WO2022237073A1 - 一种铝合金材料、铝合金导线及其制备方法 - Google Patents

一种铝合金材料、铝合金导线及其制备方法 Download PDF

Info

Publication number
WO2022237073A1
WO2022237073A1 PCT/CN2021/125188 CN2021125188W WO2022237073A1 WO 2022237073 A1 WO2022237073 A1 WO 2022237073A1 CN 2021125188 W CN2021125188 W CN 2021125188W WO 2022237073 A1 WO2022237073 A1 WO 2022237073A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
aluminum
preparation
wire
content
Prior art date
Application number
PCT/CN2021/125188
Other languages
English (en)
French (fr)
Inventor
缪姚军
周峰
缪小林
徐春建
洪小红
徐海波
Original Assignee
上海中天铝线有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海中天铝线有限公司 filed Critical 上海中天铝线有限公司
Priority to EP21941638.5A priority Critical patent/EP4321644A1/en
Publication of WO2022237073A1 publication Critical patent/WO2022237073A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/003Aluminium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D43/00Mechanical cleaning, e.g. skimming of molten metals
    • B22D43/001Retaining slag during pouring molten metal
    • B22D43/004Retaining slag during pouring molten metal by using filtering means
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/02Stranding-up
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/0009Details relating to the conductive cores

Definitions

  • the present disclosure relates to the field of aluminum alloys, in particular, to an aluminum alloy material, an aluminum alloy wire and a preparation method thereof.
  • Heat-resistant aluminum alloy wire is a commonly used wire product for line capacity expansion and transformation. It can be used to replace the commonly used old steel-cored aluminum stranded wire in existing line corridors and facility conditions. It is an effective way to achieve line capacity increase and reduce line loss. However, due to the mutual restriction of the conductivity and heat resistance of aluminum alloys, it is extremely difficult to improve the conductivity of aluminum alloy wires under the premise of ensuring heat resistance.
  • the composition of the aluminum alloy material includes:
  • the mass ratio of Fe to Si is 2-8, and the M is composed of La and Ce; alternatively, by mass percentage, the M is composed of 25%-45% La, and 55%-75% Ce composition.
  • the structure composition of the aluminum alloy material is an ⁇ -Al matrix and a dispersed and precipitated Al-Zr-Y heat-resistant phase; optionally, the radius of the heat-resistant phase is 8-20nm, and the The density of the refractory phase is (1.8-4.2)*10 18 N/m 3 .
  • the aluminum alloy material is an aluminum alloy rod, an aluminum alloy wire drawing or an aluminum alloy wire, and optionally, the electrical conductivity of the aluminum alloy material is >61% IACS.
  • the present disclosure also provides a method for preparing an aluminum alloy wire, comprising the following steps:
  • iron source, silicon source, zirconium source, lanthanum source, cerium source and yttrium source are added to the aluminum liquid, and smelted to obtain the aluminum alloy melt;
  • the mass ratio of the Fe to the Si is 2-8, and the M is composed of La and Ce; optionally, by mass percentage, the M is composed of 25%-45% La, and 55% %-75% Ce composition.
  • the aluminum liquid is obtained by first obtaining an aluminum ingot and then melting the aluminum ingot, wherein the aluminum ingot is an aluminum ingot with a purity not less than 99.7%, or directly using electrolytic aluminum liquid.
  • the temperature of the molten aluminum is 720°C-750°C, 725°C-745°C or 730°C-740°C.
  • the temperature of the heat treatment is 160-250°C, 180-240°C or 190-210°C, and the time of the heat treatment is 10-24h, 12-20h or 15-17h.
  • the mass percentage of slag inclusions with a particle size of 10 ⁇ m or more is not higher than 3%.
  • the hydrogen content is ⁇ 0.15ml/100g Al.
  • the purification step includes: refining, and performing multi-stage filtration after refining.
  • the refining is carried out by adsorption purification or non-adsorption purification, wherein the adsorption purification includes the use of powder spraying refining agent or degassing refining agent, and the non-adsorption purification includes vacuum treatment or ultrasonic treatment; and , the multi-stage filtration is carried out by a combination of a filter plate and an electromagnetic purification device.
  • the step of purifying before the step of multi-stage filtering, further includes: keeping the aluminum alloy melt obtained after refining for a preset time, and then stirring to perform online degassing.
  • the purifying step further includes: sampling the aluminum alloy melt obtained after the refining and determining the component content, if The content of each component is the same as the content in the formula, then proceed to the next step, if the content of any component is different from the content in the formula, return to the smelting step and adjust until the content of each component is the same as in the formula The content is the same before proceeding to the next step.
  • the temperature of the aluminum alloy melt when entering the casting machine is 690°C-750°C, 690°C-710°C, 695°C-705°C or 700°C ;
  • the rolling temperature is 450°C-550°C, 500°C-545°C or 530°C-540°C.
  • the present disclosure also provides an aluminum alloy wire, which is prepared by the above preparation method.
  • the single-wire conductivity of the aluminum alloy wire after twisting is ⁇ 61% IACS
  • the tensile strength is ⁇ 151 MPa
  • the strength residual rate after heating at 230° C. for 1 hour is >90%.
  • FIG. 1 is a photo of the microstructure composition of the aluminum alloy wire provided in Example 1 after heat treatment.
  • the present disclosure provides an aluminum alloy material, an aluminum alloy wire and a preparation method thereof. Exemplary aluminum alloy materials, aluminum alloy wires and preparation methods thereof of the present disclosure are described below:
  • the present disclosure provides an aluminum alloy material, wherein the aluminum alloy material here can be an aluminum alloy rod, an aluminum alloy wire drawing single wire or an aluminum alloy wire (twisted single wire), or an aluminum alloy plate or block etc., no specific limitation is made here.
  • the aluminum alloy material includes the following components by mass percentage:
  • the mass ratio of Fe to Si is 2-8, optionally, the mass ratio of Fe to Si is 2.5-7.5, 3-7, 4-6 or 4.5-5.5, and M is composed of La and Ce.
  • Mn, V, Ti and Cr are unavoidable main impurity elements.
  • M consists of 25%-45% La and 55%-75% Ce; for example, M consists of 25% La and 75% Ce, or M consists of 35% La, and 65% Ce, or M consists of 45% La, and 55% Ce, etc.
  • Table 2 is a comparison of the main components of typical common heat-resistant alloys and the aluminum alloy materials provided by the present disclosure.
  • the aluminum alloy materials provided by the present disclosure are based on ordinary heat-resistant alloys, appropriately increase the composite rare earth elements (M and Y content), reduce the zirconium content, and limit the mass ratio of Fe to Si to 2 -8, through the selection of specific components and specific proportions, on the basis of not significantly increasing the cost, it can effectively take into account and strengthen the heat resistance, mechanical properties and electrical conductivity of aluminum alloy materials, which has excellent commercial application value .
  • the rare earth element Y will react with aluminum to form a high melting point aluminum-rare earth element intermetallic compound , its solid solubility in the matrix is very small, and the formed Al 3 Y (D019 structure) can be used as the nucleation core for the aging precipitation of Al 3 Zr, which greatly reduces the interface energy required for the direct precipitation of Al 3 Zr, making the heat-resistant
  • the phase precipitation rate increases, the particle number density is large, and the size is small, and finally a large amount of dispersed precipitation of the second phase is formed, and the Zr element inside the alloy matrix is further released to form an effective heat-resistant phase, which purifies the matrix and reduces the crystal lattice. Distortion makes the ability of electrons to pass through rapidly increase, and at the same time, it pins dislocations and blocks the movement of dislocations, achieving a perfect match of strength and conductivity
  • the interaction between the reduction of zirconium content and the increase of rare earth elements in the aluminum alloy materials avoids the high residue of zirconium elements in the crystal, purifies the alloy matrix, improves the electrical conductivity, and at the same time improves the resistance of the heat-resistant phase.
  • the amount of precipitation reduces the size of the precipitated phase, optimizes the strength and refines the grain, improves the heat treatment margin in the actual preparation process, and makes it have better conductivity.
  • the structure composition of the aluminum alloy material is ⁇ -Al matrix and dispersed and precipitated Al-Zr-Y heat-resistant phase, which pins the dislocation movement and effectively refines the grain , while strengthening the alloy, improve electrical conductivity, and provide good heat resistance. That is to say, based on the above-mentioned specific composition and proportion of the aluminum alloy material, it leads to good electrical conductivity, and takes into account better heat resistance and mechanical properties, so it is especially suitable for making wires.
  • the radius of the heat-resistant phase is 8-20 nm, and the density of the heat-resistant phase is (1.8-4.2)*10 18 N/m 3 .
  • the conductivity of the aluminum alloy material is made to be ⁇ 61% IACS while maintaining the heat-resistant performance.
  • the present disclosure provides a method for preparing an aluminum alloy wire, which includes the following steps:
  • iron source silicon source, zirconium source, lanthanum source, cerium source and yttrium source are added to the aluminum liquid for melting to obtain an aluminum alloy melt.
  • the way to obtain the aluminum liquid can be obtained by first obtaining aluminum ingots, and then melting the aluminum ingots.
  • the aluminum ingots can be aluminum ingots with a purity of not less than 99.7%.
  • the way to obtain liquid aluminum can also be to directly use electrolytic aluminum liquid.
  • the mass ratio of Fe to Si is 2-8, optionally, the mass ratio of Fe to Si is 2.5-7.5, 3-7, 4-6 or 4.5-5.5, and M is composed of La and Ce.
  • the iron source, silicon source, zirconium source, lanthanum source, cerium source and yttrium source can be used as simple substances or alloys. If the corresponding components do not have simple substances, an alloy containing at least two of the above-mentioned components can be used directly.
  • Mn, V, Ti and Cr are inevitable main impurity elements introduced by the alloy of the above composition, and are not limited here.
  • the temperature of the molten aluminum is 720°C-750°C, for example, the temperature of the molten aluminum is 720°C, 725°C, 730°C, 735°C, 740°C, 745°C or 750°C.
  • step S1 is carried out in a furnace body, wherein the furnace body can be a holding furnace or a resistance furnace or the like.
  • the hydrogen content and slag inclusions in the aluminum alloy melt have a great influence on the quality of the final aluminum alloy product. Therefore, optionally, in the purified aluminum alloy melt, the mass percentage of the slag inclusions with a particle size of 10 ⁇ m and above Not higher than 3%. Through the above limitations, the intragranular distortion of the alloy can be effectively reduced, thereby effectively improving the electrical conductivity.
  • the hydrogen content is ⁇ 0.15ml/100g AL.
  • the purification steps include: refining, and multi-stage filtering through filter plates and electromagnetic purification devices after refining.
  • Refining can be carried out by adsorption purification or non-adsorption purification.
  • the way of adsorption purification can include spraying powder refining agent or degassing refining agent to remove slag and degassing
  • the way of non-adsorption purification can include vacuum treatment or ultrasonic treatment, etc. Effect.
  • the purification step also includes multi-stage filtration to remove aluminum alloy melt
  • the non-metallic impurities in the body can be purified to achieve the purpose of purifying the aluminum alloy melt, thereby improving the structure and performance of the product.
  • the electromagnetic purification device can effectively purify non-metallic impurities, improve the tissue performance of the product, and the operation process is simple.
  • the filter plate includes but is not limited to a ceramic foam filter plate, and can also be a tubular filter plate, a bed filter plate, etc., which also achieve the effect of filtering and removing slag, and no specific limitation is made here.
  • the filter plate and the electromagnetic purification device are arranged outside the furnace, especially in the launder between the furnace and the device used in the continuous casting step.
  • the step of purifying before the step of multi-stage filtration, further includes: keeping the aluminum alloy melt obtained after refining and standing for a preset time, and then stirring to perform online degassing.
  • the sedimentation can be carried out by standing for a preset time, and at the same time, the sedimentation is stirred to make the gas fully overflow, which can further effectively degas and ensure the degassing effect.
  • the online degassing process avoids further introduction of impurities.
  • the online degassing is carried out by an online degassing device, wherein the reaction chamber of the online degassing device is equipped with a rotating nozzle, and the number of the rotating nozzle is one or more, and it can rotate in one direction or in two directions, and rotate at the same time
  • the nozzle can be made of graphite or other materials, as long as the purpose of online degassing can be achieved, the online degassing device outside the furnace can be used.
  • the purification step also includes: sampling the aluminum alloy melt and measuring the component content, if the content of each component is the same as the content in the formula, then proceed to the next step, if any component If the content of each component is different from the content in the formula, return to the S1 smelting step and adjust until the content of each component is the same as that in the formula, and then proceed to the next step.
  • the temperature of the aluminum alloy melt when entering the crystal wheel of the continuous casting machine is 690°C-750°C, such as 690°C-710°C; for example, the temperature when entering the casting machine is 690°C, 695°C, 700°C, 705°C or 710°C, etc.
  • the rolling temperature is 450°C-550°C, for example, the rolling temperature is 450°C, 500°C, 530°C, 540°C, 545°C or 550°C.
  • Aluminum alloy rods are obtained by hot rolling.
  • the heat treatment temperature in S2 is 160-250°C, for example, the heat treatment temperature is 160°C, 165°C, 170°C, 180°C, 190°C, 200°C, 210°C, 220°C, 230°C, 240°C Or 250°C, etc.
  • the heat treatment time is 10-24h, for example, the heat treatment time is 10h, 12h, 15h, 17h, 18h, 20h or 24h, etc.
  • Pretreatment of the aluminum alloy rod through the above heat treatment can strengthen the heat-resistant phase precipitation, further reduce the intragranular distortion of the aluminum alloy, improve the mechanical and electrical properties of the obtained aluminum alloy rod, and make the electrical conductivity > 61% IACS .
  • the aluminum alloy material provided above in the present disclosure may be the aluminum alloy rod material obtained after the above heat treatment, and its electrical conductivity is >61% IACS.
  • the above-mentioned preparation method is simple, and through the cooperation of the above-mentioned preparation method and the formula of the aluminum alloy wire, the heat resistance and electrical conductivity of the aluminum alloy wire can be effectively strengthened, so that the single-wire conductivity of the twisted aluminum alloy wire can reach 61% IACS and above, At the same time, the production control of the preparation method is simple, the cost rise is not large, the line loss can be greatly reduced, and the method has better commercial value.
  • the present disclosure also provides an aluminum alloy wire, which is produced by the above-mentioned preparation method provided in the present disclosure. After the above-mentioned aluminum alloy rod is drawn and stranded, an aluminum alloy wire is obtained, wherein the aluminum alloy wire prepared by the above preparation method has a conductivity of ⁇ 61% IACS and a tensile strength of ⁇ 151 MPa. The residual rate of strength after heating for 1h is >90%.
  • An aluminum alloy wire which is prepared by the following preparation method:
  • the aluminum ingot with a purity of 99.7% is melted, and then the rest of the raw materials are accurately put into the melting, so that in the molten aluminum alloy obtained by melting, Fe 0.166%, Si 0.023%, Zr 0.047 by mass percentage %, M 0.112%, Y 0.044%, the total content of Mn, V, Ti and Cr is controlled at ⁇ 0.01%, and the balance is Al; among them, the mass ratio of Fe to Si is 7.2.
  • a 30-mesh foam ceramic filter plate and an electromagnetic purification device are used for multi-stage filtration to remove non-metallic impurities, so that the content (mass percentage) of slag inclusions with a particle size of 10 ⁇ m and above in the aluminum alloy liquid is not high. higher than 3%.
  • step (7) The aluminum alloy liquid obtained in step (7) is sent to the continuous casting and rolling production line, and the aluminum alloy liquid flows through the ladle to the ladle mouth for automatic casting, and the lower ladle temperature (that is, when entering the casting machine The temperature) is 720°C to obtain an ingot, and then when the ingot is cooled to about 500°C, it is sent to a continuous rolling mill for rolling to obtain a rod with a diameter of 9.5mm.
  • step (10) Drawing the rod material obtained in step (9) by using a double-head wire drawing machine with 11 dies to form a monofilament with a diameter of 4.22 mm, and stranding the wire to form an aluminum alloy wire.
  • FIG. 1 is a photo of the microstructure composition of the aluminum alloy wire of Example 1 after heat treatment (step (9)). It can be seen that its composition is ⁇ -Al matrix (gray part in the figure) and dispersed and precipitated Al-Zr-Y heat-resistant phase (black point). Wherein, in this embodiment, the radius of the heat-resistant phase is 10.7 nm, the density of the heat-resistant phase is 2.94*10 18 N/m 3 , and the Zr content in the matrix is 0.003%.
  • Examples 2-5 The preparation methods of Examples 2-5 are similar to those of Example 1, the only difference being the parameters shown in Table 3.
  • M is 35% La and 65% Ce (mass percentage).
  • Example 1-5 the structure and composition of the wires of Examples 1-5 after heat treatment are similar to those of Example 1, which are ⁇ -Al matrix and dispersed and precipitated Al-Zr-Y heat-resistant phase.
  • the electrical conductivity and tensile strength were tested according to GB/T 30551-2014.
  • the strength residual rate refers to the ratio (residual rate) of the strength retention rate to the initial measurement value at room temperature obtained by heating the monofilament at 230°C/1h to characterize its heat resistance.
  • the heat resistance test shows that after heating at 230° C. for 1 hour, the residual rate of tensile strength is above 92%.
  • Example 6 The preparation method of Example 6 is similar to that of Example 1, and the only difference between it and Example 1 is that the composition of the aluminum alloy wire includes: Fe 0.166%, Si 0.023%, Zr 0.047%, M 0.112%, Y 0.044%, Mn
  • the total content of , V, Ti and Cr is controlled at ⁇ 0.1%, and the balance is Al; wherein, the mass ratio of Fe to Si is 7.2. In mass percentage, M consists of 45% La and 55% Ce.
  • the conductivity of the rod is 61.7% IACS
  • the conductivity of the wire is 61.3% IACS
  • the single wire tensile strength of the wire is 158MPa
  • the strength residual rate after heating at 230°C for 1 hour is >92%.
  • the electrical conductivity of the twisted single wire is 60%, and its heat-resistant phase is Al-Zr, the radius of the heat-resistant phase is 22.38nm, the density of the heat-resistant phase is 1.49*10 18 N/m 3 , and the Zr content in the matrix 0.065%.
  • Example 1 of the present disclosure Compared with Example 1 of the present disclosure, the only difference is that the rod is not heat-treated, and the rod is directly obtained and used.
  • the conductivity of the rod is 60.7% IACS
  • the conductivity of the wire is 59.8% IACS
  • the tensile strength of the wire is 164MPa.
  • the composition of the aluminum alloy wire includes: Fe 0.166%, Si 0.023%, Zr 0.047%, M 1.1%, Y 0.044%, Mn, V, The total content of Ti and Cr is controlled at ⁇ 0.1%, and the balance is Al; wherein, the mass ratio of Fe to Si is 7.2. In mass percentage, M consists of 35% La and 65% Ce.
  • the electrical conductivity of the wire is 59.3% IACS, and the tensile strength of the wire is 145MPa.
  • the composition of the aluminum alloy wire includes: Fe 0.23%, Si 0.023%, Zr 0.047%, M 0.112%, Y 0.044%, the total of Mn, V, Ti and Cr The content is controlled at ⁇ 0.1%, and the balance is Al; wherein, the mass ratio of Fe to Si is 10, and M is composed of 35% La and 65% Ce in terms of mass percentage.
  • the electrical conductivity of the wire is 58.7% IACS, and the tensile strength of the wire is 166MPa.
  • the electrical conductivity of the wire is 59.6% IACS, and the tensile strength of the wire is 142MPa.
  • the aluminum alloy material provided by the embodiments of the present disclosure can effectively improve the electrical conductivity of the aluminum alloy material under the premise of ensuring the mechanical properties and heat resistance properties of the aluminum alloy material through a specific composition ratio.
  • the preparation method of the aluminum alloy wire is controllable. Using the above-mentioned specific composition ratio and the above-mentioned specific preparation method, the conductivity of the aluminum alloy wire can be further effectively improved under the premise of ensuring the mechanical properties and heat resistance of the aluminum alloy wire. Make its conductivity ⁇ 61% IACS.
  • the aluminum alloy material provided by the present disclosure effectively takes into account and strengthens the heat resistance and mechanical properties of the aluminum alloy material and improves the electrical conductivity without significantly increasing the cost through the selection of specific components and specific proportions, and has the advantages of Excellent commercial application value.
  • the production control of the preparation method is simple, the cost rises little, and the line loss can be greatly reduced.
  • the aluminum alloy wire thus prepared has great commercial application prospects.

Abstract

一种铝合金材料、铝合金导线及其制备方法,涉及铝合金领域。按质量百分比计,铝合金材料包括以下成分:Fe 0.1%-0.25%,Si 0.01%-0.05%,Zr 0.02%-0.3%,M 0.1%-1%,Y 0.02%-0.3%,Mn、V、Ti和Cr的总含量控制在≤0.01%,余量为Al,其中,Fe与Si的质量比为2-8,M由La和Ce组成。铝合金材料通过特定成分的选择以及特定配比的选择,在不明显增加成本的基础上,有效兼顾并强化了铝合金材料的耐热性能、力学性能并且提高了导电性,具有极佳的商业应用价值。

Description

一种铝合金材料、铝合金导线及其制备方法
相关申请的交叉引用
本公开要求于2021年5月8日提交中国专利局的申请号为CN202110503882.3、名称为“一种铝合金材料、铝合金导线及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及铝合金领域,具体而言,涉及一种铝合金材料、铝合金导线及其制备方法。
背景技术
耐热铝合金导线是目前线路增容改造常用导线产品,它可以在现有线路走廊及设施条件中用来替代常用的老旧钢芯铝绞线,是实现线路增容和降低线损的有效解决方案,但是由于铝合金的导电率与耐热性相互制约,在保证耐热性能的前提下提升铝合金导线的导电率的难度极大。
常见的国、内外工程化应用的耐热铝合金线单线导电性能长期徘徊在60%IACS,国家标准GB/T 30551-2014、欧洲标准BS EN 62004-2009中规定不同耐热温度类型的铝合金导电率见下表1:
表1耐热铝合金导电率
Figure PCTCN2021125188-appb-000001
由表1单线性能可见,无论国内的还是国外的耐热铝合金,工业化应用的标准产品的最高导电率均为60%IACS。这一方面是由于行业普遍水平,将导电率由60%IACS提升到61%IACS十分困难;另一方面,在实现了61%IACS导电率的技术方案中,普遍添加了系列昂贵中间合金,工艺处理复杂,或处理温度高、时间长,实际生产中需要的控制条件复杂、成本高,因此难以实现工业化生产。
发明内容
本公开提供了一种铝合金材料,按质量百分比计,所述铝合金材料的成分包括:
Fe 0.1%-0.25%,Si 0.01%-0.05%,Zr 0.02%-0.3%,M 0.1%-1%,Y 0.02%-0.3%, Mn、V、Ti和Cr的总含量控制在≤0.01%,余量为Al;
其中,Fe与Si的质量比为2-8,并且所述M由La和Ce组成;可选地,按质量百分比计,所述M由25%-45%的La,以及55%-75%的Ce组成。
在一些实施方式中,所述铝合金材料组织组成物为α-Al基体以及弥散析出的Al-Zr-Y耐热相;可选地,所述耐热相的半径为8-20nm,所述耐热相的密度为(1.8-4.2)*10 18N/m 3
在一些实施方式中,所述铝合金材料为铝合金杆材、铝合金拉丝单线或铝合金导线,可选地,所述铝合金材料的导电率>61%IACS。
本公开还提供了一种铝合金导线的制备方法,包括如下步骤:
按铝合金导线的配方,获得铝液后,在所述铝液中加入铁源、硅源、锆源、镧源、铈源以及钇源,熔炼,获得铝合金熔体;
将所述铝合金熔体净化,连铸连轧,热处理,拉拔,获得铝合金单丝后绞线形成铝合金导线;
其中,按质量百分比计,所述配方包括以下成分:
Fe 0.1%-0.25%,Si 0.01%-0.05%,Zr 0.02%-0.3%,M 0.1%-1%,Y 0.02%-0.3%,Mn、V、Ti和Cr的总含量控制在≤0.01%,余量为Al;
其中,所述Fe与所述Si的质量比为2-8,并且所述M由La和Ce组成;可选地,按质量百分比计,所述M由25%-45%的La,以及55%-75%的Ce组成。
在一些实施方式中,获得铝液的方式为先获得铝锭,然后将铝锭熔化,其中所述铝锭为纯度不小于99.7%的铝锭,或者直接采用电解铝液。
在一些实施方式中,所述铝液温度为720℃-750℃、725℃-745℃或730℃-740℃。
在一些实施方式中,所述热处理的温度为160-250℃、180-240℃或190-210℃,所述热处理的时间为10-24h、12-20h或15-17h。
在一些实施方式中,所述净化后的铝合金熔体中,粒径为10μm及以上的夹渣物的质量百分比不高于3%。
在一些实施方式中,所述净化后的铝合金熔体中,氢含量≤0.15ml/100g AL。
在一些实施方式中,所述净化的步骤包括:精炼,以及精炼后进行多级过滤。
可选地,所述精炼采用吸附净化的方式或非吸附净化的方式进行,其中吸附净化的方式包括使用喷粉精炼剂或除气精炼剂,非吸附净化的方式包括真空处理或超声波处理;并且,所述多级过滤采用过滤板及电磁净化装置的组合进行。
在一些实施方式中,在所述多级过滤的步骤之前,所述净化的步骤还包括:将所述精炼后获得的铝合金熔体保温静置预设时间,然后搅拌,进行在线除气。
在一些实施方式中,在所述精炼的步骤之后以及在所述在线除气的步骤之前,所 述净化的步骤还包括:对所述精炼后获得的铝合金熔体取样并测定成分含量,若每个成分的含量与配方中的含量相同则进行下一步骤,若任一成分的含量与配方中的含量不同,则返回至所述熔炼步骤并进行调整,直至每个成分的含量与配方中的含量相同再进行下一步骤。
在一些实施方式中,所述连铸连轧的步骤中,所述铝合金熔体在进入铸造机时的温度为690℃-750℃、690℃-710℃、695℃-705℃或700℃;
可选地,所述连铸连轧的步骤中,进轧温度为450℃-550℃、500℃-545℃或530℃-540℃。
本公开还提供了一种铝合金导线,其由上述制备方法制得。
可选地,所述铝合金导线的绞后单线导电率≥61%IACS,抗拉强度≥151MPa,在230℃加热1h的强度残存率﹥90%。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本公开的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为实施例1提供的铝合金导线在热处理后的显微组织组成物照片。
实施方式
下面将结合实施例对本公开的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本公开,而不应视为限制本公开的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
由于铝合金的导电率与耐热性及力学性能相互制约,因此,如何在保证力学性能和耐热性能的前提下提升铝合金材料的导电率的难度极大。有鉴于此,本公开提供了一种铝合金材料、铝合金导线及其制备方法。以下针对本公开示例性的铝合金材料、铝合金导线及其制备方法进行说明:
首先,本公开提供了一种铝合金材料,其中,此处的铝合金材料可以为铝合金杆材、铝合金拉丝单线或铝合金导线(绞后单线),还可以为铝合金板材或块材等,在此不做具体的限定。
在一些实施方式中,按质量百分比计,铝合金材料包括以下成分:
Fe 0.1%-0.25%,Si 0.01%-0.05%,Zr 0.02%-0.3%,M 0.1%-1%,Y 0.02%-0.3%,Mn、 V、Ti和Cr的总含量控制在≤0.01%,余量为Al。其中,Fe与Si的质量比为2-8,可选地,Fe与Si的质量比为2.5-7.5、3-7、4-6或4.5-5.5,并且M由La和Ce组成。其中,Mn、V、Ti和Cr为不可避免的主要杂质元素。
可选地,按质量百分比计,M由25%-45%的La,以及55%-75%的Ce组成;例如,M由25%的La,以及75%的Ce组成,或者M由35%的La,以及65%的Ce组成,或者M由45%的La,以及55%的Ce组成等。
表2为典型的普通耐热合金与本公开提供的铝合金材料的主要成分对比。
表2成分对比
Figure PCTCN2021125188-appb-000002
根据表2,可以看出,本公开提供的铝合金材料在普通耐热合金的基础上,适当提升复合稀土元素(M及Y含量),降低锆含量,同时限定Fe与Si的质量比为2-8,通过特定成分的选择以及特定配比的选择,在不明显增加成本的基础上,有效兼顾并强化铝合金材料的耐热性能、力学性能以及提高导电性,具有极佳的商业应用价值。
特别地,基于复合稀土元素(M及Y)在铝中具有极低的固溶度,因此在铝合金凝固的过程中,稀土元素Y会与铝反应生成高熔点的铝-稀土元素金属间化合物,其在基体中的固溶度很小,形成的Al 3Y(D019结构)可作为Al 3Zr时效析出的形核核心,大大降低了Al 3Zr直接析出所需要的界面能,使耐热相析出速率增大,粒子数量密度大,尺寸小,最终形成了第二相的大量弥散析出,并使得合金基体内部Zr元素进一步释放形成有效耐热相,净化基体,减少了晶内的晶格畸变,使得电子通过能力迅速提升,同时钉扎位错,阻滞位错运动,实现了强度、导电性的完美匹配。
相对于普通耐热合金,本公开提供的铝合金材料的锆含量下降及稀土元素的增加的相互作用避免了晶内锆元素的高残留,净化合金基体,提升导电率,同时提高耐热相的析出数量,减小了析出相的尺寸,优化强度及细化晶粒,改善实际制备过程中的热处理裕度,使其具有较佳的导电性。
基于上述铝合金材料特定的组分及配比,使得铝合金材料的组织组成物为α-Al基体以及弥散析出的Al-Zr-Y耐热相,钉扎位错运动,有效细化晶粒,强化合金的同时,提高导电性能,并且提供良好的耐热性。也即是,基于上述铝合金材料特定的组分及配比,导致 其导电性能佳,且兼顾较佳的耐热以及力学性能,因此,其尤其适用制作导线。
可选地,耐热相的半径为8-20nm,耐热相的密度为(1.8-4.2)*10 18N/m 3。通过细小且数量众多的耐热相,在保持耐热性能的同时使得铝合金材料导电率≥61%IACS。
其次,本公开提供了一种铝合金导线的制备方法,其包括如下步骤:
S1.按铝合金导线的配方,获得铝液后,在铝液中加入铁源、硅源、锆源、镧源、铈源以及钇源,熔炼,获得铝合金熔体。
其中,获得铝液的方式可为先获得铝锭,然后将铝锭熔化所得,为了避免杂质的引入,铝锭可采用纯度不小于99.7%的铝锭。除此以外,获得铝液的方式还可以为直接采用电解铝液。
其中,按质量百分比计,配方包括以下成分:
Fe 0.1%-0.25%,Si 0.01%-0.05%,Zr 0.02%-0.3%,M 0.1%-1%,Y 0.02%-0.3%,Mn、V、Ti和Cr的总含量控制在≤0.01%,余量为Al。
其中,Fe与Si的质量比为2-8,可选地,Fe与Si的质量比为2.5-7.5、3-7、4-6或4.5-5.5,并且M由La和Ce组成。其中,铁源、硅源、锆源、镧源、铈源以及钇源可以采用单质,也可以采用合金,若对应的成分无单质,则直接采用含有上述至少两种成分的合金即可。其中,Mn、V、Ti和Cr为通过上述成分的合金引入的不可避免的主要杂质元素,在此不做限定。
可选地,铝液温度为720℃-750℃,例如铝液温度为720℃、725℃、730℃、735℃、740℃、745℃或750℃等。
其中,步骤S1在炉体内进行,其中炉体可以为保温炉或电阻炉等。
S2.将铝合金熔体净化,连铸连轧,热处理,拉拔,获得铝合金单线后绞线形成导线。
铝合金熔体中的氢含量、夹渣物对于最后铝合金成品的质量影响大,因此,可选地,净化后的铝合金熔体中,粒径为10μm及以上的夹渣物的质量百分比不高于3%。通过上述限定,可以有效降低合金晶内畸变,进而有效提升导电率。
可选地,净化后获得的铝合金熔体中,氢含量≤0.15ml/100g AL。通过上述限定,有效避免后续铸锭凝固时形成气孔等,同时避免因含氢导致的易断裂等问题,提高其抗拉强度以及调整其铸态时的具体组织形态。
其中,为了获得上述净化效果,在本公开示出的一种可选的净化方案中:
净化的步骤包括:精炼,以及精炼后通过过滤板及电磁净化装置进行多级过滤。
精炼可以采用吸附净化的方式,也可以采用非吸附净化的方式进行。在一些实施方式中,吸附净化的方式可包括喷粉精炼剂或除气精炼剂,进行除渣、除气,非吸附净化的方式可包括真空处理或超声波处理等,同样达到除渣、除气的效果。
发明人发现仅仅采用上述精炼步骤无法使粒径为10μm及以上的夹渣物的含量不高于 3%,因此,在一些实施方式中,净化的步骤还包括多级过滤,以去除铝合金熔体中的非金属杂质,达到净化铝合金熔体的目的,从而提升产品的组织性能。
其中,电磁净化装置可有效净化非金属杂质,提升产品的组织性能,同时操作工艺简单。过滤板包括但不局限于泡沫陶瓷过滤板,还可以为管式过滤板、床式过滤板等,同样达到过滤除渣的效果,在此不做具体的限定。
可选地,过滤板及电磁净化装置设置在炉外,特别地,设置在炉子与连铸步骤采用的装置之间的流槽中。
在一些实施方式中,在多级过滤的步骤之前,净化的步骤还包括:将精炼后获得的铝合金熔体保温静置预设时间,然后搅拌,进行在线除气。通过静置预设时间可进行沉渣,同时沉渣后搅拌,使气体充分溢出,可进一步有效除气,保证除气效果,同时在线除气的工艺避免进一步引入杂质。
其中,在线除气采用在线除气装置进行,其中,在线除气装置的反应室设有旋转喷嘴,旋转喷嘴的数量为一个或多个,且其可以单向旋转,也可以双向选择,同时旋转喷嘴可以由石墨制成,也可由其他材质制得,只要能够达到在线除气的目的炉外在线除气装置均可。
需要说明的是,实际的生产制备的过程中,由于原料本身的误差,可能导致实际熔炼后铝合金熔体与实际的配方配比具有一定的误差,因此,在一些实施方式中,在精炼的步骤之后以及在在线除气的步骤之前,净化的步骤还包括:对铝合金熔体取样并测定成分含量,若每个成分的含量与配方中的含量相同则进行下一步骤,若任一成分的含量与配方中的含量不同,则返回至S1熔炼步骤并进行调整,直至每个成分的含量与配方中的含量相同,再进行下一步骤。
可选地,在S2的连铸连轧步骤中,铝合金熔体在进入连铸机结晶轮时的温度为690℃-750℃,例如690℃-710℃;例如进入铸造机时的温度为690℃、695℃、700℃、705℃或710℃等。
可选地,在S2的连铸连轧步骤中,进轧温度为450℃-550℃,例如进轧温度为450℃、500℃、530℃、540℃、545℃或550℃等。通过热轧获得铝合金杆材。
可选地,在S2中热处理的温度为160-250℃,例如热处理的温度为160℃、165℃、170℃、180℃、190℃、200℃、210℃、220℃、230℃、240℃或250℃等,热处理的时间为10-24h,例如热处理的时间为10h、12h、15h、17h、18h、20h或24h等。通过上述热处理的方式对铝合金杆材进行预处理,可强化耐热相析出,进一步降低铝合金晶内畸变,提升获得的铝合金杆材的机械及电气性能,使其导电率﹥61%IACS。
也即是说,在本公开上文所提供的铝合金材料可以为上述热处理后获得的铝合金杆材,其导电率﹥61%IACS。
上述制备方法简单,通过上述制备方法和铝合金导线的配方的配合,能够有效强化铝 合金导线的耐热性以及导电性能,使铝合金导线的绞后单线导电率能够到达61%IACS及以上,同时该制备方法生产控制简单,成本上升不大,可极大地减少线路损耗,具有较佳的商业价值。
最后,本公开还提供了一种铝合金导线,其由本公开提供的上述制备方法制得。将上述铝合金杆材拉拔绞线后,即获得铝合金导线,其中,上述制备方法制得的铝合金导线的绞后单线的导电率≥61%IACS,抗拉强度≥151MPa,在230℃加热1h的强度残存率﹥90%。
以下结合实施例对本公开的铝合金材料、铝合金导线及其制备方法作进一步的详细描述。
实施例1
一种铝合金导线,其由以下制备方法制得:
(1)按照表3中列出的实施例1的参数配取原料,作为铁源、硅源、锆源、镧源、铈源以及钇源的中间合金,以及纯度为99.7%的铝锭。
(2)在保温炉内将纯度为99.7%的铝锭进行熔炼,然后精准投入其余原料进行熔炼,使得熔炼获得的铝合金液中,按质量百分比计,Fe 0.166%,Si 0.023%,Zr 0.047%,M 0.112%,Y 0.044%,Mn、V、Ti和Cr的总含量控制在≤0.01%,余量为Al;其中,Fe与Si的质量比为7.2。
(3)在保温炉中采用喷粉精炼剂进行除渣、除气,进行炉内净化。
(4)对保温炉中的铝合金液的采样,验证各元素含量合格。
(5)保温炉中铝合金液静置30min。
(6)在保温炉中对铝合金液采用电磁搅拌,再次除气,在线测量氢含量≤0.15ml/100g AL。
(7)在流槽中采用30目泡沫陶瓷过滤板及电磁净化装置进行多级过滤,去除非金属杂质,使得铝合金液中粒径为10μm及以上的夹渣物的含量(质量百分比)不高于3%。
(8)将步骤(7)制得的铝合金液送入连铸连轧生产线,铝合金液经流槽流至钢包浇包口进行自动浇铸,下浇包温度(也即是进入铸造机时的温度)为720℃,获得铸锭,然后在铸锭降温至约500℃时送入连轧机轧制,获得直径为9.5mm的杆材。
(9)在箱式时效炉中对杆材进行热处理,热处理工艺为240℃,16小时。
(10)采用11道模的双头拉丝机对步骤(9)获得的杆材进行拉拔,形成规格为直径4.22mm的单丝,绞线形成铝合金导线。
图1为实施例1的铝合金导线在热处理(步骤(9))后的显微组织组成物照片。可以看出,其组织组成物为α-Al基体(图中灰白部分)以及弥散析出的Al-Zr-Y耐热相(黑色的点)。其中,本实施例中耐热相的半径为10.7nm,耐热相的密度为2.94*10 18N/m 3,基体中Zr含量0.003%。
实施例2-5
实施例2-5的制备方式与实施例1相似,不同之处仅在于如表3所示的参数。实施例1-5中M均为35%La和65%Ce(质量百分比)。
表3实施例1-5的参数
Figure PCTCN2021125188-appb-000003
其中,实施例1-5的导线在热处理后的组织组成物与实施例1相似,均为α-Al基体以及弥散析出的Al-Zr-Y耐热相。
对于实施例1-5获得的杆材以及铝合金导线的绞后单线,按照GB/T 30551-2014进行导电率及抗拉强度的测试。其中,强度残存率是指通过230℃/1h加热单丝的处理方式,来获得其强度保持率与室温初始测量值的比值(残存率),从而表征其耐热性。
结果如表4所示:
表4测定结果
Figure PCTCN2021125188-appb-000004
根据表4测定结果,可以看出,本公开提供的杆材以及导线的绞后单线导电率均可达到61%IACS及以上。
对于实施例1-5制得的导线,耐热性试验表明,230℃加热1小时后,抗拉强度残存率在92%以上。
实施例6
实施例6的制备方式与实施例1相似,其与实施例1的区别仅在于:铝合金导线的成分包括:Fe 0.166%,Si 0.023%,Zr 0.047%,M 0.112%,Y 0.044%,Mn、V、Ti和Cr的总含量控制在≤0.1%,余量为Al;其中,Fe与Si的质量比为7.2。按质量百分比计,M由45%La和55%Ce组成。
其中,杆材导电率为61.7%IACS,导线导电率为61.3%IACS,导线单线抗拉强度158MPa,230℃加热1h的强度残存率﹥92%。
对比例1
取如表2所示的普通耐热合金,采用本公开实施例1的制备方法制得导线。
其中,绞后单线导电率为60%,且其耐热相为Al-Zr,耐热相的半径为22.38nm,耐热相的密度为1.49*10 18N/m 3,同时基体中Zr含量0.065%。
对比例2
其与本公开实施例1相比,区别仅在于:杆材未进行热处理,直接获取使用杆材。
其中,杆材导电率60.7%IACS,导线导电率为59.8%IACS,导线抗拉强度164MPa。
对比例3
其与本公开实施例1相比,区别仅在于:按质量百分比计,铝合金导线的成分包括:Fe 0.166%,Si 0.023%,Zr 0.047%,M 1.1%,Y 0.044%,Mn、V、Ti和Cr的总含量控制在≤0.1%,余量为Al;其中,Fe与Si的质量比为7.2。按质量百分比计,M由35%La和65%Ce组成。
其中,导线导电率为59.3%IACS,导线抗拉强度145MPa。
对比例4
其与本公开实施例1相比,区别仅在于:铝合金导线的成分包括:Fe 0.23%,Si 0.023%,Zr 0.047%,M 0.112%,Y 0.044%,Mn、V、Ti和Cr的总含量控制在≤0.1%,余量为Al;其中,Fe与Si的质量比为10,按质量百分比计,M由35%La和65%Ce组成。
其中,导线导电率为58.7%IACS,导线抗拉强度166MPa。
对比例5
其与本公开实施例1相比,区别仅在于,缺少步骤(6)、(7)。
其中,导线导电率为59.6%IACS,导线抗拉强度142MPa。
综上,本公开实施例提供的铝合金材料,通过特定的成分配比,在保证铝合金材料的力学性能和耐热性能的前提下,有效提升铝合金材料的导电率。铝合金导线的制备方法操作可控,利用上述特定的成分配比以及上述特定的制备方法,在保证铝合金导线的力学性能和耐热性能的前提下,进一步有效提升铝合金导线的导电率,使其导电率≥61%IACS。
以上仅为本公开的示例性实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、 等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供的铝合金材料通过特定成分的选择以及特定配比的选择,在不明显增加成本的基础上,有效兼顾并强化了铝合金材料的耐热性能、力学性能并且提高了导电性,具有极佳的商业应用价值。其制备方法生产控制简单,成本上升不大,并可极大地减少线路损耗,由此制得的铝合金导线具有极大的商业应用前景。

Claims (17)

  1. 一种铝合金材料,其特征在于,按质量百分比计,所述铝合金材料的成分包括:
    Fe 0.1%-0.25%,Si 0.01%-0.05%,Zr 0.02%-0.3%,M 0.1%-1%,Y 0.02%-0.3%,Mn、V、Ti和Cr的总含量控制在≤0.01%,余量为Al;
    其中,所述Fe与所述Si的质量比为2-8,所述M由La和Ce组成。
  2. 根据权利要求1所述的铝合金材料,其特征在于,所述铝合金材料组织组成物为α-Al基体以及弥散析出的Al-Zr-Y耐热相;
    可选地,所述耐热相的半径为8-20nm,所述耐热相的密度为(1.8-4.2)*10 18N/m 3
  3. 根据权利要求1或2所述的铝合金材料,其特征在于,按质量百分比计,所述M由25%-45%的La,以及55%-75%的Ce组成。
  4. 根据权利要求1-3中任一项所述的铝合金材料,其特征在于,所述铝合金材料为铝合金杆材、铝合金拉丝单线或铝合金导线,可选地,所述铝合金材料的导电率>61%IACS。
  5. 一种铝合金导线的制备方法,其特征在于,包括如下步骤:
    按铝合金导线的配方,获得铝液后,在所述铝液中加入铁源、硅源、锆源、镧源、铈源以及钇源,熔炼,获得铝合金熔体;
    将所述铝合金熔体净化,连铸连轧,热处理,拉拔,获得铝合金单丝后绞线形成铝合金导线;
    其中,按质量百分比计,所述配方包括以下成分:
    Fe 0.1%-0.25%,Si 0.01%-0.05%,Zr 0.02%-0.3%,M 0.1%-1%,Y 0.02%-0.3%,Mn、V、Ti和Cr的总含量控制在≤0.01%,余量为Al;
    其中,所述Fe与所述Si的质量比为2-8,所述M由La和Ce组成;
    可选地,按质量百分比计,所述M由25%-45%的La,以及55%-75%的所述Ce组成。
  6. 根据权利要求5所述的制备方法,其特征在于,获得铝液的方式为先获得铝锭,然后将铝锭熔化,其中所述铝锭为纯度不小于99.7%的铝锭,或者直接采用电解铝液。
  7. 根据权利要求5或6所述的制备方法,其特征在于,所述铝液温度为720℃-750℃、725℃-745℃或730℃-740℃。
  8. 根据权利要求5-7中任一项所述的制备方法,其特征在于,所述热处理的温度为160-250℃、180-240℃或190-210℃,所述热处理的时间为10-24h、12-20h或15-17h。
  9. 根据权利要求5-8中任一项所述的制备方法,其特征在于,所述净化后的铝合金熔体中,粒径为10μm及以上的夹渣物的质量百分比不高于3%。
  10. 根据权利要求5-9中任一项所述的制备方法,其特征在于,所述净化后的铝合金熔体中,氢含量≤0.15ml/100g AL。
  11. 根据权利要求5-10中任一项所述的制备方法,其特征在于,所述净化的步骤包括:精炼,以及精炼后进行多级过滤。
  12. 根据权利要求11所述的制备方法,其特征在于,所述精炼采用吸附净化的方式或非吸附净化的方式进行,其中吸附净化的方式包括使用喷粉精炼剂或除气精炼剂,非吸附净化的方式包括真空处理或超声波处理;并且,所述多级过滤采用过滤板及电磁净化装置的组合进行。
  13. 根据权利要求11或12所述的制备方法,其特征在于,在所述多级过滤的步骤之前,所述净化的步骤还包括:将所述精炼后获得的铝合金熔体保温静置预设时间,然后搅拌,进行在线除气。
  14. 根据权利要求13所述的制备方法,其特征在于,在所述精炼的步骤之后以及在所述在线除气的步骤之前,所述净化的步骤还包括:对所述精炼后获得的铝合金熔体取样并测定成分含量,若每个成分的含量与配方中的含量相同则进行下一步骤,若任一成分的含量与配方中的含量不同,则返回至所述熔炼步骤并进行调整,直至每个成分的含量与配方中的含量相同再进行下一步骤。
  15. 根据权利要求5-14中任一项所述的制备方法,其特征在于,所述连铸连轧的步骤中,所述铝合金熔体在进入铸造机时的温度为690℃-750℃、690℃-710℃、695℃-705℃或700℃;
    可选地,所述连铸连轧的步骤中,进轧温度为450℃-550℃、500℃-545℃或530℃-540℃。
  16. 一种铝合金导线,其特征在于,其由权利要求5-15中任一项所述的制备方法制得。
  17. 根据权利要求16所述的铝合金导线,其特征在于,所述铝合金导线的绞后单线导电率≥61%IACS,抗拉强度≥151MPa,在230℃加热1h的强度残存率﹥90%。
PCT/CN2021/125188 2021-05-08 2021-10-21 一种铝合金材料、铝合金导线及其制备方法 WO2022237073A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21941638.5A EP4321644A1 (en) 2021-05-08 2021-10-21 Aluminum alloy material, and aluminum alloy wire and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110503882.3A CN113234966A (zh) 2021-05-08 2021-05-08 一种铝合金材料、铝合金导线及其制备方法
CN202110503882.3 2021-05-08

Publications (1)

Publication Number Publication Date
WO2022237073A1 true WO2022237073A1 (zh) 2022-11-17

Family

ID=77132826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/125188 WO2022237073A1 (zh) 2021-05-08 2021-10-21 一种铝合金材料、铝合金导线及其制备方法

Country Status (3)

Country Link
EP (1) EP4321644A1 (zh)
CN (1) CN113234966A (zh)
WO (1) WO2022237073A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113234966A (zh) * 2021-05-08 2021-08-10 江苏中天科技股份有限公司 一种铝合金材料、铝合金导线及其制备方法
CN114657403B (zh) * 2022-03-25 2023-03-21 中南大学 一种高导耐热耐损伤铝合金导体材料的制备方法
CN115798778A (zh) * 2022-12-21 2023-03-14 广东中联电缆集团有限公司 一种高导电率耐热铝合金导线及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398128A (en) * 1971-06-07 1975-06-18 Southwire Co Aluminum alloy electrically conductive body
CN102363849A (zh) * 2011-10-26 2012-02-29 华北电力大学 一种大容量非热处理型高导电铝合金导体材料
CN102758107A (zh) * 2012-06-11 2012-10-31 上海交通大学 高强高导耐热铝合金导线及其制备方法
CN103103387A (zh) * 2012-11-09 2013-05-15 安徽欣意电缆有限公司 Al-Fe-C-RE铝合金及其制备方法和电力电缆
CN105154726A (zh) * 2015-10-19 2015-12-16 西安融达铝合金线材有限公司 铝合金材料及铝合金电缆
CN105274405A (zh) * 2015-11-04 2016-01-27 绍兴市质量技术监督检测院 一种稀土铝合金及其制备方法
CN106222491A (zh) * 2016-07-25 2016-12-14 国网河北省电力公司电力科学研究院 一种高导电率硬铝导线及其生产方法
CN108315602A (zh) * 2018-01-09 2018-07-24 北京有色金属研究总院 一种铁路用稀土铝合金电缆导体及制备方法
CN113234966A (zh) * 2021-05-08 2021-08-10 江苏中天科技股份有限公司 一种铝合金材料、铝合金导线及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58217666A (ja) * 1982-06-11 1983-12-17 Furukawa Electric Co Ltd:The 高力耐熱アルミニウム合金導体の製造方法
CN107254608A (zh) * 2015-05-13 2017-10-17 江苏亨通电力特种导线有限公司 高强度耐高温合金线材
US20200199716A1 (en) * 2018-12-24 2020-06-25 Hrl Laboratories, Llc Additively manufactured high-temperature aluminum alloys, and feedstocks for making the same
CN106893899A (zh) * 2017-03-27 2017-06-27 河北欣意电缆有限公司 一种架空用耐热铝合金导体材料及其制备方法
CN111349820B (zh) * 2018-12-20 2021-08-27 中铝材料应用研究院有限公司 一种高导电率耐热Al-Zr-Er合金导线材料及其制备方法
CN112646988A (zh) * 2020-12-07 2021-04-13 中铝材料应用研究院有限公司 一种高导电率耐热铝合金杆的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1398128A (en) * 1971-06-07 1975-06-18 Southwire Co Aluminum alloy electrically conductive body
CN102363849A (zh) * 2011-10-26 2012-02-29 华北电力大学 一种大容量非热处理型高导电铝合金导体材料
CN102758107A (zh) * 2012-06-11 2012-10-31 上海交通大学 高强高导耐热铝合金导线及其制备方法
CN103103387A (zh) * 2012-11-09 2013-05-15 安徽欣意电缆有限公司 Al-Fe-C-RE铝合金及其制备方法和电力电缆
CN105154726A (zh) * 2015-10-19 2015-12-16 西安融达铝合金线材有限公司 铝合金材料及铝合金电缆
CN105274405A (zh) * 2015-11-04 2016-01-27 绍兴市质量技术监督检测院 一种稀土铝合金及其制备方法
CN106222491A (zh) * 2016-07-25 2016-12-14 国网河北省电力公司电力科学研究院 一种高导电率硬铝导线及其生产方法
CN108315602A (zh) * 2018-01-09 2018-07-24 北京有色金属研究总院 一种铁路用稀土铝合金电缆导体及制备方法
CN113234966A (zh) * 2021-05-08 2021-08-10 江苏中天科技股份有限公司 一种铝合金材料、铝合金导线及其制备方法

Also Published As

Publication number Publication date
EP4321644A1 (en) 2024-02-14
CN113234966A (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
WO2022237073A1 (zh) 一种铝合金材料、铝合金导线及其制备方法
CN105420556B (zh) 特高压用铝合金导线
EP2692879B1 (en) Cu-co-si-based copper alloy strip for electron material, and method for manufacturing same
CN106893897B (zh) 一种耐热稀土铝合金导线及其制造方法
CN101525709A (zh) 高延伸率铝合金材料及其制备方法
CN110819873B (zh) 一种添加纳米氧化钇的高Nb-TiAl合金及其制备方法
CN108531754A (zh) 一种高电导率铸造铝合金及其制备方法
WO2020232990A1 (zh) 高导电率耐热铝合金,其制备方法以及架空导线用合金铝杆
CN112391562B (zh) 一种铝合金及其制备方法
WO2023226427A1 (zh) 一种特耐热铝合金单丝
US20160298217A1 (en) Aluminum Alloy Refiner Material and Preparation Method Thereof
JP3908987B2 (ja) 曲げ性に優れた銅合金およびその製造方法
CN111793758A (zh) 架空导线用高导电率耐热铝合金单丝及其制备方法
CN113674890B (zh) 一种高导电率耐热铝合金单丝及制备方法
CN109161730B (zh) 母线槽用铝合金导体材料及其制备方法
CN1298965A (zh) 一种含钛铝合金的制造方法
CN112831709B (zh) 一种高硬度难熔高熵合金及其制备方法
CN106756208A (zh) 一种铜铬锆镧合金
CN112048640B (zh) 一种钛合金及其制备方法
CN115595459A (zh) 高强高导铝合金单丝的制备方法及铝合金单丝
CN114182134A (zh) 一种Cu-Cr-Zr合金材料及热处理工艺和用途
WO2023015608A1 (zh) 高强高导抗晶间腐蚀铝合金及其制备方法
CN113201670B (zh) 抗软化铝合金材料、抗软化铝合金导线及其制备方法
CN111926218A (zh) 一种新型Al-Ti-Er铝合金晶粒细化中间合金及其制备方法
CN116875859B (zh) 一种铝合金材料及其制备方法、电机转子铝合金、感应交流异步电机和车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21941638

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021941638

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021941638

Country of ref document: EP

Effective date: 20231106

NENP Non-entry into the national phase

Ref country code: DE