CN109989295B - 一种无水纳米脱酸液及其制备方法 - Google Patents

一种无水纳米脱酸液及其制备方法 Download PDF

Info

Publication number
CN109989295B
CN109989295B CN201910394322.1A CN201910394322A CN109989295B CN 109989295 B CN109989295 B CN 109989295B CN 201910394322 A CN201910394322 A CN 201910394322A CN 109989295 B CN109989295 B CN 109989295B
Authority
CN
China
Prior art keywords
nano
deacidification
anhydrous
particles
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910394322.1A
Other languages
English (en)
Other versions
CN109989295A (zh
Inventor
张世著
张尚峰
石欣超
张将
刘闯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dingna Technology Co ltd
Original Assignee
Dingna Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dingna Technology Co ltd filed Critical Dingna Technology Co ltd
Priority to CN201910394322.1A priority Critical patent/CN109989295B/zh
Publication of CN109989295A publication Critical patent/CN109989295A/zh
Priority to PCT/CN2019/101294 priority patent/WO2020228161A1/zh
Application granted granted Critical
Publication of CN109989295B publication Critical patent/CN109989295B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0063Preservation or restoration of currency, books or archival material, e.g. by deacidifying
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/18After-treatment of paper not provided for in groups D21H17/00 - D21H23/00 of old paper as in books, documents, e.g. restoring

Landscapes

  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明属于纸张脱酸领域,涉及一种纸张脱酸液及其制备方法,尤其涉及一种无水纳米脱酸液及其制备方法。技术方案为含有如下重量百分比的组分:金属元素的碱性化合物或氧化物0.01~0.8 wt%;具有疏水亲油特性的含氟表面活性剂0.1~18 wt%;余量为主分散剂。本发明采用金属元素的碱性化合物或氧化物纳米颗粒,既有利于氧化镁碱性纳米颗粒在分散体系中实现长期均匀地分散,也有利于氧化镁碱性纳米颗粒在使用过程中渗透进入纸张内部并沉积在纤维素的表面,提高了脱酸的有效性,并增大了有效的碱存留量。

Description

一种无水纳米脱酸液及其制备方法
技术领域
本发明属于纸张脱酸领域,涉及一种纸张脱酸液及其制备方法,尤其涉及一种无水纳米脱酸液及其制备方法。
背景技术
纸张的酸化,其直观表现是纸张变得强度低、易碎、易裂、发黄变脆,轻轻触摸就可能碎屑遍地。引起纸张酸化的主要因素,就是纸张的纤维素(cellulose)(C6H10O5)n在酸的催化作用下,加速水解,导致纤维素长度变短,纸张机械强度降低。当前,世界各国的馆藏图书、文献资料有1/3以上已经变脆,其余的图书、报纸也面临类似情况。我国纸张酸化的形势更为严峻,国内几乎所有的图书馆、档案馆、博物馆都存在纸张酸化的问题,其中以民国文献尤为突出。
根据使用的脱酸剂所处的状态,纸张脱酸方法可分为气相脱酸法和液相脱酸法。气相脱酸法即脱酸物质呈气体状态。液相脱酸即脱酸物质呈液体状态,脱酸溶液通常由脱酸剂分散在脱酸溶剂中构成。根据采用的溶剂类型和分散方式的不同,液相脱酸法又可分为含水液相脱酸、无水液相脱酸和有机分散剂脱酸。
气相脱酸法因其采用的气体具有毒性,并且设备复杂、投入资金多,已被淘汰。含水液相脱酸法,由于脱酸液中含有羰基和羧基基团的纤维素,会造成纸张持续氧化分解;脱酸过程中会造成水性颜料印刷或书写的字迹图案溶解,并且导致纸张表面颜料层开裂脱落。这些技术上目前难以克服的缺陷,限制了该方法的推广和应用。有机分散剂脱酸法,由于在使用过程中对环境、人员及操作程序要求极其严格,并且所用的脱酸液本身就属于危险品不仅是易燃易爆,并且对环境和人体健康有危害,目前已经没有档案馆和图书馆再使用该技术。无水液相脱酸法,以其操作的简便性、所用试剂的相对安全性,以及对纸张无损伤的可靠性,成为纸张脱酸技术的主流。
目前,无水液相脱酸法的已有技术中,主流的技术是美国专利“US006342098B1Deacidification of Cellulose based materials using Hydrofluoroether Carriers”中所采用的技术,该技术使用氢氟醚类物质作为分散剂,但由于氢氟醚类物质具有易燃的特性,保存和使用均非常不便,原料保存和产品生产制造过程中有重大的安全隐患;并且该技术使用全氟烷基聚醚类的易溶于水和有机溶剂的含氟阴离子型表面活性剂,造成表面活性剂与作为主体分散剂的全氟烷烃发生互溶,降低了分散体系的稳定性,导致脱酸液中的氧化镁碱性纳米颗粒容易发生团聚沉降,从而影响长期稳定地使用。中国专利“CN107012736A一种兼具纸张增强作用的脱酸液及其制备方法”中,使用镁铝双金属氢氧化物或其焙烧产物作为碱性物质,生产工艺复杂,并且制备出的碱性颗粒的粒径均一性差,难以实现碱性颗粒的长期稳定分散,限制了其大规模的推广和应用。实际使用中,脱酸液既需要满足在生产和操作过程中无重大隐患,又能够实现碱性颗粒的长期稳定分散,这成为了无水脱酸技术得到大范围推广和应用的技术瓶颈。
发明目的:
针对现有技术的不足,本发明提供一种既满足在生产和操作过程中无重大安全隐患,又能够实现碱性颗粒的长期稳定分散的无水纳米脱酸液,稳定分散的时间长达30 min以上,并且在对纸张进行脱酸处理后,纸张的pH值>8,碱存留量>2%。
技术方案:
一种无水纳米脱酸液,含有如下重量百分比的组分:
金属元素的碱性化合物或氧化物 0.01~0.8 wt%
具有疏水亲油特性的含氟表面活性剂 0.1~18 wt%
余量为主分散剂。
作为本发明的进一步改进,所述的无水纳米脱酸液,还含有如下重量百分比的组分:
具有疏水疏油特性的氟碳表面活性剂 0.1~0.3 wt%。
作为本发明的进一步改进,所述的具有疏水疏油特性的氟碳表面活性剂为氟碳表面活性剂类,优选为杜邦Zonyl FSH或Zonyl FSJ中的一种或两种。
作为本发明的进一步改进,所述的金属元素的碱性化合物或氧化物粒径为20~200 nm,优选粒径为20~100 nm的氧化镁纳米颗粒。所述的氧化镁纳米颗粒即氧化镁碱性纳米颗粒。
作为本发明的进一步改进,所述的主分散剂为全氟烷烃类,优选为全氟己烷、全氟辛烷或全氟庚烷中的一种或几种。
作为本发明的进一步改进,所述的具有疏水亲油特性的含氟表面活性剂为含氟醇类,优选为四氟丙醇、六氟丁醇、八氟戊醇、十二氟庚醇、1H,1H-全氟-1-十四(烷)醇、十六氟壬醇中的一种或几种。
本发明还提供一种无水纳米脱酸液的制备方法,包括如下步骤:
1)将金属元素的碱性化合物或氧化物,通过研磨工艺制成粒径为20~100nm的碱性纳米颗粒;
2)在碱性纳米颗粒中一边加入分散助剂,同时一边进行搅拌,制成分散液体;
3)在分散液体中一边加入主分散剂,同时一边进行搅拌,制成无水纳米脱酸液。
作为本发明的进一步改进,还可以在第1)和第2)之间包括如下步骤:在碱性纳米颗粒中缓慢加入具有疏水疏油特性的氟碳表面活性剂。
作为本发明的进一步改进,所述的一种无水纳米脱酸液,采用喷洒、浸泡或雾化的方式对酸化纸张进行处理。
有益效果:
本发明采用金属元素的碱性化合物或氧化物纳米颗粒,以氧化镁碱性纳米颗粒为例,尤其是粒径为20~100nm的氧化镁碱性纳米颗粒,既有利于氧化镁碱性纳米颗粒在分散体系中实现长期均匀地分散,也有利于氧化镁碱性纳米颗粒在使用过程中渗透进入纸张内部并沉积在纤维素的表面,提高了脱酸的有效性,并增大了有效的碱存留量;
本发明采用全氟烷烃作为主分散剂,避免了脱酸过程中引起纸张的变形和褶皱,并且表面张力低、在纸张中渗透能力强,有利于氧化镁碱性纳米颗粒在使用过程中渗透进入纸张内部并沉积在纤维素的表面。全氟烷烃易于挥发,可以在实际生产过程中实现回收利用;
本发明采用具有疏水亲油特性的含氟表面活性剂,降低了主分散剂和表面活性剂的用量,进一步延长了氧化镁碱性颗粒的团聚沉降时间,提高了氧化镁碱性颗粒的分散效果;
本发明采用不属于危化品目录的含氟醇类作为具有疏水亲油特性的含氟表面活性剂,使用不属于危化品目录的杜邦Zonyl含氟表面活性剂作为表面活性剂,大幅度地提高了生产和操作的安全性,适于大规模地生产和使用;
本发明的分散体系,具有疏水亲油特性的含氟表面活性剂即分散助剂的亲油端朝向主分散剂,并与主分散剂发生亲和,以提高分散助剂内包裹的氧化镁碱性纳米颗粒在分散体系中的分散均匀性和稳定性,稳定分散的时间长达30 min以上,并且在使用过程中,主分散剂快速挥发,分散助剂的疏水端会与疏水疏油的纤维素发生亲和,引导氧化镁碱性纳米颗粒渗入纸张并沉积到纤维素表面,提高了脱酸的有效性,并增大了有效的碱存留量。进一步地,还可以在氧化镁碱性纳米颗粒表面包裹一层疏水疏油的含氟表面活性剂,含氟表面活性剂的疏油端靠近并朝向氧化镁碱性纳米颗粒、含氟表面活性剂的疏水端靠近并朝向分散助剂的疏水端,并与之发生亲和,以进一步提高表面活性剂内包裹的氧化镁碱性纳米颗粒在分散体系中的分散均匀性和稳定性,稳定分散的时间长达75 min以上,并且在使用过程中,主分散剂快速挥发,分散助剂的疏水端和含氟表面活性剂的疏水端会共同与疏水疏油的纤维素发生亲和,快速引导氧化镁碱性纳米颗粒渗入纸张并沉积到纤维素表面,提高了脱酸的有效性,并增大了有效的碱存留量。
本发明的无水纳米脱酸液在进行脱酸处理时,会将氧化镁碱性纳米颗粒渗入纸张并沉积到纤维素表面纸,纸张在吸收了空气中的水分之后,酸性的游离态的H+会与氧化镁碱性纳米颗粒反应,生成Mg2+与水,当水分挥发后,Mg2+以金属盐纳米颗粒的形态沉积于纸张表面,起到将酸性气体隔离的保护作用。在对纸张进行脱酸处理后,纸张的pH值>8,碱存留量>2%,能够实现有效的纸张脱酸和碱存留。
本发明的无水纳米脱酸液的制备方法,实现了氧化镁碱性纳米颗粒在分散体系中的分散均匀性和稳定性,适于大规模地生产和制造。长期放置后再使用,若发现无水纳米脱酸液中有氧化镁碱性纳米颗粒的团聚沉降,只需摇匀即可使用。
附图说明
图1实施例1的分散体系的示意图;
图2实施例2的分散体系的示意图;
图3实施例3的分散体系的示意图。
1氧化镁碱性纳米颗粒;2八氟戊醇;21八氟戊醇疏水端;22八氟戊醇亲油端;
4杜邦Zonyl FSH;42杜邦Zonyl FSH疏油端;41杜邦Zonyl FSH的疏水端;
5杜邦Zonyl FSJ;52杜邦Zonyl FSJ疏油端;51杜邦Zonyl FSJ疏水端;
6十二氟庚醇;61十二氟庚醇疏水端,62十二氟庚醇十二氟庚醇亲油端。
具体实施方式
实施例1
无水纳米脱酸液的制备方法
1)将0.03 wt%的块状氧化镁,通过湿法研磨工艺,在1200 r/min的搅拌条件下,连续研磨3小时,制成粒径为20~100nm的-氧化镁碱性纳米颗粒1;
2)在氧化镁碱性纳米颗粒1中一边加入0.1 wt% 2-八氟戊醇,同时一边进行搅拌,搅拌的速度为1200 r/min,搅拌的时长为0.5小时,制成分散液体;
3)在分散液体中一边加入99.87 wt%全氟庚烷 3,同时一边进行搅拌,搅拌的速度为1200 r/min,搅拌的时长为0.5小时,制成无水纳米脱酸液。
本实施例制备出的分散体系的结构如图1所示,氧化镁碱性纳米颗粒1包裹在八氟戊醇2中,八氟戊醇疏水端21靠近并朝向氧化镁碱性纳米颗粒1,八氟戊醇亲油端22远离并背向氧化镁碱性纳米颗粒1。
实施例2
无水纳米脱酸液的制备方法
1)将0.5 wt%的氧化镁,通过湿法研磨工艺,在1600 r/min的搅拌条件下,连续研磨4小时,制成粒径为20~100nm的氧化镁碱性纳米颗粒1;
2)在氧化镁碱性纳米颗粒中1,缓慢加入0.1 wt% 杜邦Zonyl FSH4,
3)在2)所得物中一边加入12 wt% 八氟戊醇2,同时一边进行搅拌,搅拌的速度为1500 r/min,搅拌的时长为1小时,制成分散液体;
4) 在分散液体中一边加入87.4 wt%全氟庚烷3,同时一边进行搅拌,搅拌的速度为1500 r/min,搅拌的时长为1小时,制成无水纳米脱酸液。
本实施例制备出的分散体系的结构如图2所示,氧化镁碱性纳米颗粒1包裹在杜邦Zonyl FSH4中,杜邦Zonyl FSH疏油端42靠近并朝向氧化镁碱性纳米颗粒1,杜邦Zonyl FSH疏水端41远离并背向氧化镁碱性纳米颗粒1、同时靠近并朝向八氟戊醇疏水端21,八氟戊醇亲油端22远离并背向氧化镁碱性纳米颗粒1。
实施例3
无水纳米脱酸液的制备方法
1)将0.8 wt%的氧化镁,通过湿法研磨工艺,在1800 r/min的搅拌条件下,连续研磨5小时,制成粒径为20~100nm的1-氧化镁碱性纳米颗粒;
2) 在1-氧化镁碱性纳米颗粒中,缓慢加入0.3 wt%杜邦Zonyl FSJ5;
3)在2)中所得物中一边加入18 wt% 十二氟庚醇6,同时一边进行搅拌,搅拌的速度为1800 r/min,搅拌的时长为2小时,制成分散液体;
4) 在分散液体中一边加入87.4 wt%全氟辛烷7,同时一边进行搅拌,搅拌的速度为1800 r/min,搅拌的时长为2小时,制成无水纳米脱酸液。
本实施例制备出的分散体系的结构如图3所示,1-氧化镁碱性纳米颗粒包裹在5-杜邦Zonyl FSJ中,5-杜邦Zonyl FSJ的52-疏油端靠近并朝向1-氧化镁碱性纳米颗粒,5-杜邦Zonyl FSJ的51-疏水端远离并背向1-氧化镁碱性纳米颗粒、同时靠近并朝向6-十二氟庚醇的61-疏水端,6-十二氟庚醇的62-亲油端远离并背向1-氧化镁碱性纳米颗粒。
测试方法:
纸张脱酸效果测试
按照国家相关标准《GB/T 13528-1992纸和纸板表面pH值的测定法》和《GB/T24998-2010纸和纸板碱储量的测定》,分别对实施例1、实施例2、实施例3制备的无水纳米脱酸液的纸张脱酸效果进行测试,纸张脱酸测试的结果如表-1所示。
表-1实施例的纸张脱酸测试的结果
Figure 866299DEST_PATH_IMAGE002
团聚沉降效果测试
采用测量原理为散射法(90°散射光)的德国WTW Turb555IR实验室台式浊度仪对无水纳米脱酸液中的碱性颗粒的分散性进行检测,浊度单位用NTU表示,与ISO标准所用的测量单位为FTU相一致。NTU值下降,意味着更多的氧化镁碱性纳米颗粒已在分散体系中团聚沉降。分别对实施例1、实施例2、实施例3制备的无水纳米脱酸液的团聚沉降效果进行测试,团聚沉降测试的结果如表-2所示。
表-2实施例的团聚沉降测试的结果
时间(min) 实施例1浊度值(NTU) 实施例2浊度值(NTU) 实施例3浊度值(NTU)
0 min 983 1076 1232
15 min 964 1057 1215
30 min 948 1040 1198
45 min 749 1021 1176
60 min 652 1003 1157
75 min 596 976 1139
90 min 547 824 1112
105 min 499 768 904
120 min 468 715 842
135 min 445 654 753
150 min 431 592 686
测试结果表明,本发明的实施例,在对纸张进行脱酸处理后,纸张的pH值>8,碱存留量>2%;氧化镁碱性纳米颗粒在分散体系中的稳定分散的时间长达30 min以上。
应理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。对本领域普通技术人员而言,可以根据上述说明加以改进或变换,所做出的改进或变换均应属于本发明所附权利要求的保护范围。

Claims (10)

1.一种无水纳米脱酸液,其特征在于:所述无水纳米脱酸液含有如下重量百分比的组分:金属元素的碱性化合物或氧化物 0.01~0.8 wt%
具有疏水亲油特性的含氟表面活性剂 0.1~18 wt%
具有疏水疏油特性的氟碳表面活性剂 0.1~0.3 wt%
余量为主分散剂。
2.根据权利要求1所述的一种无水纳米脱酸液,所述的主分散剂为全氟烷烃。
3.根据权利要求2所述的一种无水纳米脱酸液,所述的氟碳表面活性剂为杜邦ZonylFSH或Zonyl FSJ中的一种或两种;所述的全氟烷烃类为全氟己烷、全氟辛烷或全氟庚烷中的一种或几种。
4.根据权利要求1所述的无水纳米脱酸液,所述的金属元素的碱性化合物或氧化物为纳米氧化镁颗粒,所述的金属元素的碱性化合物或氧化物粒径为20~200 nm。
5.根据权利要求4所述的无水纳米脱酸液,所述的金属元素的碱性化合物或氧化物为粒径20~100 nm的氧化镁纳米颗粒。
6.根据权利要求1所述的无水纳米脱酸液,其特征在于,所述的具有疏水亲油特性的含氟表面活性剂为含氟醇类。
7.根据权利要求6所述的无水纳米脱酸液其特征在于,所述的含氟醇类为四氟丙醇、六氟丁醇、八氟戊醇、十二氟庚醇、1H,1H-全氟-1-十四(烷)醇、十六氟壬醇中的一种或几种。
8.根据权利要求1-7中任意一项权利要求所述一种无水纳米脱酸液,其特征在于,制备方法包括如下步骤:
1)将金属元素的碱性化合物或氧化物,通过研磨工艺制成粒径为20~200nm的碱性纳米颗粒;
2)在碱性纳米颗粒中一边加入具有疏水亲油特性的含氟表面活性剂,同时一边进行搅拌,制成分散液体;
3)在分散液体中一边加入主分散剂,同时一边进行搅拌,制成无水纳米脱酸液。
9.根据权利要求8所述的一种无水纳米脱酸液,其特征在于:制备方法在第1)和第2)之间还包括如下步骤:
在碱性纳米颗粒中缓慢加入具有疏水疏油特性的氟碳表面活性剂,制成浸润颗粒。
10.根据权利要求1所述的一种无水纳米脱酸液,其特征在于:采用喷洒、浸泡或雾化的方式对酸化纸张进行处理。
CN201910394322.1A 2019-05-13 2019-05-13 一种无水纳米脱酸液及其制备方法 Active CN109989295B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910394322.1A CN109989295B (zh) 2019-05-13 2019-05-13 一种无水纳米脱酸液及其制备方法
PCT/CN2019/101294 WO2020228161A1 (zh) 2019-05-13 2019-08-19 一种无水纳米脱酸液及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910394322.1A CN109989295B (zh) 2019-05-13 2019-05-13 一种无水纳米脱酸液及其制备方法

Publications (2)

Publication Number Publication Date
CN109989295A CN109989295A (zh) 2019-07-09
CN109989295B true CN109989295B (zh) 2022-10-25

Family

ID=67136458

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910394322.1A Active CN109989295B (zh) 2019-05-13 2019-05-13 一种无水纳米脱酸液及其制备方法

Country Status (2)

Country Link
CN (1) CN109989295B (zh)
WO (1) WO2020228161A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109989295B (zh) * 2019-05-13 2022-10-25 鼎纳科技有限公司 一种无水纳米脱酸液及其制备方法
CN111058330A (zh) * 2019-10-29 2020-04-24 南京大学扬州化学化工研究院 一种凹凸棒土复合脱酸材料及其应用
CN111501409B (zh) * 2020-04-22 2022-07-26 齐鲁工业大学 一种纸张脱酸用的混悬剂
CN112921705A (zh) * 2021-01-25 2021-06-08 杭州众材科技有限公司 一种微粒嵌着式的纸张脱酸保护方法
CN113463003A (zh) * 2021-05-26 2021-10-01 杭州龙耀电力配件有限公司 一种助镀剂及应用该助镀剂的热镀锌工艺
CN116676807A (zh) * 2023-05-17 2023-09-01 中国人民大学 一种纸张脱酸分散液及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214165B1 (en) * 1999-07-13 2001-04-10 Joseph Zicherman Method for deacidification of papers and books by fluidizing a bed of dry alkaline particles
CN105088870A (zh) * 2015-07-15 2015-11-25 国家图书馆 一种纸张脱酸剂及其纸张脱酸系统和方法
CN107012736A (zh) * 2017-05-03 2017-08-04 清华大学 一种兼具纸张增强作用的脱酸液及其制备方法
CN107724179A (zh) * 2017-10-27 2018-02-23 清华大学 一种具有旋转托架的纸张脱酸系统及脱酸方法
CN108442175A (zh) * 2018-04-20 2018-08-24 中国人民大学 一种基于纳米氢氧化钙的纸质材料脱酸方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2142195A1 (en) * 1995-02-08 1996-08-09 D. James Worsfold Deacidification of cellulosic material
US20130158250A1 (en) * 2011-12-16 2013-06-20 Honeywell International, Inc. Method of deacidifying cellulose based materials
US9464383B2 (en) * 2012-05-10 2016-10-11 Richard Daniel Smith Deacidification treatment of printed cellulosic materials
CN105862513B (zh) * 2016-04-22 2018-06-19 国家图书馆 一种纸张脱酸液及其制备方法
CN109989295B (zh) * 2019-05-13 2022-10-25 鼎纳科技有限公司 一种无水纳米脱酸液及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6214165B1 (en) * 1999-07-13 2001-04-10 Joseph Zicherman Method for deacidification of papers and books by fluidizing a bed of dry alkaline particles
CN105088870A (zh) * 2015-07-15 2015-11-25 国家图书馆 一种纸张脱酸剂及其纸张脱酸系统和方法
CN107012736A (zh) * 2017-05-03 2017-08-04 清华大学 一种兼具纸张增强作用的脱酸液及其制备方法
CN107724179A (zh) * 2017-10-27 2018-02-23 清华大学 一种具有旋转托架的纸张脱酸系统及脱酸方法
CN108442175A (zh) * 2018-04-20 2018-08-24 中国人民大学 一种基于纳米氢氧化钙的纸质材料脱酸方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
图书脱酸保护研究;于书大等;《中国造纸》;20161115(第11期);第14-18页 *

Also Published As

Publication number Publication date
CN109989295A (zh) 2019-07-09
WO2020228161A1 (zh) 2020-11-19

Similar Documents

Publication Publication Date Title
CN109989295B (zh) 一种无水纳米脱酸液及其制备方法
Cerrutti et al. Carboxymethyl lignin as stabilizing agent in aqueous ceramic suspensions
Odzak et al. Dissolution of metal and metal oxide nanoparticles in aqueous media
Mirabedini et al. Preparation and characterization of ethyl cellulose-based core–shell microcapsules containing plant oils
WO2012096171A1 (ja) フレーク状のメソポーラス粒体とその製造方法
Azha et al. Low cost zwitterionic adsorbent coating for treatment of anionic and cationic dyes
Terrill et al. Small-angle X-ray scattering studies on colloidal dispersions of polyaniline-silica nanocomposites
Song et al. Study on the tribological behaviors of the phenolic composite coating filled with modified nano-TiO2
Amornkitbamrung et al. Polysaccharide stabilized nanoparticles for deacidification and strengthening of paper
Colombo et al. Highly transparent nanocomposite films from water-based poly (2-ethyl-2-oxazoline)/TiO 2 dispersions
Subramanian et al. Aqueous carbon black dispersions stabilized by sodium lignosulfonates
Huang et al. Conservation of acidic papers using a dispersion of oleic acid-modified MgO nanoparticles in a non-polar solvent
TW200526342A (en) Granular metal powder
Gan et al. Coagulation of bitumen with kaolinite in aqueous solutions containing Ca2+, Mg2+ and Fe3+: Effect of citric acid
CN111940759A (zh) 一种制备超细铂粉的方法
Panahi et al. Synthesize and characterization of chitosan and silica supported on Fe3O4 nanoparticles for the adsorption and removal of asphaltene molecules from crude oil
Silva da Conceição et al. The synergistic effect of an imidazolium salt and benzotriazole on the protection of bronze surfaces with chitosan-based coatings
Ha et al. Effect of surface change by vacuum drying on the sedimentation stability of iron nanoparticles in volatile organic solvents
JP5369310B2 (ja) ナノ粒子体及びその製造方法
Pryazhnikov et al. Magnetite-based highly dispersed materials for the sorption of asphaltenes
TWI617353B (zh) 奈米膠體粒子載持體之製造方法及其載持體
Jeng et al. Dispersion of Oleate‐Modified CuO Nanoparticles in a Nonpolar Solvent
Koren et al. Characterization of micrometer-sized magnetic optical sensor particles produced via spray-drying
CN105778573B (zh) 一种超分散剂及其制备方法和使用方法
JP2006307002A (ja) 導電粉末の高分散性水分散液と水系透明導電性塗料、および塗膜と塗料の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant