WO2020228503A1 - 一种高强高导 Cu-Ag-Sc 合金及其制备方法 - Google Patents

一种高强高导 Cu-Ag-Sc 合金及其制备方法 Download PDF

Info

Publication number
WO2020228503A1
WO2020228503A1 PCT/CN2020/086262 CN2020086262W WO2020228503A1 WO 2020228503 A1 WO2020228503 A1 WO 2020228503A1 CN 2020086262 W CN2020086262 W CN 2020086262W WO 2020228503 A1 WO2020228503 A1 WO 2020228503A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
conductivity
strength
heat
furnace
Prior art date
Application number
PCT/CN2020/086262
Other languages
English (en)
French (fr)
Inventor
王恩刚
安佰灵
张�林
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Priority to JP2021500219A priority Critical patent/JP7019230B2/ja
Priority to US17/266,921 priority patent/US11427903B2/en
Priority to DE112020000081.8T priority patent/DE112020000081T5/de
Publication of WO2020228503A1 publication Critical patent/WO2020228503A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum

Definitions

  • the invention belongs to the technical field of non-ferrous metal alloys, and particularly relates to a high-strength and high-conductivity Cu-Ag-Sc alloy and a preparation method thereof.
  • the precipitated phases of Ag are divided into two forms: discontinuity and continuity; discontinuous precipitates usually appear in Cu-Ag alloys with low Ag content ( ⁇ 8wt%) and are distributed in high Near the angular grain boundary, it is coarse and fibrous; the continuous precipitated phase appears in the high Ag alloy (>8wt%), and it is distributed inside the grain, and the fine dispersion is in the form of a network.
  • the density of the continuous precipitated phase is significantly higher than that of non- The density of continuous precipitates; a large number of experiments show that the strength of Cu-Ag composites mainly comes from high-density Ag fibers, and the density of Ag fibers after deformation is positively correlated with the density of Ag precipitates in the Cu-Ag alloy before deformation; Therefore, how to obtain a large amount of Ag continuous precipitates becomes the key to improving Cu-Ag composite materials; research shows that the proportion of continuous precipitates increases with the increase of Ag content (the law is suitable for 8-30wt%) However, due to the high cost of metallic Ag, how to obtain continuous precipitates in Cu-Ag alloys with low Ag content has become a hot spot in the study of Cu-Ag alloys.
  • Invention patent 200510048639.8 announced the method of refining the Cu-Ag alloy structure by adding Re, and using large deformation and reasonable heat treatment mechanism to obtain fiber reinforced materials with good strength and conductivity;
  • invention patent 201310614153.0 announced the addition of Zr Technology that can improve the recrystallization temperature, creep strength and low-cycle fatigue resistance of Cu-Ag alloys, and improve the softening resistance and thermal strength of the alloy;
  • invention patent 02110785.8 announced the addition of low-Ag Cu-Ag alloys With a small amount of Cr, Ce, La, and Nd, under the conditions of reducing the Ag content and simplifying the process, its strength and conductivity can reach an alloy level of 24%-25% Ag;
  • the invention patent 201610218372.0 adds to the Cu-Ag alloy A small amount of Fe, under the action of a magnetic field, increases the strength of the alloy and reduces the cost of the alloy raw materials, but the electrical conductivity of the material has been greatly reduced;
  • the invention patent 201610173651.X announced the
  • the purpose of the present invention is to provide a high-strength and high-conductivity Cu-Ag-Sc alloy and a preparation method thereof in view of the existing technical problems.
  • trace Sc element By adding trace Sc element to the Cu-Ag alloy with low Ag content, the precipitation method of Ag is changed , And then obtain a Cu-Ag-Sc alloy with good strength and conductivity.
  • the high-strength and high-conductivity Cu-Ag-Sc alloy composition of the present invention contains Ag 1-10%, Sc 0.05-0.5%, and the balance Cu; its hardness is 88-148HV, and its conductivity is 83-88% IACS.
  • the preparation method of the high-strength and high-conductivity Cu-Ag-Sc alloy of the present invention is carried out in the following steps:
  • the vacuum condition of the above steps 1 and 2 is that the degree of vacuum is ⁇ 10 -2 MPa.
  • the above-mentioned inert atmosphere is an argon atmosphere.
  • the melting point of Sc element is 1541°C, which is lower than Zr (1855°C), and it is compatible with Ag.
  • a certain solid solubility the solid solubility is 4.6wt.% at 926°C
  • the invention adds Sc uniformly to the Cu-Ag alloy through the Ag-Sc master alloy; through a reasonable heat treatment method, Ag is continuously precipitated
  • the phases are distributed in the Cu matrix, and Sc, Cu and Ag have intermediate compounds formed, which can further strengthen the Cu-Ag-Sc alloy.
  • the strength of the Cu-Ag-Sc alloy is significantly higher than that of the Cu-Ag alloy under the same conditions.
  • the method of the invention obtains the Cu-Ag-Sc alloy with uniformly distributed components by using the intermediate alloy Ag-Sc, and solves the problem that Sc is difficult to melt in Cu.
  • Figure 1 is a scanning electron micrograph of a Cu-2.8Ag alloy obtained in a comparative experiment in Example 2 of the present invention
  • Example 2 is a scanning electron micrograph of the Cu-Ag-Sc alloy with high strength and high conductivity in Example 2 of the present invention.
  • the embodiment of the present invention uses a micro hardness tester to measure the hardness, and uses a four-point probe method to detect the electrical conductivity of the composite material.
  • the metal Ag used in the embodiment of the present invention is a silver rod with a purity of 99.990-99.998%.
  • the purity of the metal Sc used in the embodiment of the present invention is 99.75-99.99%.
  • the purity of the electrolytic copper used in the embodiment of the present invention is 99.95-99.99%.
  • the composition of alloy ingot contains Ag 1%, Sc 0.1% and the balance Cu;
  • the aging treatment temperature is 450°C, and the holding time is 8h; the hardness of the high-strength and high-conductivity Cu-Ag-Sc alloy is 108HV, and the conductivity is 88% IACS;
  • the hardness of the Cu-3Ag-0.3Sc alloy is increased by 44.6%.
  • the Cu-2.8Ag alloy electron microscope scan is shown in Figure 1, and the electron microscope scan is shown in Figure 2; It can be seen that there are only fine and uniform continuous Ag precipitates in Cu-3Ag-0.3Sc alloy, while coarse discontinuous Ag precipitates appear in Cu-3Ag.
  • the hardness of Cu-3Ag-0.3Sc alloy is higher than that of Cu-3Ag.
  • the hardness of Cu-3Ag-0.3Sc alloy aged at 450°C is 108HV, which is 44.6% higher than that of Cu-3Ag under the same conditions.
  • the mass percentage of Sc in the Ag-Sc master alloy is 5%
  • the aging treatment temperature is 450°C, and the heat preservation is 4h; the hardness of the high-strength and high-conductivity Cu-Ag-Sc alloy is 115HV, and the conductivity is 84% IACS.
  • the mass percentage of Sc in the Ag-Sc master alloy is 2%;
  • the aging treatment temperature is 450°C, and the heat preservation is 16h; the hardness of the high-strength and high-conductivity Cu-Ag-Sc alloy is 148HV, and the conductivity is 83% IACS.

Abstract

一种高强高导Cu-Ag-Sc合金及其制备方法,成分按质量百分比含Ag 1~10%,Sc 0.05~0.5%,余量为Cu;其硬度88~148HV,导电性83~88%IACS;制备方法按以下步骤进行:(1)将金属Ag和金属Sc置于电弧炉中,真空熔炼,随炉冷却制得Ag-Sc中间合金;(2)将Ag-Sc中间合金、电解铜和金属Ag置于感应炉中,真空条件1200~1300℃熔炼,浇铸并随炉冷却;(3)在惰性气氛条件下,加热至700~850℃热处理,水淬至常温;(4)在惰性气氛条件下,加热至400~500℃时效处理,空冷至常温。本发明方法通过使用中间合金Ag-Sc的方式,得到了各成分均匀分布的Cu-Ag-Sc合金,解决了Sc难熔于Cu中的问题。

Description

一种高强高导Cu-Ag-Sc合金及其制备方法 技术领域
本发明属于有色金属合金技术领域,特别涉及一种高强高导Cu-Ag-Sc合金及其制备方法。
背景技术
随着现代工业和技术的发展,越来越多的领域需要强度和导电性匹配良好的导线材料;纯铜具有优异的导电性,但其强度远不能满足现代工业的需求,因此许多学者在纯铜中添加不同比例的Ag,通过合金强化的方式进一步提高了材料的强度。
在Cu-Ag合金中,Ag的析出相分为非连续性和连续性两种形式;非连续性析出相通常出现在低Ag含量的Cu-Ag合金中(≤8wt%),且分布在高角度晶界附近,呈粗大的纤维状;连续性析出相出现在高Ag合金中(>8wt%),分布在晶粒内部,细小弥散呈网状,因此连续性析出相的密度显著高于非连续性析出相的密度;大量实验表明,Cu-Ag复合材料的强度主要来自于高密度的Ag纤维,而变形后Ag纤维的密度与变形前Cu-Ag合金中Ag析出相的密度呈正相关;所以如何得到大量的Ag连续性析出相成为提高Cu-Ag复合材料的关键;研究表明,连续性析出相的比例是随着Ag含量的增加而提高的(规律适应于8~30wt%之间),但是由于金属Ag的成本较高,如何在低Ag含量的Cu-Ag合金中得到连续性析出相,就成为研究Cu-Ag合金的一个热点。
发明专利200510048639.8公布了通过添加Re来细化Cu-Ag合金组织,并采用大变形和合理的热处理机制,得到强度和导电性匹配良好的纤维增强材料的方法;发明专利201310614153.0公布了通过Zr的添加可以提高Cu-Ag合金再结晶温度、蠕变强度和抗高温热低周疲劳性能,提高合金的抗软化性和热强性的技术;发明专利02110785.8公布了在低Ag的Cu-Ag合金中添加少量的Cr、Ce、La、Nd的方法,在降低Ag含量及简化工艺的条件下,其强度与导电性达到24%-25%Ag的合金水平;发明专利201610218372.0通过在Cu-Ag合金中添加少量的Fe,在磁 场的作用下,提高了合金强度,降低了合金原料成本,但材料导电性出现了较大的下降;发明专利201610173651.X公布了添加Nb、Cr和Mo后,通过合理的热处理温度和时间控制Ag的析出方式,促进Ag的连续性析出,进而提高Cu-Ag合金材料的强度和导电性的技术;然而,因为第三主元的熔点很高,此方法的铸态合金不易制备,限制了其应用价值。
一些学术文章对如何控制Ag的析出方式进行了探讨;其中A.Gaganov等(Materials Science and Engineering:A.2006,2:437)、J.Freudenberger等(Materials Science and Engineering:A.2010,7-8:527)、J.B.Liu等(Materials Science and Engineering:A.2012.1,532)发现通过添加Zr元素可以抑制Ag的非连续性析出相,提高连续性析出相;然而,Zr的熔点高(1855℃),与Cu和Ag几乎没有固溶度,铸锭的熔炼困难,尤其是工业生产所需要的大型铸锭。
发明概述
技术问题
问题的解决方案
技术解决方案
本发明的目的是针对现有的技术问题,提供一种高强高导Cu-Ag-Sc合金及其制备方法,通过在低Ag含量的Cu-Ag合金中添加微量Sc元素,改变Ag的析出方式,进而得到强度和导电性匹配良好的Cu-Ag-Sc合金。
本发明的高强高导Cu-Ag-Sc合金成分按质量百分比含Ag 1~10%,Sc 0.05~0.5%,余量为Cu;其硬度88~148HV,导电性83~88%IACS。
本发明的高强高导Cu-Ag-Sc合金的制备方法按以下步骤进行:
1、将金属Ag和金属Sc置于电弧炉中,真空条件下进行熔炼,然后随炉冷却至常温,制得Ag-Sc中间合金;Ag-Sc中间合金中Sc的质量百分比为0.5~5%;
2、将Ag-Sc中间合金、电解铜和金属Ag置于感应炉中,在真空条件下加热至1200~1300℃,保温10~60min进行熔炼,然后浇铸并随炉冷却至常温,制成合金铸锭;合金铸锭的成分按质量百分比含Ag 1~10%,Sc 0.05~0.5%,余量为Cu;
3、在惰性气氛条件下,将合金铸锭加热至700~850℃,保温1~15h进行热处理,然后水淬至常温,获得热处理合金铸锭;
4、在惰性气氛条件下,将热处理合金铸锭加热至400~500℃,保温2~20h进行时效处理,空冷至常温,制成高强高导Cu-Ag-Sc合金。
上述步骤1和2的真空条件为真空度≤10 -2MPa。
上述的惰性气氛为氩气气氛。
发明的有益效果
有益效果
已有技术中,未有涉及以Sc元素为第三组元制备的Cu-Ag合金及其相关制备技术和方法;Sc元素的熔点为1541℃,低于Zr(1855℃),且与Ag有一定固溶度(在926℃时固溶度为4.6wt.%),所以本发明通过Ag-Sc中间合金把Sc均匀添加到Cu-Ag合金中;通过合理的热处理方法,Ag以连续性析出相的方式分布在Cu基体中,且Sc与Cu和Ag均有中间化合物形成,可以进一步起到强化的作用,Cu-Ag-Sc合金的强度显著高于相同条件下的Cu-Ag合金。
本发明方法通过使用中间合金Ag-Sc的方式,得到了各成分均匀分布的Cu-Ag-Sc合金,解决了Sc难熔于Cu中的问题。
对附图的简要说明
附图说明
图1为本发明实施例2中对比试验获得的Cu-2.8Ag合金的电镜扫描金相图;
图2为本发明实施例2中的高强高导Cu-Ag-Sc合金电镜扫描金相图。
发明实施例
本发明的实施方式
本发明实施例采用微观硬度计测量硬度,采用四点探针法检测复合材料的导电率。
本发明实施例中采用的金属Ag为银棒材,纯度为99.990~99.998%。
本发明实施例中采用的金属Sc纯度为99.75~99.99%。
本发明实施例中采用的电解铜纯度为99.95~99.99%。
以下为本发明优选实施例。
实施例1
将金属Ag和金属Sc置于电弧炉中,真空条件下进行熔炼,真空度≤10 -2MPa,然后随炉冷却至常温,制得Ag-Sc中间合金;Ag-Sc中间合金中Sc的质量百分比为5%;
将Ag-Sc中间合金、电解铜和金属Ag置于感应炉中,在真空条件下加热至1300℃,真空度≤10 -2MPa,保温15min进行熔炼,然后浇铸并随炉冷却至常温,制成合金铸锭;合金铸锭的成分按质量百分比含Ag 1%,Sc 0.1%,余量为Cu;
在惰性气氛条件下,将合金铸锭加热至800℃,保温4h进行热处理,然后水淬至常温,获得热处理合金铸锭;
在氩气气氛条件下,将热处理合金铸锭加热至475℃,保温4h进行时效处理,空冷至常温,制成高强高导Cu-Ag-Sc合金,硬度88HV,导电性87.5%IACS。
实施例2
方法同实施例1,不同点在于:
(1)Ag-Sc中间合金中Sc的质量百分比为3%;
(2)感应炉中,在真空条件下加热至1250℃,保温20min进行熔炼,然后浇铸并随炉冷却至常温,制成合金铸锭;合金铸锭的成分按质量百分比含Ag 3%,Sc0.3%,余量为Cu;
(3)合金铸锭加热至760℃,保温2h;
(4)时效处理温度450℃,保温8h;高强高导Cu-Ag-Sc合金硬度108HV,导电性88%IACS;
与传统不加Sc的Cu-2.8Ag合金相比,Cu-3Ag-0.3Sc合金的硬度提高44.6%,Cu-2.8Ag合金电镜扫描如图1所示,电镜扫描如图2所示;由图可见,Cu-3Ag-0.3Sc合金中只有细小均匀的连续性Ag析出相,而Cu-3Ag中出现了粗大的非连续性Ag析出相。
本实验Cu-3Ag-0.3Sc合金的硬度均高于Cu-3Ag。450℃时效后的Cu-3Ag-0.3Sc合金的硬度为108HV,与同条件下的Cu-3Ag相比提高44.6%.
在扫描电镜下,Cu-3Ag-0.3Sc合金中只有细小均匀的连续性Ag析出相,而Cu-3Ag中只出现了粗大的非连续性Ag析出相(图1)。
实施例3
方法同实施例1,不同点在于:
(1)Ag-Sc中间合金中Sc的质量百分比为5%;
(2)感应炉中,在真空条件下加热至1250℃,保温15min进行熔炼,然后浇铸并随炉冷却至常温,制成合金铸锭;合金铸锭的成分按质量百分比含Ag3%,Sc0.4%,余量为Cu;
(3)合金铸锭加热至760℃,保温10h;
(4)时效处理温度450℃,保温4h;高强高导Cu-Ag-Sc合金硬度115HV,导电性84%IACS。
实施例4
方法同实施例1,不同点在于:
(1)Ag-Sc中间合金中Sc的质量百分比为2%;
(2)感应炉中,在真空条件下加热至1300℃,保温20min进行熔炼,然后浇铸并随炉冷却至常温,制成合金铸锭;合金铸锭的成分按质量百分比含Ag 7%,Sc 0.07%,余量为Cu;
(3)合金铸锭加热至760℃,保温6h;
(4)时效处理温度450℃,保温16h;高强高导Cu-Ag-Sc合金硬度148HV,导电性83%IACS。

Claims (4)

  1. 一种高强高导Cu-Ag-Sc合金,其特征在于成分按质量百分比含Ag 1~10%,Sc 0.05~0.5%,余量为Cu;其硬度88~148HV,导电性83~88%IACS。
  2. 一种高强高导Cu-Ag-Sc合金的制备方法,其特征在于按以下步骤进行:
    (1)将金属Ag和金属Sc置于电弧炉中,真空条件下进行熔炼,然后随炉冷却至常温,制得Ag-Sc中间合金;Ag-Sc中间合金中Sc的质量百分比为0.5~5%;
    (2)将Ag-Sc中间合金、电解铜和金属Ag置于感应炉中,在真空条件下加热至1200~1300℃,保温10~60min进行熔炼,然后浇铸并随炉冷却至常温,制成合金铸锭;合金铸锭的成分按质量百分比含Ag 1~10%,Sc 0.05~0.5%,余量为Cu;
    (3)在惰性气氛条件下,将合金铸锭加热至700~850℃,保温1~15h进行热处理,然后水淬至常温,获得热处理合金铸锭;
    (4)在惰性气氛条件下,将热处理合金铸锭加热至400~500℃,保温2~20h进行时效处理,空冷至常温,制成高强高导Cu-Ag-Sc合金。
  3. 根据权利要求2所述的高强高导Cu-Ag-Sc合金的制备方法,其特征在于步骤(1)和(2)的真空条件为真空度≤10 -2MPa。
  4. 根据权利要求2所述的高强高导Cu-Ag-Sc合金的制备方法,其特征在于步骤(3)中,惰性气氛为氩气气氛。
PCT/CN2020/086262 2019-05-15 2020-04-23 一种高强高导 Cu-Ag-Sc 合金及其制备方法 WO2020228503A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021500219A JP7019230B2 (ja) 2019-05-15 2020-04-23 高硬度・高導電性Cu-Ag-Sc合金及びその製造方法
US17/266,921 US11427903B2 (en) 2019-05-15 2020-04-23 High-strength and high-conductivity Cu—Ag—Sc alloy and preparation method thereof
DE112020000081.8T DE112020000081T5 (de) 2019-05-15 2020-04-23 Hochfeste und hochgradig leitfähige cu-ag-sc-legierung und herstellungsverfahren davon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910401815.3A CN110004320B (zh) 2019-05-15 2019-05-15 一种高强高导Cu-Ag-Sc合金及其制备方法
CN201910401815.3 2019-05-15

Publications (1)

Publication Number Publication Date
WO2020228503A1 true WO2020228503A1 (zh) 2020-11-19

Family

ID=67176946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/086262 WO2020228503A1 (zh) 2019-05-15 2020-04-23 一种高强高导 Cu-Ag-Sc 合金及其制备方法

Country Status (5)

Country Link
US (1) US11427903B2 (zh)
JP (1) JP7019230B2 (zh)
CN (1) CN110004320B (zh)
DE (1) DE112020000081T5 (zh)
WO (1) WO2020228503A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807669A (zh) * 2022-05-12 2022-07-29 江西理工大学 一种超高强、高导、耐热、电磁屏蔽Cu-Fe-Mg-RE合金的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004320B (zh) 2019-05-15 2020-07-28 东北大学 一种高强高导Cu-Ag-Sc合金及其制备方法
CN115094283B (zh) * 2022-06-22 2023-06-09 中南大学 高强高导铝合金电枢材料及其制造方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985014A (zh) * 2004-07-15 2007-06-20 普兰西欧洲股份公司 铜合金制造的导线材料
WO2008030368A1 (en) * 2006-09-08 2008-03-13 Tosoh Smd, Inc. Copper sputtering target with fine grain size and high electromigration resistance and methods of making the same
CN105803246A (zh) * 2016-03-24 2016-07-27 东北大学 一种高强度高导电率铜基复合材料及其制备方法
CN106282651A (zh) * 2016-09-18 2017-01-04 上海康成铜业集团有限公司 一种铜银稀土合金超细线及其生产方法
CN110004320A (zh) * 2019-05-15 2019-07-12 东北大学 一种高强高导Cu-Ag-Sc合金及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5770244A (en) * 1980-10-15 1982-04-30 Furukawa Electric Co Ltd:The Heat-resistant and anticorrosive copper alloy for electric conduction
CN1226435C (zh) 2002-02-04 2005-11-09 浙江大学 银纤维复相强化稀土铜基合金
JP4326253B2 (ja) * 2003-04-11 2009-09-02 日本タングステン株式会社 金属材料
JP3731600B2 (ja) * 2003-09-19 2006-01-05 住友金属工業株式会社 銅合金およびその製造方法
CN100365154C (zh) 2005-11-22 2008-01-30 昆明贵金属研究所 Cu-Ag-RE合金原位纳米纤维复合材料
US20110156012A1 (en) 2009-11-12 2011-06-30 Sony Corporation Double layer hardmask for organic devices
CN104674051A (zh) 2013-11-28 2015-06-03 青岛新力通工业有限责任公司 一种Cu-Ag-Zr合金材料
CN105839038B (zh) 2016-04-08 2017-06-30 东北大学 一种高强度高导电率Cu‑Ag‑Fe合金的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1985014A (zh) * 2004-07-15 2007-06-20 普兰西欧洲股份公司 铜合金制造的导线材料
WO2008030368A1 (en) * 2006-09-08 2008-03-13 Tosoh Smd, Inc. Copper sputtering target with fine grain size and high electromigration resistance and methods of making the same
CN105803246A (zh) * 2016-03-24 2016-07-27 东北大学 一种高强度高导电率铜基复合材料及其制备方法
CN106282651A (zh) * 2016-09-18 2017-01-04 上海康成铜业集团有限公司 一种铜银稀土合金超细线及其生产方法
CN110004320A (zh) * 2019-05-15 2019-07-12 东北大学 一种高强高导Cu-Ag-Sc合金及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807669A (zh) * 2022-05-12 2022-07-29 江西理工大学 一种超高强、高导、耐热、电磁屏蔽Cu-Fe-Mg-RE合金的制备方法
CN114807669B (zh) * 2022-05-12 2022-11-22 江西理工大学 一种超高强、高导、耐热、电磁屏蔽Cu-Fe-Mg-RE合金的制备方法

Also Published As

Publication number Publication date
JP2021529262A (ja) 2021-10-28
DE112020000081T5 (de) 2021-07-29
CN110004320B (zh) 2020-07-28
US11427903B2 (en) 2022-08-30
JP7019230B2 (ja) 2022-02-15
CN110004320A (zh) 2019-07-12
US20210340658A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
WO2020228503A1 (zh) 一种高强高导 Cu-Ag-Sc 合金及其制备方法
WO2019127610A1 (zh) 一种析出强化型AlCrFeNiV体系高熵合金及其制备方法
WO2018045695A1 (zh) 抗软化铜合金、制备方法及其应用
CN100532599C (zh) 一种抗疲劳的Cu-Ti合金及其生产方法
CN1818109A (zh) 一种具备高强度和高导电性能的铜合金材料及其制备工艺
CN105420556A (zh) 特高压用铝合金导线
WO2022237073A1 (zh) 一种铝合金材料、铝合金导线及其制备方法
CN104862567B (zh) 一种高Sn变形镁合金板材制备方法
CN109735741B (zh) 一种多相强化的电子封装用铜合金及其制备方法
CN108315581A (zh) 一种高强度高软化温度的低铍铜合金及其制备方法
CN109468476B (zh) 一种采用磁悬浮工艺提高铜合金综合性能的方法
CN108866378B (zh) 一种高温环境用高强高导电率铜合金及其制备方法
CN107828985A (zh) Cu‑Cr‑Zr‑Ni‑Al铜合金、线材及其制备方法
JP2012136746A (ja) 電気・電子部品用銅合金およびその製造方法
CN109439955B (zh) 一种采用定向凝固制备高强度、高导电性超细丝合金材料的方法
CN110819853A (zh) 一种高导电率软铝单丝及其制备方法
CN113969364B (zh) 一种高强度高导电铜铌系合金及其制备方法
CN113652573B (zh) 一种高强高导高耐热Cu-Ag-Hf合金材料及其制备方法
CN112725654B (zh) 一种集成电路用高强高导高韧铜钛合金及其制备方法
CN107586980B (zh) 一种多元稀土合金化高导电铜合金及其制备方法
JP4158337B2 (ja) 連続鋳造鋳型用クロム・ジルコニウム系銅合金の製造方法
CN112126833A (zh) 一种高导电铝合金及其制备方法
CN116162820A (zh) 一种高强度高导电率Cu-Ag-Sn合金及其制备方法
CN114990376B (zh) 一种三元高强高导铜合金及其制备方法
CN112725655B (zh) 一种高功率器件用高强高导铜铬合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20804968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021500219

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20804968

Country of ref document: EP

Kind code of ref document: A1