WO2023125262A1 - 改性铝合金及其制备方法 - Google Patents

改性铝合金及其制备方法 Download PDF

Info

Publication number
WO2023125262A1
WO2023125262A1 PCT/CN2022/141280 CN2022141280W WO2023125262A1 WO 2023125262 A1 WO2023125262 A1 WO 2023125262A1 CN 2022141280 W CN2022141280 W CN 2022141280W WO 2023125262 A1 WO2023125262 A1 WO 2023125262A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
alloy
titanium
rare earth
melt
Prior art date
Application number
PCT/CN2022/141280
Other languages
English (en)
French (fr)
Inventor
方瑛
答建成
Original Assignee
上海耀鸿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海耀鸿科技股份有限公司 filed Critical 上海耀鸿科技股份有限公司
Publication of WO2023125262A1 publication Critical patent/WO2023125262A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/026Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/06Making non-ferrous alloys with the use of special agents for refining or deoxidising
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium

Definitions

  • the invention relates to the technical field of alloy materials and preparation, in particular to a modified aluminum alloy and a preparation method thereof.
  • aluminum alloy has many excellent properties, and it is widely used in machinery manufacturing industry, especially with the development of lightweight industrial materials (such as automobile industry), the application of aluminum alloy is increasing.
  • Casting aluminum alloy is to fill the casting mold with molten metal to obtain the aluminum alloy of parts of various shapes. It has the advantages of low density, high specific strength, good corrosion resistance and casting process, and is less restricted by the structural design of parts. However, the strength, yield strength, elongation and other mechanical properties of cast aluminum alloys commonly used in the market are not high enough, which makes the problem of lightening and thinning cast aluminum alloy parts a bottleneck.
  • Cast aluminum alloy is mainly composed of ⁇ -Al dendrite, eutectic silicon and Mg2Si equilibrium phase. However, in the as-cast condition, coarse ⁇ -Al dendrites and flaky and bulk eutectic silicon seriously deteriorate its mechanical properties, especially the plasticity and tensile strength, which limits its application in actual industrial production.
  • the present invention provides a modified aluminum alloy capable of further improving the mechanical properties of the cast aluminum alloy and improving the effect of modification and refinement and a preparation method thereof.
  • Step S1 providing an aluminum alloy melt
  • Step S2 providing a modifier
  • Step S3 under an inert gas atmosphere, in the aluminum alloy melt, add the modifier and melt to obtain a modified aluminum alloy,
  • the modifier is a combination of rare earth aluminum alloy, aluminum strontium master alloy, aluminum titanium or aluminum titanium boron master alloy, or the modifier is a combination of compound rare earth aluminum alloy, aluminum titanium or aluminum titanium boron master alloy ,
  • the composite rare earth aluminum alloy contains strontium, titanium or titanium boron, and rare earth metals,
  • the rare earth metal in the rare earth aluminum alloy and the composite rare earth aluminum alloy is any one or more of lanthanum, cerium, and yttrium.
  • the preparation of the rare earth aluminum alloy includes the following steps:
  • the rare earth aluminum alloy is obtained by standing for a predetermined time and pouring.
  • the modifier is a combination of rare earth aluminum alloy, aluminum-strontium master alloy, aluminum-titanium or aluminum-titanium-boron master alloy, wherein the aluminum-strontium master alloy and the aluminum-titanium or aluminum-titanium The boron master alloy is added at intervals, and the rare earth aluminum alloy is added first, or together with the first added party, or added between the aluminum-strontium master alloy and the aluminum-titanium or aluminum-titanium-boron master alloy.
  • step S3 includes:
  • Step S301 adding the rare earth aluminum alloy into the aluminum alloy melt and melting to obtain a first homogeneously mixed melt
  • Step S302 adding the aluminum-strontium master alloy into the first homogeneously mixed melt and continuing to smelt to obtain a second homogeneously mixed melt;
  • Step S303 adding the aluminum-titanium or aluminum-titanium-boron master alloy into the second homogeneously mixed melt and continuing melting to obtain the modified aluminum alloy.
  • the modifying agent is a combination of composite rare earth aluminum alloy, aluminum titanium or aluminum titanium boron master alloy, and the step S3 includes:
  • Step S310 adding the composite rare earth aluminum alloy into the aluminum alloy melt and melting to obtain a fourth uniformly mixed melt
  • Step S320 adding the aluminum-titanium or aluminum-titanium-boron master alloy into the fourth homogeneously mixed melt and continuing melting to obtain the modified aluminum alloy.
  • the preparation of the composite rare earth aluminum alloy includes:
  • Step S311 providing an aluminum alloy melt
  • Step S312 providing an aluminum-strontium master alloy, an aluminum-titanium or aluminum-titanium-boron master alloy, and a rare earth aluminum alloy, wherein the rare earth metal in the rare earth aluminum alloy is one or more selected from lanthanum, cerium, and yttrium;
  • Step S313 adding the aluminum-strontium master alloy, aluminum-titanium or aluminum-titanium-boron master alloy into the aluminum alloy melt under an inert gas atmosphere and melting to obtain the modified aluminum alloy.
  • the aluminum-strontium master alloy is added at intervals from the aluminum-titanium or aluminum-titanium-boron master alloy, and the rare earth aluminum alloy is added between the aluminum-strontium master alloy and the aluminum-titanium or aluminum
  • the titanium-boron master alloy is added before, or together with the party that is added first, or added between the aluminum-strontium master alloy and the aluminum-titanium or aluminum-titanium-boron master alloy.
  • the rare earth aluminum alloy, the aluminum-strontium master alloy, the aluminum-titanium or aluminum-titanium-boron master alloy are sequentially added to the aluminum melt at intervals.
  • the modifier accounts for 0.4-0.6wt% of the total amount of the modified aluminum alloy, and the mass ratio of the rare earth metal: strontium: titanium or the total amount of titanium boron is 1: (0.1-1.2): (0.1-1.2).
  • the refining includes:
  • the addition of the refining agent accounts for 0.1-0.3% of the mass of the added melt
  • the addition of the slag remover accounts for 0.1-0.3% of the mass of the added melt
  • the components of the refining agent contain by mass:
  • the components of the slag remover contain by mass:
  • the density of the melt is tested, and when the density of the melt is less than 2.65g/ cm3 , the refining process is carried out;
  • the refining treatment is not performed or the refining treatment is terminated.
  • the modified aluminum alloy according to the embodiment of the second aspect of the present invention is prepared by the preparation method according to any of the above embodiments.
  • the mutual poisoning effect between the modifier and the refiner can be greatly overcome, the addition amount of the modifier and the refiner can be increased, and at the same time, the Improve the effect of metamorphism and refinement;
  • the present invention rationally adjusts the process so that the aluminum-strontium master alloy (i.e., the modifier) and the aluminum-titanium alloy or aluminum-titanium-boron alloy (i.e., the refiner) are added at intervals, and the rare earth metal is added before the latter is added, which can Further effectively avoid the mutual poisoning between the modifying agent and the refiner, which is beneficial to further improve the effect of modification and refinement;
  • the aluminum-strontium master alloy i.e., the modifier
  • the aluminum-titanium alloy or aluminum-titanium-boron alloy i.e., the refiner
  • the rare earth aluminum alloy aluminum strontium intermediate alloy, aluminum titanium alloy or aluminum titanium boron alloy in advance, a composite rare earth aluminum alloy is obtained, and the aluminum alloy is modified by compounding the rare earth aluminum alloy, which further improves the improvement. sexual effect;
  • Fig. 1 is the metallographic structure image of aluminum alloy before modification
  • Fig. 2 is an image of the metallographic structure of the modified aluminum alloy obtained in Example 1 of the present invention.
  • Step S1 providing an aluminum alloy melt.
  • an aluminum alloy melt is prepared.
  • Purification treatment may include the following steps, for example:
  • Step S11 providing an aluminum alloy ingot
  • Step S12 removing the oxide layer on the surface of the aluminum alloy ingot
  • Step S13 cleaning and drying the aluminum alloy ingot from which the scale layer has been removed
  • Step S14 melting the dried aluminum alloy ingot to obtain an initial melt
  • Step S15 refining the initial melt to obtain the aluminum alloy melt.
  • the oxide scale layer on the surface is first removed, then cleaned to remove surface scum, smelted after drying, and the melt is refined.
  • the specific refining process will be described in detail later.
  • undesired impurities such as Fe, oxides, etc. can be removed. It is beneficial to further improve the modification and refinement of rare earth alloys.
  • Fe and its oxides can be removed by adding manganese or aluminum-manganese alloy to form surface scum, for example.
  • the aluminum alloy melt for example, it may be an aluminum-magnesium alloy, an aluminum-silicon alloy, an aluminum-silicon-magnesium alloy, etc., which is not specifically limited in the present invention.
  • Step S2 providing a modifier.
  • the modifier is a combination of rare earth aluminum alloy, aluminum strontium master alloy, aluminum titanium or aluminum titanium boron master alloy, or the modifier is a combination of compound rare earth aluminum alloy, aluminum titanium or aluminum titanium boron master alloy ,
  • the composite rare earth aluminum alloy contains strontium, titanium or titanium boron, and rare earth metals,
  • the rare earth metal in the rare earth aluminum alloy and the composite rare earth aluminum alloy is any one or more of lanthanum, cerium, and yttrium.
  • the modifier is a combination of rare earth aluminum alloy, aluminum strontium master alloy, aluminum titanium or aluminum titanium boron master alloy.
  • the aluminum-strontium master alloy is the modifier
  • the aluminum-titanium master alloy or the aluminum-titanium-boron master alloy is the refiner. That is, conventional modifiers and refiners can be used.
  • the modifier and/or the refiner commercially available materials can be used, or the corresponding metal strontium, titanium, titanium & boron can be weighed and melted in aluminum melt to form A homogeneous alloy is prepared.
  • rare earth aluminum alloys are further introduced to overcome the limitation of mechanical properties due to the "poisoning" reaction between modifiers and refiners.
  • the rare earth metal in the rare earth aluminum alloy considering the strontium in the modifier and the titanium and boron in the refiner, the group IIIB elements whose electronic structure is in between can be selected. In comprehensive consideration of its stability, resources, etc., preferably, one or more of yttrium, lanthanum in lanthanide metals, and cerium are used.
  • the rare earth aluminum alloy for example, one or more of commercially available Al-10Ce, Al-20Ce, Al-20La, Al-10La, Al-20Y, and Al-10Y can be used.
  • the rare earth aluminum alloy can also be prepared by itself, for example, it can be prepared by the following method:
  • the rare earth aluminum alloy is obtained by standing for a predetermined time and pouring.
  • the aluminum melt can be treated by using commercially available high-purity aluminum ingots with reference to the above-mentioned purification treatment of aluminum alloy ingots, which will not be repeated here.
  • aluminum-strontium master alloys aluminum-titanium master alloys or aluminum-titanium-boron master alloys, and rare-earth aluminum alloys
  • descaling, ultrasonic cleaning, and refining can be performed sequentially, respectively.
  • unwanted impurities and oxides can be further removed, which is beneficial to improving the refinement and modification of the composite rare earth alloy as a product.
  • the modifier is a combination of composite rare earth aluminum alloy, aluminum titanium or aluminum titanium boron master alloy.
  • the composite rare earth aluminum alloy it can be prepared by smelting and refining by using the above rare earth aluminum alloy, modifier, refiner, and aluminum melt.
  • the preparation of the complex rare earth aluminum alloy may include:
  • Step S312 providing an aluminum-strontium master alloy, an aluminum-titanium or aluminum-titanium-boron master alloy, and a rare earth aluminum alloy, wherein the rare earth metal in the rare earth aluminum alloy is one or more selected from lanthanum, cerium, and yttrium;
  • Step S313 adding the aluminum-strontium master alloy, aluminum-titanium or aluminum-titanium-boron master alloy into the aluminum melt under an inert gas atmosphere and melting to obtain the composite rare earth alloy for aluminum alloy modification.
  • the aluminum-strontium master alloy is added at intervals from the aluminum-titanium or aluminum-titanium-boron master alloy, and the rare earth aluminum alloy is added between the aluminum-strontium master alloy and the aluminum-titanium or aluminum-titanium-boron
  • the master alloy is added before, or added together with the party that is added first, or added between the addition of the aluminum-strontium master alloy and the aluminum-titanium or aluminum-titanium-boron master alloy.
  • the rare earth aluminum alloy, the aluminum-strontium master alloy, the aluminum-titanium or aluminum-titanium-boron master alloy are sequentially added to the aluminum melt at intervals.
  • step S3 under an inert gas atmosphere, the modifier is added to the aluminum alloy melt and smelted to obtain the modified aluminum alloy.
  • the modifier is added to the aluminum alloy melt for further melting under an inert gas atmosphere to obtain a modified aluminum alloy.
  • the preparation method of the modified aluminum alloy in the embodiment of the present invention by introducing rare earth metals into the modifier, the mutual poisoning effect between the modifier and the refiner is greatly overcome, and the interaction between the modifier and the refiner can be improved.
  • the added amount can improve the effect of modification and refinement at the same time.
  • the inventors of the present invention have found through repeated research that by adjusting the order of adding the modifier, the refiner, and the rare earth aluminum alloy, the mutual poisoning between the modifier and the refiner can be further effectively avoided, which is beneficial to further Improves the effect of metamorphism and refinement.
  • modifier being a rare earth aluminum alloy, an aluminum strontium master alloy, an aluminum titanium or an aluminum titanium boron master alloy:
  • the rare earth aluminum alloy is added first, or together with the first added party, or at the The aluminum-strontium master alloy and the aluminum-titanium or aluminum-titanium-boron master alloy are interstitially added.
  • the step S3 may specifically include:
  • Step S301 adding the rare earth aluminum alloy into the aluminum alloy melt and melting to obtain a first homogeneously mixed melt
  • Step S302 adding the aluminum-strontium master alloy into the first homogeneously mixed melt and continuing to smelt to obtain a second homogeneously mixed melt;
  • Step S303 adding the aluminum-titanium or aluminum-titanium-boron master alloy into the second homogeneously mixed melt and continuing melting to obtain the modified aluminum alloy.
  • the step S3 includes:
  • Step S310 adding the composite rare earth aluminum alloy into the aluminum alloy melt and melting to obtain a fourth uniformly mixed melt
  • Step S320 adding the aluminum-titanium or aluminum-titanium-boron master alloy into the fourth homogeneously mixed melt and continuing melting to obtain the modified aluminum alloy.
  • the rare earth aluminum alloy, modifier, refining agent, and aluminum are smelted in advance to obtain a composite rare earth aluminum alloy, it can be prepared by adding it to the above aluminum melt at one time.
  • a refiner to the composite rare earth aluminum alloy when it is completely melted and mixed with the aluminum alloy. That is, aluminum-titanium master alloy or aluminum-titanium-boron master alloy controls grain growth.
  • the modifier preferably accounts for 0.4-0.6 wt% of the total amount of the modified aluminum alloy.
  • the refining in any of the above steps that is, the refining in the process of purifying the aluminum melt, the refining in the process of preparing the rare earth aluminum alloy, and the refining of each melt in the composite rare earth aluminum alloy can be carried out in the following manner:
  • the added amount of the refining agent accounts for 0.1-0.3% of the added melt mass
  • the added amount of the slag remover accounts for 0.1-0.3% of the added melt mass
  • the components of the refining agent contain by mass:
  • the components of the slag remover contain by mass:
  • the density of the melt is tested, and when the density of the melt is less than 2.65g/cm 3 , the refining process is carried out; when the density of the melt is greater than or equal to 2.65g/cm 3 , the refining process is not carried out or terminated The refining process.
  • Aluminum alloy Aluminum-silicon-magnesium alloy (A356) (purchased from: Shandong Chuangfeng Shanxi Aluminum)
  • High-purity aluminum ingot (purchased from Chinalco, composition: Al (99.99%), Fe ⁇ 0.1%, impurity ⁇ 0.05%)
  • Melting first add the preheated aluminum-silicon-magnesium alloy A356 into the melting furnace for early heating, and heat and melt it into aluminum water in the range of 760 degrees.
  • Degassing and slag removal After melting into aluminum water, nitrogen (or argon) is introduced and refining agent (0.3wt% refining agent) is blown into the aluminum water, and the ventilation time is controlled at 15 minutes.
  • Pretreatment Use a grinder to clean the oxide skin and surface layer on the surface of the high-purity aluminum ingot.
  • Ultrasonic cleaning Put the pretreated high-purity aluminum ingot into the cleaning agent for ultrasonic treatment.
  • Drying Put the high-purity aluminum ingot after ultrasonic cleaning into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment is performed after the high-purity aluminum is melted. Specifically: Refining the molten high-purity aluminum through the Ar+graphite automatic degassing stirring rod. Refining by blowing Ar at 740-760°C for 5-10 minutes, the amount of refining being blown in is 0.1-0.3% of the melt, and kept for 3-5 minutes. After that, let it stand for 10-20 minutes, put 0.1-0.3% scum remover in it to make it evenly disperse, and remove the scum on the surface.
  • Refining treatment The whole process is under the protection of argon atmosphere, and the refining treatment is performed after the rare earth aluminum-lanthanum alloy is melted. Feed the Ar+graphite automatic degassing stirring rod to refine the melted one. Refining by blowing Ar at 760-780°C for 5-10 minutes, the amount of refining being blown in is 0.1-0.3% of the melt, and kept for 3-5 minutes. During the refining process, there should be no boiling bubbles on the upper surface of the aluminum liquid. Removal of scum on the surface of the melt: put in 0.1-0.3% slag remover in 15-20 minutes and spread evenly to remove the scum on the surface.
  • Casting Quickly cast the above melt into the mold to ensure uniform composition of each part. This process uses full water cooling to cool it down.
  • Al-Sr master alloy purchased from Nantong Angshen Metal Materials Co., Ltd., composition: Al-10Sr, Fe ⁇ 0.05.
  • Pretreatment Use a grinder to clean the scale and surface of the Al-Sr master alloy.
  • Ultrasonic cleaning put the pretreated aluminum-strontium master alloy into an ultrasonic cleaning tank for ultrasonic treatment.
  • Drying put the cleaned aluminum-strontium master alloy into an oven and bake at 60-100°C for 30-60 minutes.
  • Refining treatment After the aluminum-strontium master alloy is melted, it is refined. The molten high-purity aluminum is refined by feeding the Ar+graphite automatic degassing stirring rod. Refining with Ar blowing at 730-750°C for 5-10 minutes, the amount of refining being blown in is 0.1-0.3% of the melt, and kept at 3-5 minutes. During the refining process, there should be no boiling bubbles on the upper surface of the aluminum liquid.
  • Al-Ti-B master alloy purchased from Nantong Angshen Metal Materials Co., Ltd. (composition and content: Ti: 5%, B: 1%, the rest: Al)
  • the aluminum melt, the rare earth aluminum alloy, the aluminum strontium master alloy, and the aluminum titanium boron master alloy are respectively prepared, and then mixed and smelted to obtain a composite rare earth alloy as a product.
  • the rare earth aluminum alloy is firstly added to the aluminum melt, then the aluminum strontium alloy is added, and finally the aluminum titanium alloy is added. details as follows:
  • Step 1 Ingredients: Preheat the high-purity aluminum, aluminum-titanium-boron master alloy, aluminum-strontium master alloy and rare earth aluminum alloy obtained above according to the required mass percentage.
  • high-purity aluminum 4.8 parts
  • aluminum-titanium-boron master alloy 0.2 parts
  • aluminum-strontium master alloy 60 parts
  • rare earth aluminum alloy 35 parts.
  • Step 2 Add and melt the rare earth aluminum alloy: for the above aluminum melt, first heat the rare earth aluminum alloy to 780-820°C to soften before melting, then control the overall temperature of the aluminum melt at 760-780°C, and put the rare earth Aluminum alloy is added to the aluminum melt for heat preservation.
  • the whole process adopts the protection of argon atmosphere and melts the rare earth aluminum alloy.
  • Step 3 After the rare earth aluminum alloy is completely melted, the temperature is controlled at 750-770° C. and stirred for 5-10 minutes.
  • the whole process is protected by an argon atmosphere, and the stirring rod is made of graphite material and preheated to 400-500°C before stirring.
  • Step 4 heat-preserve the melted melt at 740-760° C. and control the heat-retaining time within 5-20 minutes. In this stage, an alloying reaction occurs.
  • Step 5 After the heat preservation is completed, refining, degassing and slag removal are carried out. 0.3% refining agent is blown into the melt by argon, and the aeration time is controlled at 3 to 8 minutes; after that, further add 0.2% slag remover, stir for 5 minutes and let stand to remove the slag and impurities on the surface of the melt . The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining and its density is determined to estimate the hydrogen content.
  • the measurement method adopts the density method (compared with the theoretical value of aluminum of 2.70g/cm3), the closer the measured sample is to 2.7g/cm3, the lower the internal hydrogen content of aluminum. Generally, it cannot reach 2.7g/cm3 normally; the density test of the sample is about 2.65g/cm3 to estimate the hydrogen content.
  • the hydrogen content must be vacuumized. The slag agent is refined again.
  • Step 6 Stand still: put the melt that has been added with the rare earth aluminum alloy and refined for 3-5 minutes, and the temperature is controlled at 740-760 degrees.
  • Step 7 Adding and melting the aluminum-strontium master alloy: adding the above-mentioned refined aluminum-strontium master alloy into the melt in step 6, and controlling the temperature at 780-820° C. to completely melt the aluminum-strontium master alloy. The whole process is protected by argon atmosphere, and the aluminum-strontium master alloy is melted.
  • Step 8 After the aluminum-strontium master alloy is melted, control the temperature at 740-760° C. and stir for 3-8 minutes to achieve homogenization. The whole process is protected by argon atmosphere, the stirring rod is made of graphite material, and it is preheated to 400-500°C before stirring.
  • Step 9 heat preservation treatment is carried out at 725-750°C.
  • the heat preservation time is controlled at 15-30 minutes.
  • Step 10 Refining, degassing and slag removal: After the heat preservation of the melt is completed, blow in 0.3% of the refining agent into the aluminum-rare-earth composite melt after argon gas is introduced, and the ventilation time is controlled at 5 to 10 minutes; put in 0.2% of Put the slag removal agent into the aluminum melt, stir for 5 minutes and remove the slag and impurities on the surface of the aluminum-rare-earth composite melt. The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to determine the hydrogen content. (Hydrogen content requirement: greater than or equal to 2.65g/cm 3 ;) During the hydrogen measurement process, it must be vacuumized. If the hydrogen content is unqualified, then further refining, that is, adding refining agents and slag removers to refine again.
  • Step 11 Add Al-Ti-B master alloy: Add Al-Ti-B master alloy to the melt treated in Step 10 above, heat to melt completely, and stir evenly for 3-5 minutes to homogenize.
  • Step 12 heat preservation: after stirring, heat the melt for 8-12 minutes, and control the temperature at 715-725°C.
  • Step 13 Refining, degassing and slag removal: After the heat preservation of the melt is completed, blow in 0.3% of the refining agent into the aluminum-rare-earth composite melt after argon gas is introduced, and the ventilation time is controlled at 5 to 10 minutes; put in 0.2% of Put the slag removal agent into the aluminum melt, stir for 5 minutes and remove the slag and impurities on the surface of the aluminum-rare-earth composite melt. The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to determine the hydrogen content. (Hydrogen content requirement: greater than or equal to 2.65g/cm 3 ;) Vacuum treatment must be performed during the hydrogen measurement process. If the hydrogen content is unqualified, further refining is carried out, that is, refining agents and slag removers are added repeatedly until it is qualified.
  • Step 14 casting: the mold is preheated at 300-400°C.
  • the temperature of the composite rare earth alloy melt obtained in step 13 above is controlled at 715-725° C. for casting.
  • the oxides on the surface layer of the composite rare earth alloy melt are filtered with a glass fiber filter; before each casting, the surface layer of the aluminum rare earth composite melt is filtered before casting.
  • the cooling control of the casting mold adopts a water cooling method to cool the aluminum-rare-earth composite melt cast into the mold.
  • the solidification speed of the aluminum melt is controlled at 50-100°C/s, and the solidification method is sequential solidification.
  • the mass ratio of the rare earth metal:strontium:titanium or titanium boron is 1:(0.1-1.2):(0.1-1.2). That is to say, the content of modificator and refiner can be increased, and they can fully function.
  • the modifier is a combination of a complex rare earth aluminum alloy and a refiner. Specifically, for the preparation of the composite rare earth aluminum alloy, refer to the above 4).
  • the aluminum alloy is preferably descaled and refined.
  • Heat preservation After stirring, control the temperature at 735 degrees for heat preservation, and the heat preservation time is controlled at 20 minutes;
  • Add refiner add 0.2% Al-Ti-B intermediate alloy to the refined aluminum water, wait for it to melt and stir and continue refining;
  • Heat preservation and standing After refining, the aluminum water flows into the heat preservation pool, and when the temperature is controlled at 710 ⁇ 3 degrees, the slag and impurities on the surface of the aluminum water are removed after standing for 10 ⁇ 2 minutes;
  • FIG. 1 shows the metallographic structure of the aluminum alloy before modification
  • FIG. 2 shows the metallographic structure after modification.
  • Figure 1 and Figure 2 the metallographic structure of the aluminum alloy before modification
  • Figure 1 shows the coarse primary ⁇ -Al phase presents the structure of dendrites, and the diameter and length of the secondary dendrites and dendrites
  • the crystal spacing is relatively large.
  • a large number of rose-like ⁇ -Al phases and rounder spherical ⁇ -Al phases also increased, the primary ⁇ -Al phase was significantly refined, and the number of dendrites decreased. . That is to say, after modification, the grains are sufficiently refined and the microstructure is uniform.
  • Example 1 The evaluation results (referred to as Example 1) are shown in Table 1 below.
  • Example 1 the test results of the unmodified A356 aluminum alloy (recorded as before modification) are given at the same time.
  • Step 1 Ingredients: Preheat the high-purity aluminum, aluminum-titanium-boron master alloy, aluminum-strontium master alloy, and rare earth aluminum alloy obtained above according to the required mass percentage.
  • high-purity aluminum 4.8 parts
  • aluminum-titanium-boron master alloy 0.2 parts
  • aluminum-strontium master alloy 60 parts
  • rare earth aluminum alloy 35 parts
  • Step 2 Adding and melting the rare earth aluminum alloy & aluminum strontium master alloy: In the above aluminum melt, control the temperature at 760-780°C, and add the rare earth alloy material & aluminum strontium master alloy into the aluminum melt together.
  • the whole process is protected by an argon atmosphere, and the rare earth aluminum alloy is melted when the temperature is controlled at 780-820°C.
  • Step 3 After the rare earth aluminum alloy & aluminum-strontium intermediate alloy are completely melted, the temperature is controlled at 750-770° C. and stirred for 5-10 minutes. The whole process is protected by argon atmosphere, the stirring rod is made of graphite material, and it is preheated to 400-500°C before stirring.
  • Step 4 heat-preserve the melted melt at 740-760° C. and control the heat-retaining time within 5-20 minutes.
  • Step 5 After the heat preservation is completed, refining, degassing and slag removal are carried out. 0.3% refining agent is blown into the melt by argon, and the aeration time is controlled at 3 to 8 minutes; after that, further add 0.2% slag remover, stir for 5 minutes and let stand to remove the slag and impurities on the surface of the melt . The whole process is protected by argon atmosphere.
  • the aluminum melt is sampled before and during refining to estimate the hydrogen content. (Requirement for melt density: greater than or equal to 2.65g/cm 3 .) During the hydrogen measurement process, it must be vacuumized. If the hydrogen content is unqualified, further refining is carried out, that is, refining agent and slag removal agent are added repeatedly for further refining.
  • Step 6 Stand still: put the melt that has been added with the rare earth aluminum alloy and refined for 3-5 minutes, and the temperature is controlled at 740-760 degrees.
  • the aluminum-titanium-boron master alloy is further added for smelting.
  • the experimental results show that the composite rare earth aluminum alloy obtained according to this embodiment can also effectively improve the mechanical strength of the aluminum alloy and achieve better refinement and modification effects.
  • the detailed data thereof are omitted here.
  • the modifier is a combination of rare earth aluminum alloy, aluminum strontium alloy, and aluminum titanium boron alloy.
  • the source and treatment of the rare earth aluminum alloy, aluminum strontium alloy, and aluminum titanium boron alloy refer to the above-mentioned Example 1.
  • the mass ratio of aluminum-silicon-magnesium alloy: rare earth aluminum alloy: aluminum-strontium master alloy: aluminum-titanium-boron alloy is (99.4-99.6): (0.3-0.5): The ratio of (0.1-0.3):(0.1-0.3) prepares the above-mentioned aluminum-silicon-magnesium alloy, rare earth aluminum alloy, aluminum-strontium master alloy, and aluminum-titanium-boron master alloy.
  • the aluminum alloy is preferably descaled and refined.
  • Heat preservation After stirring, control the temperature at 735 degrees for heat preservation, and the heat preservation time is controlled at 20 minutes;
  • Add aluminum-strontium master alloy add the above-mentioned aluminum-strontium master alloy after refining, and carry out refining and heat preservation (refer to the above for refining and heat preservation steps);
  • Add refiner add 0.2% aluminum-titanium-boron master alloy to the refined aluminum water, wait for it to melt and stir, and continue refining and heat preservation (refer to the above for refining and heat preservation steps);
  • Removal of slag After the heat preservation is over, remove the slag and impurities on the surface of the aluminum water after standing for 10 ⁇ 2 minutes;

Abstract

本发明提供一种改性铝合金及其制备方法。其中,制备方法包括如下步骤:步骤S1,提供铝合金熔体;步骤S2,提供改性剂;步骤S3,在惰性气体气氛下,在所述铝合金熔体中,加入所述改性剂并熔炼,得到改性铝合金,其中,所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合,或者所述改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合,所述复合稀土铝合金中含有锶、钛或钛硼、以及稀土金属,所述稀土铝合金、所述复合稀土铝合金中的稀土金属为镧、铈、钇中的任意一种或多种。

Description

改性铝合金及其制备方法 技术领域
本发明涉及合金材料及制备技术领域,具体涉及一种改性铝合金及其制备方法。
背景技术
众所周知,铝合金具有许多优良性能,它在机械制造业中的应用极为广泛,特别是随着工业用材料(如汽车工业)轻量化的发展,铝合金的应用更为增多。
铸造铝合金是以熔融金属充填铸型,获得各种形状零件毛坯的铝合金。具有低密度,比强度较高,抗蚀性和铸造工艺性好,受零件结构设计限制小等优点。然而,现今,市场上常用的铸造铝合金的强度、屈服强度及延伸率等力学性能尚不足够高,这使得铸造铝合金零件减轻和减薄问题有瓶颈。铸造铝合金主要是由α-Al枝晶、共晶硅及Mg2Si平衡相组成。但是,在铸态条件下,粗大α-Al枝晶和片状及块状共晶硅严重地恶化了其力学性能,尤其是塑性和抗拉强度,限制了其在实际工业生产中的应用。
为此,亟需提供一种能够进一步提高铸造铝合金的机械性能、并改善变质与细化效果的铝合金改性用复合稀土合金及其制备方法。
发明内容
有鉴于此,本发明提供一种能够进一步提高铸造铝合金的机械性能、并改善变质与细化效果的改性铝合金及其制备方法。
为解决上述技术问题,本发明采用以下技术方案:
根据本发明第一方面实施例的改性铝合金的制备方法,包括如下步骤:
步骤S1,提供铝合金熔体;
步骤S2,提供改性剂;
步骤S3,在惰性气体气氛下,在所述铝合金熔体中,加入所述改性剂并 熔炼,得到改性铝合金,
其中,所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合,或者所述改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合,
所述复合稀土铝合金中含有锶、钛或钛硼、以及稀土金属,
所述稀土铝合金、所述复合稀土铝合金中的稀土金属为镧、铈、钇中的任意一种或多种。
进一步地,所述稀土铝合金的制备包括如下步骤:
在惰性气氛下在铝熔体中加入所述稀土金属或含所述稀土金属的中间合金,加热的同时搅拌至完全熔化;
待完全熔化后继续保温10-20分钟使其均质化;
对均质化熔体进行精炼;
精炼后静置预定时间,并进行浇注,得到所述稀土铝合金。
根据本发明的一些实施例,所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合,其中,所述铝锶中间合金与所述铝钛或铝钛硼中间合金间隔开加入,所述稀土铝合金最先加入,或者与首先加入的一方一同加入,或者在所述铝锶中间合金与所述铝钛或铝钛硼中间合金加入间隙加入。
进一步地,所述步骤S3包括:
步骤S301,在所述铝合金熔体中加入所述稀土铝合金并进行熔炼,得到第一均匀混合熔体;
步骤S302,在所述第一均匀混合熔体中加入所述铝锶中间合金并继续熔炼,得到第二均匀混合熔体;
步骤S303,在所述第二均匀混合熔体中加入所述铝钛或铝钛硼中间合金并继续熔炼,得到所述改性铝合金。
根据本发明的另一些实施例,所述改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合,所述步骤S3包括:
步骤S310,在所述铝合金熔体中加入所述复合稀土铝合金并进行熔炼,得到第四均匀混合熔体;
步骤S320,在所述第四均匀混合熔体中加入所述铝钛或铝钛硼中间合金并继续熔炼,得到所述改性铝合金。
进一步地,所述复合稀土铝合金的制备包括:
步骤S311,提供铝合金熔体;
步骤S312,提供铝锶中间合金、铝钛或铝钛硼中间合金、以及稀土铝合金,所述稀土铝合金中的稀土金属为选自镧、铈、钇中的一种或多种;
步骤S313,在惰性气体气氛下,在所述铝合金熔体中,加入所述铝锶中间合金、铝钛或铝钛硼中间合金并熔炼,得到所述改性铝合金。
更进一步地,所述步骤S313中,所述铝锶中间合金与所述铝钛或铝钛硼中间合金间隔开加入,所述稀土铝合金在所述铝锶中间合金与所述铝钛或铝钛硼中间合金之前加入,或者与首先加入的一方一同加入,或者在所述铝锶中间合金与所述铝钛或铝钛硼中间合金加入间隙加入。
进一步地,所述步骤S313中,在所述铝熔体中依次间隔开加入所述稀土铝合金、所述铝锶中间合金、所述铝钛或铝钛硼中间合金。
进一步地,所述改性剂占所述改性铝合金的总量的0.4-0.6wt%,所述稀土金属:锶:钛或钛硼总量的质量比为1:(0.1-1.2):(0.1-1.2)。
进一步地,在将所述改性剂加入所述铝熔体之前对其进行精炼,所述精炼包括:
通过惰性气体吹入精炼剂并保持3-10分钟,此后加入除渣剂并搅拌5-10分钟,并去除表面浮渣。
更进一步地,所述精炼剂的加入量占所加入的熔体质量的0.1~0.3%,所述清渣剂的加入量占所加入熔体质量的0.1~0.3%;
所述精炼剂的组分按质量计含有:
氯化钾10-15份,氯化钠15-25份,氟化钙8-15份,碳酸钠15-25份,硫酸钠8-12份,氟铝酸钠10-20份,六氯乙烷8-12份;
所述清渣剂的组分按质量计含有:
氯化钠25-30份,氯化钾25-30份,碳酸钠5-10份,硫酸钠5-10份,氟铝酸钠1-5份,氟硅酸钠5-10份,氟化钙5-10份,硝酸钾1-5份,氟硅酸钾5-10份。
进一步地,所述精炼之前以及在精炼过程中,测试熔体的密度,当熔体的密度不足2.65g/cm 3时,则进行所述精炼处理;
当熔体密度大于等于2.65g/cm 3,即不进行所述精炼处理或终止所述精炼处理。
根据本发明第二方面实施例的改性铝合金,由根据上述任一实施例的制备方法制备得到。
本发明的上述技术方案至少具有如下有益效果之一:
根据本发明实施例的改性铝合金的制备方法,通过引入稀土金属,极大地克服了变质剂与细化剂之间的相互毒化作用,可以提高变质剂和细化剂的添加量,同时能够提高变质和细化的效果;
进一步地,本发明通过合理调整工艺,使得铝锶中间合金(即变质剂)和铝钛合金或铝钛硼合金(即细化剂)间隔开添加,并且稀土金属在后者加入之前加入,能够进一步有效避免变质剂与细化剂之间的相互毒化,有利于进一步提高变质和细化的效果;
进一步地,通过使得稀土铝合金、铝锶中间合金、铝钛合金或铝钛硼合金事先进行合金化,得到复合稀土铝合金,通过复合稀土铝合金来对铝合金进行改性,进一步提高了改性效果;
进一步地,通过对各阶段熔体进行精制,去除其中的杂质,有利于进一步提高最终铝合金制品的力学性能。
附图说明
图1为改性前铝合金的金相组织图像;
图2为利用本发明实施例1得到的改性铝合金的金相组织图像。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本发明中使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明中使用的“第一”、“第 二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。
下面首先结合具体描述根据本发明实施例的改性铝合金的制备方法。
根据本发明实施例的改性铝合金的制备方法,包括如下步骤:
步骤S1,提供铝合金熔体。
也就是说,首先准备铝合金熔体。
在此,需要说明的是,可以采用市售的高纯铝合金锭直接加热熔化制备铝合金熔体,也可以对铝合金锭进行进一步纯化。纯化处理例如可以包括如下步骤:
步骤S11,提供铝合金锭;
步骤S12,去除所述铝合金锭表面的氧化皮层;
步骤S13,对去除所述氧化皮层的铝合金锭进行清洗,烘干;
步骤S14,将烘干后的所述铝合金锭进行熔炼,得到初始熔体;
步骤S15,对所述初始熔体进行精炼,得到所述铝合金熔体。
也就是说,对于铝合金锭,首先去除其表面的氧化皮层,此后进行清洗以去除表面浮屑,烘干后进行熔炼,并对熔体进行精炼。关于具体的精炼处理过程后面进行详细述说。
经过上述纯化处理后,能够去除掉其中不希望存在的杂质,例如Fe、氧化物、等等。有利于进一步提高稀土合金的变质与细化作用。
在此需要补充说明的是,关于其中的Fe及其氧化物,例如可以通过添加锰或铝锰合金,以形成表面浮渣来去除。
作为被改性的母体,即铝合金熔体,例如可以是铝镁合金、铝硅合金、铝硅镁合金等,本发明对此不作具体限制。
步骤S2,提供改性剂。
其中,所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合,或者所述改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合,
所述复合稀土铝合金中含有锶、钛或钛硼、以及稀土金属,
所述稀土铝合金、所述复合稀土铝合金中的稀土金属为镧、铈、钇中的任 意一种或多种。
也就是说,存在如下两种实施方式:
实施方式一:
所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合。
其中,所述铝锶中间合金即变质剂,所述铝钛中间合金或铝钛硼中间合金即细化剂。也就是说,可以使用常规的变质剂和细化剂。
进一步地,对于所述变质剂和/或所述细化剂,可以采用市售的材料,也可以通过分别称取相应的金属锶、钛、钛&硼,将其熔化在铝熔体中形成均匀的合金制备得到。
另外,在常规的变质剂和细化剂之外,进一步引入稀土铝合金,以克服由于变质剂和细化剂之间的“中毒”反应导致的机械性能的限制。作为稀土铝合金中的稀土金属,考虑到变质剂中的锶以及细化剂中的钛、硼,可以选择电子结构介于其间的IIIB族元素。综合考虑其稳定性、资源等,优选地,采用钇、镧系金属中的镧、铈中的一种或多种。稀土铝合金例如可以采用市售的Al-10Ce、Al-20Ce、Al-20La、Al-10La、Al-20Y、Al-10Y中一种或多种。
另外,也可以自行制备稀土铝合金,例如可以采用下述方法制备得到:
在惰性气氛下在所述铝熔体其中加入所述稀土金属或含所述稀土金属的中间合金,加热的同时搅拌至完全熔化;
待完全熔化后继续保温10-20分钟使其均质化;
对均质化熔体进行精炼;
精炼后静置预定时间,并进行浇注,得到所述稀土铝合金。
其中,铝熔体可以采用市售的高纯铝锭参考上述对铝合金锭的纯化处理进行相应的处理,在此不再进行赘述。
此外,对于市售的铝锶中间合金,铝钛中间合金或铝钛硼中间合金,稀土铝合金,可以分别依次进行去氧化皮层、超声清洗、精炼处理。由此,能够进一步去除其中不希望的杂质、氧化物,有利于提高作为产品的复合稀土合金的细化和变质作用。
实施方式二:
所述改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合。
作为复合稀土铝合金,可以利用上述稀土铝合金、变质剂、细化剂、以及铝熔体经熔炼、精炼制备得到。
例如,所述复合稀土铝合金的制备可以包括:
步骤S311,提供铝熔体;
步骤S312,提供铝锶中间合金、铝钛或铝钛硼中间合金、以及稀土铝合金,所述稀土铝合金中的稀土金属为选自镧、铈、钇中的一种或多种;
步骤S313,在惰性气体气氛下,在所述铝熔体中,加入所述铝锶中间合金、铝钛或铝钛硼中间合金并熔炼,得到所述铝合金改性用复合稀土合金。
其中,所述步骤S313中,所述铝锶中间合金与所述铝钛或铝钛硼中间合金间隔开加入,所述稀土铝合金在所述铝锶中间合金与所述铝钛或铝钛硼中间合金之前加入,或者与首先加入的一方一同加入,或者在所述铝锶中间合金与所述铝钛或铝钛硼中间合金加入间隙加入。
优选地,所述步骤S313中,在所述铝熔体中依次间隔开加入所述稀土铝合金、所述铝锶中间合金、所述铝钛或铝钛硼中间合金。
步骤S3,在惰性气体气氛下,在所述铝合金熔体中,加入所述改性剂并熔炼,得到所述改性铝合金。
也就是说,在准备好铝合金熔体、改性剂之后,在惰性气体气氛下,将改性剂加入到铝合金熔体中进一步熔炼,得到改性铝合金。
根据本发明实施例的改性铝合金的制备方法,通过在改性剂中引入稀土金属,极大地克服了变质剂与细化剂之间的相互毒化作用,可以提高变质剂和细化剂的添加量,同时能够提高变质和细化的效果。
另外,本发明的发明人等经反复研究发现,通过调整加入变质剂、细化剂、以及稀土铝合金的加入顺序,能够进一步有效避免变质剂与细化剂之间的相互毒化,有利于进一步提高变质和细化的效果。
针对上述两种组合的改性剂,分别进行如下熔炼。
针对所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合:
具体地,各稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金及其预处理可以参考上述步骤S2。
在该组合的情况下,其中,所述铝锶中间合金与所述铝钛或铝钛硼中间合金间隔开加入,所述稀土铝合金最先加入,或者与首先加入的一方一同加入,或者在所述铝锶中间合金与所述铝钛或铝钛硼中间合金加入间隙加入。
进一步优选地,所述步骤S3可以具体包括:
步骤S301,在所述铝合金熔体中加入所述稀土铝合金并进行熔炼,得到第一均匀混合熔体;
步骤S302,在所述第一均匀混合熔体中加入所述铝锶中间合金并继续熔炼,得到第二均匀混合熔体;
步骤S303,在所述第二均匀混合熔体中加入所述铝钛或铝钛硼中间合金并继续熔炼,得到所述改性铝合金。
也就是说,通过先加入稀土铝合金并进行熔炼,在此基础上再依次间隔开加入作为变质剂的铝锶中间合金、作为细化剂的铝钛中间合金或铝钛硼中间合金,能够更好地解决锶、硼的毒化作用,得到更细化、更均匀,且机械性能更高的改性铝合金。
另外,针对改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合,所述步骤S3包括:
步骤S310,在所述铝合金熔体中加入所述复合稀土铝合金并进行熔炼,得到第四均匀混合熔体;
步骤S320,在所述第四均匀混合熔体中加入所述铝钛或铝钛硼中间合金并继续熔炼,得到所述改性铝合金。
也就是说,在事前将稀土铝合金、变质剂、细化剂、铝熔炼制得复合稀土铝合金的情况下,可以一次性加入上述铝熔体中进行制备。当然,考虑到高温熔炼的情况下易于发生晶粒的异常长大,不利于提高其机械性能,优选在复合稀土铝合金全部熔化并与铝合金均匀混合的情况下,在其中进一步加入细化剂即铝钛中间合金或铝钛硼中间合金,控制晶粒生长。
其中,作为改性剂,其添加量根据使用需求、作为中间合金中各有效成分的含量不同而进行相应设计。作为一个示例,例如在通过复合稀土合金(其中所含稀土元素:锶:钛或钛硼总量的质量比=1:(0.05-1.2):(0.0001-1))引入的情况下,所述改性剂优选占所述改性铝合金的总量的0.4-0.6wt%。
进一步地,上述任一步骤中的精炼,即铝熔体纯化过程中的精炼、稀土铝合金制备过程中的精炼、以及复合稀土铝合金中的各熔体的精炼,均可以采用如下方式进行:
通过惰性气体吹入精炼剂并保持3-10分钟,此后加入除渣剂并搅拌5-10分钟,并去除表面浮渣。
进一步地,所述精炼剂的加入量占所加入的熔体质量的0.1~0.3%,所述清渣剂的加入量占所加入熔体质量的0.1~0.3%;
所述精炼剂的组分按质量计含有:
氯化钾10-15份,氯化钠15-25份,氟化钙8-15份,碳酸钠15-25份,硫酸钠8-12份,氟铝酸钠10-20份,六氯乙烷8-12份;
所述清渣剂的组分按质量计含有:
氯化钠25-30份,氯化钾25-30份,碳酸钠5-10份,硫酸钠5-10份,氟铝酸钠1-5份,氟硅酸钠5-10份,氟化钙5-10份,硝酸钾1-5份,氟硅酸钾5-10份。
进一步地,测试熔体的密度,当熔体的密度不足2.65g/cm 3时,则进行所述精炼处理;当熔体密度大于等于2.65g/cm 3,即不进行所述精炼处理或终止所述精炼处理。
下面,通过具体实施例进一步详细说明根据本发明的制备方法。
实施例1
铝合金:采用铝硅镁合金(A356)(购自:山东创丰山西铝)
高纯铝锭(购自中铝集团,成分:Al(99.99%),Fe<0.1%,杂质<0.05%)
精炼剂:
成分:氯化钾15份,氯化钠20份,CaF2 10份,Na2CO3 20份,Na2SO4 10份,Na3AlF6 15份,C2Cl6 10份。
除渣剂:
成分:氯化钠25份,氯化钾25份,碳酸钠5份,硫酸钠5份,氟铝酸钠5份,氟硅酸钠10份,氟化钙10份,硝酸钾5份,氟硅酸钾10份。
1)铝合金熔体的制备
熔化:先将预热的铝硅镁合金A356加到提前升温熔炼炉内,在760度范 围内加热熔化成铝水。
除气除渣:熔化成铝水后,通入氮气(或氩气)后吹入精炼剂(0.3wt%精炼剂)到铝水中,通气时间控制在15分钟。
静置:将S3中的铝水静置10分钟,温度控制在760度下,并打捞干净铝水表层的渣杂质。
期间,对静置的铝水取样测定化学成分并估算氢气量:
以密度法估算其中的氢气含量,密度要求:大于等于2.65g/cm3。当密度越大(越接近2.7g/cm3)则认为其中的氢气含量越低。
2)制备高纯度的稀土铝合金
2.1)高纯铝熔体的制备
预处理:用砂轮机将高纯铝锭表面的氧化皮和表层处理干净。
超声清洗:将预处理后的高纯铝锭放入清洗剂中进行超声处理。
烘干:将超声清洗后的高纯铝锭中放入烘箱炉保持60-100℃烘烤30-60分钟。
熔炼:将烘干后高纯铝放入到预热的坩埚中,在760-800℃加热熔化。
精炼处理:待高纯铝熔化后做精炼处理。具体:通过Ar+石墨自动除气搅拌棒对熔化的高纯铝做精炼处理。在5-10分钟740-760℃时用Ar吹入精炼,吹入精炼剂量在0.1~0.3%熔体,并保持3-5分钟。此后,静置10-20分钟,在其中放入0.1~0.3%的除渣剂使其均匀散开,清除表面浮渣。
静置:扒渣后静置8-15分钟在740-760℃。
2.2)稀土铝合金的熔炼及处理:将上述1)得到的高纯铝温度调至780-820℃,加热完全熔化后,按设定的质量百分比即在稀土铝合金中镧含量为0.2±0.02wt%加入稀土铝镧合金(购自包头稀土研究院,成分:Al-10La,Fe<0.05)。在氩气气氛保护下在780-820℃下加热使其完全熔化。
搅拌和保温:对熔化后的熔体搅拌3-5分钟使其均匀化,在760-780℃时对熔体保温10-20分钟。
精炼处理:整体过程在氩气气氛保护下,待稀土铝镧合金熔化后做精炼处理。通入Ar+石墨自动除气搅拌棒对熔化的其做精炼处理。在5-10分钟760-780℃时用Ar吹入精炼,吹入精炼剂量在0.1~0.3%熔体,保持在3-5分钟,精炼过 程中铝液上表面不能有沸腾气泡。对熔体表面浮渣清除:在15-20分钟时放入在0.1~0.3%的除渣剂均匀散开,清除表面浮渣。
静置:扒渣后静置10-15分钟在720-730℃时。
浇铸:将上述熔体快速浇铸在模具中,保证各部分成分均匀。这个过程采用全水冷对其降温处理。
3)铝锶中间合金、铝钛硼中间合金的精炼处理
3.1)铝锶中间合金:购自南通昂申金属材料有限公司,成分:Al-10Sr,Fe<0.05。
预处理:用砂轮机将铝锶中间合金的氧化皮和表层处理干净。
超声清洗:将预处理后的铝锶中间合金放入超声清洗槽中进行超声处理。
烘干:将清洗后的铝锶中间合金放入烘箱炉保持60-100℃烘烤30-60分钟。
熔炼:将铝锶中间合金放入到预热的坩埚中在760-780℃熔化处理。
精炼处理:待铝锶中间合金熔化后做精炼处理。通入Ar+石墨自动除气搅拌棒对熔化的高纯铝做精炼处理。在5-10分钟730-750℃时用Ar吹入精炼,吹入精炼剂量在0.1~0.3%熔体,保持在3-5分钟,精炼过程中铝液上表面不能有沸腾气泡。
表面浮渣清除:在15-20分钟时放入在0.1~0.3%的除渣剂均匀散开,清除表面浮渣。
静置:扒渣后静置8-15分钟在740-760℃时。
3.2)铝钛硼中间合金:购自南通昂申金属材料有限公司(成分和含量:Ti:5%,B:1%,其余为:Al)
作为细化剂的铝钛硼中间合金,参考上述进行相同处理。
4)复合稀土合金的制备
经过上述1)-3)分别准备了铝熔体、稀土铝合金、铝锶中间合金、以及铝钛硼中间合金,接下来,对其进行混合熔炼,以得到作为产品的复合稀土合金。
本实施中,作为添加顺序,首先在铝熔体中添加稀土铝合金,接着添加铝锶合金,最终添加铝钛合金。具体如下:
步骤1、配料:将上述得到的高纯铝、铝钛硼中间合金、铝锶中间合金、 稀土铝合金按要求的质量百分比称量后预热。
以总重量100份计,高纯铝:4.8份、铝钛硼中间合金:0.2份、铝锶中间合金:60份、稀土铝合金:35份。
步骤2、加入并熔化稀土铝合金:对于上述铝熔体,首先将稀土铝合金加热至780~820℃使其在熔化前软化,此后将铝熔体整体温度控制在760~780℃,将稀土铝合金加入铝熔体中进行保温。
整体过程采用氩气氛围保护,熔化稀土铝合金。
步骤3、待稀土铝合金完全熔化后,将温度控制在750~770℃时,进行搅拌5-10分钟。
整体过程采用氩气氛围保护,搅拌棒采用石墨材料并使其在搅拌前预热到400-500℃。
也就是说,在稀土铝合金完全熔化后,稍稍降低温度,可以防止过热引起后续晶粒粗化等。
步骤4、对熔化后的熔体在740~760℃下,保温时间控制在5-20分钟进行保温处理。该阶段中,发生合金化反应。
步骤5、精炼:保温结束后,进行精炼、除气除渣。在熔体中通过氩气吹入0.3%的精炼剂,通气时间控制在3~8分钟;此后,进一步加入0.2%的除渣剂中,搅拌5分钟静置并去除熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,测定其密度以估算氢含量。测量方法采用密度法(以铝的理论值2.70g/cm3做对比),测量的样品越是接近2.7g/cm3,表示铝的内部氢含量越低。一般正常达不到2.7g/cm3;样品的密度测试大约等于2.65g/cm3即可估算氢含量过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤6、静置:将加入稀土铝合金并精炼后的熔体静置3-5分钟,温度控制在740-760度下。
步骤7、加入并熔化铝锶中间合金:将上述精炼后的铝锶中间合金加入步骤6的熔体中,将温度控制在780~820℃,使得铝锶中间合金完全熔化。整体过程采用氩气氛围保护,熔化铝锶中间合金。
步骤8、待铝锶中间合金熔化后,将温度控制在740~760℃,搅拌3-8分钟,实现均质化。整体过程采用氩气氛围保护,搅拌棒采用石墨材料,搅拌前预热到400-500℃。
步骤9、接下来,在725~750℃下,进行保温处理。保温时间控制在15-30分钟。
步骤10、精炼、除气除渣:待熔体保温结束后,通入氩气后吹入精炼剂0.3%到铝稀土复合熔体中,通气时间控制在5~10分钟;放入0.2%的扒渣剂到铝熔体中,搅拌5分钟并打捞铝稀土复合熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,测定氢含量。(氢气含量要求:大于等于2.65g/cm 3;)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤11、加铝钛硼中间合金:在上述步骤10处理后的熔体中,加入铝钛硼中间合金,加热使其完全熔化,并均匀搅拌3-5分钟使其均质化。
步骤12、保温:搅拌后,将熔体保温8-12分钟,温度控制在715-725℃下。
步骤13、精炼、除气除渣:待熔体保温结束后,通入氩气后吹入精炼剂0.3%到铝稀土复合熔体中,通气时间控制在5~10分钟;放入0.2%的扒渣剂到铝熔体中,搅拌5分钟并打捞铝稀土复合熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,测定氢含量。(氢气含量要求:大于等于2.65g/cm 3;)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼,直至合格。
步骤14、浇铸:模具预热在300-400℃。将上述步骤13得到的复合稀土合金熔体温度控制在715~725℃浇铸即可。
优选地,浇铸时,复合稀土合金熔体表层的氧化物采用玻璃纤维的过滤网过滤干净;每次浇铸前对铝稀土复合熔体表层做过滤处理后浇铸。
优选地,浇铸的模具冷却控制,对浇铸到模具中铝稀土复合熔体采用水冷方式冷却,冷却过程中,采用以50-100℃/s控制铝熔体凝固速度,凝固方式用 顺序凝固。
上述实施例得到的复合稀土铝合金,所述稀土金属:锶:钛或钛硼重量的质量比为1:(0.1-1.2):(0.1-1.2)。也就是说,可以提高变质剂、细化剂的含量,并能够使其充分发挥作用。
5)改性铝合金的制备
本实施例中,改性剂为复合稀土铝合金和细化剂的组合。具体而言,复合稀土铝合金的制备参考上述4)。
作为细化剂的铝钛硼中间合金参考上述3.2)。
在分别得到上述复合稀土铝合金、精练的细化剂之后,以铝合金:复合稀土铝合金:细化剂的质量比为99.4:0.4:0.2的比例准备上述铝硅镁合金、复合稀土铝合金、以及铝钛硼中间合金。
其中,需要说明的是,所述铝合金优选去除氧化皮层,并进行精炼。
此后,按照如下步骤进行熔炼。
混合:按照上述比例,在上述1)处理后的铝硅镁合金熔体中,将温度控制在740±5度时,首先加入4)得到的复合稀土铝合金。
搅拌:用石墨搅拌器对加入复合稀土铝合金并熔化的熔体进行搅拌,搅拌过程中需要均匀搅拌,连续搅拌8分钟;
保温:搅拌后将温度控制在735度进行保温,保温时间控制在20分钟;
精炼:保温结束后,通入氩气后用吹入清渣剂到铝水中,通气时间控制在15分钟;
加入细化剂:加入0.2%铝钛硼中间合金到精炼的铝水中,待其熔化搅拌并持续进行精炼;
保温静置:精炼结束后,铝水流入保温池后,温度控制在710±3度时,静置10±2分钟后去除铝水表层的渣、杂质;
浇铸:预热模具在250-400度时,将上述温度控制在700±5的精炼后改性铝合金浇铸到模具中,冷却即得到改性铝合金。
图1示出了改性前的铝合金的金相结构,图2示出了改性后的金相结构。由图1和图2可知,改性前的铝合金(图1)的金相组织,可看出粗大的初生α-Al相呈现树枝晶的组织形态,二次枝晶的直径和长度及枝晶间距都是呈现比 较大。而改善后的铝合金的金相组织,出现了大量蔷薇状α-Al相和较圆整的球形α-Al相也随之增加,初生α-Al相显著地细化,树枝晶的数量减少。也就是说,改性后,晶粒得到充分细化,且微观结构均匀。
另外,对A356铝合金进行改性后的机械性能进行了评价。评价结果(记作实施例1)示于下述表1。为了进行对比,同时给出了未改性的A356铝合金的测试结果(记作改性前)。
同时,还列出了除了代替本实施例的复合稀土铝合金而使用铝锶合金作为改性剂(记作对比例1)、直接使用稀土铝合金(参考实施例1中2)制备得到,记作对比例2),以完全相同配比添加了改性剂、细化剂所改性后的A356铝合金的测试结果。
表1 A356铝合金以及改性后的机械性能测试结果
机械性能 改性前 对比例1 对比例2 实施例1
抗拉强度(MPa) 130±3.5 180±5.1 175±5.5 220±5
屈服强度(MPa) 65±5.5 82±4.2 80±4.2 108±6
延伸率(%) 3±0.25 6.6±0.45 8.6±0.35 20±0.6
由表1可知,通过使用本实施例的复合稀土铝合金,大幅提高了延伸率、屈服强度、以及抗拉强度,极大地提高了综合机械性能。而且,相比于现有的变质剂、或者仅仅使用稀土合金进行改性而言,能够进一步提高其综合机械性能。
实施例2
本实施例中,与上述实施例1相比,除了在制备复合稀土铝合金时,铝锶中间合金与稀土铝合金一同加入这一点不同之外,其余与实施例1均相同。
下面,仅针对复合稀土合金的制备中涉及不同的部分进行描述如下:
4)复合稀土合金的制备
步骤1、配料:将上述得到的高纯铝、铝钛硼中间合金、铝锶中间合金、稀土铝合金按要求的质量百分比称量后预热。
以100份为例,高纯铝:4.8份、铝钛硼中间合金:0.2份、铝锶中间合金:60份、稀土铝合金:35份
步骤2、加入并熔化稀土铝合金&铝锶中间合金:在上述铝熔体,将温度控制在760~780℃,将稀土合金材料&铝锶中间合金一同加入铝熔体中。
整体过程采用氩气氛围保护,将温度控制在780~820℃时,熔化稀土铝合金。
步骤3、待稀土铝合金&铝锶中间合金完全熔化后,将温度控制在750~770℃时,进行搅拌5-10分钟。整体过程采用氩气氛围保护,搅拌棒采用石墨材料,搅拌前预热到400-500℃。
步骤4、对熔化后的熔体在740~760℃下,保温时间控制在5-20分钟进行保温处理。
步骤5、精炼:保温结束后,进行精炼、除气除渣。在熔体中通过氩气吹入0.3%的精炼剂,通气时间控制在3~8分钟;此后,进一步加入0.2%的除渣剂中,搅拌5分钟静置并去除熔体表层的渣及杂质。整体过程采用氩气氛围保护。
在精炼前以及精炼过程中铝熔体取样,估算氢含量。(熔体密度要求:大于等于2.65g/cm 3。)测氢过程中必须抽真空处理,若氢含量不合格,则进一步进行精炼,即重复加入精炼剂、除渣剂再一次精炼。
步骤6、静置:将加入稀土铝合金并精炼后的熔体静置3-5分钟,温度控制在740-760度下。
此后,进一步加入铝钛硼中间合金进行熔炼。具体步骤可以参考实施例1,在此省略其详细说明。
此外,根据本实施例得到的复合稀土铝合金,经实验结果显示,同样可以有效提高铝合金的机械强度、实现更好的细化、改性效果。在此省略其详细数据。
实施例3
本实施例中,与上述实施例1相比,除了代替使用复合稀土铝合金而依次间隔开加入稀土铝合金、铝锶合金、以及铝钛硼合金这一点不同之外,其余均相同。
下面,仅针对上述步骤5)改性铝合金的制备中所涉及的不同进行描述。
本实施例中,改性剂为稀土铝合金、铝锶合金、以及铝钛硼合金的组合。具体而言,稀土铝合金、铝锶合金、以及铝钛硼合金的来源和处理,参考上述实施例1。
在分别得到上述稀土铝合金、精练的细化剂之后,以铝硅镁合金:稀土铝合金:铝锶中间合金:铝钛硼合金的质量比为(99.4-99.6):(0.3-0.5):(0.1-0.3):(0.1-0.3)的比例准备上述铝硅镁合金、稀土铝合金、铝锶中间合金、以及铝钛硼中间合金。
其中,需要说明的是,所述铝合金优选去除氧化皮层,并进行精炼。
此后,按照如下步骤进行熔炼。
混合:按照上述比例,在上述处理后的铝硅镁合金熔体中,将温度控制在740±5度时,首先加入稀土铝合金。
搅拌:用石墨搅拌器对加入复合稀土铝合金并熔化的熔体进行搅拌,搅拌过程中需要均匀搅拌,连续搅拌8分钟;
保温:搅拌后将温度控制在735度进行保温,保温时间控制在20分钟;
精炼:保温结束后,通入氩气后用吹入清渣剂到铝水中,通气时间控制在15分钟;
加入铝锶中间合金:在精炼后加入上述铝锶中间合金,并进行精炼、保温(精炼、保温步骤参考上述);
加入细化剂:加入0.2%铝钛硼中间合金到精炼的铝水中,待其熔化搅拌并持续进行精炼、保温(精炼、保温步骤参考上述);
去渣:保温结束后,静置10±2分钟后去除铝水表层的渣、杂质;
浇铸:预热模具在250-400度时,将上述温度控制在700±5的精炼后改性铝合金浇铸到模具中,冷却即得到改性铝合金。此外,根据本实施例得到的改性铝合金,经实验结果显示,同样可以有效提高铝合金的机械强度、实现更好的细化、改性效果。在此省略其详细数据。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (13)

  1. 一种改性铝合金的制备方法,其特征在于,包括如下步骤:
    步骤S1,提供铝合金熔体;
    步骤S2,提供改性剂;
    步骤S3,在惰性气体气氛下,在所述铝合金熔体中,加入所述改性剂并熔炼,得到改性铝合金,
    其中,所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合,或者所述改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合,
    所述复合稀土铝合金中含有锶、钛或钛硼、以及稀土金属,
    所述稀土铝合金、所述复合稀土铝合金中的稀土金属为镧、铈、钇中的任意一种或多种。
  2. 根据权利要求1所述的制备方法,其特征在于,所述稀土铝合金的制备包括如下步骤:
    在惰性气氛下在铝熔体中加入所述稀土金属或含所述稀土金属的中间合金,加热的同时搅拌至完全熔化;
    待完全熔化后继续保温10-20分钟使其均质化;
    对均质化熔体进行精炼;
    精炼后静置预定时间,并进行浇注,得到所述稀土铝合金。
  3. 根据权利要求2所述的制备方法,其特征在于,所述改性剂为稀土铝合金、铝锶中间合金、铝钛或铝钛硼中间合金的组合,其中,所述铝锶中间合金与所述铝钛或铝钛硼中间合金间隔开加入,所述稀土铝合金最先加入,或者与首先加入的一方一同加入,或者在所述铝锶中间合金与所述铝钛或铝钛硼中间合金加入间隙加入。
  4. 根据权利要求3所述的制备方法,其特征在于,所述步骤S3包括:
    步骤S301,在所述铝合金熔体中加入所述稀土铝合金并进行熔炼,得到第一均匀混合熔体;
    步骤S302,在所述第一均匀混合熔体中加入所述铝锶中间合金并继续熔炼,得到第二均匀混合熔体;
    步骤S303,在所述第二均匀混合熔体中加入所述铝钛或铝钛硼中间合金并继续熔炼,得到所述改性铝合金。
  5. 根据权利要求1所述的制备方法,其特征在于,所述改性剂为复合稀土铝合金、铝钛或铝钛硼中间合金的组合,所述步骤S3包括:
    步骤S310,在所述铝合金熔体中加入所述复合稀土铝合金并进行熔炼,得到第四均匀混合熔体;
    步骤S320,在所述第四均匀混合熔体中加入所述铝钛或铝钛硼中间合金并继续熔炼,得到所述改性铝合金。
  6. 根据权利要求5所述的制备方法,其特征在于,所述复合稀土铝合金的制备包括:
    步骤S311,提供所述铝熔体;
    步骤S312,提供铝锶中间合金、铝钛或铝钛硼中间合金、以及稀土铝合金,所述稀土铝合金中的稀土金属为选自镧、铈、钇中的一种或多种;
    步骤S313,在惰性气体气氛下,在所述铝熔体中,加入所述铝锶中间合金、铝钛或铝钛硼中间合金并熔炼,得到所述铝合金改性用复合稀土合金。
  7. 根据权利要求6所述的制备方法,其特征在于,所述步骤S313中,所述铝锶中间合金与所述铝钛或铝钛硼中间合金间隔开加入,所述稀土铝合金在所述铝锶中间合金与所述铝钛或铝钛硼中间合金之前加入,或者与首先加入的一方一同加入,或者在所述铝锶中间合金与所述铝钛或铝钛硼中间合金加入间隙加入。
  8. 根据权利要求7所述的制备方法,其特征在于,所述步骤S313中,在所述铝熔体中依次间隔开加入所述稀土铝合金、所述铝锶中间合金、所述铝钛或铝钛硼中间合金。
  9. 根据权利要求1所述的制备方法,其特征在于,所述改性剂占所述改性铝合金的总量的0.4-0.6wt%,所述稀土金属:锶:钛或钛硼总量的质量比为1:(0.1-1.2):(0.1-1.2)。
  10. 根据权利要求1所述的制备方法,其特征在于,在将所述改性剂加入所述铝熔体之前对其进行精炼,所述精炼包括:
    通过惰性气体吹入精炼剂并保持3-10分钟,此后加入除渣剂并搅拌5-10 分钟,并去除表面浮渣。
  11. 根据权利要求10所述的制备方法,其特征在于,所述精炼剂的加入量占所加入的熔体质量的0.1~0.3%,所述清渣剂的加入量占所加入熔体质量的0.1~0.3%;
    所述精炼剂的组分按质量计含有:
    氯化钾10-15份,氯化钠15-25份,氟化钙8-15份,碳酸钠15-25份,硫酸钠8-12份,氟铝酸钠10-20份,六氯乙烷8-12份;
    所述清渣剂的组分按质量计含有:
    氯化钠25-30份,氯化钾25-30份,碳酸钠5-10份,硫酸钠5-10份,氟铝酸钠1-5份,氟硅酸钠5-10份,氟化钙5-10份,硝酸钾1-5份,氟硅酸钾5-10份。
  12. 根据权利要求11所述的制备方法,其特征在于,所述精炼之前以及在精炼过程中,测试熔体的密度,当熔体的密度不足2.65g/cm 3时,则进行所述精炼处理;
    当熔体密度大于等于2.65g/cm 3,即不进行所述精炼处理或终止所述精炼处理。
  13. 一种改性铝合金,其特征在于,根据权利要求1至12任一项所述的制备方法制备得到。
PCT/CN2022/141280 2021-12-27 2022-12-23 改性铝合金及其制备方法 WO2023125262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111614261.9 2021-12-27
CN202111614261.9A CN114214534A (zh) 2021-12-27 2021-12-27 改性铝合金及其制备方法

Publications (1)

Publication Number Publication Date
WO2023125262A1 true WO2023125262A1 (zh) 2023-07-06

Family

ID=80706165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/141280 WO2023125262A1 (zh) 2021-12-27 2022-12-23 改性铝合金及其制备方法

Country Status (2)

Country Link
CN (1) CN114214534A (zh)
WO (1) WO2023125262A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114214534A (zh) * 2021-12-27 2022-03-22 上海耀鸿科技股份有限公司 改性铝合金及其制备方法
CN115637354A (zh) * 2022-09-16 2023-01-24 湖南省大禹科技发展有限公司 一种稀土铝碳硅制动盘的成型方法和成型设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938004A (zh) * 2014-05-06 2014-07-23 东南大学 一种近共晶铸造铝硅合金组织控制方法
CN109439976A (zh) * 2019-01-09 2019-03-08 广东省材料与加工研究所 一种复合变质剂及铸造铝硅合金的复合变质方法
CN110643862A (zh) * 2019-10-25 2020-01-03 安徽镁美科技有限公司 一种用于新能源汽车电池壳体铝合金及其压力铸造制备方法
CN111349821A (zh) * 2020-03-17 2020-06-30 嘉丰工业科技(惠州)有限公司 一种低硅低铁高流动性的高导热压铸铝合金及其制备方法
CN112501466A (zh) * 2020-11-16 2021-03-16 顺博合金江苏有限公司 再生铝变质处理工艺及变质处理剂
CN112522554A (zh) * 2020-11-19 2021-03-19 保定市立中车轮制造有限公司 一种稀土铝合金及其制备方法
CN114214534A (zh) * 2021-12-27 2022-03-22 上海耀鸿科技股份有限公司 改性铝合金及其制备方法
CN114277272A (zh) * 2021-12-27 2022-04-05 上海耀鸿科技股份有限公司 铝合金改性用复合稀土合金及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707767A (zh) * 2018-04-28 2018-10-26 广州致远新材料科技有限公司 一种铝合金材料的制备方法
CN110551924B (zh) * 2018-05-30 2021-09-21 比亚迪股份有限公司 铝合金及其制备方法和应用
CN108467979B (zh) * 2018-06-25 2020-12-29 上海交通大学 一种金属型重力铸造铝合金材料及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938004A (zh) * 2014-05-06 2014-07-23 东南大学 一种近共晶铸造铝硅合金组织控制方法
CN109439976A (zh) * 2019-01-09 2019-03-08 广东省材料与加工研究所 一种复合变质剂及铸造铝硅合金的复合变质方法
CN110643862A (zh) * 2019-10-25 2020-01-03 安徽镁美科技有限公司 一种用于新能源汽车电池壳体铝合金及其压力铸造制备方法
CN111349821A (zh) * 2020-03-17 2020-06-30 嘉丰工业科技(惠州)有限公司 一种低硅低铁高流动性的高导热压铸铝合金及其制备方法
CN112501466A (zh) * 2020-11-16 2021-03-16 顺博合金江苏有限公司 再生铝变质处理工艺及变质处理剂
CN112522554A (zh) * 2020-11-19 2021-03-19 保定市立中车轮制造有限公司 一种稀土铝合金及其制备方法
CN114214534A (zh) * 2021-12-27 2022-03-22 上海耀鸿科技股份有限公司 改性铝合金及其制备方法
CN114277272A (zh) * 2021-12-27 2022-04-05 上海耀鸿科技股份有限公司 铝合金改性用复合稀土合金及其制备方法

Also Published As

Publication number Publication date
CN114214534A (zh) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2023125263A1 (zh) 铝合金改性用复合稀土合金及其制备方法
WO2023125262A1 (zh) 改性铝合金及其制备方法
CN112143945B (zh) 一种多种复合稀土元素的高强韧性铸造铝硅合金及其制备方法
WO2023125282A1 (zh) 高塑性复合改性铝合金制件及其制备方法
CN112680615B (zh) 高强韧压铸铝合金材料的制备方法、热处理方法和压铸方法
CN112430767B (zh) 一种大规格空心铸锭及铸锭方法
CN115418537B (zh) 一种免热处理压铸铝合金及其制备方法和应用
CN107587012A (zh) 一种轻质铸造Al‑Si‑Li合金材料及其制备方法
WO2023125265A1 (zh) 高强度复合改性铝合金制件及其制备方法
WO2023125264A1 (zh) 高强度铝合金制件及其制备方法
CN106978557A (zh) 一种镁锂合金及其制备方法
CN112522557B (zh) 一种高强韧压铸铝合金材料
WO2023125266A1 (zh) 高塑性铝合金制件及其制备方法
CN107699747A (zh) 一种高Cu含量Al‑Si‑Li‑Cu铸造合金及其制备方法
CN108588524B (zh) 一种金属型重力铸造镁合金材料及其制备方法
CN110804704A (zh) Al-Ti-B-Sr中间合金的制备方法以及Al-Ti-B-Sr中间合金
CN115141947B (zh) 高比例添加废料的5000系铝合金扁锭及其制备方法、铝材
CN111155003A (zh) 一种高强韧性高镁铝合金及其制备方法
WO2018099272A1 (zh) 半固态压铸铝合金及制备半固态压铸铝合金铸件的方法
WO2023015608A1 (zh) 高强高导抗晶间腐蚀铝合金及其制备方法
CN1145412A (zh) 铝锶钛硼中间合金及其制造方法
CN111020248B (zh) 一种Ag-Zr-Zn中间合金及其制备方法和应用
KR102514093B1 (ko) 알루미늄 비열처리 합금 제조방법
CN114293073B (zh) 一种铝基材料及其制备方法和应用
CN115261687A (zh) 一种高合金化Al-Zn-Mg-Cu合金及消除耐高温残留相的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22914516

Country of ref document: EP

Kind code of ref document: A1