WO2020228161A1 - 一种无水纳米脱酸液及其制备方法 - Google Patents
一种无水纳米脱酸液及其制备方法 Download PDFInfo
- Publication number
- WO2020228161A1 WO2020228161A1 PCT/CN2019/101294 CN2019101294W WO2020228161A1 WO 2020228161 A1 WO2020228161 A1 WO 2020228161A1 CN 2019101294 W CN2019101294 W CN 2019101294W WO 2020228161 A1 WO2020228161 A1 WO 2020228161A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- deacidification
- nano
- anhydrous
- nanoparticles
- anhydrous nano
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- 239000002105 nanoparticle Substances 0.000 claims abstract description 50
- 239000007788 liquid Substances 0.000 claims abstract description 44
- 239000006185 dispersion Substances 0.000 claims abstract description 39
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 30
- 238000003756 stirring Methods 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 22
- 239000002245 particle Substances 0.000 claims abstract description 21
- 239000004094 surface-active agent Substances 0.000 claims abstract description 21
- 239000002270 dispersing agent Substances 0.000 claims abstract description 18
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 150000007514 bases Chemical class 0.000 claims abstract description 10
- 239000002184 metal Substances 0.000 claims abstract description 9
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 8
- 239000011737 fluorine Substances 0.000 claims abstract description 8
- 238000000227 grinding Methods 0.000 claims abstract description 4
- 239000000395 magnesium oxide Substances 0.000 claims description 45
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 45
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical group [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 39
- KUGBQWBWWNPMIT-UHFFFAOYSA-N 1,1,2,2,3,3,4,4-octafluoropentan-1-ol Chemical compound CC(F)(F)C(F)(F)C(F)(F)C(O)(F)F KUGBQWBWWNPMIT-UHFFFAOYSA-N 0.000 claims description 11
- BYKNGMLDSIEFFG-UHFFFAOYSA-N 2,2,3,3,4,4,5,5,6,6,7,7-dodecafluoroheptan-1-ol Chemical compound OCC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)F BYKNGMLDSIEFFG-UHFFFAOYSA-N 0.000 claims description 7
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 claims description 7
- LGUZHRODIJCVOC-UHFFFAOYSA-N perfluoroheptane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F LGUZHRODIJCVOC-UHFFFAOYSA-N 0.000 claims description 4
- YVBBRRALBYAZBM-UHFFFAOYSA-N perfluorooctane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F YVBBRRALBYAZBM-UHFFFAOYSA-N 0.000 claims description 3
- GUAMVMSOIYAUSK-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8-hexadecafluorononan-1-ol Chemical compound CC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(O)(F)F GUAMVMSOIYAUSK-UHFFFAOYSA-N 0.000 claims description 2
- YIHRGKXNJGKSOT-UHFFFAOYSA-N 1,1,2,2,3,3-hexafluorobutan-1-ol Chemical compound CC(F)(F)C(F)(F)C(O)(F)F YIHRGKXNJGKSOT-UHFFFAOYSA-N 0.000 claims description 2
- CSUFEOXMCRPQBB-UHFFFAOYSA-N 1,1,2,2-tetrafluoropropan-1-ol Chemical compound CC(F)(F)C(O)(F)F CSUFEOXMCRPQBB-UHFFFAOYSA-N 0.000 claims description 2
- 150000001298 alcohols Chemical class 0.000 claims description 2
- 229960004624 perflexane Drugs 0.000 claims description 2
- ZJIJAJXFLBMLCK-UHFFFAOYSA-N perfluorohexane Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F ZJIJAJXFLBMLCK-UHFFFAOYSA-N 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims 1
- 150000001335 aliphatic alkanes Chemical class 0.000 claims 1
- -1 perfluoro-1-tetradecyl Chemical group 0.000 claims 1
- 238000002791 soaking Methods 0.000 claims 1
- 238000005507 spraying Methods 0.000 claims 1
- 239000000123 paper Substances 0.000 description 39
- 239000001913 cellulose Substances 0.000 description 11
- 229920002678 cellulose Polymers 0.000 description 11
- 239000003513 alkali Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 230000014759 maintenance of location Effects 0.000 description 7
- 238000005054 agglomeration Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000007791 liquid phase Substances 0.000 description 6
- 230000007774 longterm Effects 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000000126 substance Substances 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 230000020477 pH reduction Effects 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000011031 large-scale manufacturing process Methods 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000383 hazardous chemical Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000011087 paperboard Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- LZRIYTFPVMKAIR-UHFFFAOYSA-N 1-fluoroheptan-1-ol Chemical compound CCCCCCC(O)F LZRIYTFPVMKAIR-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000001139 pH measurement Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 125000005010 perfluoroalkyl group Chemical group 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000000790 scattering method Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41M—PRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
- B41M7/00—After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
- B41M7/0063—Preservation or restoration of currency, books or archival material, e.g. by deacidifying
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H25/00—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
- D21H25/18—After-treatment of paper not provided for in groups D21H17/00 - D21H23/00 of old paper as in books, documents, e.g. restoring
Definitions
- the invention belongs to the field of paper deacidification, and relates to a paper deacidification liquid and a preparation method thereof, in particular to an anhydrous nano deacidification liquid and a preparation method thereof.
- the acidification of paper its intuitive manifestation is that the paper becomes low-strength, fragile, fragile, yellowed and brittle, and it may be chipped all over with a light touch.
- the main factor that causes the acidification of paper is that the cellulose (C 6 H 10 O 5 ) n of the paper accelerates the hydrolysis under the catalysis of the acid, resulting in a shorter cellulose length and a decrease in the mechanical strength of the paper.
- the cellulose (C 6 H 10 O 5 ) n of the paper accelerates the hydrolysis under the catalysis of the acid, resulting in a shorter cellulose length and a decrease in the mechanical strength of the paper.
- the situation of paper acidification in my country is even more severe. Almost all domestic libraries, archives, and museums have the problem of paper acidification. Among them, the literature of the Republic of China is particularly prominent.
- paper deacidification methods can be divided into gas phase deacidification method and liquid phase deacidification method.
- the gas phase deacidification method means that the deacidification substance is in a gas state.
- Liquid phase deacidification means that the deacidification substance is in a liquid state, and the deacidification solution is usually composed of a deacidification agent dispersed in a deacidification solvent.
- liquid deacidification can be divided into aqueous liquid deacidification, anhydrous liquid phase deacidification and organic dispersant deacidification.
- the gas-phase deacidification method has been eliminated because of its toxic gas, complicated equipment and large investment.
- Aqueous liquid phase deacidification method Because the cellulose with carbonyl and carboxyl groups in the deacidification solution will cause continuous oxidation and decomposition of paper; the deacidification process will cause the water-based pigment printing or writing handwriting patterns to dissolve, and cause the paper surface pigments The layer cracked and fell off.
- Organic dispersant deacidification method due to the extremely strict requirements on the environment, personnel and operating procedures during use, and the deacidification liquid used is a dangerous product, not only flammable and explosive, but also harmful to the environment and human health. There are no archives and libraries to use this technology.
- the anhydrous liquid phase deacidification method has become the mainstream of paper deacidification technology due to its ease of operation, relative safety of the reagents used, and reliability of no damage to paper.
- the deacidification solution not only needs to have no major hidden dangers in the production and operation process, but also can realize the long-term stable dispersion of alkaline particles, which has become a technical bottleneck for the widespread promotion and application of anhydrous deacidification technology. .
- the present invention provides an anhydrous nano deacidification solution that not only has no major safety hazards during production and operation, but also can achieve long-term stable dispersion of alkaline particles, with a stable dispersion time of up to 30 minutes Above, and after the paper is deacidified, the pH of the paper is> 8, and the alkali retention is> 2%.
- Anhydrous nano deacidification liquid containing the following components by weight percentage:
- the fluorocarbon surfactants with hydrophobic and oleophobic properties are fluorocarbon surfactants, preferably one or two of DuPont Zonyl FSH or Zonyl FSJ.
- the main dispersant is perfluoroalkanes, preferably one or more of perfluorohexane, perfluorooctane or perfluoroheptane.
- the fluorinated surfactants with hydrophobic and lipophilic properties are fluorinated alcohols, preferably tetrafluoropropanol, hexafluorobutanol, octafluoropentanol, dodecafluoroheptanol, One or more of 1H,1H-perfluoro-1-tetradecyl alcohol and hexadecafluorononanol.
- the following step may be included between 1) and 2): slowly adding a fluorocarbon surfactant with hydrophobic and oleophobic properties to the alkaline nanoparticles.
- the anhydrous nano deacidification liquid is sprayed, soaked or atomized to treat acidified paper.
- the present invention uses alkaline compounds or oxide nanoparticles of metal elements, taking magnesium oxide alkaline nanoparticles as an example, especially magnesium oxide alkaline nanoparticles with a particle size of 20-100nm, which is beneficial to magnesium oxide alkaline nanoparticles Long-term uniform dispersion in the dispersion system is also conducive to the penetration of magnesium oxide alkaline nanoparticles into the paper and deposits on the surface of the cellulose during use, which improves the effectiveness of deacidification and increases the effective alkali Retention
- the invention adopts a fluorine-containing surfactant with hydrophobic and lipophilic properties, reduces the amount of main dispersant and surfactant, further prolongs the agglomeration and sedimentation time of alkaline magnesium oxide particles, and improves the dispersion effect of alkaline magnesium oxide particles ;
- the lipophilic end of the fluorine-containing surfactant with hydrophobic and lipophilic properties faces the main dispersant and has affinity with the main dispersant to increase the magnesium oxide base encapsulated in the dispersing aid
- the dispersion uniformity and stability of the nanoparticle in the dispersion system, the stable dispersion time is more than 30 minutes, and during use, the main dispersant volatilizes quickly, and the hydrophobic end of the dispersing aid will interact with the hydrophobic and oleophobic cellulose.
- Affinity occurs, guiding the alkaline nanoparticles of magnesium oxide to penetrate into the paper and deposit on the surface of the cellulose, which improves the effectiveness of deacidification and increases the effective alkali retention.
- a layer of hydrophobic and oleophobic fluorosurfactant can be wrapped on the surface of the magnesium oxide alkaline nanoparticles, and the oleophobic end of the fluorosurfactant is close to and facing the magnesium oxide alkaline nanoparticles and fluorosurfactant.
- the hydrophobic end is close to and towards the hydrophobic end of the dispersion aid, and has affinity with it to further improve the dispersion uniformity and stability of the magnesium oxide alkaline nanoparticles encapsulated in the surfactant in the dispersion system, and stabilize the dispersion
- the time is more than 75 minutes, and during use, the main dispersant volatilizes quickly, and the hydrophobic end of the dispersing aid and the hydrophobic end of the fluorosurfactant will interact with the hydrophobic and oleophobic cellulose together to quickly guide the magnesium oxide Alkaline nanoparticles penetrate the paper and deposit on the surface of the cellulose, improving the effectiveness of deacidification and increasing the effective alkali retention.
- alkaline nanoparticles of magnesium oxide When the anhydrous nano deacidification liquid of the present invention is subjected to deacidification treatment, alkaline nanoparticles of magnesium oxide will penetrate into the paper and deposit on the cellulose surface paper. After the paper absorbs moisture in the air, the acidic free H + It will react with alkaline nanoparticles of magnesium oxide to generate Mg 2+ and water. When the water evaporates, Mg 2+ is deposited on the surface of the paper in the form of metal salt nanoparticles, which plays a protective role in isolating acid gases. After the paper is deacidified, the pH value of the paper is> 8, and the alkali retention is> 2%, which can achieve effective paper deacidification and alkali retention.
- the preparation method of the anhydrous nano deacidification liquid of the present invention realizes the uniformity and stability of the dispersion of magnesium oxide alkaline nanoparticles in a dispersion system, and is suitable for large-scale production and manufacture. After long-term use, if you find that there is agglomeration and sedimentation of magnesium oxide alkaline nanoparticles in the anhydrous nano deacidification solution, just shake it up and use it.
- FIG. 1 Schematic diagram of the dispersion system of Example 2
- FIG. 3 is a schematic diagram of the dispersion system of Example 3.
- FIG. 3 is a schematic diagram of the dispersion system of Example 3.
- DuPont Zonyl FSJ 5 DuPont Zonyl FSJ; 52 DuPont Zonyl FSJ oleophobic end; 51 DuPont Zonyl FSJ hydrophobic end;
- magnesium oxide basic nanoparticles 1 with a particle size of 20-100nm;
- the structure of the dispersion system prepared in this embodiment is shown in Figure 2.
- the magnesium oxide alkaline nanoparticles 1 are wrapped in DuPont Zonyl FSH4, and the DuPont Zonyl FSH oleophobic end 42 is close to and facing the magnesium oxide alkaline nanoparticles 1.
- DuPont Zonyl The hydrophobic end 41 of FSH is away from and facing away from the basic magnesium oxide nanoparticles 1 and at the same time approaching and facing the hydrophobic end 21 of octafluoropentanol, and the lipophilic end 22 of octafluoropentanol is away from and facing away from the basic magnesium oxide nanoparticles 1.
- the structure of the dispersion system prepared in this embodiment is shown in Figure 3.
- the 1-magnesium oxide alkaline nanoparticles are wrapped in 5-DuPont Zonyl FSJ, and the 52-oleophobic end of 5-DuPont Zonyl FSJ is close to and facing 1-oxidation.
- the 62-lipophilic end of fluoroheptanol is away from and facing away from the 1-magnesium oxide alkaline nanoparticles.
- test results show that in the examples of the present invention, after the paper is deacidified, the pH value of the paper is> 8, and the alkali retention is> 2%; the magnesium oxide alkaline nanoparticles can be stably dispersed in the dispersion system for a long time More than 30min.
Landscapes
- Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
Abstract
Description
Claims (11)
- 一种无水纳米脱酸液,其特征在于:所述无水纳米脱酸液含有如下重量百分比的组分:金属元素的碱性化合物或氧化物 0.01~0.8wt%具有疏水亲油特性的含氟表面活性剂 0.1~18wt%余量为主分散剂。
- 根据权利要求1所述的无水纳米脱酸液,进一步地,所述无水纳米脱酸液还含有重量百分比如下的组分:具有疏水疏油特性的氟碳表面活性剂 0.1~0.3wt%。
- 根据权利要求1或2所述的一种无水纳米脱酸液,所述的主分散剂为全氟烷烃。
- 根据权利要求3所述的一种无水纳米脱酸液,所述的氟碳表面活性剂为杜邦Zonyl FSH或Zonyl FSJ中的一种或两种;所述的全氟烷烃类为全氟己烷、全氟辛烷或全氟庚烷中的一种或几种。
- 根据权利要求3所述的无水纳米脱酸液,所述的金属元素的碱性化合物或氧化物为纳米氧化镁颗粒,所述的金属元素的碱性化合物或氧化物粒径为20~200nm。
- 根据权利要求5所述的无水纳米脱酸液,所述的金属元素的碱性化合物或氧化物为粒径20~100nm的氧化镁纳米颗粒。
- 根据权利要求3所述的无水纳米脱酸液,其特征在于,所述的具有疏水亲油特性的含氟表面活性剂为含氟醇类。
- 根据权利要求7所述的无水纳米脱酸液其特征在于,所述的含氟醇类为四氟丙醇、六氟丁醇、八氟戊醇、十二氟庚醇、1H,1H-全氟-1-十四(烷)醇、十六氟壬醇中的一种或几种。
- 根据权利要求1-8中任意一项权利要求所述一种无水纳米脱酸液,其特征在于,制备方法包括如下步骤:1)将金属元素的碱性化合物或氧化物,通过研磨工艺制成粒径为20~200nm的碱性纳米颗粒;2)在碱性纳米颗粒中一边加入具有疏水亲油特性的含氟表面活性剂,同时一边进行搅拌,制成分散液体;3)在分散液体中一边加入主分散剂,同时一边进行搅拌,制成无水纳米脱酸液。
- 根据权利要求9所述的一种无水纳米脱酸液,其特征在于:制备方法还可以在第1)和第2)之间包括如下步骤:在碱性纳米颗粒中缓慢加入具有疏水疏油特性的氟碳表面活性剂,制成浸润颗粒。
- 根据权利要求1所述的一种无水纳米脱酸液,其特征在于:采用喷洒、浸泡或雾化的方式对酸化纸张进行处理。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910394322.1A CN109989295B (zh) | 2019-05-13 | 2019-05-13 | 一种无水纳米脱酸液及其制备方法 |
CN201910394322.1 | 2019-05-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020228161A1 true WO2020228161A1 (zh) | 2020-11-19 |
Family
ID=67136458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/101294 WO2020228161A1 (zh) | 2019-05-13 | 2019-08-19 | 一种无水纳米脱酸液及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN109989295B (zh) |
WO (1) | WO2020228161A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113463003A (zh) * | 2021-05-26 | 2021-10-01 | 杭州龙耀电力配件有限公司 | 一种助镀剂及应用该助镀剂的热镀锌工艺 |
CN115787350A (zh) * | 2022-11-04 | 2023-03-14 | 国家图书馆 | 一种纸张含氟脱酸液 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109989295B (zh) * | 2019-05-13 | 2022-10-25 | 鼎纳科技有限公司 | 一种无水纳米脱酸液及其制备方法 |
CN111058330A (zh) * | 2019-10-29 | 2020-04-24 | 南京大学扬州化学化工研究院 | 一种凹凸棒土复合脱酸材料及其应用 |
CN111501409B (zh) * | 2020-04-22 | 2022-07-26 | 齐鲁工业大学 | 一种纸张脱酸用的混悬剂 |
CN112921705A (zh) * | 2021-01-25 | 2021-06-08 | 杭州众材科技有限公司 | 一种微粒嵌着式的纸张脱酸保护方法 |
CN116676807B (zh) * | 2023-05-17 | 2024-08-13 | 中国人民大学 | 一种纸张脱酸分散液及其制备方法和应用 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2142195A1 (en) * | 1995-02-08 | 1996-08-09 | D. James Worsfold | Deacidification of cellulosic material |
US20130158250A1 (en) * | 2011-12-16 | 2013-06-20 | Honeywell International, Inc. | Method of deacidifying cellulose based materials |
CN105088870A (zh) * | 2015-07-15 | 2015-11-25 | 国家图书馆 | 一种纸张脱酸剂及其纸张脱酸系统和方法 |
CN105862513A (zh) * | 2016-04-22 | 2016-08-17 | 国家图书馆 | 一种纸张脱酸液及其制备方法 |
US9464383B2 (en) * | 2012-05-10 | 2016-10-11 | Richard Daniel Smith | Deacidification treatment of printed cellulosic materials |
CN107012736A (zh) * | 2017-05-03 | 2017-08-04 | 清华大学 | 一种兼具纸张增强作用的脱酸液及其制备方法 |
CN109989295A (zh) * | 2019-05-13 | 2019-07-09 | 鼎纳科技有限公司 | 一种无水纳米脱酸液及其制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6214165B1 (en) * | 1999-07-13 | 2001-04-10 | Joseph Zicherman | Method for deacidification of papers and books by fluidizing a bed of dry alkaline particles |
CN107724179B (zh) * | 2017-10-27 | 2023-04-07 | 清华大学 | 一种具有旋转托架的纸张脱酸系统及脱酸方法 |
CN108442175A (zh) * | 2018-04-20 | 2018-08-24 | 中国人民大学 | 一种基于纳米氢氧化钙的纸质材料脱酸方法 |
-
2019
- 2019-05-13 CN CN201910394322.1A patent/CN109989295B/zh active Active
- 2019-08-19 WO PCT/CN2019/101294 patent/WO2020228161A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2142195A1 (en) * | 1995-02-08 | 1996-08-09 | D. James Worsfold | Deacidification of cellulosic material |
US20130158250A1 (en) * | 2011-12-16 | 2013-06-20 | Honeywell International, Inc. | Method of deacidifying cellulose based materials |
US9464383B2 (en) * | 2012-05-10 | 2016-10-11 | Richard Daniel Smith | Deacidification treatment of printed cellulosic materials |
CN105088870A (zh) * | 2015-07-15 | 2015-11-25 | 国家图书馆 | 一种纸张脱酸剂及其纸张脱酸系统和方法 |
CN105862513A (zh) * | 2016-04-22 | 2016-08-17 | 国家图书馆 | 一种纸张脱酸液及其制备方法 |
CN107012736A (zh) * | 2017-05-03 | 2017-08-04 | 清华大学 | 一种兼具纸张增强作用的脱酸液及其制备方法 |
CN109989295A (zh) * | 2019-05-13 | 2019-07-09 | 鼎纳科技有限公司 | 一种无水纳米脱酸液及其制备方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113463003A (zh) * | 2021-05-26 | 2021-10-01 | 杭州龙耀电力配件有限公司 | 一种助镀剂及应用该助镀剂的热镀锌工艺 |
CN115787350A (zh) * | 2022-11-04 | 2023-03-14 | 国家图书馆 | 一种纸张含氟脱酸液 |
CN115787350B (zh) * | 2022-11-04 | 2024-05-31 | 国家图书馆 | 一种纸张含氟脱酸液 |
Also Published As
Publication number | Publication date |
---|---|
CN109989295B (zh) | 2022-10-25 |
CN109989295A (zh) | 2019-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020228161A1 (zh) | 一种无水纳米脱酸液及其制备方法 | |
US9272915B2 (en) | Flaky mesoporous particles, and method for producing the same | |
Cerrutti et al. | Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions | |
Putro et al. | Nanocrystalline cellulose from waste paper: adsorbent for azo dyes removal | |
Yu et al. | Comparative toxicity of nano-ZnO and bulk ZnO suspensions to zebrafish and the effects of sedimentation, OH production and particle dissolution in distilled water | |
Božanić et al. | Preparation and properties of nano-sized Ag and Ag 2 S particles in biopolymer matrix | |
Omidvar et al. | Metal-enhanced fluorescence of graphene oxide by palladium nanoparticles in the blue–green part of the spectrum | |
Bankura et al. | Dextrin-mediated synthesis of Ag NPs for colorimetric assays of Cu2+ ion and Au NPs for catalytic activity | |
Huang et al. | Conservation of acidic papers using a dispersion of oleic acid-modified MgO nanoparticles in a non-polar solvent | |
He et al. | Low‐temperature solvothermal synthesis of ZnO quantum dots | |
CN108601316B (zh) | 一种电磁屏蔽材料的制备方法及应用 | |
CN109401442A (zh) | 一种uv固化纳米镀银导电油墨及其制备方法 | |
JP5767620B2 (ja) | 酸化ジルコニウムナノ粒子とそのヒドロゾルおよび酸化ジルコニウムナノ粒子を製造するための組成物と方法 | |
CN114736548B (zh) | 可光固化的纳米氧化锆分散液及其制备方法、光学膜 | |
CN106872438A (zh) | 一种自组装三维铜拉曼增强基底及其制备方法与应用 | |
CN111940759A (zh) | 一种制备超细铂粉的方法 | |
Xing et al. | Aggregation of biochar nanoparticles and the impact on bisphenol A sorption: Experiments and molecular dynamics simulations | |
CN109082072B (zh) | 石墨烯/环氧树脂复合吸波材料及其制备方法和应用 | |
Gomez et al. | Identification of TiO 2 nanoparticles using La and Ce as labels: application to the evaluation of surface contamination during the handling of nanosized matter | |
CN114751398B (zh) | 一种油溶性碳量子点及含其的纳米流体组合物与抑制二氧化碳驱沥青质沉积的方法 | |
Motellier et al. | Elemental recoveries for metal oxide nanoparticles analysed by direct injection ICP-MS: influence of particle size, agglomeration state and sample matrix | |
WO2015118831A1 (ja) | ナノコロイド粒子担持体の製造方法及びその担持体 | |
Koren et al. | Characterization of micrometer-sized magnetic optical sensor particles produced via spray-drying | |
CN116676807B (zh) | 一种纸张脱酸分散液及其制备方法和应用 | |
CN111099584A (zh) | 一种纳米四氧化三铁磁性粒子均匀包覆的石墨烯及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19928577 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19928577 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19928577 Country of ref document: EP Kind code of ref document: A1 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2022) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19928577 Country of ref document: EP Kind code of ref document: A1 |