WO2023015608A1 - 高强高导抗晶间腐蚀铝合金及其制备方法 - Google Patents

高强高导抗晶间腐蚀铝合金及其制备方法 Download PDF

Info

Publication number
WO2023015608A1
WO2023015608A1 PCT/CN2021/114198 CN2021114198W WO2023015608A1 WO 2023015608 A1 WO2023015608 A1 WO 2023015608A1 CN 2021114198 W CN2021114198 W CN 2021114198W WO 2023015608 A1 WO2023015608 A1 WO 2023015608A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
aluminum alloy
strength
intergranular corrosion
conductivity
Prior art date
Application number
PCT/CN2021/114198
Other languages
English (en)
French (fr)
Inventor
张桓
赵立洋
段妍彤
乔恒
罗志涛
张军
金榕
Original Assignee
江苏亨通电力特种导线有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏亨通电力特种导线有限公司 filed Critical 江苏亨通电力特种导线有限公司
Publication of WO2023015608A1 publication Critical patent/WO2023015608A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/047Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/02Refining by liquating, filtering, centrifuging, distilling, or supersonic wave action including acoustic waves
    • C22B9/023By filtering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B9/00General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
    • C22B9/05Refining by treating with gases, e.g. gas flushing also refining by means of a material generating gas in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the invention relates to the technical field of alloys, in particular to a high-strength, high-conductivity and high-conductivity intergranular corrosion aluminum alloy and a preparation method thereof.
  • the aluminum alloys used for overhead wires mainly use 6XXX series Al-Mg-Si series aluminum alloy materials.
  • This series of aluminum alloys is a heat-treatable aluminum alloy, which has the advantages of high specific strength, low density, and good electrical conductivity.
  • the performance of aluminum alloy wire is mainly affected by alloying elements, processing technology and heat treatment technology. Due to the difference in material formula, manufacturing process and subsequent processing methods, the tensile strength of the 6201 aluminum alloy material currently used for overhead wires is low, the tensile strength is below 320MPa, and the electrical conductivity is below 52.5IACS. Intergranular corrosion limits the useful life of the wire. Therefore, it is necessary to provide an aluminum alloy with high tensile strength, good electrical conductivity and good intergranular corrosion resistance.
  • the technical problem to be solved by the present invention is to provide a high-strength, high-conductivity and anti-intergranular corrosion aluminum alloy that can improve the tensile strength, electrical conductivity and intergranular corrosion resistance of the 6-series aluminum alloy.
  • the present invention provides the following technical solutions:
  • the invention provides a high-strength and high-conductivity intergranular corrosion aluminum alloy, which comprises the following components: Si 0.50-0.55wt%, Fe 0.24-0.26wt%, Mn 0.00001-0.001wt%, Mg 0.62-0.66wt%, Cr ⁇ 0.001wt%, V ⁇ 0.001wt%, Ti 0.008 ⁇ 0.015wt%, Be 0.008 ⁇ 0.01wt%, Y 0.01 ⁇ 0.02wt%, and the balance of Al.
  • the intermetallic compound Y 2 Al can also be formed between yttrium and aluminum, and this Y 2 Al will reduce the conductivity of the aluminum matrix.
  • the present invention can improve electrical conductivity, refine crystal grains and improve corrosion resistance by adding an appropriate amount of Be element and Y element to the aluminum alloy.
  • the magnesium/silicon ratio in the aluminum alloy is preferably 1.20-1.24.
  • the magnesium/silicon ratio in the aluminum alloy is in this range, a large number of Mg 2 Si particles and Mg 2 Si particles refined by excess Si can be formed during the preparation process, which is conducive to improving the tensile strength of the material.
  • the present invention also provides a method for preparing the high-strength and high-conductivity aluminum alloy with intergranular corrosion, comprising the following steps:
  • step S1 the aluminum source is 99.80% aluminum ingot.
  • step S1 after the molten aluminum is melted, an aluminum-boron alloy is put into the melting furnace in an amount of 5-10 kg/T.
  • the refining specifically includes: raising the temperature of the molten aluminum to 730 ⁇ 10°C, adding a refining agent into the melting furnace according to 0.08-0.12% of the weight of the molten aluminum, and refining with 99.999% argon ,
  • the refining time is 20-30 minutes.
  • step S1 in order to ensure the refining effect, the powder blowing time is required to be 15-20 minutes.
  • step S1 the standing time is 2-3 hours to ensure that the impurity elements in the molten aluminum have sufficient time to float and sink for separation.
  • step S2 an intermediate alloy (20% aluminum-iron, 20% aluminum-silicon, 100% magnesium ingot, 50% aluminum-copper, 3% aluminum-beryllium, 10% aluminum-yttrium, 10% aluminum-titanium) is added to the holding furnace Finally, turn on the electromagnetic stirring, stir for 30-35 minutes, and take a sample to detect the components after standing for 30-35 minutes.
  • the refining specifically includes: adding a refining agent into the holding furnace according to 0.2-0.4% of the weight of the molten aluminum, using 99.999% argon for refining, and the refining time is 40-45 minutes.
  • step S2 after the refining is finished, stand still for 30-35 minutes before removing slag; after finishing slag removing, continue to stand still for 2-3 hours.
  • the refining agent is a granular sodium-removing refining agent, which is beneficial to reduce the impurity content in the melt.
  • step S3 the aluminum alloy melt after refining and resting is discharged by tilting, and continuous casting is carried out after filtering, degassing and refining treatment.
  • a 60-mesh ceramic filter plate is used for filtration, argon gas with a purity greater than 99.999% is used for degassing, and aluminum-titanium-boron wire is used for refinement.
  • step S3 the casting is carried out by horizontal casting, the speed of the crystallization wheel is controlled to be 5.0-7.0t/h, the cooling temperature is 25-35°C, the cooling water pressure is 350-400MPa, and the crystallization wheel is controlled to The temperature of the slab coming out to the approach bridge is 400-460°C.
  • step S4 rolling and casting are carried out continuously in order to make full use of the heat of the cast material; then a heater is used for secondary on-line heating to ensure that the temperature of the slab before rolling is 480-570°C.
  • the rolling temperature fluctuation of each heat should not exceed 30°C. The purpose is to ensure that the slab has sufficient plasticity, which greatly reduces the manufacturing cost and improves the production efficiency.
  • step S4 of the present invention during continuous casting and rolling, high-temperature advancing rolling + rapid cooling and quenching are adopted to ensure sufficient solid solution of Mg 2 Si and excess Si.
  • the quenching treatment specifically includes: immersing the rolled and deformed aluminum rod in cold water to rapidly lower the temperature, so that the temperature of the aluminum rod decreases from 300-400° C. to below 120° C. within 5 seconds.
  • step S6 the aging process is: heating up to 130-160°C at a heating rate of 80-100°C/h, and then keeping the temperature for 30-40 hours, and then heating at a rate of 100-150°C/h Cooling rate to cool to room temperature.
  • the high-strength and high-conductivity intergranular corrosion aluminum alloy of the present invention can not only improve the conductivity but also It can refine the grain and improve the corrosion resistance of aluminum alloy.
  • the high-strength and high-conductivity intergranular corrosion aluminum alloy of the present invention can form a large amount of Mg 2 Si particles and excess Si to refine Mg 2 in the aluminum alloy by controlling the magnesium/silicon ratio in the aluminum alloy to 1.20-1.24. Si particles are beneficial to improve the tensile strength of aluminum alloy.
  • the purity of the melt is improved and the corrosion rate in the aluminum alloy is reduced through double refining in the melting furnace and holding furnace and long-term double-stage standing.
  • the impurity content is beneficial to improve the comprehensive performance of aluminum alloy.
  • the aging process of rapid temperature rise + long time heat preservation + rapid temperature drop is adopted to ensure that the Mg 2 Si strengthening phase is slowly and uniformly precipitated during the heat preservation stage, which is beneficial to ensure the product stability.
  • the high-strength and high-conductivity aluminum alloy of the present invention has a tensile strength of 320-350MPa and an electrical conductivity of 55IACS.
  • the invention provides a high-strength and high-conductivity intergranular corrosion aluminum alloy wire, which includes the following components in mass percentages based on its total weight: Si 0.50-0.55wt%; Fe 0.24-0.26wt%; Mn 0.00001-0.001 wt%; Mg0.62 ⁇ 0.66wt%; Cr ⁇ 0.001wt%; V ⁇ 0.001wt%; Ti 0.008 ⁇ 0.015wt%; Be0.008 ⁇ 0.01wt%; and unavoidable impurities.
  • the preparation method of the high-strength and high-conductivity aluminum alloy wire of the present invention comprises the following steps:
  • the molten aluminum from the middle of the liquid surface to the holding furnace after refining and standing still in the melting furnace.
  • the temperature of the molten aluminum is 730 ⁇ 10°C.
  • the amount of the intermediate alloy is determined by calculation, added to the holding furnace, turned on the electromagnetic stirring, stirred for 30 minutes, and after standing for 30 minutes, took a sample to detect the composition.
  • composition of the molten aluminum is shown in Table 1.
  • the aluminum alloy melt after refining and standing is released by tilting, and continuous casting is carried out after filtering (60 mesh ceramic filter plate), degassing (argon gas with a purity greater than 99.999%) and refining treatment (aluminum titanium boron wire) ,
  • the casting temperature is controlled at 685-695°C, so that the temperature of the slab from the crystallization wheel to the approach bridge is 430-460°C.
  • Rolling and casting are carried out continuously, making full use of the heat of the cast material, and then using the heater for secondary on-line heating to ensure that the temperature of the slab before rolling is 480-570°C, but the temperature fluctuation of each heat rolling cannot exceed 30°C, to ensure sufficient plasticity of the slab, which greatly reduces manufacturing costs and improves production efficiency.
  • Quenching treatment is carried out after rolling, and the rolled and deformed aluminum rod is immersed in cold water to quickly cool down, and the temperature is lowered from 300-400°C to below 120°C within 5 seconds.
  • the wire diameter ⁇ 9.5mm obtained above is cold-drawn to ⁇ 3.55mm.
  • the deformation of each pass cannot exceed 20%. -3.90-3.55), after 10 times of joint pulling to
  • the above obtained wire diameter Put the monofilament in a box-type oven, and age it according to the aging process of heating up for 105min (heating rate 83°C/h), holding temperature for 2280min, cooling down for 60min (cooling rate 120°C/h), and holding temperature 145°C.
  • the results show that the aluminum alloys of Examples 1 and 2 have a tensile strength of ⁇ 320 MPa, an electrical conductivity of ⁇ 55.5IACS, and an elongation of 4.5%.
  • the aluminum alloy of Comparative Example 1 has a tensile strength of 308-319 MPa, an electrical conductivity ⁇ 54.0 IACS, and an elongation of 4.0%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • Continuous Casting (AREA)
  • Conductive Materials (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高强高导抗晶间腐蚀铝合金及其制备方法,所述高强高导抗晶间腐蚀铝合金包含如下的组分:Si 0.50~0.55wt%,Fe 0.24~0.26wt%,Mn 0.00001~0.001wt%,Mg 0.62~0.66wt%,Cr≤0.001wt%,V≤0.001wt%,Ti 0.008~0.015wt%,Be 0.008~0.01wt%,Y 0.01~0.02wt%,以及余量的Al。所述高强高导抗晶间腐蚀铝合金的抗拉强度可达320-350MPa,导电率能够达到55IACS。

Description

高强高导抗晶间腐蚀铝合金及其制备方法 技术领域
本发明涉及合金技术领域,具体涉及一种高强高导抗晶间腐蚀铝合金及其制备方法。
背景技术
目前架空导线用铝合金主要使用6XXX系Al-Mg-Si系铝合金材料,该系铝合金是可热处理型铝合金,具有比强度高、密度低、导电性能好等优点。铝合金导线的性能主要受合金元素、加工工艺及其热处理工艺等方面影响。由于材料配方及制造工艺及后续加工方式的不同,目前用于架空导线的6201铝合金材料的抗拉强度偏低,抗拉强度在320MPa以下,导电率在52.5IACS以下,在使用过程中发生的晶间腐蚀使得导线的使用寿命受限。因此,有必要提供一种抗拉强度高、导电率好,同时抗晶间腐蚀性能好的铝合金。
发明内容
本发明要解决的技术问题是提供一种能够提高6系铝合金抗拉强度、电导率以及抗晶间腐蚀性能的高强高导抗晶间腐蚀铝合金。
为了解决上述技术问题,本发明提供了如下的技术方案:
本发明提供了一种高强高导抗晶间腐蚀铝合金,包含如下的组分:Si 0.50~0.55wt%,Fe 0.24~0.26wt%,Mn 0.00001~0.001wt%,Mg 0.62~0.66wt%,Cr≤0.001wt%,V≤0.001wt%,Ti 0.008~0.015wt%,Be 0.008~0.01wt%,Y 0.01~0.02wt%,以及余量的Al。
发明人经过研究发现,向铝合金中加入金属钇(Y),Y会与铝合金中的硅元素能够形成YSi、YSi 2等金属间化合物,改善铝基体中过剩硅的固溶分布,从而提高了铝合金的导电率。但是,钇与铝之间也能够形成金属间化合物Y 2Al,这种Y 2Al会降低铝基体的导电率。为了解决这一问题,发明人向铝合金中添加了铍(Be)元素,Be可以提高铝合金表面抗氧化和抗腐蚀的性能,并且能够使得脆性的铁形成金属间化合物的针状晶粒结构转变为等轴晶粒;同时Be能够降低钇与铝基体的反应,从而使得在提高导电率的同时提升材料的抗晶间腐蚀性能。 因此,本发明通过向铝合金中添加适量的Be元素和Y元素,可以起到提高导电率,使晶粒细化及提高抗腐蚀性能的作用。
本发明中,所述铝合金中的镁/硅比优选为1.20-1.24。铝合金中的镁/硅比处于这一范围,在制备过程中能够形成大量的Mg 2Si质点以及过剩Si细化的Mg 2Si质点,从而有利于提高材料的抗拉强度。
本发明还提供了所述的高强高导抗晶间腐蚀铝合金的制备方法,包括以下步骤:
S1.将配方量的铝源投入熔化炉中熔化,再添加铝硼合金以除去铝液中的钒;接着,对铝液进行精炼、静置;
S2.将静置后的铝液转入保温炉中,向保温炉中加入配方量的中间合金,搅拌,形成均一的铝液;接着,对铝液进行取样检测,确认各元素含量是否达到目标值;若铝液成分未达到目标值,对铝液进行调整,再取样分析;若达到目标值时,对铝液再次进行精炼,接着静置后进行扒渣,再继续静置;
S3.将静置后的铝液进行连续浇铸得到铸坯,浇铸温度控制在680-700℃;
S4.对浇铸得到的铸坯进行连续轧制得到铝杆,入轧的温度控制为480-570℃,且每炉次的进轧温度波动≤30℃;轧制结束后,进行淬火处理;
S5.将轧制的铝杆进行冷拉拔,得到单丝;
S6.对所述单丝进行时效热处理,即得到所述高强高导抗晶间腐蚀铝合金。
进一步地,步骤S1中,所述铝源为99.80%铝锭。
进一步地,步骤S1中,铝液熔化后,按照5-10kg/T的量向熔化炉中投入铝硼合金。
进一步地,步骤S1中,所述精炼具体为:将铝液温度升至730±10℃,按照铝液重量的0.08-0.12%向熔化炉中加入精炼剂,并使用99.999%的氩气进行精炼,精炼时间为20-30分钟。
进一步地,步骤S1中,为保证精炼的效果,要求吹粉时间为15-20分钟。
进一步地,步骤S1中,所述静置的时间为2-3小时,保证铝液中的杂质元素有充分的时间上浮和下沉分离。
进一步地,步骤S2中,向保温炉中加入中间合金(铝铁20%,铝硅20%,镁锭100%,铝铜50%,铝铍3%,铝钇10%,铝钛10%)后,开启电磁搅拌,搅拌30-35分钟,静置30-35分钟后取样检测成分。
进一步地,步骤S2中,所述精炼具体为:按照铝液重量的0.2-0.4%向保温炉中加入精炼剂,使用99.999%的氩气进行精炼,精炼时间为40-45分钟。
进一步地,步骤S2中,精炼结束后,静置30-35分钟再进行扒渣;扒渣结束后,继续静置2-3小时。
进一步地,步骤S2中,所述精炼剂为颗粒除钠精炼剂,这种精炼剂有利于降低熔体中的杂质含量。
进一步地,步骤S3中,精炼静置后的铝合金熔体使用倾动方式放出,在进行过滤、除气及细化处理后进行连续浇铸。优选地,过滤采用60目陶瓷过滤板,除气采用纯度大于99.999%氩气,细化处理采用铝钛硼丝。
进一步地,步骤S3中,采用水平浇铸的方式进行浇铸,浇铸时控制结晶轮的速度为5.0-7.0t/h,冷却温度为25-35℃,冷却水压力为350-400MPa,控制从结晶轮出来到引桥上的铸坯温度为400-460℃。
进一步地,步骤S4中,采用轧制和铸造连续进行,目的是充分利用铸造材料的热量;然后使用加热器进行二次在线加热,保证进轧前铸坯的温度为480-570℃。每炉次的进轧温度波动不能超过30℃,目的是保证铸坯具有足够的塑性,极大的降低了制造成本,提高了生产效率。
本发明步骤S4中,连铸连轧时,采用高温进轧+快速降温淬火的方式,保证了Mg 2Si及过剩的Si充分固溶。进一步地,步骤S4中,所述淬火处理具体为:将轧制变形后的铝杆浸入冷水中快速降温,使铝杆在5秒内将温度从300-400℃降低至120℃以下。
进一步地,其特征在于,步骤S6中,所述时效工艺为:以80-100℃/h的升温速率升温至130-160℃,然后保温30-40小时,接着以100-150℃/h的冷却速率冷却至室温。
与现有技术相比,本发明的有益效果在于:
1.本发明的高强高导抗晶间腐蚀铝合金,通过向铝基体中加入0.01~0.02wt%的金属钇和 0.008~0.01wt%的金属铍,不仅能够起到提高导电率的作用,而且能够使晶粒细化,提高铝合金的抗腐蚀性能。
2.本发明的高强高导抗晶间腐蚀铝合金,通过控制铝合金中的镁/硅比为1.20-1.24,从而能够在铝合金中形成大量的Mg 2Si质点及过剩Si细化Mg 2Si质点,有利于提高铝合金的抗拉强度。
3.本发明的高强高导抗晶间腐蚀铝合金的制备工艺中,通过熔化炉和保温炉双精炼和长时间的双级静置,提高了熔体的纯净度,降低了铝合金中的杂质含量,有利于提高铝合金的综合性能。
4.本发明的高强高导抗晶间腐蚀铝合金的制备工艺中,在连铸连轧时,采用高温进轧+快速降温淬火的方式,保证了铝合金中的Mg 2Si及过剩Si充分固溶,从而有利于提高铝合金的抗拉强度。
5.本发明的高强高导抗晶间腐蚀铝合金的制备工艺中,采用快速升温+长时间保温+快速降温的时效工艺,保证在保温阶段缓慢均匀析出Mg 2Si强化相,有利于保证产品的稳定性。
6.本发明的高强高导抗晶间腐蚀铝合金,抗拉强度可达320-350MPa,导电率能够达到55IACS。
具体实施方式
下面结合具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法,所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例
本发明提供一种高强高导抗晶间腐蚀铝合金丝,以其总重为基准,包括以下质量百分比的各组分:Si 0.50~0.55wt%;Fe 0.24~0.26wt%;Mn 0.00001~0.001wt%;Mg0.62~0.66wt%;Cr≤0.001wt%;V≤0.001wt%;Ti 0.008~0.015wt%;Be0.008~0.01wt%;Y0.01~0.02wt%,余 量为Al及不可避免杂质。
本发明的高强高导抗晶间腐蚀铝合金丝的制备方法包括以下步骤:
(1)熔炼:
将99.80%铝锭投入熔化炉熔化,熔化后根据直读光谱仪检测铝液钒含量,并按照5.5kg/T(铝液重量)投入铝硼合金,除掉铝液中的钒含量。将熔化后的合金升温至734℃,按照铝液重量的0.1%加入精炼剂并使用99.999%的氩气进行精炼,精炼时间30分钟。为保证精炼效果,要求吹粉时间为17分钟。铝液精炼结束后静置2小时,保证铝液中的杂质元素有充分时间上浮和下沉分离。
(2)合金化:
将熔化炉中精炼、静置后的从液面中间部分倾倒铝液至保温炉,铝液温度为730±10℃。按照合金成分及铝液重量,通过计算确定中间合金量,加入到保温炉中,开启电磁搅拌,搅拌30分钟,静置30分钟后取样检测成分。成分合格后,按照铝液重量的0.4%往精炼罐加入颗粒精炼剂,使用99.999%氩气进行精炼,精炼时间45分钟。精炼结束后静置35分钟,将液面上的渣拔干净,静置3小时。
铝液成分如表1所示。
表1实施例及对比例的铝液成分
Figure PCTCN2021114198-appb-000001
(3)铸造:
将精炼静置后的铝合金熔体使用倾动方式放出,在进行过滤(60目陶瓷过滤板)、除气(纯度大于99.999%氩气)及细化处理(铝钛硼丝)后进行连续浇铸,浇铸温度控制在685-695℃,使从结晶轮出来到引桥上的铸坯温度为430-460℃。
(4)轧制:
采用轧制和铸造连续进行,充分利用铸造材料的热量,然后使用加热器进行二次在线加 热,保证进轧前铸坯的温度为480-570℃,但是每炉次的进轧温度波动不能超过30℃,保证铸坯足够的塑性,极大的降低了制造成本和提高生产效率。轧制结束后进行淬火处理,将轧制变形后的铝杆浸入冷水中快速降温,在5秒内将温度从300-400℃降低至120℃以下。
(5)拉拔:
上述所得线径Φ9.5mm杆材冷拉拔至Φ3.55mm,拉拔时,每道次变形量不能超过20%,按照(9.5-9.05-8.12-7.28-6.54-5.88-5.29-4.77-4.31-3.90-3.55)的配模比,经过10道次联拉至
Figure PCTCN2021114198-appb-000002
Figure PCTCN2021114198-appb-000003
(6)时效:
将上述所得的线径
Figure PCTCN2021114198-appb-000004
的单丝放入箱式烘箱里,按照升温105min(升温速率83℃/h),保温2280min,降温60min(降温速率120℃/h),保温温度145℃的时效工艺将其时效。
对所得到的合金丝(Φ3.55mm)进行性能测试(执行标准GB/T 1179-2017),使用万能拉力机和数字电桥检测性能。结果显示,实施例1和2的铝合金,其抗拉强度≥320MPa,导电率≥55.5IACS,延伸率为4.5%。而对比例1的铝合金,其抗拉强度308-319MPa,导电率≥54.0IACS,延伸率为4.0%。
晶间腐蚀实验:使用腐蚀液(HNO 3:HCl:HF:H 2O=20ml:20ml:10ml:50ml),将时效后单丝放入腐蚀液中开始计时,待晶粒肉眼清晰可见停止,对比前后时间。结果显示,实施例1和2的腐蚀时间分别为:45S、48S、46S、47S、45S、48S,对比例1的腐蚀时间为:30S、31S、29s。因此,本发明的铝合金具有更好的抗晶间腐蚀特性,与不添加Be、Y元素的样品(对比例1)比,抗晶间腐蚀性能提升了约40%。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (10)

  1. 一种高强高导抗晶间腐蚀铝合金,其特征在于,包含如下的组分:Si 0.50~0.55wt%,Fe 0.24~0.26wt%,Mn 0.00001~0.001wt%,Mg 0.62~0.66wt%,Cr≤0.001wt%,V≤0.001wt%,Ti 0.008~0.015wt%,Be 0.008~0.01wt%,Y 0.01~0.02wt%,以及余量的Al。
  2. 根据权利要求1所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,包括以下步骤:
    S1.将配方量的铝源投入熔化炉中熔化,再添加铝硼合金以除去铝液中的钒;接着,对铝液进行精炼、静置;
    S2.将静置后的铝液转入保温炉中,向保温炉中加入配方量的中间合金,搅拌,形成均一的铝液;接着,对铝液进行取样检测,确认各元素含量是否达到目标值;若铝液成分未达到目标值,对铝液进行调整,再取样分析;若达到目标值时,对铝液再次进行精炼,接着静置后进行扒渣,再继续静置;
    S3.将扒渣后的铝液静置后,进行连续浇铸得到铸坯,浇铸温度控制在680-700℃;
    S4.对浇铸得到的铸坯进行连续轧制得到铝杆,入轧的温度控制为480-570℃,且每炉次的进轧温度波动≤30℃;轧制结束后,进行淬火处理;
    S5.将轧制的铝杆进行冷拉拔,得到单丝;
    S6.对所述单丝进行时效热处理,即得到所述高强高导抗晶间腐蚀铝合金。
  3. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,步骤S1中,铝液熔化后,按照5-10kg/t的量向熔化炉中投入铝硼合金。
  4. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,步骤S1中,所述精炼具体为:将铝液温度升至730±10℃,按照铝液重量的0.08-0.12%向熔化炉中加入精炼剂,并使用99.999%的氩气进行精炼,精炼时间为20-30分钟;所述静置的时间为2-3小时。
  5. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,步骤S2中,向保温炉中加入中间合金后,开启电磁搅拌,搅拌30-35分钟,静置30-35分钟后取样 检测成分。
  6. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,步骤S2中,所述精炼具体为:按照铝液重量的0.2-0.4%向保温炉中加入精炼剂,使用99.999%的氩气进行精炼,精炼时间为40-45分钟。
  7. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,步骤S2中,精炼结束后,静置30-35分钟再进行扒渣;扒渣结束后,继续静置2-3小时。
  8. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,步骤S3中,采用水平浇铸的方式进行浇铸,浇铸时控制结晶轮的速度为5.0-7.0t/h,冷却温度为25-35℃,冷却水压力为350-400MPa,控制从结晶轮出来到引桥上的铸坯温度为400-460℃。
  9. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,步骤S4中,所述淬火处理具体为:将轧制变形后的铝杆浸入冷水中,使铝杆在5秒内将温度从300-400℃降低至120℃以下。
  10. 根据权利要求2所述的高强高导抗晶间腐蚀铝合金的制备方法,其特征在于,其特征在于,步骤S6中,所述时效工艺为:以80-100℃/h的升温速率升温至130-160℃,然后保温30-40小时,接着以100-150℃/h的冷却速率冷却至室温。
PCT/CN2021/114198 2021-08-12 2021-08-24 高强高导抗晶间腐蚀铝合金及其制备方法 WO2023015608A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110926171.7A CN113652583B (zh) 2021-08-12 2021-08-12 高强高导抗晶间腐蚀铝合金及其制备方法
CN202110926171.7 2021-08-12

Publications (1)

Publication Number Publication Date
WO2023015608A1 true WO2023015608A1 (zh) 2023-02-16

Family

ID=78491549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114198 WO2023015608A1 (zh) 2021-08-12 2021-08-24 高强高导抗晶间腐蚀铝合金及其制备方法

Country Status (2)

Country Link
CN (1) CN113652583B (zh)
WO (1) WO2023015608A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116422726A (zh) * 2023-04-25 2023-07-14 上海萨新东台热传输材料有限公司 一种高强度耐腐蚀的铝合金管道及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126745A (ja) * 1984-07-16 1986-02-06 Sumitomo Electric Ind Ltd ボンデイングワイヤ
JPH05156398A (ja) * 1991-12-06 1993-06-22 Nippon Light Metal Co Ltd 耐食性に優れた鋳造用アルミニウム合金
US5961752A (en) * 1994-04-07 1999-10-05 Northwest Aluminum Company High strength Mg-Si type aluminum alloy
US20100170996A1 (en) * 2009-01-07 2010-07-08 Sankaran Krishnan K Weldable high-strength aluminum alloys
CN103993205A (zh) * 2014-04-16 2014-08-20 池州市光明塑钢有限公司 一种高延伸率铝合金型材及其制备方法
CN106811635A (zh) * 2017-03-02 2017-06-09 东莞市超美铝制品有限公司 一种6系铝合金材料及其制备方法
CN107254608A (zh) * 2015-05-13 2017-10-17 江苏亨通电力特种导线有限公司 高强度耐高温合金线材
CN107653404A (zh) * 2017-08-31 2018-02-02 天长市良文运动器材有限公司 一种高强耐腐蚀的铝合金棒球棒及其生产工艺
CN110951982A (zh) * 2019-11-29 2020-04-03 辽宁忠旺集团有限公司 一种提高6系铝合金抗晶间腐蚀性能的生产工艺
CN112746201A (zh) * 2020-12-29 2021-05-04 佳木斯大学 一种高性能稀土Al-Mg-Si铝合金挤压材料及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182640A (en) * 1973-05-17 1980-01-08 Sumitomo Electric Industries, Ltd. Aluminum alloy electric conductor wire
US4213800A (en) * 1978-06-12 1980-07-22 Swiss Aluminium Ltd. Electrical conductivity of aluminum alloys through the addition of yttrium
JP2798842B2 (ja) * 1992-02-28 1998-09-17 ワイケイケイ株式会社 高強度アルミニウム合金圧延板の製造方法
CN102041418B (zh) * 2011-01-28 2012-10-10 江苏中天科技股份有限公司 一种制造57%导电率的中强度铝合金线方法
CN102146539A (zh) * 2011-03-18 2011-08-10 常州鸿泽澜线缆有限公司 一种用于高压电缆的铝合金导体及其制备方法
CN105177368A (zh) * 2015-08-10 2015-12-23 高安市金良轩科技有限公司 高导热高导电的压铸稀土铝合金及其制备方法
CN106834824B (zh) * 2017-02-17 2018-06-19 昆明冶金研究院 一种含钪、钇的高强高导电率铝基材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6126745A (ja) * 1984-07-16 1986-02-06 Sumitomo Electric Ind Ltd ボンデイングワイヤ
JPH05156398A (ja) * 1991-12-06 1993-06-22 Nippon Light Metal Co Ltd 耐食性に優れた鋳造用アルミニウム合金
US5961752A (en) * 1994-04-07 1999-10-05 Northwest Aluminum Company High strength Mg-Si type aluminum alloy
US20100170996A1 (en) * 2009-01-07 2010-07-08 Sankaran Krishnan K Weldable high-strength aluminum alloys
CN103993205A (zh) * 2014-04-16 2014-08-20 池州市光明塑钢有限公司 一种高延伸率铝合金型材及其制备方法
CN107254608A (zh) * 2015-05-13 2017-10-17 江苏亨通电力特种导线有限公司 高强度耐高温合金线材
CN106811635A (zh) * 2017-03-02 2017-06-09 东莞市超美铝制品有限公司 一种6系铝合金材料及其制备方法
CN107653404A (zh) * 2017-08-31 2018-02-02 天长市良文运动器材有限公司 一种高强耐腐蚀的铝合金棒球棒及其生产工艺
CN110951982A (zh) * 2019-11-29 2020-04-03 辽宁忠旺集团有限公司 一种提高6系铝合金抗晶间腐蚀性能的生产工艺
CN112746201A (zh) * 2020-12-29 2021-05-04 佳木斯大学 一种高性能稀土Al-Mg-Si铝合金挤压材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116422726A (zh) * 2023-04-25 2023-07-14 上海萨新东台热传输材料有限公司 一种高强度耐腐蚀的铝合金管道及其制备方法
CN116422726B (zh) * 2023-04-25 2024-01-02 上海萨新东台热传输材料有限公司 一种高强度耐腐蚀的铝合金管道及其制备方法

Also Published As

Publication number Publication date
CN113652583B (zh) 2022-05-10
CN113652583A (zh) 2021-11-16

Similar Documents

Publication Publication Date Title
WO2021098044A1 (zh) 一种高性能半固态压铸铝合金及其制备方法
CN108396204B (zh) 一种亚共晶铝硅合金铸件及提高其性能的工艺方法
CN112143945B (zh) 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
WO2023125263A1 (zh) 铝合金改性用复合稀土合金及其制备方法
CN112680615B (zh) 高强韧压铸铝合金材料的制备方法、热处理方法和压铸方法
CN111690844B (zh) 一种共晶型Al-Fe-Mn-Si-Mg压铸合金及制备方法与应用
WO2023125262A1 (zh) 改性铝合金及其制备方法
WO2023125264A1 (zh) 高强度铝合金制件及其制备方法
WO2023125282A1 (zh) 高塑性复合改性铝合金制件及其制备方法
WO2023125265A1 (zh) 高强度复合改性铝合金制件及其制备方法
CN109487135A (zh) 一种低成本高强度高韧性镁合金及其制备方法
CN112522557B (zh) 一种高强韧压铸铝合金材料
WO2023015608A1 (zh) 高强高导抗晶间腐蚀铝合金及其制备方法
WO2023241681A1 (zh) 一种铝合金添加剂及其制备方法和应用
CN110029241A (zh) 高熵合金细化剂细化工业纯铝或铝合金以及细化方法
CN115449683A (zh) 一种镁合金及其制备方法
CN111349829B (zh) 一种皮材铝带的生产方法
CN115029593A (zh) 一种复合添加稀土耐热铝合金及其制备方法
CN113862529B (zh) 一种铝合金及其制备方法
CN114318183A (zh) 高塑性铝合金制件及其制备方法
CN108048704B (zh) 一种含镧和镱的耐腐蚀铝合金材料的制备方法
JPH07258784A (ja) 鋳造性に優れた鍛造用Al合金材料および高強度Al合金鍛造品の製法
CN114959387B (zh) 一种高强度耐热铸造铝合金及其制备方法
CN111020248B (zh) 一种Ag-Zr-Zn中间合金及其制备方法和应用
CN115772618B (zh) 一种高强韧耐热铝合金材料及其制备方法和热处理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21953219

Country of ref document: EP

Kind code of ref document: A1