WO2023125264A1 - 高强度铝合金制件及其制备方法 - Google Patents

高强度铝合金制件及其制备方法 Download PDF

Info

Publication number
WO2023125264A1
WO2023125264A1 PCT/CN2022/141287 CN2022141287W WO2023125264A1 WO 2023125264 A1 WO2023125264 A1 WO 2023125264A1 CN 2022141287 W CN2022141287 W CN 2022141287W WO 2023125264 A1 WO2023125264 A1 WO 2023125264A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
aluminum
alloy
treatment
preparation
Prior art date
Application number
PCT/CN2022/141287
Other languages
English (en)
French (fr)
Inventor
彭以辉
答建成
Original Assignee
连云港星耀材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 连云港星耀材料科技有限公司 filed Critical 连云港星耀材料科技有限公司
Publication of WO2023125264A1 publication Critical patent/WO2023125264A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to the technical field of alloy materials and preparation, in particular to a high-strength aluminum alloy product and a preparation method thereof.
  • Aluminum alloy is the most widely used non-ferrous metal structural material in industry, and has been widely used in aviation, aerospace, automobile, machinery manufacturing, shipbuilding and chemical industry.
  • Cast aluminum alloy has the characteristics of casting fluidity, good air tightness, small shrinkage rate and small thermal cracking tendency, etc., and it has become the first choice material for lightweight automobile wheels.
  • the steps of heat treatment are also different.
  • Most of the current heat treatment adopts primary solution treatment and primary or secondary aging treatment. If the primary solution treatment is to fully dissolve the excess phase, it needs High temperature, high energy consumption, long time, and increased processing costs.
  • the primary and secondary aging treatments are directly processed at higher temperatures, which is not conducive to the mutual transformation of each phase and the uniform precipitation, resulting in alloy mechanical Uneven performance.
  • the present invention provides a high-strength aluminum alloy product capable of further improving the mechanical strength of the aluminum alloy and a preparation method thereof.
  • Step S1 providing a cast aluminum alloy biscuit
  • Step S2 performing heat treatment on the aluminum alloy green body, wherein the heat treatment includes:
  • Water quenching treatment adding the aluminum alloy biscuit after solid solution treatment into a water bath at a temperature of 60-70°C, and quenching water for 2-4 minutes;
  • the cast aluminum alloy bisque is obtained by casting a cast hypoeutectic aluminum alloy or a cast eutectic aluminum alloy.
  • step S1 includes:
  • Step S11 providing an aluminum alloy melt
  • Step S12 adding a modifier and a refiner to the aluminum alloy melt and melting to obtain a modified aluminum alloy melt
  • Step S13 casting the modified aluminum alloy melt to obtain the cast aluminum alloy bisque.
  • step S11 includes:
  • the dried aluminum alloy master ingot is melted, refined and slag removed to obtain the aluminum alloy melt.
  • the modifier is any one of aluminum-lanthanum alloy, aluminum-cesium alloy, aluminum-yttrium alloy, and aluminum-strontium alloy
  • the refiner is aluminum-titanium alloy or aluminum-titanium-boron alloy .
  • step S12 includes:
  • the heating rate in the solution treatment is controlled at 1.5-3° C./min, and the holding time is controlled at 120-180 min.
  • solution treatment the quenching treatment, and the aging treatment are continuous treatments
  • the water bath is a circulating water bath. After the water quenching treatment, the temperature of the cast aluminum alloy biscuit is kept above 55° C. before the aging treatment.
  • the cooling rate from 150-165°C to 110-130°C is controlled at 2-5°C/min.
  • the high-strength aluminum alloy product according to the embodiment of the second aspect of the present invention is prepared according to the preparation method of any embodiment of the first aspect above, the tensile strength of the high-strength aluminum alloy product is above 250 MPa, and the yield strength is Above 125MPa, elongation above 4%.
  • Fig. 1 is the metallographic structure image of the aluminum alloy before and after the heat treatment of embodiment 1, wherein, (a) is the metallographic structure image of A356 aluminum alloy, (b) is the metallographic structure image of the cast aluminum alloy after modification, (c) is the metallographic structure image of the aluminum alloy product after heat treatment;
  • Fig. 2 is the metallographic structure image of the aluminum alloy before and after heat treatment obtained in Example 2, wherein, (a) is the metallographic structure image of the cast aluminum alloy after modification, (b) is the aluminum alloy product after heat treatment Metallographic image.
  • Step S1 providing a cast aluminum alloy biscuit.
  • the method for preparing high-strength aluminum alloy parts in the embodiment of the present invention is a heat treatment process for cast aluminum alloy biscuits.
  • the thickness of the cast aluminum alloy biscuit is, for example, 40 mm or less. Preferably, it may be 8-40mm, for example.
  • the cast aluminum alloy biscuit for example, it can be obtained by casting a hypoeutectic aluminum alloy, such as A356 aluminum-silicon-magnesium alloy, or a eutectic aluminum alloy such as ZL111 aluminum alloy.
  • a hypoeutectic aluminum alloy such as A356 aluminum-silicon-magnesium alloy
  • a eutectic aluminum alloy such as ZL111 aluminum alloy.
  • the heat treatment process of the present invention is not limited thereto, and can improve the mechanical strength of conventional aluminum alloys.
  • it can also be A356, ZL111, ZL101, ZL104/108/109, ADC12, Al-4Cu, etc.
  • the step S1 includes:
  • Step S11 providing an aluminum alloy melt. That is, first, an aluminum alloy melt is prepared.
  • Purification treatment may include the following steps, for example:
  • the dried aluminum alloy master ingot is melted, refined and slag removed to obtain the aluminum alloy melt.
  • the oxide scale layer on the surface is first removed, then cleaned to remove surface scum, dried and then smelted, refined and slag removed.
  • undesired impurities such as Fe, oxides, etc. can be removed.
  • Fe and its oxides can be removed by adding manganese or aluminum-manganese alloy to form surface scum, for example.
  • Step S12 adding a modifier and a refiner to the aluminum alloy melt and melting to obtain a modified aluminum alloy melt.
  • the modifier is any one of aluminum-lanthanum alloy, aluminum-cesium alloy, aluminum-yttrium alloy, and aluminum-strontium alloy
  • the refiner is aluminum-titanium alloy or aluminum-titanium-boron alloy.
  • any one of aluminum-lanthanum alloy, aluminum-cesium alloy, aluminum-yttrium alloy, and aluminum-strontium alloy can be used as a modifier to modify the aluminum alloy, and at the same time, the crystal grains can be refined by adding a refiner, which can further Improve its mechanical strength.
  • step S12 includes:
  • a modifier is first added to the aluminum alloy melt for smelting, and after the modifier is completely melted and mixed with the aluminum alloy, a refiner is added to suppress the abnormal growth of grains.
  • the modifying agent preferably accounts for 0.4-0.6 wt% of the total amount of the aluminum alloy melt, and the refiner preferably accounts for 0.15-0.4 wt% of the total amount.
  • modifiers can also be refined before being specifically introduced into the aluminum alloy melt.
  • the refining in any of the above steps that is, the refining of the aluminum alloy melt and the refining of the modifier can be carried out in the following manner:
  • the addition of the refining agent accounts for 0.1 to 0.3% of the mass of the added melt
  • the addition of the slag remover accounts for 0.1 to 0.3% of the mass of the added melt
  • the components of the refining agent contain by mass:
  • the component of described deslagging agent contains by mass:
  • the hydrogen content is estimated by testing the density of the melt, that is to say, the closer the melt density is to its theoretical density (slightly different according to the different components contained in the alloy, roughly around 2.7g/cm 3 ), then Indicates that the hydrogen contained in it is lower. For example, it can be set that when the density of the melt is less than 2.65g/cm 3 , the refining process is performed; when the density of the melt is greater than or equal to 2.65g/cm 3 , the refining process is not performed or the refining process is terminated. deal with.
  • Step S13 casting the modified aluminum alloy melt to obtain the cast aluminum alloy bisque.
  • the obtained modified aluminum alloy melt is cast into a mold to obtain the cast aluminum alloy biscuit.
  • Step S2 performing heat treatment on the aluminum alloy biscuit.
  • the inventor has developed a corresponding heat treatment process on the basis of repeated research.
  • the aluminum alloy biscuit is successively subjected to solution treatment, water quenching treatment, and aging treatment.
  • the heat treatment includes:
  • Water quenching treatment adding the aluminum alloy biscuit after solid solution treatment into a water bath at a temperature of 60-70°C, and quenching water for 2-4 minutes;
  • the casting is rapidly cooled, so that the strengthening components are dissolved in the alloy to the maximum extent and then fixed and stored at room temperature.
  • G-PI region solute atom-enriched region
  • high-temperature aging treatment is first adopted, so that the phase transformation mainly occurs between the ⁇ ' region and the ⁇ " region, thereby ensuring high strength.
  • the heating rate in the solution treatment is controlled at 1.5-3°C/min, and the holding time is controlled at 120-180min.
  • the rose-like ⁇ -Al phase and the rounder spherical ⁇ -Al phase can be further increased, the primary ⁇ -Al phase can be refined, and the number of dendrites can be reduced.
  • the solid solution treatment, the quenching treatment, and the aging treatment are continuous treatments, and the water bath is a circulating water bath.
  • the water bath is a circulating water bath.
  • the cooling rate from 150-165°C to 110-130°C is controlled at 2-5°C/min.
  • the introduction of defects can be greatly reduced, which helps to further improve its mechanical strength and maintain a high level of toughness.
  • Aluminum alloy aluminum-silicon-magnesium alloy (A356) (purchased from: Shandong Weiqiao Aluminum Industry)
  • High-purity aluminum ingot (purchased from Chinalco, composition: Al (99.99%), Fe ⁇ 0.1%, impurity ⁇ 0.05%)
  • Melting first add the preheated aluminum-silicon-magnesium alloy A356 into the pre-heating melting furnace, and heat and melt it into aluminum water within the range of 760 degrees.
  • Degassing and slag removal After melting into aluminum water, nitrogen (or argon) is introduced and refining agent (0.3wt% refining agent) is blown into the aluminum water, and the ventilation time is controlled at 15 minutes.
  • Aluminum-strontium master alloy purchased from Nantong Angshen Metal Material Co., Ltd., composition: Al-10Sr, Fe ⁇ 0.05.
  • Pretreatment Use a grinder to clean the scale and surface of the Al-Sr master alloy.
  • Ultrasonic cleaning put the pretreated aluminum-strontium master alloy into an ultrasonic cleaning tank for ultrasonic treatment.
  • Drying put the cleaned aluminum-strontium master alloy into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment After the aluminum-strontium master alloy is melted, it is refined. The molten high-purity aluminum is refined by feeding the Ar+graphite automatic degassing stirring rod. Refining with Ar blowing at 730-750°C for 5-10 minutes, the amount of refining being blown in is 0.1-0.3% of the melt, and kept at 3-5 minutes. During the refining process, there should be no boiling bubbles on the upper surface of the aluminum liquid.
  • Aluminum-titanium-boron master alloy purchased from Nantong Angshen Metal Materials Co., Ltd. (composition and content: Ti: 5%, B: 1%, the rest: Al)
  • the aluminum-silicon-magnesium alloy, the aluminum-strontium master alloy, and the aluminum-titanium-boron master alloy are prepared in a mass ratio of aluminum alloy: aluminum-strontium master alloy: aluminum-titanium-boron master alloy at a mass ratio of 99.4:0.4:0.2.
  • Heat preservation After stirring, control the temperature at 735°C for heat preservation, and the heat preservation time is controlled at 20 minutes;
  • Add refiner add 0.2% aluminum-titanium-boron master alloy to the refined aluminum water, wait for it to melt and stir;
  • Heat preservation and standing After the end, after the aluminum water flows into the heat preservation pool, the temperature is controlled at 710 ⁇ 3°C, and the slag and impurities on the surface of the aluminum water are removed after standing for 10 ⁇ 2 minutes;
  • the thickness of the modified aluminum alloy biscuit is 30 mm.
  • Solution treatment put the modified aluminum alloy biscuit in a heating furnace, heat it to 540°C at a heating rate of 2°C/min, and keep it there for 120min.
  • the modified aluminum alloy biscuit after the above solid solution treatment is added into a circulating water bath at a temperature of 65° C., and water is quenched for 3 minutes.
  • the quenched modified aluminum alloy bisque is kept at 150°C for 120 minutes, then cooled to 110°C at a cooling rate of 2°C/min and kept for 30 minutes, and then naturally cooled to room temperature to obtain the high-strength Aluminum alloy parts.
  • Fig. 1 is the metallographic structure image of the aluminum alloy before and after the heat treatment of embodiment 1, wherein, (a) is the metallographic structure image of A356 aluminum alloy, (b) is the metallographic structure image of the cast aluminum alloy after modification, (c) is the metallographic structure image of the aluminum alloy product after heat treatment.
  • the metallographic structure of the aluminum alloy before modification ie (a)
  • the coarse primary ⁇ -Al phase presents the structure of dendrites, and the diameter and length of the secondary dendrites and dendrites The spacing is relatively large.
  • the metallographic structure of the modified aluminum alloy ie (b)
  • a large number of rose-like ⁇ -Al phases and rounder spherical ⁇ -Al phases also increased, and the primary ⁇ -Al phase was significantly finer.
  • the number of dendrites decreases.
  • the metallographic structure of the aluminum alloy after heat treatment ie (c)
  • the primary ⁇ -Al phase and dendrites are basically invisible. That is to say, the grains are further homogenized and the microstructure is more uniform.
  • A356 heat-treated parts the evaluation results of products obtained by directly performing the same heat treatment on A356 (referred to as A356 heat-treated parts) are also described.
  • the impact performance test results of the actual product show that compared with the unheated product, under the same hammer weight (490 kg), the impact height can be increased by more than 30% (from the original 255mm to 330mm) , which shows that the impact toughness of the product has been greatly improved.
  • Aluminum-lanthanum alloy purchased from Baotou Rare Earth Research Institute, composition: Al-10La, Fe ⁇ 0.05.
  • Pretreatment Use a grinder to clean the scale and surface of the aluminum-lanthanum alloy.
  • Ultrasonic cleaning put the pretreated aluminum-lanthanum alloy into an ultrasonic cleaning tank for ultrasonic treatment.
  • Drying Put the cleaned aluminum-lanthanum alloy into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment The whole process is under the protection of argon atmosphere, and the refining treatment is performed after the rare earth aluminum-lanthanum alloy is melted.
  • the Ar graphite automatic degassing stirring rod is introduced to refine the melted graphite.
  • Ar is used to blow into the refining agent, the refining dose is 0.3wt% of the melt, and there should be no boiling bubbles on the upper surface of the aluminum liquid during the refining process.
  • Remove scum on the surface of the melt put 0.2wt% slag remover into it to make it evenly disperse when refining for 15-20 minutes, and remove the scum on the surface.
  • the above-mentioned aluminum-lanthanum alloy is used instead of the aluminum-strontium master alloy, and everything else is the same as in Example 1.
  • A356 heat-treated parts the evaluation results of products obtained by directly performing the same heat treatment on A356 (referred to as A356 heat-treated parts) are also described.
  • Example 2 By comparing the results of Example 2 and Example 1 above, it can be seen that the modification of the rare earth alloy, ie, aluminum-lanthanum alloy combined with heat treatment, can obtain better strength and higher toughness. Moreover, the modified dendrites are less and almost completely absent.
  • the rare earth alloy ie, aluminum-lanthanum alloy combined with heat treatment
  • Example 1 For specific preparation, refer to Example 1, and its detailed description is omitted here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高强度铝合金制件及其制备方法。制备方法包括:步骤S1,提供铸造铝合金素坯;步骤S2,对铝合金素坯进行热处理,其中,热处理包括:固溶处理,将铝合金素坯加热至530-550℃,并保温100-300min;淬水处理,将经过固溶处理后的铝合金素坯加入温度为60-70℃的水浴中,淬水2-4min;时效处理,将经过淬水处理后的铝合金素坯在150-165℃保温120-280min,降温至110-130℃并保温30-120min,自然冷却至室温,得到高强度铝合金制件。通过对铸造件进行热处理,提高其机械强度,同时能够提高其韧性。

Description

高强度铝合金制件及其制备方法 技术领域
本发明涉及合金材料及制备技术领域,具体涉及一种高强度铝合金制件及其制备方法。
背景技术
铝合金是工业中应用最广泛的一类有色金属结构材料,在航空、航天、汽车、机械制造、船舶及化学工业中已大量应用。铸造铝合金具有铸造流动性、气密性好、收缩率小及热裂倾向小等特点,它成为汽车轮毂轻量化的首选材料。
然而,人们对铝合金的要求也越来越高,不仅要保持原有的轻质的特点,同时还要具有一定的强度,尤其是在汽车零部件和工业的生产上。对于铸造铝合金大尺寸零部件来说,需要高强度中等韧性可解决力学性能问题,这一性能需要用热处理工艺解决。
但是,由于铝合金零部件的成分差异,热处理的步骤也不同,目前的热处理大多采用一级固溶处理和一级或者二级时效处理,一级固溶处理若要将过剩相充分溶解,需要高的温度,耗能大,时间长,增加处理成本,一级和二级的时效处理由于直接采用较高温度进行处理,不利于各相态的相互转化和脱溶的均匀进行,造成合金机械性能的不均匀。
现有技术中,多数用延长固溶时间和提高时效温度和时间。这种工艺方法对产品性能目标得以实现,但从节能和生产效率上出现资源和能源的浪费。同时,长时间的固溶和时效对于产品内部组织的把控难以把握,这也对产品性能更加不利。
为此,亟需提供一种能够进一步提高铝合金制件的机械强度的制备工艺。
发明内容
有鉴于此,本发明提供一种能够进一步提高铝合金的机械强度的高强度铝 合金制件及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
根据本发明第一方面实施例的高强度铝合金制件的制备方法,包括如下步骤:
步骤S1,提供铸造铝合金素坯;
步骤S2,对所述铝合金素坯进行热处理,其中,所述热处理包括:
固溶处理,将所述铝合金素坯加热至530-550℃,并保温100-300min;
淬水处理,将经过固溶处理后的铝合金素坯加入温度为60-70℃的水浴中,淬水2-4min;
时效处理,将经过淬水处理后的铝合金素坯在150-165℃保温120-280min,此后降温至110-130℃并保温30-120min,此后自然冷却至室温,得到所述高强度铝合金制件。
进一步地,所述铸造铝合金素坯由铸造亚共晶铝合金或铸造共晶铝合金铸造得到。
进一步地,所述步骤S1包括:
步骤S11,提供铝合金熔体;
步骤S12,在所述铝合金熔体中加入改性剂以及细化剂并进行熔炼,得到改性铝合金熔体;
步骤S13,将所述改性铝合金熔体进行浇铸,得到所述铸造铝合金素坯。
更进一步地,所述步骤S11包括:
提供铝合金母锭;
去除所述铝合金母锭的表面氧化皮层并进行清洗、烘干;
将烘干后的铝合金母锭进行熔炼,并进行精炼、除渣,得到所述铝合金熔体。
进一步地,所述步骤S12中,所述改性剂为铝镧合金、铝铯合金、铝钇合金、铝锶合金中的任一种,所述细化剂为铝钛合金或铝钛硼合金。
更进一步地,所述步骤S12包括:
在所述铝合金熔体中加入所述改性剂并进行熔炼,得到中间混合熔体;
在所述中间混合熔体中加入所述细化剂并继续熔炼,得到所述改性铝合金 熔体。
进一步地,所述步骤S2中,所述固溶处理中的升温速率控制在1.5-3℃/min,保温时间控制在120-180min。
进一步地,所述固溶处理、所述淬水处理、以及所述时效处理为连续处理,
且所述水浴为循环水浴,所述淬水处理后,在进行所述时效处理前所述铸造铝合金素坯的温度保持在55℃以上。
进一步地,所述时效处理阶段,从150-165℃降温至110-130℃的降温速率控制在2-5℃/min。
根据本发明第二方面实施例的高强度铝合金制件,根据上述第一方面任一实施例的制备方法制备得到,所述高强度铝合金制件的抗拉强度为250MPa以上,屈服强度为125MPa以上,延伸率为4%以上。
本发明的上述技术方案至少具有如下有益效果之一:
根据本发明实施例的高强度铝合金制件的制备方法,通过对铸造件进行特定的热处理,能够大幅提高其机械强度以满足航空、航天、汽车领域等需求,且同时能够提高其韧性,减少脆裂等发生;
根据本发明实施例的高强度铝合金制件的制备方法,在结合改性剂、细化剂对铸造铝合金进行改性的基础上,结合该热处理工艺,能够显著地提高其机械性能。
附图说明
图1为实施例1的热处理前后的铝合金的金相组织图像,其中,(a)为A356铝合金的金相组织图像,(b)为改性后的铸造铝合金的金相组织图像,(c)为热处理后的铝合金制件的金相组织图像;
图2为实施例2得到的热处理前后的铝合金的金相组织图像,其中,(a)为改性后的铸造铝合金的金相组织图像,(b)为热处理后的铝合金制件的金相组织图像。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明 实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本发明中使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。
下面首先结合具体描述根据本发明实施例的高强度铝合金制件的制备方法。
根据本发明实施例的高强度铝合金制件的制备方法,包括如下步骤:
步骤S1,提供铸造铝合金素坯。
也就是说,本发明实施例的高强度铝合金制件的制备方法是针对铸造铝合金素坯进行的热处理工艺。
为了更有效地提高热处理的效果,优选地,所述铸造铝合金素坯的厚度例如为40mm以下。优选地,例如可以为8-40mm。
作为铸造铝合金素坯,例如可以由亚共晶铝合金,例如A356铝硅镁合金、或共晶铝合金例如ZL111铝合金铸造得到。当然,本发明的热处理工艺不限于此,对于常规的铝合金都能够起到提高其机械强度的作用。例如还可以是A356、ZL111、ZL101、ZL104/108/109、ADC12、Al-4Cu等。
优选地,所述步骤S1包括:
步骤S11,提供铝合金熔体。也就是说,首先准备铝合金熔体。
在此,需要说明的是,可以采用市售的高纯铝合金锭直接加热熔化制备铝合金熔体,也可以对铝合金锭进行进一步纯化。纯化处理例如可以包括如下步骤:
提供铝合金母锭;
去除所述铝合金母锭的表面氧化皮层并进行清洗、烘干;
将烘干后的铝合金母锭进行熔炼,并进行精炼、除渣,得到所述铝合金熔体。
也就是说,对于铝合金母锭,首先去除其表面的氧化皮层,此后进行清洗以去除表面浮屑,烘干后进行熔炼,并进行精炼、除渣。
经过上述纯化处理后,能够去除掉其中不希望存在的杂质,例如Fe、氧化物、等等。
在此需要补充说明的是,关于其中的Fe及其氧化物,例如可以通过添加锰或铝锰合金,以形成表面浮渣来去除。
步骤S12,在所述铝合金熔体中加入改性剂以及细化剂并进行熔炼,得到改性铝合金熔体。
其中,所述改性剂为铝镧合金、铝铯合金、铝钇合金、铝锶合金中的任一种,所述细化剂为铝钛合金或铝钛硼合金。
也就是说,可以通过铝镧合金、铝铯合金、铝钇合金、铝锶合金中的任一种作为变质剂对铝合金进行变质,同时通过添加细化剂对晶粒进行细化,能够进一步提高其机械强度。
进一步地,所述步骤S12包括:
在所述铝合金熔体中加入所述改性剂并进行熔炼,得到中间混合熔体;
在所述中间混合熔体中加入所述细化剂并继续熔炼,得到所述改性铝合金熔体。
也就是说,在铝合金熔体中首先加入改性剂进行熔炼,待改性剂完全熔化并与铝合金混合均匀之后,在其中加入细化剂抑制晶粒的异常长大。
其中,作为改性剂,其添加量根据使用需求、作为中间合金中各有效成分的含量不同而进行相应设计。作为一个示例,例如所述改性剂优选占所述铝合金熔体的总量的0.4-0.6wt%,所述细化剂优选占总量的0.15-0.4wt%。
此外,上述改性剂也可以在具体引入铝合金熔体之前进行精炼。
进一步地,上述任一步骤中的精炼,即铝合金熔体的精炼、改性剂的精炼可以采用如下方式进行:
通过惰性气体吹入精炼剂并保持3-10分钟,此后加入除渣剂并搅拌5-10分钟,并去除表面浮渣。
进一步地,所述精炼剂的加入量占所加入的熔体质量的0.1~0.3%,所述 清渣剂的加入量占所加入熔体质量的0.1~0.3%;
所述精炼剂的组分按质量计含有:
氯化钾10-15份,氯化钠15-25份,氟化钙8-15份,碳酸钠15-25份,硫酸钠8-12份,氟铝酸钠10-20份,六氯乙烷8-12份;
所述除渣剂的组分按质量计含有:
氯化钠25-30份,氯化钾25-30份,碳酸钠5-10份,硫酸钠5-10份,氟铝酸钠1-5份,氟硅酸钠5-10份,氟化钙5-10份,硝酸钾1-5份,氟硅酸钾5-10份。
进一步地,可以通过监测熔体的氢含量来确定精炼是否继续进行。本发明中,通过测试熔体的密度来估算氢含量,也就是说,熔体密度越接近其理论密度(根据合金中所含成分的不同稍有不同,大致在2.7g/cm 3左右)则表明其中所含氢越低。例如可以设定为,当熔体的密度不足2.65g/cm 3时,则进行所述精炼处理;当熔体密度大于等于2.65g/cm 3,即不进行所述精炼处理或终止所述精炼处理。
步骤S13,将所述改性铝合金熔体进行浇铸,得到所述铸造铝合金素坯。
也就是说,在熔炼之后,将得到的改性铝合金熔体浇铸到模具中,得到所述铸造铝合金素坯。
具体的浇铸过程,可以采用常规的浇铸工艺,在此省略其详细记载。
步骤S2,对所述铝合金素坯进行热处理。
也就是说,在通过浇铸得到铝合金素坯之后,为了进一步提高其机械强度,发明人在反复研究的基础上,开发出了相应的热处理工艺。
具体而言,对铝合金素坯先后进行固溶处理、淬水处理、以及时效处理。
更具体而言,所述热处理包括:
固溶处理,将所述铝合金素坯加热至530-550℃,并保温100-300min;
淬水处理,将经过固溶处理后的铝合金素坯加入温度为60-70℃的水浴中,淬水2-4min;
时效处理,将经过淬水处理后的铝合金素坯在150-165℃保温120-280min,此后降温至110-130℃并保温30-120min,此后自然冷却至室温,得到所述高强度铝合金制件。
通过设计上述固溶处理,能够消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度导致的应力;提高合金的机械强度和硬度,改善金相组织;消除晶间和成分偏析,使组织均匀化。
此外,通过设计上述淬水处理,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。
通过设计上述时效处理,温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集。
此外,根据本发明的制备方法,首先采用高温时效处理,使得相变主要在β’区和β”区之间发生,从而能够保证高的强度。
优选地,所述固溶处理中的升温速率控制在1.5-3℃/min,保温时间控制在120-180min。通过控制固溶处理的升温速率和保温时间,能够进一步增加蔷薇状α-Al相和较圆整的球形α-Al相,并细化初生α-Al相,减少树枝晶的数量。
进一步地,所述固溶处理、所述淬水处理、以及所述时效处理为连续处理,且所述水浴为循环水浴,所述淬水处理后,在进行所述时效处理前所述铸造铝合金素坯的温度保持在55℃以上。通过连续处理,不仅可以提高生产效率,且能够避免工艺中断引入的不必要的缺陷。且控制期间的最低温度,避免由于急速降温引入缺陷。
进一步地,所述时效处理阶段,从150-165℃降温至110-130℃的降温速率控制在2-5℃/min。通过控制时效处理阶段的降温速率,能够极大地减少缺陷的引入,有助于进一步提高其机械强度,且使得韧性也保持在较高水平。下面,通过具体实施例进一步详细说明根据本发明的制备方法。
实施例1
铝合金:采用铝硅镁合金(A356)(购自:山东魏桥铝业)
高纯铝锭(购自中铝集团,成分:Al(99.99%),Fe<0.1%,杂质<0.05%)
精炼剂:
成分:氯化钾15份,氯化钠20份,CaF2 10份,Na2CO3 20份,Na2SO4 10份,Na3AlF6 15份,C2Cl6 10份。
除渣剂:
成分:氯化钠25份,氯化钾25份,碳酸钠5份,硫酸钠5份,氟铝酸钠5份,氟硅酸钠10份,氟化钙10份,硝酸钾5份,氟硅酸钾10份。
1)铝合金熔体的制备
熔化:先将预热的铝硅镁合金A356加到提前升温熔炼炉内,在760度范围内加热熔化成铝水。
除气除渣:熔化成铝水后,通入氮气(或氩气)后吹入精炼剂(0.3wt%精炼剂)到铝水中,通气时间控制在15分钟。
静置:将S3中的铝水静置10分钟,温度控制在760度下,并打捞干净铝水表层的渣杂质。
期间,对静置的铝水取样测定化学成分并估算氢气量:
以密度法估算其中的氢气含量,密度要求:大于等于2.65g/cm3。当密度越大(越接近2.7g/cm3)则认为其中的氢气含量越低。
2)改性剂:铝锶中间合金的精炼处理
铝锶中间合金:购自南通昂申金属材料有限公司,成分:Al-10Sr,Fe<0.05。
预处理:用砂轮机将铝锶中间合金的氧化皮和表层处理干净。
超声清洗:将预处理后的铝锶中间合金放入超声清洗槽中进行超声处理。
烘干:将清洗后的铝锶中间合金放入烘箱炉保持60-100℃烘烤30-60分钟。
熔炼:将铝锶中间合金放入到预热的坩埚中在760-780℃熔化处理。
精炼处理:待铝锶中间合金熔化后做精炼处理。通入Ar+石墨自动除气搅拌棒对熔化的高纯铝做精炼处理。在5-10分钟730-750℃时用Ar吹入精炼,吹入精炼剂量在0.1~0.3%熔体,保持在3-5分钟,精炼过程中铝液上表面不能有沸腾气泡。
表面浮渣清除:在15-20分钟时放入在0.1~0.3%的除渣剂均匀散开,清除表面浮渣。
静置:扒渣后静置8-15分钟在740-760℃时。
3)细化剂:铝钛硼中间合金的精炼处理
铝钛硼中间合金:购自南通昂申金属材料有限公司(成分和含量:Ti:5%,B:1%,其余为:Al)
作为细化剂的铝钛硼中间合金,参考上述进行相同处理。
4)改性铝合金素坯的制备
以铝合金:铝锶中间合金:铝钛硼中间合金的质量比为99.4:0.4:0.2的比例准备上述铝硅镁合金、铝锶中间合金、以及铝钛硼中间合金。
混合:按照上述比例,在上述1)处理后的铝硅镁合金熔体中,将温度控制在740±5度时,首先加入2)精炼的变质剂铝锶中间合金。
搅拌:用石墨搅拌器对加入铝锶中间合金并熔化的熔体进行搅拌,搅拌过程中需要均匀搅拌,连续搅拌8分钟;
保温:搅拌后将温度控制在735℃进行保温,保温时间控制在20分钟;
加入细化剂:加入0.2%铝钛硼中间合金到精炼的铝水中,待其熔化搅拌;
保温静置:结束后,铝水流入保温池后,温度控制在710±3℃,静置10±2分钟后去除铝水表层的渣、杂质;
浇铸:预热模具在250-400℃时,将上述熔体浇铸到模具中,冷却即得到改性铝合金素坯。
其中,该改性铝合金素坯的厚度为30mm。
5)热处理
固溶处理:将上述改性铝合金素坯至于加热炉中,以2℃/min的加热速率加热至540℃,并在此保温120min。
淬水处理,将上述固溶处理后的改性铝合金素坯加入温度为65℃的循环水浴中,淬水3min。
时效处理,将经过淬水处理后的改性铝合金素坯在150℃保温120min,此后以2℃/min的降温速率降温至110℃并保温30min,此后自然冷却至室温,得到所述高强度铝合金制件。
图1为实施例1的热处理前后的铝合金的金相组织图像,其中,(a)为A356铝合金的金相组织图像,(b)为改性后的铸造铝合金的金相组织图像,(c)为热处理后的铝合金制件的金相组织图像。由图1可知,改性前的铝合金(即(a))的金相组织,可看出粗大的初生α-Al相呈现树枝晶的组织形态, 二次枝晶的直径和长度及枝晶间距都是呈现比较大。而改性后的铝合金的金相组织(即(b)),出现了大量蔷薇状α-Al相和较圆整的球形α-Al相也随之增加,初生α-Al相显著地细化,树枝晶的数量减少。且热处理后的铝合金的金相组织(即(c)),较圆整的球形α-Al相进一步增加,初生α-Al相以及树枝晶基本不可见。也就是说,晶粒进一步均质化,微观结构更加均匀。
另外,对A356铝合金(记作:改性前)、改性后素坯(记作:改性合金1)、以及热处理后的制件(记作:实施例1)的机械性能进行了评价。评价结果示于下述表1。
此外,为了对比热处理的效果,还同时记载了直接对A356进行相同的热处理所得到的制件(记作A356热处理件)的评价结果。
表1 A356铝合金以及改性后、热处理后的机械性能测试结果
Figure PCTCN2022141287-appb-000001
由表1可知,通过本实施例1的热处理,即便对于未进行改性的铝合金,也能够很大地提高其强度。在结合变质剂进行改性的基础上,能够极大地提高其屈服强度、以及抗拉强度,同时也有助于保持其具有较高的延伸率,极大地提高了综合机械性能。
此外,通过实际产品(轮毂)的冲击性能试验结果显示,相对于未热处理品,在相同的锤重(490公斤)的情况下,冲击高度可以提高30%以上(由原来的255mm提高至330mm),由此说明产品的冲击韧性得到了极大提高。
并且弯曲性能显示,在相同的转速扭矩(2.35N.mm)的情况下弯曲转数提高2倍(由原来的12万次提高到30万次),由此说明产品的弯曲塑性也得到了极大提高。
此外,径向疲劳性能试验结果显示,在径向载荷加增加20%的情况下,疲劳次数也增加了25%以上,说明产品的综合机械性能得到了极大的改善。
实施例2
本实施例中,与上述实施例1相比,除了改性剂使用铝镧合金之外,。
下面,仅针对改性剂的处理中涉及不同的部分进行描述如下:
2)改性剂:铝镧合金的精炼处理
铝镧合金:购自包头稀土研究院,成分:Al-10La,Fe<0.05。
预处理:用砂轮机将铝镧合金的氧化皮和表层处理干净。
超声清洗:将预处理后的铝镧合金放入超声清洗槽中进行超声处理。
烘干:将清洗后的铝镧合金放入烘箱炉保持60-100℃烘烤30-60分钟。
熔炼:将铝镧合金放入到预热的坩埚中在780-820℃熔化处理。
精炼处理:整体过程在氩气气氛保护下,待稀土铝镧合金熔化后做精炼处理。通入Ar石墨自动除气搅拌棒对熔化的其做精炼处理。在5-10分钟760-780℃时用Ar吹入精炼剂,精炼剂量为0.3wt%熔体,精炼过程中铝液上表面不能有沸腾气泡。对熔体表面浮渣清除:在精炼15-20分钟时放入0.2wt%的除渣剂使其均匀散开,清除表面浮渣。
静置:扒渣后在740-760℃静置10-15分钟。
相应地,在4)中,代替铝锶中间合金使用上述铝镧合金,此外均与实施例1相同。
另外,对A356铝合金(记作:改性前)、铝镧合金改性后素坯(记作:改性合金2)、以及热处理后的制件(记作:实施例2)的机械性能进行了评价。评价结果示于下述表1。
此外,为了对比热处理的效果,还同时记载了直接对A356进行相同的热处理所得到的制件(记作A356热处理件)的评价结果。
表2 A356铝合金以及改性后、热处理后的机械性能测试结果
Figure PCTCN2022141287-appb-000002
由表2可知,通过本实施例2的热处理,也能够得到与上述实施例1相类似的结果。
此外,通过对比上述实施例2与实施例1的结果可知,稀土合金即铝镧合金改性结合热处理,能够获得更好的强度与更高的韧性。而且,改性后的枝状晶更少,几乎完全不见。
实施例3
本实施例中,与上述实施例2相比,除了代替使用A356而使用ZL111外,其余均相同。
具体的制备参考实施例1,在此省略其详细说明。
另外,对ZL111铝合金(记作:改性前)、铝镧合金改性后素坯(记作:改性合金3)、以及热处理后的制件(记作:实施例3)的机械性能进行了评价。评价结果示于下述表1。
此外,为了对比热处理的效果,还同时记载了直接对A356进行相同的热处理所得到的制件(记作ZL111热处理件)的评价结果
表3 ZL111铝合金以及改性后、热处理后的机械性能测试结果
Figure PCTCN2022141287-appb-000003
由表3可知,通过本实施例3的热处理,也能够得到与上述实施例2相类似的结果。也就是说,本发明的制备工艺同样适用于共晶型铝合金,能够获得更好的强度与更高的韧性。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

  1. 一种高强度铝合金制件的制备方法,其特征在于,包括如下步骤:
    步骤S1,提供铸造铝合金素坯;
    步骤S2,对所述铝合金素坯进行热处理,其中,所述热处理包括:
    固溶处理,将所述铝合金素坯加热至530-550℃,并保温100-300min;
    淬水处理,将经过固溶处理后的铝合金素坯加入温度为60-70℃的水浴中,淬水2-4min;
    时效处理,将经过淬水处理后的铝合金素坯在150-165℃保温120-280min,此后降温至110-130℃并保温30-120min,此后自然冷却至室温,得到所述高强度铝合金制件。
  2. 根据权利要求1所述的制备方法,其特征在于,所述铸造铝合金素坯由亚共晶铝合金或共晶铝合金铸造得到。
  3. 根据权利要求1所述的制备方法,其特征在于,所述步骤S1包括:
    步骤S11,提供铝合金熔体;
    步骤S12,在所述铝合金熔体中加入改性剂以及细化剂并进行熔炼,得到改性铝合金熔体;
    步骤S13,将所述改性铝合金熔体进行浇铸,得到所述铸造铝合金素坯。
  4. 根据权利要求3所述的制备方法,其特征在于,所述步骤S11包括:
    提供铝合金母锭;
    去除所述铝合金母锭的表面氧化皮层并进行清洗、烘干;
    将烘干后的铝合金母锭进行熔炼,并进行精炼、除渣,得到所述铝合金熔体。
  5. 根据权利要求3所述的制备方法,其特征在于,所述步骤S12中,所述改性剂为铝镧合金、铝铯合金、铝钇合金、铝锶合金中的任一种,所述细化剂为铝钛合金或铝钛硼合金。
  6. 根据权利要求5所述的制备方法,其特征在于,所述步骤S12包括:
    在所述铝合金熔体中加入所述改性剂并进行熔炼,得到中间混合熔体;
    在所述中间混合熔体中加入所述细化剂并继续熔炼,得到所述改性铝合金 熔体。
  7. 根据权利要求1所述的制备方法,其特征在于,所述步骤S2中,所述固溶处理中的升温速率控制在1.5-3℃/min,保温时间控制在120-180min。
  8. 根据权利要求1所述的制备方法,其特征在于,所述固溶处理、所述淬水处理、以及所述时效处理为连续处理,
    且所述水浴为循环水浴,所述淬水处理后,在进行所述时效处理前所述铸造铝合金素坯的温度保持在55℃以上。
  9. 根据权利要求1所述的制备方法,其特征在于,所述时效处理阶段,从150-165℃降温至110-130℃的降温速率控制在2-5℃/min。
  10. 一种高强度铝合金制件,其特征在于,根据权利要求1至9任一项所述的制备方法制备得到,所述高强度铝合金制件的抗拉强度为250MPa以上,屈服强度为125MPa以上,延伸率为4%以上。
PCT/CN2022/141287 2021-12-27 2022-12-23 高强度铝合金制件及其制备方法 WO2023125264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111611897.8 2021-12-27
CN202111611897.8A CN114293117A (zh) 2021-12-27 2021-12-27 高强度铝合金制件及其制备方法

Publications (1)

Publication Number Publication Date
WO2023125264A1 true WO2023125264A1 (zh) 2023-07-06

Family

ID=80968881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141287 WO2023125264A1 (zh) 2021-12-27 2022-12-23 高强度铝合金制件及其制备方法

Country Status (2)

Country Link
CN (1) CN114293117A (zh)
WO (1) WO2023125264A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114293117A (zh) * 2021-12-27 2022-04-08 连云港星耀材料科技有限公司 高强度铝合金制件及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074498A (en) * 1996-10-28 2000-06-13 Mcdonnell Douglas Corporation Heat treated Al-Cu-Li-Sc alloys
CN104561690A (zh) * 2015-01-26 2015-04-29 上海交通大学 高塑性铸造铝合金及其挤压铸造制备方法
US20200048749A1 (en) * 2017-03-30 2020-02-13 NanoAL LLC High-performance 6000-series aluminum alloy structures
CN113106303A (zh) * 2021-03-31 2021-07-13 湖南大学 一种利用Zn微合金化及双级时效制度结合来提高ZL114A合金强度的方法
CN114293117A (zh) * 2021-12-27 2022-04-08 连云港星耀材料科技有限公司 高强度铝合金制件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6074498A (en) * 1996-10-28 2000-06-13 Mcdonnell Douglas Corporation Heat treated Al-Cu-Li-Sc alloys
CN104561690A (zh) * 2015-01-26 2015-04-29 上海交通大学 高塑性铸造铝合金及其挤压铸造制备方法
US20200048749A1 (en) * 2017-03-30 2020-02-13 NanoAL LLC High-performance 6000-series aluminum alloy structures
CN113106303A (zh) * 2021-03-31 2021-07-13 湖南大学 一种利用Zn微合金化及双级时效制度结合来提高ZL114A合金强度的方法
CN114293117A (zh) * 2021-12-27 2022-04-08 连云港星耀材料科技有限公司 高强度铝合金制件及其制备方法

Also Published As

Publication number Publication date
CN114293117A (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
WO2023125263A1 (zh) 铝合金改性用复合稀土合金及其制备方法
CN108425050B (zh) 一种高强高韧铝锂合金及其制备方法
WO2023125282A1 (zh) 高塑性复合改性铝合金制件及其制备方法
CN110306083B (zh) 高强韧铝硅基复合材料焊丝及其制备方法
WO2023125262A1 (zh) 改性铝合金及其制备方法
WO2022105453A1 (zh) 轮毂用高强高韧a356.2铝基复合材料的制备方法
CN112143945B (zh) 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
CN112680615B (zh) 高强韧压铸铝合金材料的制备方法、热处理方法和压铸方法
CN101775529A (zh) 一种发动机机体用高强度铸造铝硅合金及其制备方法
CN112430767B (zh) 一种大规格空心铸锭及铸锭方法
CN102965553A (zh) 用于汽车保险杠的铝合金铸锭及其生产工艺
CN117026003B (zh) 一种基于复合变质细化的铝基复合材料搅拌铸造制备方法
WO2023125264A1 (zh) 高强度铝合金制件及其制备方法
WO2023125265A1 (zh) 高强度复合改性铝合金制件及其制备方法
WO2023125266A1 (zh) 高塑性铝合金制件及其制备方法
CN114231800B (zh) 一种高性能低碳铝合金与制备方法
CN112522557B (zh) 一种高强韧压铸铝合金材料
CN110983119B (zh) 一种高强高导热压铸铝合金材料及其制备方法
CN107699747A (zh) 一种高Cu含量Al‑Si‑Li‑Cu铸造合金及其制备方法
CN112159917A (zh) 一种大规格高纯均质细晶铝合金铸锭及铸造方法
CN115449683A (zh) 一种镁合金及其制备方法
WO2023015608A1 (zh) 高强高导抗晶间腐蚀铝合金及其制备方法
CN117026026B (zh) 一种基于再生铝的高延伸率铝合金材料及其制备方法
CN115584416B (zh) 一种纳米金属间化合物复相强化铝合金及其制备方法
CN115505799B (zh) 一种高强韧重力铸造铝合金及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914518

Country of ref document: EP

Kind code of ref document: A1