WO2020227927A1 - 水系电池正极活性材料及其制备方法以及水溶液锌离子电池 - Google Patents

水系电池正极活性材料及其制备方法以及水溶液锌离子电池 Download PDF

Info

Publication number
WO2020227927A1
WO2020227927A1 PCT/CN2019/086846 CN2019086846W WO2020227927A1 WO 2020227927 A1 WO2020227927 A1 WO 2020227927A1 CN 2019086846 W CN2019086846 W CN 2019086846W WO 2020227927 A1 WO2020227927 A1 WO 2020227927A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
sodium
discharge
zinc
lanthanum
Prior art date
Application number
PCT/CN2019/086846
Other languages
English (en)
French (fr)
Inventor
吴双
王亚帅
程杰
杨裕生
Original Assignee
浙江裕源储能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江裕源储能科技有限公司 filed Critical 浙江裕源储能科技有限公司
Priority to PCT/CN2019/086846 priority Critical patent/WO2020227927A1/zh
Publication of WO2020227927A1 publication Critical patent/WO2020227927A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of materials and electrochemistry, and specifically relates to a positive electrode active material of an aqueous battery, a preparation method thereof, and an aqueous zinc ion battery.
  • Renewable energy such as wind energy, solar energy and tidal energy has the characteristics of intermittent, randomness and volatility. If it is directly integrated into the power grid, it will reduce the power quality and even endanger the safety of the power grid. Therefore, large-scale energy storage is needed to output it at a stable voltage.
  • the chemical energy storage batteries that have been commercialized and have been widely studied mainly include lead-acid batteries, nickel-hydrogen batteries, nickel-cadmium batteries and lithium-ion batteries.
  • Flow batteries suitable for static-scale energy storage have entered the stage of commercial demonstration applications. But for large-scale energy storage, no energy storage system can fully meet the requirements so far.
  • Small-capacity lithium-ion batteries have a good industrial foundation and have become the main power source for various portable electronic devices, such as notebook computers and mobile phones.
  • Water-based secondary batteries such as current research and development hotspots, water-based lithium-ion batteries, water-based sodium-ion batteries, and water-based zinc-ion batteries, replace traditional organic electrolytes with aqueous electrolytes, eliminating the possibility of short-circuiting of electrode materials and other reactions that may cause combustion, explosions, etc. Potential safety hazards, and it is expected to reduce the high cost of lithium-ion batteries for large-scale energy storage, and become a new generation of energy storage devices with development and application potential.
  • manganese-based oxide materials such as MnO 2 , Mn 3 O 4 and ZnMn 2 O 4 are the main ones, in addition to V 2 O 5 , Na 3 V 2 (PO 4 ) 3 , and Prussia Blues, Co 3 O 4 and organic electrode materials are reported; however, from the literature and experimental results, the current reported manganese oxide materials have poor conductivity and rapid specific capacity decay.
  • LiCoO 2 LiNi 1/3 Mn 1/3 Co 1/3 O 2, etc.
  • reversible lithium ion deintercalation reactions can occur in aqueous solutions .
  • LiMn 2 O 4 has the most stable structure and has become the most attractive cathode material for aqueous lithium-ion batteries, but its specific capacity is low.
  • the application of manganese dioxide in aqueous batteries mainly includes primary batteries such as ammonium chloride zinc-manganese batteries and alkaline zinc-manganese batteries, as well as primary lithium batteries of organic systems.
  • Manganese dioxide is used as a material for rechargeable batteries. Some researches on rechargeable alkaline manganese have poor cycle performance and rate performance. Feiyu Kang's research group of Tsinghua University (Journal of Physics and Chemistry of Solids, 2012, 73(12): 1487-1491), Pan HL (Nature Energy, 2016, 39: 1-6) uses manganese dioxide as the positive electrode and metal zinc It is a negative electrode, and the aqueous solution containing manganese ions and zinc ions is a rechargeable secondary battery composed of electrolyte, showing good electrochemical performance; the high cycle performance data reported in these literatures are all measured in the electrolyte containing Mn 2+ Therefore, Mn 2+ in the solution may be deposited on the electrode surface and provide capacity, so it is difficult to determine its high cycleability and high specific capacity.
  • the purpose of the present invention is to overcome the problems of poor battery cycle stability and low specific discharge capacity in the prior art, as well as the use of MnO 2 , Mn 3 O 4 and ZnMn 2 O 4 as anode materials for aqueous batteries in the prior art
  • the problem of poor cycle performance is to provide a water-based battery positive active material and a preparation method thereof, and an aqueous zinc ion battery.
  • the present invention uses sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O or sodium manganese oxide doped with La or Sr Na 4 Mn 14 O 27 ⁇ 9H 2 O as the positive electrode active material of the aqueous zinc ion battery.
  • the battery has the characteristics of high specific capacity, high specific energy and high cycle life; in addition, the preparation method of the present invention is simple and has low energy consumption, which is beneficial to market promotion.
  • the present invention provides a positive active material for water-based batteries, wherein the positive active material is sodium manganese oxide material Na 4 Mn 14 O 27 ⁇ 9H 2 O and/or doped with Sodium manganese oxide of La or Sr, Na 4 Mn 14 O 27 ⁇ 9H 2 O.
  • the present invention also provides a method for preparing a positive electrode active material for water-based batteries, wherein the method includes the following steps:
  • the present invention also provides an aqueous zinc ion battery, wherein the positive electrode active material of the battery is the aforementioned water-based battery positive active material or the water-based battery positive active material prepared by the aforementioned method .
  • the present invention mainly has the following beneficial effects:
  • the (pre-embedded) sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O material of the present invention introduces Na metal ions into the structure of the manganese source material, and the Na + ions have a larger ion radius. It plays a role as a supporting structure, providing lattice gaps for other metal ions and improving the stability of the material.
  • the lanthanum (La) or strontium (Sr) doped sodium manganese oxide Na 4 Mn 14 O 27 .9H 2 O material of the present invention is doped with lanthanum in the Na 4 Mn 14 O 27 .9H 2 O structure Or strontium atoms, enhance the conductivity of the material and improve the rate performance of the material.
  • the aqueous zinc ion battery system provided by the present invention contains zinc ions in the electrolyte.
  • the Zn ions in the electrolyte will undergo intercalation and deintercalation reactions in the positive electrode active material lattice, providing charge and discharge capacity.
  • the sodium manganese oxide Na 4 Mn 14 O 27 .9H 2 O material of the present invention has a higher theoretical specific capacity, and it has good electrochemical performance as a cathode material of a zinc ion battery.
  • the lanthanum (La) or strontium (Sr) doped pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 .9H 2 O material of the present invention has a higher value than the Na 4 Mn 14 O 27 9H 2 O material. With high theoretical specific capacity and good rate performance, it has good electrochemical performance as a cathode material for zinc ion batteries.
  • the present invention adopts solid-phase sintering method to prepare Na 4 Mn 14 O 27 .9H 2 O and lanthanum (La) or strontium (Sr) doped pre-inserted sodium manganese oxide Na 4 Mn 14 O 27 .9H 2 O Compared with other production methods, the solid-phase synthesis method is more concise, convenient and easy to operate.
  • the production equipment is simple, the yield is high, the sintering process is simple and safe, environmental pollution is small, energy saving and environmental protection, and lower production cost; while reducing its synthesis cost , which greatly improves the specific capacity of the zinc ion battery, and at the same time improves its cycle stability and rate performance, solves the shortcomings of low specific capacity and poor cycle stability of ordinary zinc ion battery cathode materials, and makes the electrochemical performance of the composite very good. It has great application prospects in the application field of water-based zinc ion batteries.
  • Fig. 1 is a TG-DSC chart of the calcination process of Na 4 Mn 14 O 27 ⁇ 9H 2 O prepared in Example 1;
  • Example 2 is an XRD pattern of Na 4 Mn 14 O 27 ⁇ 9H 2 O prepared in Example 2-6;
  • Figure 3 is an XRD pattern of Na 4 Mn 14 O 27 ⁇ 9H 2 O prepared in Comparative Example 1-2;
  • Example 4 is a three-electrode CV diagram of Na 4 Mn 14 O 27 ⁇ 9H 2 O prepared in Example 4;
  • Example 5 is a diagram of the charging and discharging platform of Na 4 Mn 14 O 27 ⁇ 9H 2 O prepared in Example 4;
  • the first aspect of the present invention provides a positive electrode active material, wherein the positive electrode active material may be sodium manganese oxide material Na 4 Mn 14 O 27 .9H 2 O and/or sodium manganese oxide doped with La or Sr Material Na 4 Mn 14 O 27 ⁇ 9H 2 O.
  • the diffraction peaks of 24.91, 34.92, 35.6, 36.9, 40.57, 41.91, 48.71, 49.98 respectively correspond to the crystal face index of (001), (002), (201), (200), (111), (201),
  • the crystal planes of (112), (202), (113) are consistent with standard PDF cards (JCPDS card No.23-1046).
  • the theoretical specific capacity is at least 190mAh/g, and the calculated specific capacity is between 127-190mAh/g.
  • the positive electrode active material since the positive electrode active material has a higher theoretical specific capacity, it has good performance as a zinc ion battery positive electrode material.
  • the Na 4 Mn 14 O 27 ⁇ 9H 2 O material has a higher theoretical specific capacity. If the Na + ions in the structure do not deintercalate during the charging and discharging process, it plays the role of supporting the skeleton, and the metal in the electrolyte The ions Na + and Zn 2+ are intercalated and extracted in the crystal lattice. Assuming that 2 Mn 3+ ions change to Mn 4+ ions during the first charge, and 10 Mn 4+ ions all change to Mn during the first discharge. 3+ ions, the theoretical specific capacity of the material can be calculated to be at least 190mAh/g.
  • Lanthanum (La) or strontium (Sr) doping enhances the conductivity of the material on the basis of maintaining the original stability of the material, and improves the rate performance of the material.
  • the second aspect of the present invention provides a method for preparing a positive electrode active material, wherein the method includes the following steps:
  • the Na:Mn molar ratio of the amount of the sodium source to the manganese source can be (4-35):14, preferably (14-28):14;
  • the sodium source may be a sodium salt, preferably, the sodium source is sodium formate, sodium acetate, sodium citrate, sodium lactate, sodium oxalate, NaOH, NaNO 3 , NaNO 2 , NaHCO 3 , Na 2 SO 4 , NaCl, and Na 2 CO 3 one or more;
  • the manganese source can be one of MnO, MnOOH, MnO 2 , Mn 3 O 4 , Mn 2 O 3 , Na 2 MnO 4 , NaMnO 4 , MnCO 3 and MnSO 4 Kind or more.
  • the molar ratio of the amount of the lanthanum source, the strontium source (La+Sr) and the manganese source is (0-10): 100, preferably (5-10): 100;
  • the lanthanum source is one or more of lanthanum hydroxide, lanthanum oxide, lanthanum nitrate, lanthanum sulfate, lanthanum carbonate, lanthanum acetate, lanthanum citrate, lanthanum lactate, and lanthanum oxalate;
  • the strontium source is hydroxide
  • strontium oxide, strontium oxide, strontium nitrate, strontium sulfate, strontium carbonate, strontium acetate, strontium citrate, strontium lactate, and strontium oxalate is
  • the conditions of the ball mill include: the specific operation method and conditions of the ball mill are not particularly limited, and those skilled in the art can select various suitable conditions to implement the present invention according to the above principles. .
  • the ball milling is performed in a ball mill, where the diameter of the grinding balls in the ball mill can be 3-5 mm; the number of grinding balls can be reasonably selected according to the size of the ball milling tank.
  • the sample amount is not more than 2/3 of the volume of the ball milling tank;
  • the material of the grinding balls can be agate, zirconia, alumina, etc., preferably agate;
  • the conditions of the ball milling include : The rotating speed of the milling ball can be 300-500r/min, the milling time can be 3-8h, and the temperature in the ball milling tank can be 15-100°C.
  • the calcination conditions include: the heating rate can be 3-7°C/min, the temperature rising from room temperature to the temperature is 500-800°C, and the constant temperature time at this temperature can be 6 10h; Preferably, the heating rate is 5°C/min, the temperature of the constant temperature is 635°C, and the time to keep the constant temperature is 8 hours.
  • the reaction is cooled to room temperature and taken out; in addition, the calcination conditions are controlled to the above range, the advantage is that the reaction can be completed (from the thermogravigram of Figure 1, the reaction starts at 500 degrees, and the weight loss after 800 degrees Basically stable, there is no need to heat to a higher temperature), while the thermal energy consumption is low.
  • the solid material obtained after being calcined and cooled to room temperature is washed with deionized water and ethanol until it is neutral in order to remove impurities therein to purify the material, and at the same time, the material is fully hydrated, with crystal water, and then , Placed in a drying oven at 60-180 °C for 1-8h.
  • the drying temperature is 100-160°C
  • the drying time is 2-4h.
  • the preparation method of Na 4 Mn 14 O 27 ⁇ 9H 2 O and pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O doped with lanthanum (La) or strontium (Sr) provided by the present invention is simple and efficient, and has low While its synthesis cost, it greatly increases the specific capacity of the zinc-ion battery, and at the same time improves its cycle stability and rate performance. It solves the shortcomings of low specific capacity and poor cycle stability of ordinary zinc-ion battery cathode materials, and makes the composite's electricity The chemical performance is well brought into play, and it has huge application prospects in the application of zinc-ion batteries.
  • the method further comprises: ball milling the mixture of sodium source and manganese source before grinding; in the present invention, the grinding involved can be manual grinding, wherein the grinding time can be 30- 60min, in this way, the material can be mixed more evenly.
  • the solid material obtained after being calcined and cooled to room temperature is washed successively with deionized water and ethanol until it is neutral to remove impurities therein, and then placed in a drying box at 100-110°C for 6-8 hours.
  • the preparation method of Na 4 Mn 14 O 27 ⁇ 9H 2 O provided by the present invention is simple and efficient, avoids the use of hydrothermal and other harsh experimental conditions, reduces the synthesis cost, and greatly increases the specific capacity of the sodium ion battery. Improve its cycle stability and rate performance, solve the shortcomings of low specific capacity and poor cycle stability of ordinary sodium ion battery cathode materials, and make the electrochemical performance of the composite play a good role in the application of lithium/sodium ion batteries. Huge application prospects.
  • the third aspect of the present invention provides an aqueous zinc ion battery, wherein the positive electrode active material of the battery is the aforementioned water-based battery positive active material or the water-based battery positive active material prepared by the aforementioned method.
  • the zinc ion battery positive sheet further contains a conductive agent and a binder, wherein the conductive agent can be selected from acetylene black, graphite, carbon fiber, carbon nanotube, graphene, carbon black, and metal powder.
  • the binder can be styrene butadiene rubber, polyvinylidene fluoride, polyvinylidene fluoride, polytetrafluoroethylene, polyacrylate, polyurethane, epoxy resin, polymethyl cellulose, polymethyl At least one of sodium cellulose, hydroxypropyl methyl cellulose and polyacrylic alcohol; preferably, based on the weight of the positive electrode active material, the content of the conductive agent may be 0.1-20% by weight. The content of the agent can be 0.01-10% by weight.
  • the active material of the positive electrode is Na 4 Mn 14 O 27 ⁇ 9H 2 O
  • the active material of the negative electrode is zinc
  • the electrolyte is an aqueous solution containing zinc ions; It is composed of zinc salt, cationic salt type additive and water, wherein the cationic salt type additive is one or more of sodium salt, potassium salt, magnesium salt, calcium salt and aluminum salt.
  • the content of cationic salt type additive accounts for electrolyte zinc salt
  • concentration of 0-60%, the total concentration of zinc salt is 0.2-3 mol/L
  • zinc salt is zinc sulfate, zinc chloride, zinc fluoride, zinc nitrate, zinc acetate, zinc perchlorate, zinc tetrafluoroborate, One or more of Zn(CF 3 SO 3 ) 2 .
  • aqueous zinc ion battery wherein the active material of the positive electrode is lanthanum (La) or strontium (Sr) doped pre-inserted sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O, and the active material of the negative electrode is zinc.
  • the active material of the positive electrode is lanthanum (La) or strontium (Sr) doped pre-inserted sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O
  • the active material of the negative electrode is zinc.
  • the electrolyte is an aqueous solution containing zinc ions; the electrolyte is composed of sodium salt, cationic salt type additives and water, wherein the cationic salt type additives are potassium salt, magnesium salt, calcium salt, aluminum salt, lanthanum (La) or strontium salt
  • the content of cationic salt type additives accounts for 0-60% of the zinc salt concentration of the electrolyte, the total concentration of zinc salt is 0.2-3 mol/L
  • the zinc salt is zinc sulfate, zinc chloride, and zinc fluoride , Zinc nitrate, zinc acetate, zinc perchlorate, zinc tetrafluoroborate, Zn(CF 3 SO 3 ) 2 or one or more of them. .
  • the anode material of the aqueous zinc ion battery is Na 4 Mn 14 O 27 ⁇ 9H 2 O material prepared by experiment, the anode material is metal zinc flake or zinc tin alloy, etc., and the electrolyte is a weak acid containing Na ions and Zn ions. Electrolyte; the electrolyte is preferably 1 mol/L Na 2 SO 4 + 2 mol/L ZnSO 4 .
  • the anode material of the aqueous zinc ion battery is a pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O material doped with lanthanum (La) or strontium (Sr) prepared by experiments, and the anode material is a metal zinc sheet Or zinc-tin alloy, etc.
  • the electrolyte is a weak acid electrolyte containing La ions, Sr ions and Zn ions; the electrolyte is preferably 0.01mol/L La 2 (SO 4 ) 3 +1mol/L Na 2 SO 4 +0.02mol /L SrSO 4 +2mol/L ZnSO 4 .
  • thermogravimetric differential scanning calorimetry analysis curve in Figure 1 From the thermogravimetric differential scanning calorimetry analysis curve in Figure 1, it can be seen that the material has an obvious weight loss and an obvious exothermic peak before 200°C, indicating that NaHCO 3 decomposes into Na 2 CO 3 and water before 200°C.
  • the mass loss between 500-800°C indicates that the crystal form is transformed and new materials are synthesized.
  • the metal zinc sheet is used as the negative electrode, and the electrochemical performance test is carried out at 0.5-2.1V.
  • This example is to illustrate the calcination process of the Na 4 Mn 14 O 27 .9H 2 O precursor of the present invention to determine the preferred temperature.
  • step (2) Move the powder material (precursor) obtained in step (1) to a thermogravimetric differential thermal analyzer, set the heating rate to 5°C/min, and heat it from room temperature to 900°C to obtain experimental data.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • step (2) Transfer the powder material obtained in step (1) to a muffle furnace, and calcinate in an air atmosphere at 800°C for 8 hours at a heating rate of 5°C/min. After the calcination is completed, cool to room temperature and take it out;
  • step (3) Wash the solid obtained in step (2) successively with deionized water and ethanol for several times until it is neutral, and place it in a drying oven at 100° C. and dry for 6 hours.
  • step (3) Mix the active material obtained in step (3) with acetylene black and polytetrafluoroethylene (PTFE) according to the ratio of 82:15:3, add a small amount of deionized water and ethanol to fully grind, and then roll it into uniform flakes , Cut into 2*2cm 2 , used as a positive electrode material for backup, the mass of the active material of the monopolar sheet is between 60-80mg.
  • PTFE polytetrafluoroethylene
  • step (4) The electrode material obtained in step (4) is pressed onto the carbon-coated titanium mesh as the positive electrode of the battery, the negative electrode adopts zinc flakes, and the electrolyte adopts 1 mol/L Na 2 SO 4 + 2 mol/L ZnSO 4 to assemble the battery.
  • step (5) The battery obtained in step (5) is subjected to a constant current charge and discharge test, charged and discharged at a rate of 0.2C, the charge cut-off voltage is set to 2.1V, the discharge cut-off voltage is set to 0.8V, and the first discharge specific capacity reaches 176mAh/g. After 100 cycles, the specific discharge capacity remains at about 145mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 91mAh/g
  • the discharge specific capacity is maintained at about 89mAh/g after 100 cycles.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 ⁇ 9H 2 O was prepared according to the same method as in Example 2, except that the calcination temperature was 500°C.
  • the battery was assembled in the same way as in Example 2.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 163mAh/g, cycle 100 times, discharge ratio The capacity remains at around 135mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 88mAh/g
  • the discharge specific capacity is maintained at about 85mAh/g after 100 cycles.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 ⁇ 9H 2 O was prepared according to the same method as in Example 2, except that the calcination temperature was 635°C.
  • the battery was assembled in the same way as in Example 2.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 190mAh/g, cycle 100 times, discharge ratio The capacity remains around 160mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 97mAh/g
  • the discharge specific capacity is maintained at about 95mAh/g after 100 cycles.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 ⁇ 9H 2 O was prepared according to the same method as in Example 2, except that the calcination temperature was 670°C.
  • the battery was assembled in the same way as in Example 2.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 170mAh/g, cycle 100 times, discharge ratio The capacity remains around 138mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 170mAh/g
  • cycle 100 times discharge ratio
  • discharge ratio The capacity remains around 138mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 93mAh/g
  • the discharge specific capacity is maintained at about 90mAh/g after 100 cycles.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 ⁇ 9H 2 O was prepared according to the same method as in Example 2, except that the calcination temperature was 740°C.
  • the battery was assembled in the same way as in Example 2.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 167mAh/g, cycle 100 times, discharge ratio The capacity remains at around 135mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 91mAh/g, cycle 100 times ,
  • the discharge specific capacity is maintained at about 87mAh/g.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 .9H 2 O was prepared according to the same method as in Example 4, except that the ratio of sodium source (Na) to manganese source (Mn) was 4:14.
  • the battery was assembled in the same manner as in Example 4.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 127mAh/g, cycle 100 times, discharge ratio The capacity remains around 105mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 81mAh/g
  • the discharge specific capacity is maintained at about 77mAh/g after 100 cycles.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 .9H 2 O was prepared according to the same method as in Example 4, except that the ratio of sodium source (Na) to manganese source (Mn) was 14:14.
  • the battery was assembled in the same manner as in Example 4.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 185mAh/g, cycle 100 times, discharge ratio The capacity remains at around 157mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 94mAh/g
  • the specific discharge capacity remains at about 88mAh/g after 100 cycles.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 .9H 2 O was prepared according to the same method as in Example 4, except that the ratio of sodium source (Na) to manganese source (Mn) was 28:14.
  • the battery was assembled in the same manner as in Example 4.
  • FIG. 4 is a diagram of the battery charging and discharging platform.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 97mAh/g
  • the discharge specific capacity is maintained at about 95mAh/g after 100 cycles.
  • the above examples and comparisons fully prove the necessity of material washing.
  • the preferred ratio of sodium source (Na) to manganese source (Mn) is (14-28):14.
  • This embodiment is to illustrate the lanthanum (La)-doped pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O and the preparation method of the present invention.
  • step (2) Transfer the powder material obtained in step (1) to a muffle furnace, and calcinate in an air atmosphere at 635°C for 8 hours at a heating rate of 5°C/min. After the calcination is completed, cool to room temperature and take it out;
  • step (3) Wash the solid obtained in step (2) successively with deionized water and ethanol for several times until it is neutral, and place it in a drying oven at 100° C. and dry for 6 hours.
  • step (3) Mix the active material obtained in step (3) with acetylene black and polytetrafluoroethylene (PTFE) according to the ratio of 82:15:3, add a small amount of deionized water and ethanol to fully grind, and then roll it into uniform flakes , Cut into 2*2cm 2 , used as a positive electrode material for backup, the mass of the active material of the monopolar sheet is between 60-80mg.
  • PTFE polytetrafluoroethylene
  • step (4) Press the electrode material obtained in step (4) onto the carbon-coated titanium mesh as the positive electrode of the battery, the negative electrode adopts zinc flakes, and the electrolyte adopts 0.01 mol/L La 2 (SO 4 ) 3 +1 mol/L Na 2 SO 4 + 2mol/L ZnSO 4 , assembled battery.
  • step (6) The battery obtained in step (5) is subjected to a constant current charge and discharge test, charged and discharged at a rate of 0.2C, the charge cut-off voltage is set to 2.1V, the discharge cut-off voltage is set to 0.8V, and the first discharge specific capacity reaches 182mAh/g. After 100 cycles, the specific discharge capacity remains at about 162mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 102mAh/g
  • the discharge specific capacity is maintained at about 98mAh/g after 100 cycles.
  • This embodiment is to illustrate the lanthanum (La)-doped pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O and the preparation method of the present invention.
  • the battery was assembled in the same manner as in Example 10.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 181mAh/g, cycle 100 times, discharge ratio The capacity remains at around 163mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 107mAh/g
  • the discharge specific capacity is maintained at about 100mAh/g after 100 cycles.
  • This embodiment is to illustrate the lanthanum (La)-doped pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O and the preparation method of the present invention.
  • the battery was assembled in the same manner as in Example 10.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 183mAh/g, cycle 100 times, discharge ratio The capacity is maintained at around 161mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 110mAh/g
  • the discharge specific capacity is maintained at about 104mAh/g after 100 cycles.
  • This embodiment is to illustrate the strontium (Sr)-doped pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and the preparation method thereof.
  • step (2) Transfer the powder material obtained in step (1) to a muffle furnace, and calcinate in an air atmosphere at 635°C for 8 hours at a heating rate of 5°C/min. After the calcination is completed, cool to room temperature and take it out;
  • step (3) Wash the solid obtained in step (2) successively with deionized water and ethanol several times until it is neutral, and place it in a drying oven at 100°C for 6 hours.
  • step (3) Mix the active material obtained in step (3) with acetylene black and polytetrafluoroethylene (PTFE) according to the ratio of 82:15:3, add a small amount of deionized water and ethanol to fully grind, and then roll it into uniform flakes , Cut into 2*2cm 2 , used as a positive electrode material for backup, the mass of the active material of the monopolar sheet is between 60-80mg.
  • PTFE polytetrafluoroethylene
  • step (4) Press the electrode material obtained in step (4) onto the carbon-coated titanium mesh as the positive electrode of the battery, the negative electrode adopts zinc flake, and the electrolyte adopts 0.02mol/L SrSO 4 + 1mol/L Na 2 SO 4 + 2mol/L ZnSO 4 , Assemble the battery.
  • step (5) The battery obtained in step (5) is subjected to a constant current charge and discharge test, charge and discharge at a rate of 0.2C, the charge cut-off voltage is set to 2.1V, the discharge cut-off voltage is set to 0.8V, the first discharge specific capacity reaches 175mAh/g, After 100 cycles, the specific discharge capacity remains at about 161mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 100mAh/g
  • the discharge specific capacity is maintained at about 96mAh/g after 100 cycles.
  • This embodiment is to illustrate the strontium (Sr)-doped pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and the preparation method thereof.
  • the battery was assembled in the same manner as in Example 10.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 178mAh/g, cycle 100 times, discharge ratio The capacity remains at around 163mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 108mAh/g
  • the discharge specific capacity is maintained at about 101mAh/g after 100 cycles.
  • This embodiment is to illustrate the strontium (Sr)-doped pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and the preparation method thereof.
  • the battery was assembled in the same way as in Example 13.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 184mAh/g, cycle 100 times, discharge ratio The capacity remains at around 163mAh/g.
  • charge cut-off voltage is set to 2.1V
  • discharge cut-off voltage is set to 0.8V
  • first discharge specific capacity is 109mAh/g
  • the discharge specific capacity is maintained at about 105mAh/g after 100 cycles.
  • This embodiment is to illustrate the pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O co-doped with lanthanum (La) and strontium (Sr) of the present invention and the preparation method thereof.
  • step (2) Transfer the powder material obtained in step (1) to a muffle furnace, and calcinate in an air atmosphere at 635°C for 8 hours at a heating rate of 5°C/min. After the calcination is completed, cool to room temperature and take it out;
  • step (3) Wash the solid obtained in step (2) successively with deionized water and ethanol for several times until it is neutral, and place it in a drying oven at 100° C. and dry for 6 hours.
  • step (3) Mix the active material obtained in step (3) with acetylene black and polytetrafluoroethylene (PTFE) according to the ratio of 82:15:3, add a small amount of deionized water and ethanol to fully grind, and then roll it into uniform flakes , Cut into 2*2cm 2 , used as a positive electrode material for backup, the mass of the active material of the monopolar sheet is between 60-80mg.
  • PTFE polytetrafluoroethylene
  • step (4) Press the electrode material obtained in step (4) onto the carbon-coated titanium mesh as the positive electrode of the battery, the negative electrode adopts zinc flake, and the electrolyte adopts 0.01mol/L La 2 (SO 4 ) 3 +0.02mol/L SrSO 4 +1mol /L Na 2 SO 4 +2mol/L ZnSO 4 , to assemble the battery.
  • step (6) Perform a constant current charge and discharge test on the battery obtained in step (5), charge and discharge at a rate of 0.2C, set the charge cut-off voltage to 2.1V and discharge cut-off voltage to 0.8V, and the first discharge specific capacity reaches 185mAh/g. After 100 cycles, the specific discharge capacity remains at about 169mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 118mAh/g
  • the discharge specific capacity is maintained at about 113mAh/g after 100 cycles.
  • This embodiment is intended to illustrate the pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O co-doped with lanthanum (La) and strontium (Sr) of the present invention and its preparation method and battery performance test.
  • the battery was assembled in the same manner as in Example 16.
  • the obtained battery was subjected to constant current charge and discharge test, charged and discharged at a rate of 0.2C, the charge cut-off voltage was set to 2.1V, the discharge cut-off voltage was set to 0.8V, the first discharge specific capacity reached 187mAh/g, and the discharge specific capacity was maintained after 100 cycles. Around 160mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 100mAh/g
  • the discharge specific capacity is maintained at about 95mAh/g after 100 cycles.
  • This embodiment is intended to illustrate the pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O co-doped with lanthanum (La) and strontium (Sr) of the present invention and its preparation method and battery performance test.
  • the battery was assembled in the same manner as in Example 16.
  • the obtained battery was subjected to constant current charge and discharge test, charged and discharged at a rate of 0.2C, the charge cut-off voltage was set to 2.1V, the discharge cut-off voltage was set to 0.8V, the first discharge specific capacity reached 186mAh/g, and the discharge specific capacity was maintained after 100 cycles. Around 165mAh/g. When charging and discharging at a rate of 1C, the first discharge specific capacity is 116mAh/g, and after 100 cycles, the discharge specific capacity remains around 110mAh/g.
  • This embodiment is intended to illustrate the pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O co-doped with lanthanum (La) and strontium (Sr) of the present invention and its preparation method and battery performance test.
  • the battery was assembled in the same manner as in Example 16.
  • the obtained battery was subjected to constant current charge and discharge test, charged and discharged at a rate of 0.2C, the charge cut-off voltage was set to 2.1V, the discharge cut-off voltage was set to 0.8V, the first discharge specific capacity reached 185mAh/g, and the discharge specific capacity was maintained after 100 cycles. Around 164mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 115mAh/g
  • the discharge specific capacity is maintained at about 109mAh/g after 100 cycles.
  • This embodiment is intended to illustrate the pre-embedded sodium manganese oxide Na 4 Mn 14 O 27 ⁇ 9H 2 O co-doped with lanthanum (La) and strontium (Sr) of the present invention and its preparation method and battery performance test.
  • the battery was assembled in the same manner as in Example 16.
  • the obtained battery was subjected to constant current charge and discharge test, charged and discharged at a rate of 0.2C, the charge cut-off voltage was set to 2.1V, the discharge cut-off voltage was set to 0.8V, the first discharge specific capacity reached 183mAh/g, and the discharge specific capacity was maintained after 100 cycles Around 163mAh/g.
  • the charge cut-off voltage is set to 2.1V
  • the discharge cut-off voltage is set to 0.8V
  • the first discharge specific capacity is 113mAh/g
  • the discharge specific capacity is maintained at about 107mAh/g after 100 cycles.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 183mAh/g, cycle 100 times, discharge ratio The capacity is about 157mAh/g.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, the first discharge specific capacity was only 181mAh/g, 100 cycles, discharge The specific capacity is about 155mAh/g.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 .9H 2 O was prepared according to the same method as in Example 2, except that the calcined material was not washed with deionized water and ethanol.
  • the battery was assembled in the same way as in Example 2.
  • the obtained battery was subjected to constant current charge and discharge test, charged and discharged at a rate of 0.2C, the charge cut-off voltage was set to 2.1V, the discharge cut-off voltage was set to 0.8V, the first discharge specific capacity was only 97mAh/g, the cycle was 100 times, and the discharge The specific capacity is about 65mAh/g.
  • This example is to illustrate the Na 4 Mn 14 O 27 ⁇ 9H 2 O of the present invention and its preparation method.
  • Na 4 Mn 14 O 27 .9H 2 O was prepared according to the same method as in Example 3, except that the calcined material was not washed with deionized water and ethanol.
  • the battery was assembled in the same way as in Example 3.
  • the obtained battery was subjected to constant current charge and discharge test, charged and discharged at 0.2C rate, the charge cut-off voltage was set to 2.1V, the discharge cut-off voltage was set to 0.8V, the first discharge specific capacity was only 92mAh/g, the cycle was 100 times, and the discharge The specific capacity is about 50mAh/g.
  • the battery was assembled in the same manner as in Example 16. As a result, a Na 4 Mn 14 O 27 ⁇ 9H 2 O material was obtained.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage was set to 2.1V, discharge cut-off voltage was set to 0.8V, first discharge specific capacity was 173mAh/g, cycle 100 times, discharge ratio The capacity is about 145mAh/g.
  • Na 4 Mn 14 O 27 ⁇ 9H 2 O was prepared according to the same method as in Example 2, except that the calcination temperature was 450°C.
  • the obtained battery is subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, charge cut-off voltage is set to 2.1V, discharge cut-off voltage is set to 0.8V, first discharge specific capacity is only 104mAh/g, cycle 100 times, discharge The specific capacity is about 83mAh/g.
  • Na 4 Mn 14 O 27 ⁇ 9H 2 O was prepared according to the same method as in Example 2, except that the calcination temperature was 850°C.
  • the obtained battery was subjected to constant current charge and discharge test, charge and discharge at 0.2C rate, the charge cut-off voltage was set to 2.1V, the discharge cut-off voltage was set to 0.8V, the first discharge specific capacity was only 158mAh/g, the cycle was 100 times, and the discharge The specific capacity is about 125mAh/g. It can be seen that it is indeed feasible to prepare material properties at a calcination temperature of 850°C, but the present invention limits the temperature to 500-800°C, which is considered from the perspective of environmental protection, and 500-800°C is more environmentally friendly.
  • the Na 4 Mn 14 O 27 ⁇ 9H 2 O materials prepared in Example 2-6 and Comparative Example 1-2 were subjected to XRD analysis, as shown in Figure 2 is the Na 4 Mn 14 O 27 ⁇ 9H 2 prepared in Example 2-6
  • Figure 3 is the XRD pattern of Na 4 Mn 14 O 27 ⁇ 9H 2 O prepared in Comparative Example 1-2; among them, it can be seen that: Na 4 Mn 14 was prepared under different calcination temperature conditions O 27 ⁇ 9H 2 O hydrated oxide, the XRD comparison chart of washed and unwashed materials shows that there are few impurity peaks after washing, indicating that washing makes the material purified.
  • thermogravimetric differential scanning calorimetry analysis curve in Figure 1 From the thermogravimetric differential scanning calorimetry analysis curve in Figure 1, it can be seen that the material has an obvious weight loss and an obvious exothermic peak before 200°C, indicating that NaHCO 3 decomposes into Na 2 CO 3 and water before 200°C.
  • the mass loss between 500-800°C indicates that the crystal form is transformed and new materials are synthesized. After 800°C, there is no obvious mass loss and exothermic phenomenon, which means that the reaction is completed before 800°C, that is, the experimental temperature can be selected at 500-800°C between.
  • Figures 4, 5 and 6 are performance tests of zinc-ion batteries using Na 4 Mn 14 O 27 ⁇ 9H 2 O as the cathode material.
  • Fig. 4 is the Na 4 Mn 14 O 27 ⁇ 9H 2 O prepared in Example 4. three-electrode CV;
  • Figure 5 is Na prepared in Example 4 embodiment 4 Mn 14 O 27 ⁇ 9H 2 O charge and discharge platform;
  • Figure 6 is Na prepared in Example 4 embodiment 4 Mn 14 O 27 ⁇ 9H 2 O Graph of charge and discharge efficiency. It can be seen from Figure 4-6 that the battery exhibits a good redox peak, which corresponds to a good charge and discharge plateau curve, indicating that the material has good cycle performance and rate performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明属于材料与电化学技术领域,具体涉及一种水系电池正极活性材料及其制备方法以及水溶液锌离子电池。其中,所述正极活性材料为钠锰氧化物Na 4Mn 14O 27·9H 2O和/或掺杂有La或Sr的钠锰氧化物Na 4Mn 14O 27·9H 2O。采用本发明的钠锰氧化物Na 4Mn 14O 27·9H 2O和/或掺杂有La或Sr的钠锰氧化物Na 4Mn 14O 27·9H 2O作为水溶液锌离子电池的正极活性材料,在含有Zn离子的无机水系电池中表现出较高的放电比容量和良好的循环稳定性;另外,本发明的制备方法简单,能耗较低,有利于市场化推广。

Description

水系电池正极活性材料及其制备方法以及水溶液锌离子电池 技术领域
本发明属于材料与电化学技术领域,具体涉及一种水系电池正极活性材料及其制备方法以及水溶液锌离子电池。
背景技术
风能、太阳能以及潮汐能等可再生能源具有间歇性、随机性和波动性的特点,如果将其直接并入电网,将会降低电能质量,甚至危害电网的安全。因此,需要通过规模储能将其以稳定的电压进行输出。
现已商业化并得以广泛研究的化学储能电池主要有铅酸电池、镍氢电池、镍镉电池和锂离子电池,适宜静态规模储能的液流电池步入了商业化示范应用阶段。但用于规模储能,至今没有一种储能体系能完全满足要求。小容量锂离子电池已具备较好的产业基础,成为各类便携式电子设备的主要电源,如笔记本电脑、手机等。但用于规模化储能时,因为当前锂离子电池所用的有机电解质有易燃性和一定毒性,易引发安全性问题;且电解液对除湿和隔绝空气的要求苛刻,电池制作装配复杂也导致成本降低的空间不大,从而限制了大型锂离子电池在储能中的应用。
水系二次电池,如目前的研发热点水系锂离子电池、水系钠离子电池、水系锌离子电池等,以水溶液电解液代替传统有机电解液,消除了电极材料发生短路等反应可能引起燃烧、爆炸等安全隐患,且有望降低锂离子电池用于规模储能所存在的成本高的问题,成为具有开发和应用潜力的新一代储能器件。
从有关水系电池正极材料报道看,以MnO 2、Mn 3O 4及ZnMn 2O 4等锰基氧化物材料为主,此外还有V 2O 5、Na 3V 2(PO 4) 3、普鲁士蓝类、Co 3O 4和有机电极材料的报道;但从文献和实验结果看,目前报道的锰氧化物材料导电性差、比容量衰减较快。嵌入电位相对于Li +/Li在4V的有机锂离子电池电极材料如LiCoO 2、LiNi 1/3Mn 1/3Co 1/3O 2等,在水溶液中均可发生可逆的锂离子脱嵌反应,但存在质子与锂离子共嵌入/脱出的问题,循环性差;LiMn 2O 4结构最为稳定,已成为水系锂离子电池最具吸引力的正极材料,但比容量较低。二氧化锰在水溶液电池中应用主要有一次电池的氯化铵型锌锰电池、碱性锌锰电池等,也用于有机体系的一次锂电池。二氧化锰用作可充电池材料中,在可充碱锰中有些研究,循环性能、倍率性能都很差。清华大学的康飞宇课题组(Journal of Physics and  Chemistry of Solids,2012,73(12):1487-1491)、Pan H L(Nature Energy,2016,39:1-6)以二氧化锰为正极、金属锌为负极、含有锰离子、锌离子的水溶液为电解液组成可充的二次电池,表现出较好的电化学性能;这些文献报道的高循环性能的数据均在含Mn 2+电解液中测得,溶液中的Mn 2+可能会沉积在电极表面并提供容量,因此难以确定其高循环性及高比容量。
综合来讲,水溶液中MnO 2、Mn 3O 4及ZnMn 2O 4等锰基氧化物材料用作可充电池材料时,电极材料结构极易坍塌,因此电池总是面临着循环性能差的问题。LiNi 1/3Mn 1/3Co 1/3O 2等材料在水溶液中存在质子与锂离子共嵌入/脱出的问题,循环性能不佳。
因此,对电池正极活性材料的研究进而提高电池的性能具有重要意义。
发明内容
本发明的目的是为了克服现有技术中的电池循环稳定性差以及放电比容量低的问题,以及现有技术中采用MnO 2、Mn 3O 4及ZnMn 2O 4等作为水溶液电池正极材料所存在的循环性能差的问题,提供一种水系电池正极活性材料及其制备方法以及水溶液锌离子电池。本发明采用钠锰氧化物Na 4Mn 14O 27·9H 2O或掺杂有La或Sr的钠锰氧化物Na 4Mn 14O 27·9H 2O作为水溶液锌离子电池的正极活性材料,该电池具有高比容量、高比能量、高循环寿命的特点;另外,本发明的制备方法简单,能耗较低,有利于市场化推广。
为了实现上述目的,第一方面,本发明提供了一种水系电池正极活性材料,其中,所述正极活性材料为钠锰氧化物材料Na 4Mn 14O 27·9H 2O和/或掺杂有La或Sr的钠锰氧化物Na 4Mn 14O 27·9H 2O。
第二方面,本发明还提供了一种水系电池正极活性材料的制备方法,其中,所述方法包括以下步骤:
(1)将钠源与锰源以及可选的镧源或锶源混合;
(2)将经步骤(1)后的混合物进行煅烧;
(3)将经步骤(2)后的材料进行研磨、洗涤和干燥处理。
第三方面,本发明还提供了一种水溶液锌离子电池,其中,所述电池的正极活性材料为前述所述的水系电池正极活性材料或者由前述所述的方法制备得到的水系电池正极活性材料。
根据上述技术方案,本发明主要具有以下有益效果:
(1)本发明的(预嵌)钠锰氧化物Na 4Mn 14O 27·9H 2O材料为在锰源材料结构中引入Na金属离子,Na +离子具有较大的离子半径,在氧化物中起到支撑结构的作用,为其他金属离子提供晶格间隙的同时提高材料的稳定性。
(2)本发明的镧(La)或锶(Sr)掺杂的钠锰氧化物Na 4Mn 14O 27·9H 2O材料为在Na 4Mn 14O 27·9H 2O架构中掺入镧或锶原子,增强材料导电性,提高材料的倍率性能。
(3)对煅烧制得的产物进行充分洗涤,洗去杂质、纯化材料的同时,使材料与水分子充分接触发生水化反应,带上结晶水,结晶水的存在会减小Na/Zn等金属离子在晶格中的嵌入和脱嵌阻抗。
(4)本发明提供的水溶液锌离子电池体系,电解液中含有锌离子,电池充放电过程中,电解液中的Zn离子会在正极活性材料晶格中发生嵌入和脱嵌反应,提供充放电容量。
(5)本发明的钠锰氧化物Na 4Mn 14O 27·9H 2O材料具有较高的理论比容量,将其作为锌离子电池正极材料具有良好的电化学性能。
(6)本发明的镧(La)或锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O材料为在Na 4Mn 14O 27·9H 2O材料具有较高的理论比容量和良好的倍率性能,将其作为锌离子电池正极材料具有良好的电化学性能。
(7)本发明采用固相烧结法制备Na 4Mn 14O 27·9H 2O及镧(La)或锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O材料,固相合成法相比其他生产方法更简洁方便易于操作,生产设备简单,产率高,烧结过程处理简单、安全,环境污染小,节能环保,生产成本更低;在降低其合成成本的同时,大幅提高了锌离子电池的比容量,同时提高了其循环稳定性和倍率性能,解决了普通锌离子电池正极材料比容量低、循环稳定性差的缺点,使复合物的电化学性能很好地发挥出来,在水系锌离子电池应用领域有巨大的应用前景。
附图说明
图1是实施例1制备的Na 4Mn 14O 27·9H 2O的煅烧过程的TG-DSC图;
图2是实施例2-6制备的Na 4Mn 14O 27·9H 2O的XRD图;
图3是对比例1-2制备的Na 4Mn 14O 27·9H 2O的XRD图;
图4是实施例4中制备的Na 4Mn 14O 27·9H 2O的三电极CV图;
图5是实施例4中制备的Na 4Mn 14O 27·9H 2O的充放电平台图;
图6是实施例4中制备的Na 4Mn 14O 27·9H 2O的充放电效率图。
附图标记说明:
1-实施例2(800℃)        2-实施例3(500℃)        3-实施例4(635℃)
4-实施例5(670℃)        5-实施例6(740℃)        6-对比例1(800℃)
7-对比例2(500℃)        I 0-1.2V 1mv/s          II 0-1.2V 5mv/s
III 0-1.2V 10mv/s       IV -1-1.2V 1mv/s
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
本发明第一方面提供了一种正极活性材料,其中,所述正极活性材料可以为钠锰氧化物材料Na 4Mn 14O 27·9H 2O和/或掺杂有La或Sr的钠锰氧化物Na 4Mn 14O 27·9H 2O。
根据本发明,La或Sr与Mn的含量的摩尔比为La:Mn=(0-10):100,优选为(5-10):100;Sr:Mn=(0-10):100,优选为(5-10):100。
根据本发明,所述正极活性材料可以为正交晶系,附图2XRD测试图谱中几乎所有的衍射峰都对应于正交结构的Na 4Mn 14O 27·9H 2O,衍射角2θ=12.38,24.91,34.92,35.6,36.9,40.57,41.91,48.71,49.98的衍射峰分别对应于晶面指数为(001),(002),(201),(200),(111),(201),(112),(202),(113)的晶面与标准PDF卡片(JCPDS card No.23-1046)一致。理论比容量至少为190mAh/g,计算比容量在127-190mAh/g之间,在本发明中,由于所述正极活性材料具有较高的理论比容量,将其作为锌离子电池正极材料具有良好的电化学性能。
在本发明中,Na 4Mn 14O 27·9H 2O材料具有较高的理论比容量,若按充放电过程中结构中Na +离子不发生脱嵌,起支撑骨架作用,电解液中的金属离子Na +和Zn 2+在晶格中完成嵌入和脱出,假设2个Mn 3+离子在首次充电过程中变价为Mn 4+离子,10个Mn 4+离子在首次放电过程中均变价为Mn 3+离子,材料的理论比容量计算可以至少为190mAh/g,另外,由于两个不能脱嵌是Na +离子成为结构的支撑离子,使材料的结构稳定性较好。镧(La)或锶(Sr)掺杂在材料保持原有稳定性的基础上增强材料导电性,提高材料的倍率性能。
本发明第二方面提供了一种正极活性材料的制备方法,其中,所述方法包括以下 步骤:
(1)将钠源与锰源以及可选的镧源或锶源混合;
(2)将经步骤(1)后的混合物进行煅烧;
(3)将经步骤(2)后的材料进行研磨、洗涤和干燥处理。
根据本发明,在步骤(1)中,所述钠源与所述锰源的用量的Na:Mn摩尔比可以为(4-35):14,优选为(14-28):14;其中,所述钠源可以为钠盐,优选地,所述钠源为甲酸钠、乙酸钠、柠檬酸钠、乳酸钠、草酸钠、NaOH、NaNO 3、NaNO 2、NaHCO 3、Na 2SO 4、NaCl和Na 2CO 3中的一种或多种;所述锰源可以为MnO、MnOOH、MnO 2、Mn 3O 4、Mn 2O 3、Na 2MnO 4、NaMnO 4、MnCO 3和MnSO 4中的一种或多种。
根据本发明,在步骤(1)中,所述镧源、锶源(La+Sr)与所述锰源的用量的摩尔比为(0-10):100,优选为(5-10):100;所述镧源为氢氧化镧、氧化镧、硝酸镧、硫酸镧、碳酸镧、乙酸镧、柠檬酸镧、乳酸镧、草酸镧中的一种或多种;所述锶源为氢氧化锶、氧化锶、硝酸锶、硫酸锶、碳酸锶、乙酸锶、柠檬酸锶、乳酸锶、草酸锶中的一种或多种。
根据本发明,在步骤(1)中,所述球磨的条件包括:所述球磨的具体操作方法和条件没有特别地限定,本领域技术人员可以根据上述原则选择各种合适的条件来实施本发明。具体地,所述球磨在球磨机中进行,其中,球磨机中磨球的直径可以为3-5mm;磨球的数量可以根据球磨罐的大小进行合理地选择,对于大小为50-150mL的球磨罐,通常可以使用20-50个磨球、装样量不大于球磨罐体积的2/3;所述磨球的材质可以是玛瑙、氧化锆、氧化铝等,优选为玛瑙;所述球磨的条件包括:磨球的转速可以为300-500r/min,球磨的时间可以为3-8h,球磨罐内的温度可以为15-100℃。
根据本发明,在步骤(2)中,所述煅烧的条件包括:升温速率可以为3-7℃/min,从室温升温到温度为500-800℃,在该温度的恒温时间可以为6-10h;优选情况下,升温速率为5℃/min,恒温的温度为635℃,保持恒温的时间为8h。在本发明中,煅烧结束,冷却至室温取出;另外,将煅烧的条件控制为上述范围,优点是反应能够进行完全(从图1的热重图看,500度开始出现反应,800度后失重基本稳定,没有必要加热到更高的温度),同时热能耗较低。
根据本发明,将经煅烧后且冷却至室温得到的固体材料依次用去离子水和乙醇洗涤直至中性,以去除其中的杂质以纯化材料,同时使材料充分水化,带上结晶水,然后,置于干燥箱中在60-180℃干燥1-8h。优选的,干燥温度100-160℃,干燥时间2-4h。
本发明提供的Na 4Mn 14O 27·9H 2O及镧(La)或锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O制备方法简单高效,在降低其合成成本的同时,大幅提高了锌离子电池的比容量,同时提高了其循环稳定性和倍率性能,解决了普通锌离子电池正极材料比容量低、循环稳定性差的缺点,使复合物的电化学性能很好地发挥出来,在锌离子电池应用领域有巨大的应用前景。
根据本发明,该方法还包括:在将钠源与锰源的混合物进行球磨后再进行研磨;在本发明中,所涉及到的研磨可以为采用手动研磨,其中,研磨的时间可以为30-60min,这样,能够使材料混合的更均匀。
根据本发明,将经煅烧后且冷却至室温得到的固体材料依次用去离子水和乙醇洗涤直至中性,以去除其中的杂质,然后,置于干燥箱中100-110℃干燥6-8h。
本发明提供的Na 4Mn 14O 27·9H 2O制备方法简单高效,避免了使用水热等较为苛刻的实验条件,在降低其合成成本的同时,大幅提高了钠离子电池的比容量,同时提高了其循环稳定性和倍率性能,解决了普通钠离子电池正极材料比容量低、循环稳定性差的缺点,使复合物的电化学性能很好地发挥出来,在锂/钠离子电池应用领域有巨大的应用前景。
本发明第三方面提供了一种水溶液锌离子电池,其中,所述电池的正极活性材料为前述所述的水系电池正极活性材料或者由前述所述的方法制备得到的水系电池正极活性材料。
根据本发明,所述的锌离子电池正极片还含有导电剂和粘结剂,其中,所述导电剂可以为乙炔黑、石墨、碳纤维、碳纳米管、石墨烯、碳黑和金属粉末中的至少一种;所述粘结剂可以为丁苯橡胶、聚偏氟乙烯、聚偏二氟乙烯、聚四氟乙烯、聚丙烯酸酯、聚氨酯、环氧树脂、聚甲基纤维素、聚甲基纤维素钠、羟丙基甲基纤维素和聚丙烯醇中的至少一种;优选情况下,以所述正极活性材料的重量为基准,导电剂的含量可以为0.1-20重量%,粘合剂的含量可以为0.01-10重量%。
其中一种水溶液锌离子电池,其正极的活性材料为预嵌钠的锰氧化物Na 4Mn 14O 27·9H 2O,负极活性材料为锌,电解液为含锌离子的水溶液;电解液由锌盐、阳离子盐型添加剂和水组成,其中阳离子盐型添加剂为钠盐、钾盐、镁盐、钙盐、铝盐中的一种或一种以上,阳离子盐型添加剂含量占电解液锌盐浓度的0~60%,锌盐的总浓度在0.2~3摩尔/升,锌盐为硫酸锌、氯化锌、氟化锌、硝酸锌、乙酸锌、高氯酸锌、四氟硼酸锌、Zn(CF 3SO 3) 2中的一种或一种以上。
其中一种水溶液锌离子电池,其中,正极的活性材料为镧(La)或锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,负极活性材料为锌,电解液为含锌离子的水溶液;电解液由钠盐、阳离子盐型添加剂和水组成,其中阳离子盐型添加剂为钾盐、镁盐、钙盐、铝盐,镧(La)或锶盐中的一种或一种以上,阳离子盐型添加剂含量占电解液锌盐浓度的0~60%,锌盐的总浓度在0.2~3摩尔/升,锌盐为硫酸锌、氯化锌、氟化锌、硝酸锌、乙酸锌、高氯酸锌、四氟硼酸锌、Zn(CF 3SO 3) 2中的一种或一种以上。。
优选地,水溶液锌离子电池正极材料为实验制备出的Na 4Mn 14O 27·9H 2O材料,负极材料为金属锌片或锌锡合金等,电解液为含有Na离子和Zn离子的弱酸性电解液;电解液优选为1mol/L Na 2SO 4+2mol/L ZnSO 4
优选地,水溶液锌离子电池正极材料为实验制备出的镧(La)或锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O材料,负极材料为金属锌片或锌锡合金等,电解液为含有La离子,Sr离子和Zn离子的弱酸性电解液;电解液优选为0.01mol/L La 2(SO 4) 3+1mol/L Na 2SO 4+0.02mol/L SrSO 4+2mol/L ZnSO 4
以下将通过实施例对本发明进行详细描述。
(1)(1)热分析(TA,德国耐驰TG209F3型热重差热分析仪)
由图1中的热重差示扫描量热分析曲线可以看出材料在200℃之前发生明显的失重现象和明显的放热峰,说明NaHCO 3在200℃之前分解为Na 2CO 3和水,在500-800℃之间质量损失,说明发生晶形转变,合成新材料,800℃后无明显质量损失和放热现象,说明反应在800℃之前完成,即实验温度可选定在500-800℃之间
(2)XRD分析(XRD,日本理学公司D/Max-3B型X射线衍射仪)
由图2和图3可以看出实验合成出了Na 4Mn 14O 27·9H 2O材料,经过洗涤的材料峰强度大,杂峰少,说明洗涤可以纯化材料。
(3)电化学性能测试
以浓度为1mol/L Na 2SO 4+2mol/L ZnSO 4或0.01mol/L La 2(SO 4) 3+1mol/L Na 2SO 4+0.02mol/L SrSO 4+2mol/L ZnSO 4溶液作为电解液,以金属锌片为负极,在0.5-2.1V之间进行电化学性能测试。
实施例1
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O前驱体的煅烧过程以确定优选温度。
(1)将0.05mol的NaHCO 3与0.01mol的Mn 2O 3置于混料机中,充分混合30min,取出后置于球磨机中,转速300r/min球磨3h,取出手动研磨30min,使材料均匀混合;
(2)将步骤(1)所得粉体材料(前驱体)移至热重差热分析仪中,设定升温速率为5℃/min,由室温加热至900℃,得出实验数据。
(3)分析试验数据,观察此过程的热变化情况,以此确定前驱体的煅烧温度,从附图1中可以看出:材料的主要失重和放热反应是从500℃之后开始,800℃之后无明显晶型变化,因此本发明将实验煅烧温度选为500-800℃之间。
实施例2
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
(1)分别将0.05mol的NaHCO 3、0.01mol的Mn 2O 3置于混料机中,充分混合30min,取出后置于球磨机中,转速300r/min球磨3h,取出手动研磨30min,使材料均匀混合;
(2)将步骤(1)所得粉体材料转移至马弗炉中,800℃空气气氛煅烧8h,升温速率为5℃/min,煅烧结束,冷却至室温取出;
(3)将步骤(2)所得的固体依次用去离子水和乙醇洗涤多次至中性,置于干燥箱中100℃干燥6h。
(4)将步骤(3)所得的活性材料与乙炔黑,聚四氟乙烯(PTFE)按照82:15:3的比例均匀混合,加入少量去离子水和乙醇充分研磨,后擀制成均匀薄片,剪裁成2*2cm 2,作为正极材料备用,单极片活性材料质量在60-80mg之间。
(5)将步骤(4)所得的电极材料压到涂炭钛网上作为电池正极,负极采用锌片,电解液采用1mol/L Na 2SO 4+2mol/L ZnSO 4,组装电池。
(6)将步骤(5)所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到176mAh/g,循环100次,放电比容量保持在145mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为91mAh/g,循环100次,放电比容量保持在89mAh/g左右。
实施例3
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例2相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧温度为500℃。按照与实施例2相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为163mAh/g,循环100次,放电比 容量保持在135mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为88mAh/g,循环100次,放电比容量保持在85mAh/g左右。
实施例4
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例2相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧温度为635℃。按照与实施例2相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为190mAh/g,循环100次,放电比容量保持在160mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为97mAh/g,循环100次,放电比容量保持在95mAh/g左右。
实施例5
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例2相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧温度为670℃。按照与实施例2相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为170mAh/g,循环100次,放电比容量保持在138mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为93mAh/g,循环100次,放电比容量保持在90mAh/g左右。
实施例6
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例2相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧温度为740℃。按照与实施例2相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为167mAh/g,循环100次,放电比 容量保持在135mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为91mAh/g,循环100次,放电比容量保持在87mAh/g左右。
实施例7
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例4相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:钠源(Na)与锰源(Mn)比例为4:14。按照与实施例4相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为127mAh/g,循环100次,放电比容量保持在105mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为81mAh/g,循环100次,放电比容量保持在77mAh/g左右。
实施例8
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例4相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:钠源(Na)与锰源(Mn)比例为14:14。按照与实施例4相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为185mAh/g,循环100次,放电比容量保持在157mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为94mAh/g,循环100次,放电比容量保持在88mAh/g左右。
实施例9
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例4相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:钠源(Na)与锰源(Mn)比例为28:14。按照与实施例4相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为188mAh/g,循环100次,放电比 容量保持在159mAh/g左右。附图4为电池的充放电平台图。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为97mAh/g,循环100次,放电比容量保持在95mAh/g左右。
由以上实施例和对比利充分证明了材料洗涤的必要性。优选的钠源(Na)与锰源(Mn)比例为(14-28):14。
实施例10
本实施例在于说明本发明的镧(La)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法。
(1)分别将0.0001mol的La 2(CO 3) 3、0.02mol的NaHCO 3、0.01mol的Mn 2O 3置于混料机中,充分混合30min,取出后置于球磨机中,转速300r/min球磨3h,取出手动研磨30min,使材料均匀混合,其中La:Mn=1:100;
(2)将步骤(1)所得粉体材料转移至马弗炉中,635℃空气气氛煅烧8h,升温速率为5℃/min,煅烧结束,冷却至室温取出;
(3)将步骤(2)所得的固体依次用去离子水和乙醇洗涤多次至中性,置于干燥箱中100℃干燥6h。
(4)将步骤(3)所得的活性材料与乙炔黑,聚四氟乙烯(PTFE)按照82:15:3的比例均匀混合,加入少量去离子水和乙醇充分研磨,后擀制成均匀薄片,剪裁成2*2cm 2,作为正极材料备用,单极片活性材料质量在60-80mg之间。
(5)将步骤(4)所得的电极材料压置到涂炭钛网上作为电池正极,负极采用锌片,电解液采用0.01mol/L La 2(SO 4) 3+1mol/L Na 2SO 4+2mol/L ZnSO 4,组装电池。
(6)将步骤(5)所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到182mAh/g,循环100次,放电比容量保持在162mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为102mAh/g,循环100次,放电比容量保持在98mAh/g左右。
实施例11
本实施例在于说明本发明的镧(La)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例10相同的方法制备镧(La)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:La 2(CO 3) 3的掺杂量为0.0005mol,即La:Mn=5:100。按照与实施例10相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为181mAh/g,循环100次,放电比容量保持在163mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为107mAh/g,循环100次,放电比容量保持在100mAh/g左右。
实施例12
本实施例在于说明本发明的镧(La)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例10相同的方法制备镧(La)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:La 2(CO 3) 3的掺杂量为0.001mol,即La:Mn=10:100。按照与实施例10相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为183mAh/g,循环100次,放电比容量保持在161mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为110mAh/g,循环100次,放电比容量保持在104mAh/g左右。
实施例13
本实施例在于说明本发明的锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法。
(1)分别将0.0002mol的SrCO 3、0.02mol的NaHCO 3、0.01mol的Mn 2O 3置于混料机中,充分混合30min,取出后置于球磨机中,转速300r/min球磨3h,取出手动研磨30min,使材料均匀混合,即Sr:Mn=1:100;
(2)将步骤(1)所得粉体材料转移至马弗炉中,635℃空气气氛煅烧8h,升温速率为5℃/min,煅烧结束,冷却至室温取出;
(3)将步骤(2)所得的固体依次用去离子水和乙醇洗涤多次至中性,置于干燥 箱中100℃干燥6h。
(4)将步骤(3)所得的活性材料与乙炔黑,聚四氟乙烯(PTFE)按照82:15:3的比例均匀混合,加入少量去离子水和乙醇充分研磨,后擀制成均匀薄片,剪裁成2*2cm 2,作为正极材料备用,单极片活性材料质量在60-80mg之间。
(5)将步骤(4)所得的电极材料压置到涂炭钛网上作为电池正极,负极采用锌片,电解液采用0.02mol/L SrSO 4+1mol/L Na 2SO 4+2mol/L ZnSO 4,组装电池。
(6)将步骤(5)所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到175mAh/g,循环100次,放电比容量保持在161mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为100mAh/g,循环100次,放电比容量保持在96mAh/g左右。
实施例14
本实施例在于说明本发明的锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例13相同的方法制备锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:SrSO 4的掺杂量为0.001mol,即Sr:Mn=5:100。按照与实施例10相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为178mAh/g,循环100次,放电比容量保持在163mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为108mAh/g,循环100次,放电比容量保持在101mAh/g左右。
实施例15
本实施例在于说明本发明的锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例13相同的方法制备锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:SrSO 4的掺杂量为0.002mol,即Sr:Mn=10:100。按照与实施例13相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为184mAh/g,循环100次,放电比容量保持在163mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为109mAh/g,循环100次,放电比容量保持在105mAh/g左右。
实施例16
本实施例在于说明本发明的镧(La)和锶(Sr)共同掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法。
(1)分别将0.0005mol的La 2(CO 3) 3,0.001mol的SrCO 3,0.02mol的NaHCO 3、0.01mol的Mn 2O 3置于混料机中,充分混合30min,取出后置于球磨机中,转速300r/min球磨3h,取出手动研磨30min,使材料均匀混合,即(La+Sr):Mn=10:100;
(2)将步骤(1)所得粉体材料转移至马弗炉中,635℃空气气氛煅烧8h,升温速率为5℃/min,煅烧结束,冷却至室温取出;
(3)将步骤(2)所得的固体依次用去离子水和乙醇洗涤多次至中性,置于干燥箱中100℃干燥6h。
(4)将步骤(3)所得的活性材料与乙炔黑,聚四氟乙烯(PTFE)按照82:15:3的比例均匀混合,加入少量去离子水和乙醇充分研磨,后擀制成均匀薄片,剪裁成2*2cm 2,作为正极材料备用,单极片活性材料质量在60-80mg之间。
(5)将步骤(4)所得的电极材料压置到涂炭钛网上作为电池正极,负极采用锌片,电解液采用0.01mol/L La 2(SO 4) 3+0.02mol/L SrSO 4+1mol/L Na 2SO 4+2mol/L ZnSO 4,组装电池。
(6)将步骤(5)所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到185mAh/g,循环100次,放电比容量保持在169mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为118mAh/g,循环100次,放电比容量保持在113mAh/g左右。
实施例17
本实施例在于说明本发明的镧(La)和锶(Sr)共同掺杂的预嵌钠锰氧化物 Na 4Mn 14O 27·9H 2O及其制备方法及其电池的性能测试。
按照与实施例16相同的方法制备镧(La)和锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:SrSO 4的掺杂量为0.0001mol,La 2(SO 4) 3的掺杂量为0.00005mol,即(La+Sr):Mn=1:100。按照与实施例16相同的方法组装电池。
所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到187mAh/g,循环100次,放电比容量保持在160mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为100mAh/g,循环100次,放电比容量保持在95mAh/g左右。
实施例18
本实施例在于说明本发明的镧(La)和锶(Sr)共同掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法及其电池的性能测试。
按照与实施例16相同的方法制备镧(La)和锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:SrSO 4的掺杂量为0.0005mol,La 2(SO 4) 3的掺杂量为0.00025mol,即(La+Sr):Mn=5:100。按照与实施例16相同的方法组装电池。
所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到186mAh/g,循环100次,放电比容量保持在165mAh/g左右。1C倍率下充放电,首次放电比容量为116mAh/g,循环100次,放电比容量保持在110mAh/g左右。
实施例19
本实施例在于说明本发明的镧(La)和锶(Sr)共同掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法及其电池的性能测试。
按照与实施例16相同的方法制备镧(La)和锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:SrSO 4的掺杂量为0.0002mol,La 2(SO 4) 3的掺杂量为0.0009mol,即(La+Sr):Mn=10:100。按照与实施例16相同的方法组装电池。
所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到185mAh/g,循环100次,放电比容量保持在164mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设 置为0.8V,首次放电比容量为115mAh/g,循环100次,放电比容量保持在109mAh/g左右。
实施例20
本实施例在于说明本发明的镧(La)和锶(Sr)共同掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O及其制备方法及其电池的性能测试。
按照与实施例16相同的方法制备镧(La)和锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:SrSO 4的掺杂量为0.0018mol,La 2(SO 4) 3的掺杂量为0.0001mol,即(La+Sr):Mn=10:100。按照与实施例16相同的方法组装电池。
所得的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量达到183mAh/g,循环100次,放电比容量保持在163mAh/g左右。1C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为113mAh/g,循环100次,放电比容量保持在107mAh/g左右。
实施例21
按照与实施例10相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:La:Mn=0.5:100。
结果得到镧(La)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O材料。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为183mAh/g,循环100次,放电比容量为157mAh/g左右。
实施例22
按照与实施例13相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:Sr:Mn=0.5:100。
结果得到锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O材料。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量仅为181mAh/g,循环100次,放电比容量为155mAh/g左右。
由以上实施例10-22及测试结果表明,镧(La)和锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O倍率性能明显提高,循环稳定性也有一定程度的改善,说明镧(La)和锶(Sr)掺杂提高了Na 4Mn 14O 27·9H 2O的倍率性能。
对比例1
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例2相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧出的材料未经去离子水和乙醇洗涤。按照与实施例2相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量仅为97mAh/g,循环100次,放电比容量为65mAh/g左右。
对比例2
本实施例在于说明本发明的Na 4Mn 14O 27·9H 2O及其制备方法。
按照与实施例3相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧出的材料未经去离子水和乙醇洗涤。按照与实施例3相同的方法组装电池。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量仅为92mAh/g,循环100次,放电比容量为50mAh/g左右。
对比例3
按照与实施例16相同的方法制备镧(La)和锶(Sr)掺杂的预嵌钠锰氧化物Na 4Mn 14O 27·9H 2O,所不同之处在于:SrSO 4的掺杂量为0.0036mol,La 2(SO 4) 3的掺杂量为0.0002mol,即(La+Sr):Mn=20:100。按照与实施例16相同的方法组装电池。结果得到Na 4Mn 14O 27·9H 2O材料。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量为173mAh/g,循环100次,放电比容量为145mAh/g左右。
对比例4
按照与实施例2相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧温度 为450℃。
结果得到Na 4Mn 14O 27·9H 2O材料。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量仅为104mAh/g,循环100次,放电比容量为83mAh/g左右。
对比例5
按照与实施例2相同的方法制备Na 4Mn 14O 27·9H 2O,所不同之处在于:煅烧温度为850℃。
结果得到Na 4Mn 14O 27·9H 2O材料。
将所得到的电池进行恒电流充放电测试,0.2C倍率下充放电,充电截止电压设为2.1V、放电截止电压设置为0.8V,首次放电比容量仅为158mAh/g,循环100次,放电比容量为125mAh/g左右。可见,在煅烧温度850℃制备材料性能确实也可行,但是,本发明将温度限定500-800℃,是从环保角度考虑,在500-800℃更利于环保。
测试例1-XRD分析
将实施例2-6以及对比例1-2制备的Na 4Mn 14O 27·9H 2O材料进行XRD分析,如附图2是实施例2-6制备的Na 4Mn 14O 27·9H 2O的XRD图;附图3是对比例1-2制备的Na 4Mn 14O 27·9H 2O的XRD图;其中,可以看出:在不同煅烧温度条件下均制备出了Na 4Mn 14O 27·9H 2O水合氧化物,经过洗涤和未经洗涤的材料XRD对比图说明,经过洗涤的杂峰少,说明洗涤使材料纯化。
测试例2-热分析
由图1中的热重差示扫描量热分析曲线可以看出材料在200℃之前发生明显的失重现象和明显的放热峰,说明NaHCO 3在200℃之前分解为Na 2CO 3和水,在500-800℃之间质量损失,说明发生晶形转变,合成新材料,800℃后无明显质量损失和放热现象,说明反应在800℃之前完成,即实验温度可选定在500-800℃之间。
测试例3-电化学性能测试
图4、5和6为以Na 4Mn 14O 27·9H 2O为正极材料材料的锌离子电池性能测试,其中,图4是实施例4中制备的Na 4Mn 14O 27·9H 2O的三电极CV图;图5是实施例4中制备 的Na 4Mn 14O 27·9H 2O的充放电平台图;图6是实施例4中制备的Na 4Mn 14O 27·9H 2O的充放电效率图。从图4-6可以看出:电池表现出良好的氧化还原峰,对应于良好的充放电平台曲线,说明材料具有良好的循环性能和倍率性能。
以上结合附图详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个具体技术特征以任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。但这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (10)

  1. 一种水系电池正极活性材料,其特征在于,所述正极活性材料为钠锰氧化物Na 4Mn 14O 27·9H 2O和/或掺杂有La或Sr的钠锰氧化物Na 4Mn 14O 27·9H 2O。
  2. 根据权利要求1所述的正极活性材料,其中,La或Sr与Mn的含量的摩尔比为La:Mn=(0-10):100,优选为(5-10):100;Sr:Mn=(0-10):100,优选为(5-10):100。
  3. 一种权利要求1或2所述的水系电池正极活性材料的制备方法,其特征在于,所述方法包括以下步骤:
    (1)将钠源与锰源以及可选的镧源或锶源混合;
    (2)将经步骤(1)后的混合物进行煅烧;
    (3)将经步骤(2)后的材料进行研磨、洗涤和干燥处理。
  4. 根据权利要求3所述的方法,其中,在步骤(1)中,所述钠源与所述锰源的用量的摩尔比为(4-35):14,优选为(14-28):14;
    优选地,所述钠源为钠盐,优选地,所述钠源为甲酸钠、乙酸钠、柠檬酸钠、乳酸钠、草酸钠、NaOH、NaNO 3、NaNO 2、NaHCO 3、Na 2SO 4、NaCl和Na 2CO 3中的一种或多种;
    优选地,所述锰源为锰盐和/或锰氧化物,优选地,所述锰源为MnO、MnOOH、MnO 2、Mn 3O 4、Mn 2O 3、Na 2MnO 4、NaMnO 4、MnCO 3和MnSO 4中的一种或多种;
    优选地,所述镧源为氢氧化镧、氧化镧、硝酸镧、硫酸镧、碳酸镧、乙酸镧、柠檬酸镧、乳酸镧、草酸镧中的一种或多种;
    优选地,所述锶源为氢氧化锶、氧化锶、硝酸锶、硫酸锶、碳酸锶、乙酸锶、柠檬酸锶、乳酸锶、草酸锶中的一种或多种。
  5. 根据权利要求3或4所述的方法,其中,在步骤(1)中,所述混合的方法为球磨,所述球磨的条件包括:转速为300-800r/min,时间为3-6h。
  6. 根据权利要求3所述的方法,其中,在步骤(2)中,所述煅烧的条件包括:在温度为500-800℃条件下煅烧6-10h,升温速率为1-20℃/min,优选为3-7℃/min。
  7. 根据权利要求3-6中任意一项所述的方法,其中,该方法还包括:在步骤(1)中,在将钠源与锰源以及可选的镧源或锶源的混合物进行球磨后再进行研磨;
    优选地,在步骤(3)中,将经步骤(2)后的材料进行洗涤后使制备出的氧化物材料为带有结晶水的钠锰氧化物Na 4Mn 14O 27·9H 2O或者掺杂有La或Sr的钠锰氧化物Na 4Mn 14O 27·9H 2O;
    优选地,所述洗涤为依次用去离子水和乙醇洗涤至中性。
  8. 一种水溶液锌离子电池,其特征在于,所述电池的正极活性材料为权利要求1或2所述的水系电池正极活性材料或者权利要求3-7中任意一项所述的方法制备得到的水系电池正极活性材料。
  9. 根据权利要求8所述的电池,其中,所述电池的负极活性材料为锌;
    优选地,电解液含有锌盐、阳离子盐型添加剂和水;
    优选地,所述阳离子盐型添加剂为钠盐、钾盐、镁盐、钙盐和铝盐中的一种或多种;所述锌盐为硫酸锌、氯化锌、氟化锌、硝酸锌、乙酸锌、高氯酸锌、四氟硼酸锌、Zn(CF 3SO 3) 2中的一种或多种;
    优选地,所述锌盐的总浓度为0.2-3摩尔/升,所述阳离子盐型添加剂的含量占所述锌盐的0-60%。
  10. 根据权利要求8或9所述的电池,其中,所述电池的电池隔膜为聚氯乙烯、聚氧乙烯、聚丙烯、聚乙烯、尼龙、玻璃纤维和石棉纸中的一种或多种;
    优选地,所述电池的正极的集流体为钛网、覆碳钛网、不锈钢网、覆碳不锈钢网、覆导电塑料不锈钢网、冲孔不锈钢箔或切拉钛网。
PCT/CN2019/086846 2019-05-14 2019-05-14 水系电池正极活性材料及其制备方法以及水溶液锌离子电池 WO2020227927A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086846 WO2020227927A1 (zh) 2019-05-14 2019-05-14 水系电池正极活性材料及其制备方法以及水溶液锌离子电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/086846 WO2020227927A1 (zh) 2019-05-14 2019-05-14 水系电池正极活性材料及其制备方法以及水溶液锌离子电池

Publications (1)

Publication Number Publication Date
WO2020227927A1 true WO2020227927A1 (zh) 2020-11-19

Family

ID=73289794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086846 WO2020227927A1 (zh) 2019-05-14 2019-05-14 水系电池正极活性材料及其制备方法以及水溶液锌离子电池

Country Status (1)

Country Link
WO (1) WO2020227927A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129831A1 (en) * 2012-02-27 2013-09-06 Sk Innovation Co.,Ltd. Turbostratic na birnessite and method for preparing the same
CN103896339A (zh) * 2012-12-27 2014-07-02 北京汉能创昱科技有限公司 一种钠锰氧化物的制备方法
CN104355334A (zh) * 2014-10-22 2015-02-18 太原理工大学 具有超高比电容特性的水钠锰矿型氧化锰粉体及其制备方法与应用
CN104828869A (zh) * 2015-05-08 2015-08-12 湖南汇通科技有限责任公司 一种钠锰氧化物微粉及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013129831A1 (en) * 2012-02-27 2013-09-06 Sk Innovation Co.,Ltd. Turbostratic na birnessite and method for preparing the same
CN103896339A (zh) * 2012-12-27 2014-07-02 北京汉能创昱科技有限公司 一种钠锰氧化物的制备方法
CN104355334A (zh) * 2014-10-22 2015-02-18 太原理工大学 具有超高比电容特性的水钠锰矿型氧化锰粉体及其制备方法与应用
CN104828869A (zh) * 2015-05-08 2015-08-12 湖南汇通科技有限责任公司 一种钠锰氧化物微粉及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
QU, Q. T. ET AL.: "A New Cheap Asymmetric Aqueous Supercapacitor: Activated Carbon//NaMnO2", JOURNAL OF POWER SOURCES, vol. 194, no. 2, 30 June 2009 (2009-06-30), DOI: 20200213174042Y *
R. RENUKA ET AL.: "An Investigation on Layered Birnessite Type Manganese Oxides for Battery Applications", JOURNAL OF POWER SOURCES, vol. 87, no. 1-2, 30 April 2000 (2000-04-30), XP004194195, DOI: 20200213174025X *
R. RENUKA ET AL.: "An Investigation on Layered Birnessite Type Manganese Oxides for Battery Applications", JOURNAL OF POWER SOURCES, vol. 87, no. 1-2, 30 April 2000 (2000-04-30), XP004194195, DOI: 20200213174612Y *

Similar Documents

Publication Publication Date Title
CN107221716B (zh) 一种可充电水系锌离子电池
CN102738458B (zh) 一种富锂正极材料的表面改性方法
CN103904321B (zh) 锂离子电池负极材料锰酸锂的高温固相制备方法
CN102637867B (zh) 铬掺杂锂镍锰氧材料及其制备方法、含该材料的锂离子电池
CN103972497B (zh) 锂离子电池Co2SnO4/C纳米复合负极材料及其制备与应用
CN102201573A (zh) 一种核壳结构锂离子电池富锂正极材料及其制备方法
CN105470455A (zh) 一种改性锂离子电池正极材料及其制备方法
CN103825016A (zh) 一种富锂高镍正极材料及其制备方法
CN108598394B (zh) 碳包覆磷酸钛锰钠微米球及其制备方法和应用
CN103078099A (zh) 一种锂离子电池正极材料及其制备方法
CN101609884A (zh) 一种锂离子电池负极材料SnS2的制备方法
CN106935830B (zh) 一种锂离子电池复合正极材料及其制备方法和应用
WO2014169717A1 (zh) 一种水系碱金属离子电化学储能器件
CN105236486A (zh) 一种高性能锂离子电池正极材料五氧化二钒空心微球及制备方法
CN102931383A (zh) 一种锂离子动力电池复合正极材料的制备方法
CN105702956A (zh) 一种钠离子电池负极材料及其制备方法
CN114203949A (zh) 一种层状锰基钠离子电池正极材料及制备方法和应用
CN103378355B (zh) 碱金属二次电池及其用的负极活性物质、负极材料、负极和负极活性物质的制备方法
CN102079530A (zh) 一种溶胶凝胶技术制备锂离子电池正极材料硼酸铁锂的方法
CN106992295B (zh) 一种单分散α-氧化铁纳米片的制备方法
CN108281620B (zh) 一种钠离子电池负极材料二氧化钛的制备方法
CN108217725B (zh) 一种水合碱式焦钒酸锌(Zn3V2O7(OH)2·2H2O)材料的制备方法及应用
CN114229921A (zh) Al2O3-ZrO2包覆的富锂锰基正极材料及其制备方法
CN106938852A (zh) 一种锂离子电池负极材料用纳米CuO的制备方法
CN105481004A (zh) 一种高电学性能二氧化锡纳米管及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19928862

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19928862

Country of ref document: EP

Kind code of ref document: A1