、時間であり、Lは、回転電機のインダクタンスである。推定用電圧指令の角周波数ωhは、2πを推定用電圧指令の周期Thで除算した値である。
 突極性があるので、インダクタンスLは、磁極位置θに応じて変化し、インダクタンスLと磁極位置θとの間には所定の関係がある。よって、式(2)の第3式から、電流に含まれる推定用電圧指令の周波数成分Ihの振幅Aに基づいて、磁極位置θを推定できることがわかる。
<電流検出値のノイズ耐性>
 また、電流に含まれる推定用電圧指令の周波数成分Ihの振幅Aが大きいほど、電流の検出値に重畳するノイズへの耐性が高くなる。式(2)の第3式から、周波数成分Ihの振幅Aを大きくするためには、インダクタンスLを小さくするか、推定用電圧指令の角周波数ωhを小さくするか、推定用電圧指令の振幅Bを大きくすればよい。インダクタンスLは、回転電機の設計に関わるため調整するのは容易ではない。また、推定用電圧指令の角周波数ωhは、小さくすると騒音が大きくなり、あまり望ましくない。一方、推定用電圧指令の振幅Bを大きくし過ぎると、推定用電圧指令を重畳した後の電圧指令が、電源電圧VDCの制限(+VDC/2~-VDC/2)を超えてしまうので、推定用電圧指令の振幅Bの増加量には、上限がある。
 これらのことを踏まえ、三相の推定用電圧指令Vuh、Vvh、Vwhを設定し、電流に含まれる推定用電圧指令の周波数成分Ihの振幅Aのノイズ耐性を高めることが望ましい。例えば、推定用電圧指令を用いて角度推定を行いたい回転電機の運転領域において、三相の駆動電圧指令の振幅が最大になる運転条件において、電源電圧VDCの制限の範囲内に収まる推定用電圧指令の振幅の最大値を、推定用電圧指令の振幅に設定すればよい。或いは、その電源電圧VDCの制限の範囲内に収まる推定用電圧指令の振幅の最大値よりも小さいが、ノイズ耐性を確保できる値を、推定用電圧指令の振幅に設定すればよい。
1-3-4.電圧指令算出部
 電圧指令算出部36は、推定用電圧指令を駆動電圧指令に加算して電圧指令を算出する。本実施の形態では、電圧指令算出部36は、次式に示すように、三相の推定用電圧指令Vuh、Vvh、Vwhを、それぞれ、三相の駆動電圧指令Vu_ref、Vv_ref、Vw_refに加算して、三相の電圧指令Vu*、Vv*、Vw*を算出する。
 Vu*=Vu_ref+Vuh
 Vv*=Vv_ref+Vvh    ・・・(3)
 Vw*=Vw_ref+Vwh
1-3-5.搬送波生成部
 搬送波生成部37は、推定用電圧指令の周期Thと同じ周期Thの搬送波を生成する。搬送波は、0を中心に電源電圧VDC/2の振幅で振動する。
<相間の位相差>
 本実施の形態では、図5に示すように、搬送波生成部37は、三相の各相に対応する3つの搬送波Cau、Cav、Cawを生成する。三相の搬送波Cau、Cav、Cawは、相間で、搬送波の周期Thの1/3周期の位相差が設けられている。すなわち、搬送波の1周期Thを360°とすると、V相の搬送波Cavは、U相の搬送波Cauに対して120°の位相遅れを有し、W相の搬送波Cawは、V相の搬送波Cavに対して120°の位相遅れを有し、U相の搬送波Cauは、W相の搬送波Cawに対して120°の位相遅れを有している。なお、三相の搬送波Cau、Cav、Cawは、互いに位相差を有する同じ波形とされている。
 推定用電圧指令が加算された電圧指令は、搬送波と比較され、スイッチング素子をオンオフするPWM制御信号が生成される。そのため、搬送波にも、推定用電圧指令と同様の相間の位相差を設けることで、比較結果のPWM制御信号にも相間の位相差を与えることができ、PWM制御信号に推定用電圧指令の位相差の情報を多く残すことができる。よって、各相の巻線電流に、角度推定に必要な推定用電圧指令の周波数成分Ihを効果的に重畳させることができる。
<搬送波の波形>
 図5に示すように、搬送波生成部37は、山の頂点から開始して谷の頂点で終わる1.5周期の三角波を、1周期Thの搬送波として生成する。なお、搬送波生成部37は、谷の頂点から開始して山の頂点で終わる1.5周期の三角波を、1周期Thの搬送波として生成してもよい。
 上述したように、電流検出部31は、各相の搬送波の山の頂点で、各相の電流Iu、Iv、Iwを検出するが、推定用電圧指令の1周期Th中に、搬送波の山の頂点が2回存在する。そのため、電流検出部31は、推定用電圧指令の1周期Th中に、2回電流を検出することができる。よって、電流に含まれる推定用電圧指令の周波数成分Ihの振幅Aを検出しやすい。
1-3-6.電圧印加部
 電圧印加部38は、電圧指令と搬送波との比較結果に基づいて、巻線に電圧を印加させる。電圧印加部38は、インバータ2が有する複数のスイッチング素子をオンオフすることにより、巻線に電圧を印加させる。
 電圧印加部38は、三相の電圧指令Vu*、Vv*、Vw*と、三相の搬送波Cau、Cav、Cawとを、対応する相同士で比較し、三相のPWM制御信号SWu、SWv、SWwを生成する。図6に示すように、電圧印加部38は、各相について、電圧指令が搬送波を上回った場合は、PWM制御信号をオンし、電圧指令が搬送波を下回った場合は、PWM制御信号をオフする。電圧印加部38は、三相のPWM制御信号SWu、SWv、SWwをインバータ2に出力する。各相について、PWM制御信号がオンの場合は、正極側のスイッチング素子22aがオンされると共に負極側のスイッチング素子22bがオフされ、PWM制御信号がオフの場合は、正極側のスイッチング素子22aがオフされると共に負極側のスイッチング素子22bがオンされる。
 図6に、三相のPWM制御信号SWu、SWv、SWwの生成の例を示す。ここで、三相の駆動電圧指令Vu_ref、Vv_ref、Vw_refは、ゼロに設定されており、三相の電圧指令Vu*、Vv*、Vw*は、三相の推定用電圧指令Vuh、Vvh、Vwhに等しくなっている。スイッチング素子がスイッチングする箇所を○印で示しているように、各相について、推定用電圧指令の1周期Th中にスイッチングが4回行われる。特許文献2の技術では、位置推定用電圧の1周期中にスイッチングが6回行われていたが、本実施の形態では、2/3に減少させることができ、スイッチング損失及びスイッチングにより生じる電磁ノイズを低減できる。
 三相の搬送波にも、三相の推定用電圧指令と同様の相間の位相差が設けられているので、三相のPWM制御信号の波形は、互いに位相差を有する同様の波形となっている。よって、少ないスイッチング回数でも、三相のPWM制御信号に三相の推定用電圧指令の位相差の情報を多く残すことができている。
<推定用電圧指令と搬送波との関係>
 ここで、三相の推定用電圧指令Vuh、Vvh、Vwhと三相の搬送波Cau、Cav、Cawとの関係性について説明する。前述したとおり、特許文献2で使用されている位置推定用電圧は、搬送波の周期に対して3倍の周期を有していた(特許文献2の図6)。それゆえ、位置推定用電圧の1周期につきスイッチングは6回行われていた。推定用電圧指令を高周波数化するにあたり、推定用電圧指令の1周期Th中のスイッチング回数が少ない方が、スイッチング損失等の観点から好適であるのは前述したとおりである。そこで、推定用電圧指令の1周期Thあたりのスイッチング回数が少なくなるよう、三相の推定用電圧指令Vuh、Vvh、Vwhを図4の通りに設定した。
 一方で、推定用電圧指令の1周期Th中のスイッチング回数を減らすだけであれば、搬送波の波形を、従来の三角波のままにし、推定用電圧指令のみを図4の波形にすることでも達成できる。しかし、推定用電圧指令の1周期Th中に、電流を2回検出しようとすると、三角波の周期を、推定用電圧指令の周期Thの2倍にする必要があり、PWM制御信号の周期が、推定用電圧指令の周期Thに対して2倍になり、推定用電圧指令の周波数fhの1/2倍の周波数成分が電流に重畳する。そのため、推定用電圧指令の周波数fhを人間の可聴域以上に設定しても、それ以下の周波数が発生してしまい、十分に騒音を低減できない。
 一方、本実施の形態では、図6に示したように、搬送波の周期が、推定用電圧指令の周期Thと同じにされているので、PWM制御信号の周期も、推定用電圧指令の周期Thと同じすることができ、電流に可聴域以下の周波数成分が重畳することを抑制でき、推定用電圧指令を重畳することによる騒音を低減できる。
1-3-7.角度推定部
 角度推定部32は、電流の検出値に基づいて、回転子の電気角での回転角度θ(磁極位置θ)を推定する。角度推定部32は、電流の検出値から、推定用電圧指令の周期Thの周波数成分Ihを抽出し、周波数成分Ihに基づいて、回転角度θ(磁極位置θ)を推定する。
 式(2)の第3式を用いて説明したように、電流に含まれる推定用電圧指令の周波数成分Ihの振幅Aが、磁極位置θに応じて変化するインダクタンスLに応じて変化することを利用して、磁極位置θが推定される。なお、回転子には突極性があるので、静止座標系のインダクタンスLは、磁極位置θに応じて変化し、インダクタンスLと磁極位置θとの間には所定の関係がある。
<電流検出タイミング>
 図7を用いて、本実施の形態に係る電流検出について説明する。なお、図7の例は、図6の例と比べて、三相の搬送波Cau、Cav、Cawが、三相の推定用電圧指令Vuh、Vvh、Vwhに対して1/3周期ずれている。
 上述したように、電流センサ4は、負極側のスイッチング素子22bの負極側に設けられており、電流検出は、負極側のスイッチング素子22bがオンになる搬送波の山の頂点で実行される。推定用電圧指令の1周期Th内に、搬送波の山の頂点が2回存在する。なお、PWM制御信号がオフになり、負極側のスイッチング素子22bがオンになっている期間であれば、搬送波の山の頂点以外のタイミングでも、電流を検出し、電流検出回数を増加させてもよい。
 或いは、三相の電流Iu、Iv、Iwの合計値がゼロになる(Iu+Iv+Iw=0)ことを利用して、2つの相の電流検出値に基づいて、残りの1つの相の電流検出が算出されてもよい。例えば、U相の搬送波Cauが谷の頂点であり、U相の電流Iuを検出できない時点でも、V相の搬送波Cav及びW相の搬送波Cawが山の頂点であり、V相の電流Iv及びW相の電流Iwが検出される。そして、V相の電流検出値Iv及びW相の電流検出値Iwの合計値に-1を乗算した値が、U相の電流検出値Iuとして算出される。これにより、1周期Thの電流検出回数を3回に増加させることができる。
<角度推定部の詳細構成>
 本実施の形態では、角度推定部32は、推定用電圧指令の1周期Th内に検出された少なくとも2回(本例では、2回)の電流検出値に基づいて、電流に含まれる推定用電圧指令の周波数成分Ihの振幅Aを算出し、振幅Aに基づいて、回転角度θ(磁極位置θ)を推定する。
 図8に示すように、角度推定部32は、三相各相の振幅算出部32au、32av、32aw、及び角度算出部32bを備えている。
 U相の振幅算出部32auは、U相の電流検出値Iuから推定用電圧指令の周波数成分Ihuを抽出し、周波数成分Ihuに基づいて、U相電流に含まれる推定用電圧指令の周波数成分の振幅Auを算出する。V相の振幅算出部32avは、V相の電流検出値Ivから推定用電圧指令の周波数成分Ihvを抽出し、周波数成分Ihvに基づいて、V相電流に含まれる推定用電圧指令の周波数成分の振幅Avを算出する。W相の振幅算出部32awは、W相の電流検出値Iwから推定用電圧指令の周波数成分Ihwを抽出し、周波数成分Ihwに基づいて、W相電流に含まれる推定用電圧指令の周波数成分の振幅Awを算出する。
 周波数成分の抽出処理には、推定用電圧指令の周波数fhの成分を通過させ、推定用電圧指令の周波数fh以外の成分を減衰させるバンドパスフィルタ処理が用いられてもよい。振幅の算出処理には、自己相間積分が用いられてもよいし、単純に最大値と最小値との差分が振幅として算出されてもよい。或いは、周波数成分の抽出処理及び振幅の算出処理には、推定用電圧指令の周波数fhだけを抽出するフーリエ変換が用いられてもよい。
 或いは、図7のU相の電流検出値Iuに示すように、推定用電圧指令の周波数成分Ihuの振幅Auは、推定用電圧指令の1周期Th内で検出した2つの電流検出値の差分に比例する。そこで、三相各相の振幅算出部32au、32av、32awは、各相について、推定用電圧指令の1周期Th内で検出した2つの電流検出値の差分を算出し、電流検出値の差分を、電流に含まれる推定用電圧指令の周波数成分の振幅として算出してもよい。
 例えば、図9にU相の電流検出値Iuの例を示すように、U相の振幅算出部32auは、推定用電圧指令の1周期Th内の2回目の電流検出タイミグで、1回目の電流検出タイミングで検出したU相の電流検出値Iu1から、2回目の電流検出タイミングで検出したU相の電流検出値Iu2を減算した値の絶対値を、U相の電流に含まれる推定用電圧指令の周波数成分の振幅Auとして算出する(Au=|Iu1-Iu2|)。
 そして、角度算出部32bは、三相各相の電流に含まれる推定用電圧指令の周波数成分の振幅Au、Av、Awに基づいて、磁極位置θを推定する。例えば、角度算出部32bは、三相の振幅Au、Av、Awを三相から二相に変換したあと、逆正接演算を行って、磁極位置θを算出してもよいし、三相の振幅Au、Av、Awのいずれか1つに対して逆余弦演算を行って、磁極位置θを算出してもよいし、三相の振幅Au、Av、Awのそれぞれに対して逆余弦演算を行って、3つの磁極位置θを演算し、平均値を最終的な磁極位置θとしてもよい。
2.実施の形態2
 次に、実施の形態2に係る回転電機の制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る制御装置10の基本的な構成は実施の形態1と同様であるが、推定用指令生成部35の構成が実施の形態1と異なる。
 図10に示すように、実施の形態1と同様に、推定用電圧指令の1周期Thが、必要最低限の分割数である3つに均等分割されている。しかし、実施の形態1と異なり、本実施の形態では、各相の推定用電圧指令は、3つの分割期間において、3つの分割期間の値が互いに異なるように設定される。各分割期間は、120°の期間となっており、各相の推定用電圧指令は、相間で、1つの分割期間ずつずれている。
 実施の形態1と同様に、各時刻において、三相の推定用電圧指令Vuh、Vvh、Vwhの合計値が0になるように設定されている。1周期における各相の推定用電圧指令の積分値が0になるように設定されている。
 図10の例では、推定用電圧指令の1周期Th内の2つ目の分割期間の推定用電圧指令がゼロに設定され、1つ目の分割期間の推定用電圧指令は負値に設定され、3つ目の分割期間の推定用電圧指令は、1つ目の分割期間の負値の正負の反転値(正値)に設定されている。なお、三相の合計値がゼロになり、各相の1周期の積分値がゼロになれば、各分割期間の値は、入れ替えられてもよい。
 実施の形態1と同様に、搬送波生成部37は、山の頂点から開始して谷の頂点で終わる1.5周期の三角波を、1周期Thの搬送波として生成する。図11、図12及び図13に、U相の制御挙動の例を示す。図11から図13では、搬送波に対する推定用電圧指令の位相が120°ずつ異なる。
 図11から図13に示すように、搬送波に対する推定用電圧指令の位相が異なると、U相のPWM制御信号SWuの波形が異なり、U相電流に重畳している推定用電圧指令の周波数成分の波形も異なっている。そのため、推定用電圧指令の1周期Th内で検出した2つの電流検出値の差分の大きさが異なっている。2つの電流検出値の差分が大きいほど、ノイズ耐性が高くなるため、図12の位相差の設定よりも、図11又は図13の位相差の設定の方が望ましい。よって、回転電機の電気的特性に合わせて、搬送波及び推定用電圧指令の波形及び相対位相を設定することで、2つの電流検出値の差分を大きくすることができ、ノイズ耐性を高めることができる。
3.実施の形態3
 次に、実施の形態3に係る回転電機の制御装置10について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る制御装置10の基本的な構成は実施の形態1と同様であるが、搬送波生成部37の構成が実施の形態1と異なる。
 本実施の形態では、図14に示すように、搬送波生成部37は、1周期の非対称な三角波を、1周期Thの搬送波として生成する。非対称な三角波は、増加時の傾きと減少時の傾きとが異なる三角波である。なお、実施の形態1及び2では、対称な三角波が用いられており、増加時の傾きと減少時の傾きとが同じになっている。三相の搬送波Cau、Cav、Cawは、相間で、搬送波の周期Thの1/3周期の位相差が設けられている。
 実施の形態1では、推定用電圧指令の1周期Thあたりのスイッチング回数は4回であったのに対し、本実施の形態では、推定用電圧指令の1周期Thあたりのスイッチング回数は2回になっている。スイッチング回数を更に低減することにより、スイッチング損失及びスイッチングにより生じる電磁ノイズを更に低減することができる。
 図15に電流検出の挙動を示すように、本実施の形態では、電流検出部31は、各相の搬送波の山の頂点及び谷の頂点の双方で、各相の電流センサ4の出力信号に基づいて、各相の電流Iu、Iv、Iwを検出する。
 本実施の形態では、電流センサ4は、スイッチング素子の直列回路と巻線とをつなぐ各相の電線上に備えられており、スイッチング素子がオンされている期間とは関係なく、任意のタイミングで電流を検出することができる。なお、負極側のスイッチング素子22aの負極側に加えて、正極側のスイッチング素子22aの正極側にも、電流センサ4が設けられていてよい。
 スイッチング回数を低減しても、推定用電圧指令の1周期Th内の電流検出回数を2回に維持できるので、実施の形態1と同様に、電流の検出値から、推定用電圧指令の周期Thの周波数成分を抽出することができ(本例では、推定用電圧指令の1周期Th内で2つの電流検出値の差分が算出される)、回転角度θを推定できる。
 或いは、負極側のスイッチング素子22aの負極側のみに電流センサ4が設けられている場合でも、図16にU相の電流検出の挙動を示すように、PWM制御信号がオフされ、負極側のスイッチング素子22bがオフされている期間で、2回電流を検出すれば、推定用電圧指令の1周期Th内で、2回電流を検出することができる。よって、推定用電圧指令の周期Thの周波数成分を抽出することができ、回転角度θを推定できる。
 上述した各実施の形態の回転電機の制御装置10を、自動車の操舵をアシストする電動パワーステアリングの制御装置に適用してもよい。その場合も、角度センサを用いることなく、回転子の回転角度を推定し、回転電機の出力トルクを制御できる。また、推定用電圧指令を重畳しても、騒音が増加することを抑制し、スイッチング回数が増加することを抑制できる。よって、安価で快適な電動パワーステアリングを得ることができる。
 また、上述した各実施の形態の回転電機の制御装置10を、電気自動車又はハイブリッド自動車の駆動用回転電機又は発電用回転電機の制御装置に適用してもよい。その場合も、同様に、スイッチング損失の増加を抑制した高効率な回転電機を得ることが出来る。或いは、様々な用途の回転電機を制御する回転電機の制御装置10とされてもよい。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 回転電機、2 インバータ、4 電流センサ、10 回転電機の制御装置、22a 正極側のスイッチング素子、22b 負極側のスイッチング素子、25 直流電源、31 電流検出部、32 角度推定部、33 電圧検出部、34 電流制御部、35 推定用指令生成部、36 電圧指令算出部、37 搬送波生成部、38 電圧印加部、Cau、Cav、Caw 三相の搬送波、Vuh、Vvh、Vwh 三相の推定用電圧指令、θ 回転角度(磁極位置)、fh 推定用電圧指令の周波数、ωh 推定用電圧指令の角周波数

Claims (7)

  1.  回転子に突極性を有する回転電機を、インバータを介して制御する回転電機の制御装置であって、
     前記回転電機の固定子に設けられた巻線に流れる電流を検出する電流検出部と、
     前記電流の検出値に基づいて、回転子の回転角度を推定する角度推定部と、
     前記電流の検出値に基づいて、前記回転電機を駆動するための駆動電圧指令を演算する電流制御部と、
     推定用電圧指令を生成する推定用指令生成部と、
     前記推定用電圧指令を前記駆動電圧指令に加算して電圧指令を算出する電圧指令算出部と、
     搬送波を生成する搬送波生成部と、
     前記電圧指令と前記搬送波との比較結果に基づいて、前記インバータが有するスイッチング素子をオンオフして前記巻線に電圧を印加させる電圧印加部と、を備え、
     前記推定用指令生成部は、前記巻線に固定された静止座標系上で、予め設定された周期の前記推定用電圧指令を生成し、
     前記搬送波生成部は、前記推定用電圧指令の周期と同じ周期の前記搬送波を生成し、
     前記角度推定部は、前記電流の検出値から、前記推定用電圧指令の周期の周波数成分を抽出し、前記周波数成分に基づいて、前記回転角度を推定する回転電機の制御装置。
  2.  前記巻線は、三相の巻線であり、
     前記搬送波生成部は、三相の各相に対応する3つの前記搬送波を生成し、3つの前記搬送波は、相間で、前記搬送波の周期の1/3周期の位相差が設けられ、
     前記推定用指令生成部は、三相の各相に対応する3つの前記推定用電圧指令を生成し、3つの前記推定用電圧指令は、相間で、前記推定用電圧指令の周期の1/3周期の位相差が設けられている請求項1に記載の回転電機の制御装置。
  3.  前記搬送波生成部は、山の頂点から開始して谷の頂点で終わる、又は谷の頂点から開始して山の頂点で終わる1.5周期の三角波を、1周期の前記搬送波として生成する請求項1又は2に記載の回転電機の制御装置。
  4.  前記電流検出部は、前記搬送波の1周期中に、少なくとも2回電流を検出する請求項1から3のいずれか1項に記載の回転電機の制御装置。
  5.  前記インバータの正極側のスイッチング素子及び負極側のスイッチング素子の直列回路上に電流センサが設けられ、
     前記電流検出部は、前記正極側のスイッチング素子又は前記負極側のスイッチング素子がオンにされたときに、前記電流センサの出力信号に基づいて、前記電流を検出する請求項1から4のいずれか1項に記載の回転電機の制御装置。
  6.  前記巻線は、三相の巻線であり、
     前記推定用指令生成部は、三相の各相に対応する3つの前記推定用電圧指令を生成し、3つの前記推定用電圧指令は、相間で、前記推定用電圧指令の周期の1/3周期の位相差が設けられ、
     各相の前記推定用電圧指令は、前記推定用電圧指令の1周期を3つに均等分割した3つの分割期間において、少なくとも2つの分割期間の値が互いに異なる請求項1から5のいずれか1項に記載の回転電機の制御装置。
  7.  前記推定用電圧指令の周期の周波数は、18000Hz以上である請求項1から6のいずれか1項に記載の回転電機の制御装置。
PCT/JP2019/022161 2019-05-16 2019-06-04 回転電機の制御装置 WO2020230339A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19928989.3A EP3972118A4 (en) 2019-05-16 2019-06-04 ROTATING ELECTRIC MACHINE CONTROL DEVICE
CN201980096130.0A CN113826317B (zh) 2019-05-16 2019-06-04 旋转电机的控制装置
US17/598,429 US20220166356A1 (en) 2019-05-16 2019-06-04 Controller for rotary electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019092703A JP6685452B1 (ja) 2019-05-16 2019-05-16 回転電機の制御装置
JP2019-092703 2019-05-16

Publications (1)

Publication Number Publication Date
WO2020230339A1 true WO2020230339A1 (ja) 2020-11-19

Family

ID=70286669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/022161 WO2020230339A1 (ja) 2019-05-16 2019-06-04 回転電機の制御装置

Country Status (5)

Country Link
US (1) US20220166356A1 (ja)
EP (1) EP3972118A4 (ja)
JP (1) JP6685452B1 (ja)
CN (1) CN113826317B (ja)
WO (1) WO2020230339A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013900A1 (ja) * 2022-07-13 2024-01-18 三菱電機株式会社 制御装置および駆動制御方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327213B (zh) * 2020-10-19 2024-04-19 南京工程学院 一种电回转体性能检测系统及检测方法
CN116388615B (zh) * 2023-06-03 2023-09-01 晶艺半导体有限公司 直流无刷电机折线调速控制电路和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204403A (ja) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd モータ駆動装置
WO2016129125A1 (ja) * 2015-02-13 2016-08-18 三菱電機株式会社 電動機駆動装置および車両駆動システム
JP2018153028A (ja) * 2017-03-14 2018-09-27 株式会社東芝 集積回路
JP2019009875A (ja) * 2017-06-22 2019-01-17 ローム株式会社 三相モータの駆動装置およびそれを用いた電子機器、搬送機器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734467B1 (ko) * 2005-02-25 2007-07-03 윤용호 전압펄스 주입방식을 이용한 스위치드 릴럭턴스 모터의 센서리스 제어장치 및 그 방법
JP4956123B2 (ja) * 2006-09-28 2012-06-20 三洋電機株式会社 モータ制御装置
US8350507B2 (en) * 2007-09-27 2013-01-08 Mitsubishi Electric Corporation Controller of rotary electric machine
WO2010076669A1 (en) * 2009-01-05 2010-07-08 Freescale Semiconductor, Inc. Determining initial rotor position of an alternating current motor
JP5396876B2 (ja) * 2009-01-21 2014-01-22 株式会社安川電機 交流電動機の制御装置
JP5433657B2 (ja) * 2011-09-15 2014-03-05 株式会社東芝 モータ制御装置
US8994306B2 (en) * 2012-05-25 2015-03-31 Cirrus Logic, Inc. System and method for isolating the undriven voltage of a permanent magnet brushless motor for detection of rotor position
CN105432010B (zh) * 2013-05-27 2018-01-09 株式会社东芝 电力变换装置、电力变换装置的控制方法、无旋转传感器控制装置以及无旋转传感器控制装置的控制方法
JP5893232B1 (ja) * 2014-09-12 2016-03-23 三菱電機株式会社 交流回転機の制御装置及び磁極位置補正量演算方法
EP3016275A1 (de) * 2014-10-31 2016-05-04 Siemens Aktiengesellschaft Verfahren zum Bestimmen einer Rotorfrequenz und/oder eines Rotorwinkels eines Rotors einer Reluktanzmaschine, Steuereinrichtung sowie Antriebsanordnung
CN108633323B (zh) * 2016-01-28 2021-07-13 三菱电机株式会社 电力变换装置及旋转电机驱动装置
EP3657669A1 (en) * 2017-07-19 2020-05-27 Mitsubishi Electric Corporation Motor drive device, and heat pump apparatus and refrigeration/air-conditioning apparatus using motor drive device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005204403A (ja) * 2004-01-15 2005-07-28 Matsushita Electric Ind Co Ltd モータ駆動装置
WO2016129125A1 (ja) * 2015-02-13 2016-08-18 三菱電機株式会社 電動機駆動装置および車両駆動システム
JP2018153028A (ja) * 2017-03-14 2018-09-27 株式会社東芝 集積回路
JP2019009875A (ja) * 2017-06-22 2019-01-17 ローム株式会社 三相モータの駆動装置およびそれを用いた電子機器、搬送機器

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAKI, RYOSO, KANEKO, SATORU, SAKURAI, YOSHIMI, HOMBU, MITSUYUKI: "Position sensorless control for IPM motor based on Voltageinjection Synchronized with PWM Carrier", IEEJ TRANSACTIONS ON INDUSTRYAPPLICATIONS, vol. 122, no. 1, 1 January 2002 (2002-01-01), pages 37 - 44, XP055759946 *
See also references of EP3972118A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024013900A1 (ja) * 2022-07-13 2024-01-18 三菱電機株式会社 制御装置および駆動制御方法

Also Published As

Publication number Publication date
CN113826317B (zh) 2024-04-16
CN113826317A (zh) 2021-12-21
US20220166356A1 (en) 2022-05-26
EP3972118A4 (en) 2022-07-06
EP3972118A1 (en) 2022-03-23
JP2020188616A (ja) 2020-11-19
JP6685452B1 (ja) 2020-04-22

Similar Documents

Publication Publication Date Title
US7075267B1 (en) Space vector-based current controlled PWM inverter for motor drives
US11218107B2 (en) Control device for power converter
JP6390489B2 (ja) インバータの制御装置
US10374503B2 (en) Power conversion device
WO2017141513A1 (ja) 電力変換装置
US20180219506A1 (en) Ac rotary machine control device and electric power steering device
EP3570432B1 (en) Motor control device
WO2020230339A1 (ja) 回転電機の制御装置
JP6536473B2 (ja) 回転電機の制御装置
CN113422564A (zh) 交流旋转机控制装置
JP6233428B2 (ja) モータ制御装置およびモータ制御方法
JP6750364B2 (ja) 回転電機の回転角推定装置
JP6910418B2 (ja) 交流回転電機の制御装置
US9935575B2 (en) Power conversion device and control method for same, and electric power steering control device
JP5853644B2 (ja) 線電流検出装置および電力変換システム
JP5473071B2 (ja) 負荷制御装置
CN116114165A (zh) 功率转换装置及电动助力转向装置
JP7321385B2 (ja) 回転機の制御装置
US11323056B2 (en) Controller for AC rotary electric machine
JP2023183491A (ja) 交流回転機の制御装置、及び車両用発電電動機装置
WO2019082825A1 (ja) 回転電機の制御装置
JP2012085405A (ja) 電力変換装置,電力変換方法及び電動機駆動システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019928989

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019928989

Country of ref document: EP

Effective date: 20211216