WO2020226086A1 - プラズマ生成装置 - Google Patents

プラズマ生成装置 Download PDF

Info

Publication number
WO2020226086A1
WO2020226086A1 PCT/JP2020/017916 JP2020017916W WO2020226086A1 WO 2020226086 A1 WO2020226086 A1 WO 2020226086A1 JP 2020017916 W JP2020017916 W JP 2020017916W WO 2020226086 A1 WO2020226086 A1 WO 2020226086A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge electrode
plasma
plasma gas
main
electrode
Prior art date
Application number
PCT/JP2020/017916
Other languages
English (en)
French (fr)
Inventor
尚寿 河村
雅章 永津
Original Assignee
株式会社クメタ製作所
国立大学法人静岡大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クメタ製作所, 国立大学法人静岡大学 filed Critical 株式会社クメタ製作所
Priority to JP2020541606A priority Critical patent/JP6782952B1/ja
Publication of WO2020226086A1 publication Critical patent/WO2020226086A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a plasma generator capable of generating even under atmospheric pressure.
  • Patent Document 1 a plasma generator for manufacturing a flat panel display or a solar cell in which side electrodes covered with a dielectric are arranged on both sides of a main electrode covered with a dielectric through a preliminary discharge region. Is disclosed.
  • the shape includes the width of the gap in the pre-discharge region.
  • it is difficult to form a wide plasma processing space because a sufficient gap of the preliminary discharge region may not be supplied to the plasma processing space. ..
  • the present invention has been made to deal with the above problems, and an object of the present invention is to provide a plasma generator capable of expanding the degree of freedom in designing a preliminary discharge region and expanding the processing space by plasma.
  • the features of the present invention include a pre-discharge electrode in which a long conductor is covered with a dielectric, and a common discharge electrode arranged adjacent to the pre-discharge electrode and extending along the pre-discharge electrode.
  • a pre-discharge power supply for applying an AC voltage between the pre-discharge electrode and the common discharge electrode to generate pre-plasma, and a common discharge electrode and pre-discharge at a position farther from the pre-discharge electrode with respect to the common discharge electrode.
  • It consists of a main discharge electrode that extends so as to face each of the electrodes, and a dielectric that is arranged between the main discharge electrode and the pre-discharge electrode and the common discharge electrode and extends along the pre-discharge electrode, the common discharge electrode, and the main discharge electrode. It is provided with a main discharge dielectric and a main discharge power source for applying an AC voltage between the main discharge electrode and the common discharge electrode to generate main plasma, and the common discharge electrode is located adjacent to the preliminary discharge electrode. Is provided with a plasma gas output port for outputting plasma gas along the extending direction of the preliminary discharge electrode.
  • the plasma gas output port for outputting the plasma gas is formed in the common discharge electrode adjacent to the preliminary discharge electrode along the preliminary discharge electrode. It is possible to increase the degree of freedom in designing the region where the preliminary plasma is generated between the preliminary discharge electrode and the common discharge electrode. This means that the region where the preliminary plasma is generated can be set between the preliminary discharge electrode and the common discharge electrode by paying attention only to the ease of generating the preliminary plasma, and the preliminary plasma is effectively generated. It means that it can be made to. Further, in the plasma generator according to the present invention, the flow rate of plasma gas can be freely set even if the width of the region where the preliminary plasma is generated between the preliminary discharge electrode and the common discharge electrode is narrowed. It is also possible to expand the processing space by.
  • Another feature of the present invention is that in the plasma generator, plasma gas output ports are formed on both sides of the preliminary discharge electrode.
  • the plasma generation device forms a wider and more uniform plasma gas atmosphere because the plasma gas output ports are formed on both sides of the preliminary discharge electrode. It is possible to effectively expand the processing space by the main plasma.
  • the plasma gas output port is composed of a plurality of holes formed along the extending direction of the preliminary discharge electrode.
  • the plasma gas output port is composed of a plurality of holes formed along the extending direction of the preliminary discharge electrode, the common discharge electrode It is easy to secure the rigidity of the gas, and it is possible to prevent foreign matter from entering the plasma gas output port.
  • plasma gas output ports are formed on both sides of the preliminary discharge electrode, and also constitutes a plasma gas output port on one of the two sides. Each hole is formed at a position deviated from each hole constituting the plasma gas output port on the other side.
  • plasma gas output ports are formed on both sides of the preliminary discharge electrode, and the plasma gas output port on one side of these both sides is formed. Since each hole constituting the above and each hole constituting the plasma gas output port on the other side are formed at positions shifted from each other, unevenness of the output plasma gas is suppressed and a uniform main plasma is generated. be able to.
  • the plasma generator further includes a plasma gas jacket that temporarily stores the plasma gas supplied to the plasma gas output port while facing the plasma gas output port. It is in.
  • the plasma generator has a plasma gas jacket that temporarily stores the plasma gas supplied to the plasma gas output port while facing the plasma gas output port. Since it is provided, it is possible to output plasma gas evenly within one hole constituting the plasma gas output port or between a plurality of holes.
  • the plasma gas jacket further has a porous body having a large number of through holes, and the plasma gas is transmitted through the porous body to the plasma gas output port.
  • the plasma gas jacket has a porous body having a large number of through holes, and the plasma gas is output through the porous body. Since it is guided to the mouth, it is possible to output the plasma gas evenly in one hole or between a plurality of holes constituting the plasma gas output port.
  • the porous body can be composed of a punching plate having a large number of through holes formed in the plate-like body, or a porous body such as a sponge having innumerable cavities or an aggregate of fibers.
  • the plasma generator further includes a cooler provided adjacent to the plasma gas jacket to cool the plasma gas in the plasma gas jacket.
  • the plasma generator is provided adjacent to the plasma gas jacket and includes a cooler for cooling the plasma gas in the plasma gas jacket.
  • the preliminary discharge electrode, the common discharge electrode, and the main discharge electrode can be cooled via the gas, and the heating of the object to be processed can be prevented.
  • the main discharge electrode includes a second plasma gas output port that outputs plasma gas toward the main discharge dielectric.
  • the main discharge electrode includes a second plasma gas output port for outputting plasma gas toward the main discharge dielectric.
  • Plasma gas can be supplied to the main discharge electrode side with respect to the main discharge dielectric, and the main plasma can be generated and maintained at an early stage and in a wide range.
  • FIG. 5 is a plan view schematically showing an external configuration of a common discharge electrode provided with a preliminary discharge electrode in the plasma generator shown in FIG. 1. It is a bottom view which shows typically the appearance structure of the common electrode in the plasma generation apparatus shown in FIG. It is a bottom view which shows typically the appearance structure of the jacket cover body in the plasma generation apparatus shown in FIG. It is a front view schematically showing the state which generated the preliminary plasma by applying an AC voltage between the preliminary discharge electrode and the common discharge electrode in the plasma generation apparatus shown in FIG.
  • FIG. Is A front view schematically showing a state in which an AC voltage is applied between a preliminary discharge electrode and a common discharge electrode and between a main discharge electrode and a common discharge electrode to generate a main plasma in the plasma generator shown in FIG. Is. It is a top view which schematically showed the appearance structure of the common discharge electrode provided with the preliminary discharge electrode in the plasma generation apparatus which concerns on the modification of this invention. It is a side sectional view schematically showing the outline of the structure of the plasma generation apparatus which concerns on the modification of this invention.
  • FIG. 1 is a side sectional view schematically showing an outline of the configuration of the plasma generator 100 according to the present invention.
  • FIG. 2 is a front sectional view schematically showing an outline of the configuration of the plasma generation device 100 shown in FIG.
  • FIG. 3 is a plan view schematically showing the external configuration of the common discharge electrode 104 provided with the preliminary discharge electrode 101 in the plasma generation device 100 shown in FIG. 1.
  • the plasma generator 100 is a mechanical device that generates plasma in an environment open to the atmosphere of a standard atmospheric pressure and irradiates the WK to be treated made of food to sterilize it.
  • the plasma generator 100 includes four pre-discharge electrodes 101.
  • Each priming discharge electrode 101 is a part for generating the pre-plasma P P, it is formed in a rod shape extending in the respective long.
  • Each of these pre-discharge electrodes 101 is mainly configured to include a conductor 102 and a pre-discharge dielectric 103, respectively.
  • the conductor 102 is an electrode that forms a pair with the common discharge electrode 104 described later, and is formed by extending a conductive material in a long length.
  • the conductor 102 is composed of a copper wire having a diameter of 1.8 mm and a length of 250 mm.
  • the conductor 102 may be any material as long as it has conductivity, and may be made of a material other than copper, such as silver, gold, titanium, or aluminum.
  • the conductor 102 is electrically connected to the preliminary discharge power supply 150, which will be described later, and is grounded via the ground 151.
  • the preliminary discharge dielectric 103 is a component that covers the conductor 102 and electrically insulates the conductor 102 from the common discharge electrode 104, and is composed of a non-conductor having a size that covers the conductor 102. There is.
  • the preliminary discharge dielectric 103 is composed of a transparent quartz tube formed by forming a quartz material into a bottomed cylindrical shape having a diameter of 4 mm, an inner diameter of 2 mm and a length of 230 mm.
  • the preliminary discharge dielectric 103 may be any non-conductor that covers the conductor 102, and may be made of, for example, translucent or opaque glass, a ceramic material other than glass, a resin material, or a rubber material.
  • the size of the priming discharge electrode 101 made of a conductor 102 and a pre-discharge dielectric 103 which is designed appropriately in accordance with the need to generate a preliminary plasma P P, limited to the present embodiment Of course not.
  • the preliminary discharge dielectric 103 is supported by a common discharge electrode 104 by accommodating a portion other than the same end portion in a state where the end portion of the conductor 102 connected to the preliminary discharge power supply 150 is exposed.
  • Common discharge electrode 104 is a part for generating a main plasma P M constituting the main discharge electrodes 120 and the pair together to generate a pre-plasma P P constitutes a preliminary discharge electrodes 101 and the pair, electrically conductive It is formed by extending the material to be held in a long length. More specifically, the common discharge electrode 104 is formed of a plate-like body that extends long along the preliminary discharge electrode 101 and faces the main discharge electrode 120. In the present embodiment, the common discharge electrode 104 is formed by forming an aluminum material into a plate-like body having a length of 200 mm, a width of 60 mm, and a thickness of 15 mm. The common discharge electrode 104 may be made of a material having conductivity, and may be made of a material other than an aluminum material such as silver, gold, titanium, or copper.
  • an electrode accommodating portion 105 is formed on a main electrode facing surface 104a facing the main discharge electrode 120, and a plasma gas output port 106 is formed along the electrode accommodating portion 105. Further, the common discharge electrode 104 is formed with a plasma gas jacket 110 on the main electrode facing surface 104a and the back side of the electrode accommodating portion 105.
  • the main electrodes facing surface 104a is a portion for generating a main plasma P M facing the main discharge electrodes 120, it is formed on the main discharge electrodes 120 and the parallel plane.
  • the main electrode facing surface 104a is formed in a curved shape in which each end portion in the longitudinal direction of the common discharge electrode 104 and the width direction orthogonal to the longitudinal direction and the edge portion through which the electrode accommodating portion 105 opens are rounded. This prevents local discharge from occurring.
  • the electrode accommodating portion 105 is a portion accommodating each of the four pre-discharge electrodes 101, and is formed in a groove shape extending in a concave shape along each pre-discharge electrode 101. More specifically, the electrode accommodating portion 105 is formed in a groove shape having a depth that covers the other portion of the preliminary discharge electrode 101 with the outer surface on the main discharge electrode 120 side exposed. In this case, the electrode accommodating portion 105 is formed in a shape accommodating the preliminary discharge electrodes 101 with respect to both side surfaces with a slight gap. In the present embodiment, the electrode accommodating portion 105 is formed in a state of having a depth of 3 mm and a width of 4.1 mm and penetrating along the longitudinal direction of the main discharge electrode 120.
  • each electrode accommodating portion 105 is formed in the width direction orthogonal to the longitudinal direction of the common discharge electrode 104.
  • the four electrode accommodating portion 105 is formed to extend equidistantly in and parallel to each other in the width direction of the common discharge electrode 104 as main plasma P M is uniformly generated.
  • four pre-discharge electrodes 101 are accommodated and supported in a state of being fixed by the ceramic adhesive 105a.
  • Plasma gas output port 106 a portion for ejecting the plasma gas for pre-plasma P P a preliminary plasma P P which is generated together is likely to occur leading to the main discharge electrodes 120 side main plasma P M generated and maintained
  • One end (lower end in the drawing) communicates with the plasma gas jacket 110, and the other end (upper end in the drawing) is formed by a through hole that opens into the main electrode facing surface 104a.
  • the plasma gas output port 106 is configured such that a plurality of through holes are arranged at equal intervals along the longitudinal direction in which the preliminary discharge electrode 101 extends at a position adjacent to the preliminary discharge electrode 101 housed in the electrode accommodating portion 105. Has been done.
  • the plasma gas output ports 106 are formed side by side in a row on both sides of the pre-discharge electrode 101 so as to sandwich the pre-discharge electrode 101.
  • both sides of the preliminary discharge electrode 101 are width directions orthogonal to the longitudinal direction in which the preliminary discharge electrode 101 extends on the main electrode facing surface 104a.
  • the length of the preliminary discharge electrode 101 is such that the single row of through holes constituting the two plasma gas output ports 106 adjacent to each other in the width direction of the main electrode facing surface 104a are not adjacent to each other in the width direction. They are arranged so that they are offset in the direction.
  • the plasma gas output port 106 is formed in a cylindrical shape having a diameter of 1 mm, but it is natural that the diameter, pitch, shape, and number are appropriately set according to the specifications of the plasma generator 100. Is. In addition, in FIGS. 1 to 4, the size of the plasma gas output port 106 is exaggerated.
  • a gas having an ionization voltage lower than that of air such as nitrogen, argon and helium is used alone or in a mixture thereof, and a gas such as water vapor or ammonia is added thereto.
  • This plasma gas is supplied from a plasma gas supply facility (not shown) including a pump or a tank to the plasma gas output port 106 via the plasma gas jacket 110.
  • the plasma gas jacket 110 is a portion for temporarily storing the plasma gas injected from the plasma gas output port 106, and is a hollow portion in which the back surface side of the common discharge electrode 104 is recessed. It is composed of.
  • the plasma gas jacket 110 is formed in a substantially rectangular shape when viewed from the back surface side of the common discharge electrode 104.
  • a porous body 111, 112 and a spacer 113 are provided in the plasma gas jacket 110, respectively.
  • the common discharge electrode 104 is electrically connected to the pre-discharge power supply 150 via the jacket cover 114 and is electrically connected to the main discharge power supply 152 via the pre-discharge power supply 150 for main discharge. It is supported by the electrode support 130 at a position with respect to the electrode 120 via a predetermined distance.
  • the porous bodies 111 and 112 are parts for buffering the flow of plasma gas introduced into the plasma gas jacket 110 from the above-mentioned plasma gas supply facility, and are made of metal, resin, or ceramic, respectively. It is configured. These porous bodies 111 and 112 are so-called punching plates in which a large number of through holes 111a and 112a are formed on the entire plate surface.
  • the through hole 111a of the porous body 111 and the through hole 112a of the porous body 112 are the through hole 111a and the through hole 112a when the porous body 111 and the porous body 112 are arranged to face each other in the vertical direction shown in the drawing. They are formed so that they do not overlap each other.
  • These porous bodies 111 and 112 are arranged in the plasma gas jacket 110 so that their plate surfaces are overlapped with each other so as to face each other with a gap.
  • the spacer 113 prevents the porous bodies 111 and 112 from being in close contact with each other and overlapping each other, and also prevents the plate surfaces of the porous bodies 111 and 112 from being in close contact with the plasma gas jacket 110 and the jacket covering body 114, respectively. It is a component for forming a gap between each.
  • the spacer 113 is formed by forming a metal material, a resin material, or a ceramic material into a flat plate ring shape.
  • the spacer 113 is provided between the ceiling portion of the plasma gas jacket 110 and the porous body 111, between the porous body 111 and the porous body 112, and between the porous body 112 and the illustrated upper surface of the jacket covering body 114. It is arranged in each.
  • the plasma gas jacket 110 is shown by a broken line, but the porous bodies 111 and 112 and the spacer 113 are not shown.
  • the jacket covering body 114 covers the opening of the plasma gas jacket 110 that opens downward in the drawing to seal the inside of the plasma gas jacket 110 and guide the plasma gas into the plasma gas jacket 110.
  • a conductive metal material is formed in a rectangular plate shape having the same size as the common discharge electrode 104 in a plan view.
  • the jacket covering 114 is made of a conductive metal material, but when the common discharge electrode 104 is directly electrically connected to the preliminary discharge power supply 150, it is not necessarily made of a conductive material. It is not necessary to use a resin material or a ceramic material.
  • the jacket cover 114 is formed with an introduction path 115, a cooler mounting portion 116, a first mounting hole 117a, and a second mounting hole 117b, respectively.
  • the introduction path 115 is a flow path for guiding the plasma gas supplied from the plasma gas supply facility to the plasma gas jacket 110, and is composed of a through hole penetrating in the thickness direction of the jacket covering body 114.
  • the introduction paths 115 are formed so as to be substantially evenly arranged at a plurality of positions (six in the present embodiment) facing the plasma gas jacket 110.
  • Each introduction path 115 is connected to the plasma gas supply facility via a pipe (not shown).
  • the plasma gas jacket 110 is shown by a chain double-dashed line.
  • the cooler mounting portion 116 is a portion for mounting the cooler 118, and is formed by being recessed in the lower surface of the jacket covering 114 as shown. In this case, the cooler mounting portion 116 is formed at a portion facing the plasma gas jacket 110 and at a position adjacent to the introduction path 115. In this embodiment, two cooler mounting portions 116 are formed corresponding to the two coolers 118.
  • the first mounting holes 117a are through holes through which bolts (not shown) for mounting the jacket covering body 114 to the common discharge electrode 104 penetrate, and are formed in six in the present embodiment.
  • the second mounting holes 117b are bottomed holes through which bolts (not shown) for mounting the jacket covering body 114 to the electrode support 130 are screw-fitted, and are four in the present embodiment. It is formed.
  • the cooler 118 is a device for cooling plasma gas, and is configured by embedding a pipe 118a through which a coolant flows in a metal plate-like body such as copper having high thermal conductivity.
  • the cooler 118 is mounted in a state of being fitted in each of the two cooler mounting portions 116 formed on the lower surface of the jacket cover 114 in the drawing.
  • the pipes 118a of each other are connected in series via a hose (not shown), and a coolant made of water or the like is supplied by a coolant supply facility including a pump (not shown) or the like.
  • the main discharge electrodes 120 is a part for generating a main plasma P M constitute a common discharge electrode 104 and the pair, a conductive material is formed by extending the long. More specifically, the main discharge electrode 120 is composed of a plate-like body having a common electrode facing surface 120a facing the main electrode facing surface 104a of the common discharge electrode 104 via a main discharge dielectric 140. , It is arranged at a position farther from the preliminary discharge electrode 101 with respect to the common discharge electrode 104. In the present embodiment, the main discharge electrode 120 is formed by forming an aluminum material into a plate-like body having a length of 200 mm, a width of 60 mm and a thickness of 15 mm. The main discharge electrode 120 is electrically connected to the main discharge power supply 152 in a state of being supported by the electrode support 130 at a position with respect to the common discharge electrode 104 via a predetermined distance.
  • Common electrode opposing surface 120a is a portion for generating a main plasma P M facing the common discharge electrode 104 are formed on the main electrode opposing surface 104a parallel to the plane.
  • the common electrode facing surface 120a is formed so that each end of the main discharge electrode 120 in the longitudinal direction and the width direction orthogonal to the longitudinal direction is formed into a rounded curved surface shape to generate local discharge. Is being prevented.
  • the main discharge electrode 120 may be made of a material having conductivity, and may be made of a material other than an aluminum material such as silver, gold, titanium or copper.
  • the electrode support 130 is a component that holds the common discharge electrode 104 and the main discharge electrode 120 at positions separated from each other via a predetermined distance, and the common discharge electrode 104 and the main discharge electrode 120 are separated from articles other than these. It is composed of non-conductors that are electrically insulated. In the present embodiment, the electrode support 130 is made of a fluororesin material.
  • the electrode support 130 is mainly composed of a common electrode support 131, a main electrode support 132, and a support column 133, respectively.
  • the common electrode support 131 is a component that supports the common discharge electrode 104 via the jacket cover 114 from below in the drawing, and is composed of a square plate having a larger area than the jacket cover 114 in a plan view. .. In this case, the common electrode support 131 is formed with a through hole 131a through which a plasma gas pipe (not shown) connected to each introduction path 115 of the jacket covering body 114 penetrates.
  • the common electrode support 131 fixedly supports the jacket covering 114 from below in the drawing by screw-fitting a bolt (not shown) into the second mounting hole 117b.
  • the main electrode support 132 is a component that supports the main discharge electrode 120 in a state of facing the common discharge electrode 104 from above in the drawing, and is composed of a square plate having a larger area than the main discharge electrode 120 in a plan view. ing.
  • the main electrode support 132 fixedly supports the main discharge electrode 120 from above in the drawing via bolts (not shown).
  • the support column 133 supports the main electrode support 132 in a state of facing the common electrode support 131 via a predetermined distance, so that the main discharge electrode 120 is passed through a predetermined gap with respect to the common discharge electrode 104. It is a component for arranging facing the position, and is formed in a round bar shape.
  • the columns 133 are fixedly connected to the common electrode support 131 and the main electrode support 132 via bolts (not shown) provided at the four corners of the common electrode support 131 and the main electrode support 132, respectively.
  • FIG. 1, FIG. 2, FIG. 6 and FIG. 7, the central portion of the support column 133 is not shown.
  • the support column 133 is formed to have a length such that the common electrode facing surface 120a of the main discharge electrode 120 is opposed to the main electrode facing surface 104a of the common discharge electrode 104 at a position separated by 10 mm. ..
  • the electrode support 130 is limited to the present embodiment as long as the common discharge electrode 104 and the main discharge electrode 120 can be supported at positions via a predetermined distance in a state of being electrically insulated from each other. Of course not. Further, in FIGS. 1 to 3, 6 and 7, the electrode support 130 is shown by a chain double-dashed line.
  • the main discharge dielectric 140 is a component for electrically insulating the preliminary discharge electrode 101 and the common discharge electrode 104 and the main discharge electrode 120 and supporting the WK to be processed, and faces the main electrode. It is composed of a non-conductor having a size that covers both the surface 104a and the common electrode facing surface 120a. More specifically, the main discharge dielectric 140 is made of an annular sheet material made of fluororesin having a length longer than the length of the main electrode facing surface 104a and the common electrode facing surface 120a in each longitudinal direction and each width direction. It is formed in the shape of an endless belt. In the present embodiment, the main discharge dielectric 140 uses a fluororesin sheet having a thickness of 1 mm.
  • the main discharge dielectric 140 is erected between a drive roller and a driven roller (not shown) in a horizontally stretched state, and is fed in an endless track shape by rotational drive of the drive roller. That is, the main discharge dielectric 140 constitutes a transport belt in the belt conveyor.
  • the main discharge dielectric 140 in the present embodiment may be made of a non-conductor that flexibly bends along the circumferential direction of the endless belt, and is a resin material other than the fluororesin material (for example, a polyamide resin material). ) May be a sheet material.
  • the preliminary discharge power supply 150 is an electric device for applying an AC voltage to the preliminary discharge electrode 101 and the common discharge electrode 104.
  • the preliminary discharge power supply 150 receives power from a general household power supply (100V) and has a voltage in the range of ⁇ 1 kV to ⁇ 20 kV and a frequency with respect to the preliminary discharge electrode 101 and the common discharge electrode 104.
  • An AC voltage of a desired voltage and frequency can be applied in the range of 100 Hz to 30 kHz.
  • the preliminary discharge power supply 150 includes a phase shifter (not shown) that changes the phase of the output voltage.
  • the preliminary discharge power supply 150 may continuously or intermittently output any AC voltage of a square wave, a sine wave, a trapezoidal wave, and a triangular wave.
  • the ground 151 is an electric circuit that applies an AC voltage between the preliminary discharge electrode 101 and the common discharge electrode 104, and an electric circuit that applies an AC voltage between the main discharge electrode 120 and the common discharge electrode 104. This is an electric circuit for grounding each of the main discharge electric circuits.
  • the pre-discharge electrode 101 is electrically connected to the pre-discharge power supply 150 and the main discharge power supply 152, respectively.
  • the ground 151 may be provided on the common discharge electrode 104 electrically connected to the preliminary discharge power supply 150 and the main discharge power supply 152, respectively (see FIG. 5). Further, the ground 151 may be provided in common for the pre-discharge electric circuit and the main discharge electric circuit, or may be provided separately for the pre-discharge electric circuit and the main discharge electric circuit. Further, the earth 151 may be omitted.
  • the main discharge power supply 152 is an electric device for applying an AC voltage to the main discharge electrode 120 and the common discharge electrode 104.
  • the main discharge power supply 152 receives power from a general household power supply (100 V) and has a voltage in the range of ⁇ 1 kV to ⁇ 20 kV and a frequency with respect to the main discharge electrode 120 and the common discharge electrode 104.
  • An AC voltage of a desired voltage and frequency can be applied in the range of 100 Hz to 30 kHz.
  • the main discharge power supply 152 includes a phase shifter (not shown) that changes the phase of the output voltage.
  • main discharge power supply 152 may continuously or intermittently output any AC voltage of a square wave, a sine wave, a trapezoidal wave, and a triangular wave, but has the same waveform as the preliminary discharge power supply 150. Is preferably output in opposite phase.
  • the output voltage and frequency of these preliminary discharge power supply 150 and a main discharge power supply 152 be one that is appropriately set in accordance generated preliminary plasma P P and the main plasma P M is limited to the present embodiment It is natural that it is not.
  • the plasma generator 100 is provided by directly placing or mounting it on an indoor or outdoor workbench for irradiating the object WK with plasma, and also for irradiating the object WK with plasma. It is provided by being incorporated into a part of a processing device or a transport device for a WK to be processed.
  • the plasma generator 100 is incorporated into a production processing line for powdery or granular foods such as beans, wheat, sesame, pepper or tea leaves (including tencha and matcha), and these are incorporated into a processed product WK.
  • a production processing line for powdery or granular foods such as beans, wheat, sesame, pepper or tea leaves (including tencha and matcha)
  • these are incorporated into a processed product WK.
  • sterilization and disinfection treatment will be described.
  • the plasma generator 100 is installed in a state of being directly exposed to the atmosphere of standard atmospheric pressure.
  • a plasma generating apparatus 100 worker performing plasma irradiation to the object to be processed WK first, to generate a pre-plasma P P between the priming discharge electrode 101 in the plasma generating apparatus 100 and the common discharge electrode 104.
  • the operator operates the preliminary discharge power supply 150 in the plasma generation device 100 to apply an AC voltage between the preliminary discharge electrode 101 and the common discharge electrode 104.
  • the operator and outputs a voltage and an AC voltage of a frequency for generating the pre-plasma P P needed to generate the main plasma P M by operating the pre-discharge power supply 150.
  • the preliminary discharge power supply 150 outputs an AC voltage having a voltage of ⁇ 5 kV, a current of 20 mA, and a frequency of 10 kHz.
  • the AC voltage and frequency pre-discharge power supply 150 is outputted can be determined experimentally in advance in accordance with the main generating plasma P M.
  • a part of the atmosphere existing between the two is ionized and activated to activate the preliminary plasma PP. Occurs.
  • pre-plasma P P is generated four linear along each of the four priming discharge electrode 101. That is, pre-plasma P P is generated by dielectric barrier discharge in atmospheric pressure.
  • FIG. 6 shows a preliminary plasma P P thin hatching.
  • the operator in generating the pre-plasma P P can be output a plasma gas from the plasma gas output port 106.
  • the operator operates a plasma gas supply facility (not shown) to start supplying plasma gas to the plasma gas jacket 110.
  • the plasma gas introduced into the plasma gas jacket 110 passes through the two porous bodies 111 and 112 while meandering and reaches the plasma gas output port 106, and then faces the main electrode by the plasma gas output port 106. It is injected onto the surface 104a.
  • a part of the plasma gas injected from the plasma gas output port 106 is directly guided to the preliminary discharge electrode 101 side or indirectly via the main discharge dielectric 140 or the like.
  • the operator can cool the plasma gas. Specifically, the operator operates a cooling water supply facility (not shown) to start supplying cooling water to each of the two coolers 118. As a result, the plasma gas in the plasma gas jacket 110 is cooled by the cooler 118 and ejected from the plasma gas output port 106 onto the main electrode facing surface 104a. In this case, the plasma gas supplied into the plasma gas jacket 110 is effectively cooled because the flow is hindered by the porous body 112 and the porous body 111. As a result, the plasma gas prevents the preliminary discharge electrode 101 and the common discharge electrode 104 from being heated.
  • the operator generates a primary plasma P M between the main discharge electrodes 120 and the common discharge electrode 104.
  • the operator operates the main discharge power supply 152 in the plasma generator 100 to apply an AC voltage between the main discharge electrode 120 and the common discharge electrode 104.
  • the operator outputs an AC voltage of the voltage and frequency required for generating a main plasma P M by operating the main discharge power supply 152.
  • the main discharge power supply 152 outputs an AC voltage having a voltage of ⁇ 9 kV, a current of 20 mA, and a frequency of 10 kHz and having a phase opposite to the output voltage of the preliminary discharge power supply 150.
  • the AC voltage and frequency output by the main discharge power supply 152 can be experimentally obtained in advance according to the plasma processing content required for the object to be processed WK.
  • electrons or activity is part of the atmosphere that exists between them generated by the preliminary plasma P P It is activated with ionizing species triggers the main plasma P M is generated.
  • the plasma generating apparatus 100 may be uniform discharge between the main discharge electrodes 120 and the common discharge electrode 104 to form a primary plasma P M which rises in column spreads in a planar shape.
  • the region in this case, the operator, the plasma gas supply equipment by operating the (not shown) to increase the supply amount of the plasma gas by promoting the formation of the main plasma P M is the main plasma P M is generated Can be expanded.
  • the flow of plasma gas is indicated by a broken line arrow.
  • the plasma gas cooled by the cooler 118 is supplied on the main electrode facing surface 104a.
  • the plasma gas prevents heating of the object WK to be processed on the main discharge electrode 120 and the main discharge dielectric 140 in addition to the preliminary discharge electrode 101 and the common discharge electrode 104.
  • the operator operates a cooling water supply facility (not shown) to increase the amount of cooling water supplied to the cooler 118, thereby increasing the preliminary discharge electrode 101, the common discharge electrode 104, and the main discharge electrode 120. the main plasma P M to improve the cooling capacity for it can be widened areas created.
  • FIG. 7 shows the main plasma P M dark hatching than preliminary plasma P P. Moreover, the main plasma P M to uniform discharge between the main discharge electrodes 120 and the common discharge electrode 104 rises to columnar spread in planar a level of at least a person can be confirmed uniform visually.
  • the operator rotationally drives the main discharge dielectric 140. Specifically, the operator rotates and drives the main discharge dielectric 140 by operating a control device of a belt conveyor (not shown) (see the broken line arrow in FIG. 7).
  • the operator performs a plasma irradiation process on the object to be processed WK.
  • the operator covers the main discharge dielectric 140 by initiating the operation of a supply device (not shown) that continuously supplies the object WK to be processed on the main discharge dielectric 140.
  • the processed product WK is continuously supplied.
  • the main discharge treatment object placed on the dielectric 140 WK is plasma irradiation by passing through a main plasma P M in which is formed between the main discharge electrodes 120 and the common discharge electrode 104 Is sterilized.
  • the main plasma P M treatment object WK irradiated is is recovered by the recovery device of the object WK not shown. Even in this case, the object WK to be processed on the main discharge dielectric 140 is prevented from being heated by the preliminary discharge electrode 101, the common discharge electrode 104, and the main discharge electrode 120 by the plasma gas output from the plasma gas output port 106.
  • the present inventors have made experiments of irradiating a primary plasma P M beans using the plasma generating device 100 with respect to the treatment object WK adhered with E. coli, the mounting of the main discharge dielectric 140 It was confirmed that a uniform bactericidal effect was exhibited regardless of the location.
  • the present inventors used a plasma generator 100 for a biological indicator in which a strip made of cellulose fibers was impregnated with spore-forming bacteria (for example, Geobacillus Stearothermophilus) and wrapped in glassine paper. It was confirmed that this spore-forming bacterium could be killed by irradiating with plasma in the range of about 30 seconds to about 120 seconds.
  • the operator stops the operation of the preliminary discharge power supply 150 and the main discharge power supply 152, and stops the operation of the preliminary discharge power supply 150, the common discharge electrode 104, and the main discharge.
  • the application of the AC voltage to the electrode 120 is stopped.
  • the plasma generator 100, a preliminary plasma P P and the main plasma P M is extinguished, it is possible to terminate the plasma irradiation treatment to the object to be processed WK.
  • the plasma generator 100 can be terminated plasma irradiation treatment by stopping the operation of the main discharge power supply 152 by extinguishing the main plasma P M to the object to be processed WK, preliminary discharge power supply it can be terminated plasma irradiation treatment also be stopped by eliminating the main plasma P M to the object to be processed WK operation of 150. That is, the operator can terminate the plasma irradiation treatment to the object to be processed WK by one of the working is extinguished the main plasma P M by stopping of the preliminary discharge power supply 150 and a main discharge power supply 152. In this case, the operator stops the operation of one of the preliminary discharge power supply 150 and the main discharge power supply 152, and then stops the operation of the other.
  • the operator can extinguish a preliminary plasma P P and the main plasma P M also by stopping the supply of the plasma gas by operating a plasma gas supply installation (not shown). For this, the operator, together with the disappearance of the pre-plasma P P and the main plasma P M, the supply of the workpiece WK into the main discharge dielectric 140, the rotary drive and the cooler 118 of the main discharge dielectric 140 The supply of cooling water is also stopped.
  • the plasma gas output port 106 for outputting the plasma gas is connected to the common discharge electrode 104 adjacent to the preliminary discharge electrode 101. Since it is formed along the 101, the degree of freedom in designing the region where the preliminary plasma PP is generated between the preliminary discharge electrode 101 and the common discharge electrode 104 can be expanded.
  • This pre-plasma P P preliminary plasma P means that can set the region to produce a preliminary plasma P P between the priming discharge electrode 101 by focusing only on the occurrence ease the common discharge electrode 104 of the It means that P can be generated effectively.
  • the plasma generating apparatus 100 freely set the flow rate of even a plasma gas preliminary plasma P P and narrower the width of the area causing between the common discharge electrode 104 and the preliminary discharge electrode 101 it is also possible that spread the processing space by the can be the main plasma P M.
  • the implementation of the present invention is not limited to the above embodiment, and various changes can be made as long as the object of the present invention is not deviated.
  • the same components as those in the above-described embodiment in each of the referenced figures are designated by the same reference numerals or corresponding reference numerals, and some configurations are appropriately omitted for parts that are not directly related to the components. , Their description is also omitted.
  • the plasma gas output ports 106 are provided in a row on each side of the preliminary discharge electrode 101.
  • the plasma gas output port 106 may be provided adjacent to the preliminary discharge electrode 101. Therefore, the plasma gas output port 106 can be configured by providing one row or two or more rows on one side of the preliminary discharge electrode 101. Further, the plasma gas output ports 106 may be configured by providing two or more rows on each side of the preliminary discharge electrode 101.
  • the plasma gas output port 106 is pre-discharged so that the through holes constituting the plasma gas output port 106 adjacent to each other in the width direction of the common discharge electrode 104 are not adjacent to each other in the width direction.
  • the dielectric 103 is arranged so as to be offset in the longitudinal direction.
  • the plasma generator 100 it is possible to suppress the unevenness of the ejected plasma gas to produce a uniform preliminary plasma P P and the main plasma P M.
  • the plasma gas output port 106 may be arranged so that the through holes constituting the array of plasma gas output ports 106 adjacent to each other in the width direction of the common discharge electrode 104 are adjacent to each other in the width direction.
  • the plasma gas output port 106 is composed of a plurality of cylindrical through holes arranged in a row along the longitudinal direction of the preliminary discharge electrode 101.
  • the plasma generation device 100 can easily secure the rigidity of the common discharge electrode 104 and prevent foreign matter from entering the plasma gas output port 106.
  • the plasma gas output port 106 may also be composed of one or more elongated slits extending along the longitudinal direction of the preliminary discharge dielectric 103.
  • the plasma generator 100 is configured to have a plasma gas jacket 110 that temporarily stores the plasma gas supplied to the plasma gas output port 106.
  • the plasma generation device 100 can output uniform plasma gas in one hole or between a plurality of holes constituting the plasma gas output port 106.
  • the plasma generation device 100 may be configured by directly connecting the introduction path 115 or the plasma gas supply facility (not shown) to the plasma gas output port 106 and omitting the plasma gas jacket 110.
  • the plasma generation device 100 can be configured by omitting the jacket covering body 114.
  • the plasma generator 100 is configured to include the porous bodies 111 and 112 in the plasma gas jacket 110.
  • the plasma generation device 100 can output uniform plasma gas in one hole or between a plurality of holes constituting the plasma gas output port 106.
  • the plasma generation device 100 may be configured by omitting the porous bodies 111 and 112 in the plasma gas jacket 110.
  • the porous bodies 111 and 112 are composed of two punching plates.
  • the porous bodies 111, 112 can be composed of one or more punching plates.
  • the porous body when the porous body is composed of two or more, it is preferable to shift the positions so that the pores in each porous body do not overlap each other.
  • the porous body can also be composed of a porous body such as a sponge or an aggregate of fibers having innumerable cavities in the block body.
  • the plasma generator 100 is configured to include a water-cooled cooler 118.
  • the plasma generator 100 can cool the preliminary discharge electrode 101, the common discharge electrode 104, and the main discharge electrode 120 via the plasma gas, and can also prevent the object WK to be heated.
  • the plasma generator 100 can also be configured to include a cooler 118 other than the water cooling system.
  • the plasma generator 100 may be configured to send cooling air to the cooler mounting portion 116 of the jacket covering body 114 by a fan (not shown), or may be configured to send cooling air to the cooler mounting portion 116, or instead of the cooler mounting portion 116, folds may be sent. It can also be configured by forming a shaped heat sink. Further, the plasma generator 100 may be configured by omitting the cooler 118.
  • the plasma generator 100 is configured by providing the plasma gas output port 106 only on the common discharge electrode 104.
  • the plasma generation device 100 can be configured by providing a second plasma gas output port 121 similar to the plasma gas output port 106 on the main discharge electrode 120 facing the common discharge electrode 104. ..
  • the second plasma gas output port 121 can be formed at a position facing the plasma gas output port 106 or at a position deviated from the plasma gas output port 106, and the common electrode facing surface of the main discharge electrode 120. It can also be formed by evenly arranging the front surface of the 120a.
  • the main discharge electrode 120 is provided with a second plasma gas jacket 122 similar to the plasma gas jacket 110, and a large number of through holes 123a, 124a are provided in the second plasma gas jacket 122 as well as the porous bodies 111 and 112.
  • the second porous bodies 123 and 124 having the above can be provided via the same spacer 125 as the spacer 113, respectively.
  • the main discharge electrode 120 is airtightly closed in the second plasma gas jacket 122 by the plate-shaped second jacket covering body 126 provided with the introduction path 127 communicating with the second plasma gas jacket 122. ing.
  • the plasma generator 100 configured in this way, the plasma gas supplied from the plasma gas supply facility (not shown) through the through hole 132a provided in the main electrode support 132 is supplied to the second plasma gas jacket 122 and the second plasma gas jacket 122. 2 The gas is injected toward the main discharge dielectric 140 via the plasma gas output port 121 (see the broken line arrow).
  • the plasma generator 100 can be generated and maintained in early and extensive range can be main plasma P M to supply plasma gas to the main discharge electrodes 120 side of the main discharge dielectric 140 it can. It goes without saying that the plasma generator 100 can be configured by omitting the second plasma gas jacket 122 and the second jacket cover 126, respectively.
  • the operator outputs an AC voltage having a voltage of ⁇ 5 kV and a frequency of 10 kHz to the preliminary discharge power supply 150, and an AC voltage having a voltage of ⁇ 9 kV and a frequency of 10 kHz to the main discharge power supply 152. Adjusted to output.
  • the specifications of the output of the pre-discharge power supply 150 and a main discharge power supply 152 is intended to be set appropriately according to the amount and intensity of the main plasma P M required for treatment object WK, the above-described embodiment It is not limited to. Therefore, the AC voltage output from the preliminary discharge power supply 150 is one of higher voltage, higher frequency, lower voltage, lower frequency, same voltage, and same frequency than the AC voltage output from the main discharge power supply 152. Can naturally occur.
  • the plasma generation device 100 can also include the preliminary discharge power supply 150 and the main discharge power supply 152 in one power supply facility.
  • the main discharge power supply 152 is connected to the common discharge electrode 104 via the preliminary discharge power supply 150.
  • the main discharge power supply 152 is not necessarily limited to the above embodiment as long as it is connected between the main discharge electrode 120 and the common discharge electrode 104 so that an AC voltage can be applied. Therefore, the main discharge power supply 152 can be directly connected to the common discharge electrode 104, for example, without using the preliminary discharge power supply 150.
  • the preliminary discharge power supply 150 is not necessarily limited to the above embodiment as long as it is connected between the preliminary discharge electrode 101 and the common discharge electrode 104 so that an AC voltage can be applied.
  • the plasma generator 100 is configured to include four preliminary discharge electrodes 101.
  • the plasma generating apparatus 100 can generate a main plasma P M of the longitudinal width direction perpendicular to the wider surface shaped preliminary discharge electrodes 101.
  • the arrangement interval of the preliminary discharge electrodes 101 is experimentally obtained in advance according to the applied voltage and the distance between the electrodes.
  • the plasma generator 100 can be configured to include at least one pre-discharge electrode 101, and is not necessarily limited to the above embodiment. Therefore, the plasma generator 100 can also be configured to include five or more pre-discharge electrodes 101.
  • spacing the main plasma P M is not formed in the wide surface between the arrangement interval of preliminary discharge electrodes 101 and the main discharge electrodes 120 and the common discharge electrode 104, i.e., the It can also be arranged at intervals of preliminary discharge electrodes 101 forming the main plasma P M linear or strip alone.
  • the preliminary discharge electrode 101 is configured by providing a slight gap through air between the outer peripheral surface of the conductor 102 and the inner peripheral surface of the preliminary discharge dielectric 103.
  • the pre-discharge electrode 101 is configured such that the outer peripheral surface of the conductor 102 and the inner peripheral surface of the pre-discharge dielectric 103 are in close contact with each other, or the space between the two is closed with a vacuum or a non-conductor (for example, ceramic adhesive). You can also do it. According to this, it is possible to prevent discharge from occurring in the space between the outer peripheral surface of the conductor 102 and the inner peripheral surface of the preliminary discharge dielectric 103.
  • the plasma generator 100 arranges the preliminary discharge electrode 101 in which the conductor 102 is arranged in the preliminary discharge dielectric 103 made of a glass tube in the electrode accommodating portion 105 formed in the common discharge electrode 104. And configured.
  • the preliminary discharge electrode 101 may be configured by covering a long conductor 102 with a dielectric material.
  • the preliminary discharge electrode 101 can be formed in a rod shape or a plate shape.
  • the common discharge electrode 104 may be formed adjacent to the preliminary discharge electrode 101 and extending along the preliminary discharge electrode 101.
  • the preliminary discharge electrode 101 is arranged in a state where the main discharge electrode 120 side is exposed in the electrode accommodating portion 105 formed in a groove shape on the main electrode facing surface 104a of the common discharge electrode 104.
  • the preliminary discharge electrode 101 can be easily fitted and attached to the open electrode accommodating portion 105, and the orientation can be accurately arranged.
  • the preliminary discharge electrode 101 is stably held by the groove itself of the electrode accommodating portion 105 and the adhesive applied in the groove, and the main discharge dielectric 140 existing around the preliminary discharge electrode 101 and the object to be treated. It is possible to prevent damage due to physical contact with an object WK or the like and scattering when the preliminary discharge electrode 101 is damaged.
  • priming discharge electrode 101 it is possible to maintain the pre-plasma P P which is generated along with it easier to generate a pre-plasma P P by being surrounded by a common discharge electrode 104 stably.
  • the electrode accommodating portion 105 is formed to have a depth that covers more than half, more preferably two-thirds or more in the radial direction of the preliminary discharge electrode 101, and the preliminary discharge electrode that faces the groove width orthogonal to the depth direction. It is preferable to form the groove width so as to accommodate both side surfaces of 101 with a slight gap. However, the electrode accommodating portion 105 is formed to have a depth that covers less than half of the pre-discharge electrode 101 in the radial direction, and the groove width is in contact with both side surfaces of the pre-discharge electrode 101, that is, the pre-discharge electrode 101. It does not exclude the formation of the same groove width as the outer diameter of.
  • the electrode accommodating portion 105 may be formed in a tubular shape completely covering the preliminary discharge electrode 101, for example, in a horizontal hole shape or a horizontal hole shape formed in a through hole shape or a blind hole shape on the side surface of the common discharge electrode 104. ..
  • the preliminary discharge electrodes 101 may be disposed so as to be able to generate a preliminary plasma P P between the common discharge electrode 104. Therefore, the preliminary discharge electrode 101 can be arranged directly on, for example, the flat main electrode facing surface 104a on which the electrode accommodating portion 105 is not formed.
  • the main discharge dielectric 140 is formed in an endless belt shape.
  • the main discharge dielectric 140 is arranged between the main discharge electrode 120 and the pre-discharge electrode 101 and the common discharge electrode 104, and extends along the pre-discharge electrode 101, the common discharge electrode 104, and the main discharge electrode 120. It suffices to be composed of the body. Therefore, as shown in FIG. 9, the main discharge dielectric 140 is simply a flat sheet or plate in which non-conductors such as a ceramic material including glass, a resin material, or a rubber material are not formed in an annular shape. Can be formed and constructed in. In this case, the main discharge dielectric 140 can be supported by the support column 133.
  • the main discharge dielectric 140 is configured to support the object to be processed WK. However, if the main discharge dielectric 140 is configured to support the object to be processed WK by another support member, it does not necessarily have to be configured to support the object to be processed WK.
  • the plasma generator 100 is configured to sterilize against treatment object WK consisting food by irradiating the primary plasma P M.
  • the plasma generator 100, non-food article to be treated WK e.g., medical instruments
  • may be configured to sterilized by irradiating a primary plasma P M with respect to other than sterilization ⁇ it may be irradiated with the main plasma P M with respect to the object to be processed WK purposes.
  • the plasma generator 100 can be used, for example, for surface treatment such as ashing, etching or film formation, improvement of adhesiveness and wettability, and surface modification such as surface hardening.
  • WK ... the object to be treated, P P ... preliminary plasma, P M ... main plasma, 100 ... Plasma generator, 101 ... preliminary discharge electrode, 102 ... conductor, 103 ... preliminary discharge dielectric, 104 ... common discharge electrode, 104a ... main electrode facing surface, 105 ... electrode housing, 105a ... ceramic adhesive, 106 ... plasma gas output port, 110 ... Plasma gas jacket, 111, 112 ... Porous body, 111a, 112a ... Through hole, 113 ... Spacer, 114 ... Jacket cover, 115 ... Introduction path, 116 ... Cooler mounting part, 117a ... First mounting hole, 117b ... second mounting hole, 118 ... cooler, 118a ... piping, 120 ...
  • main discharge electrode 120a ... common electrode facing surface, 121 ... second plasma gas output port, 122 ... second plasma gas jacket, 123, 124 ... second porous body, 123a, 124a ... through hole, 125 ... spacer, 126 ... 2nd jacket cover, 127 ... Introduction path, 130 ... Electrode support, 131 ... Common electrode support, 131a ... Through hole, 132 ... Main electrode support, 132a ... Through hole, 133 ... Support, 140 ... Dielectric for main discharge, 150 ... preliminary discharge power supply, 151 ... ground, 152 ... main discharge power supply.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)

Abstract

予備放電領域の設計の自由度を広げるとともにプラズマによる処理空間を広げることもできるプラズマ生成装置を提供する。 プラズマ生成装置100は、予備放電電極101、共通放電電極104および主放電電極120を備えている。予備放電電極101は、導線102をガラス管製の予備放電用誘電体103内に収容した長尺の棒状に形成されている。共通放電電極104は、予備放電用電極101に沿って延びる板状体で構成されているとともに予備放電電極101を露出した状態で収容する溝状の電極収容部105が形成されている。また、共通放電電極104には、予備放電電極101に沿ってプラズマガスを噴出する複数の貫通孔で構成されたプラズマガス出力口106が形成されている。主放電電極120は、共通放電電極104に沿って延びる板状体で構成されており共通放電電極104に対向配置されている。 図1

Description

プラズマ生成装置
 本発明は、大気圧下でも生成可能なプラズマ生成装置に関する。
 従来から、アッシング、エッチングまたは被膜形成などの表面処理、接着性や濡れ性の改善または表面硬化などの表面改質、および医療器具や食べ物の洗浄や殺菌などの洗浄殺菌処理にプラズマ生成装置が用いられている。例えば、下記特許文献1には、誘電体で覆われた主電極の両側に誘電体で覆われた側電極を予備放電領域を介して配置したフラットパネルディスプレイまたは太陽電池の製造用のプラズマ生成装置が開示されている。
特開2005-268170号公報
 しかしながら、上記特許文献1に示されたプラズマ生成装置においては、主電極と側電極との間の予備放電領域がプラズマガスの流路も兼ねているため、予備放電領域の隙間の幅を含む形状がプラズマガスの流路としても機能するように設計しなければならず、予備放電領域の設計の自由度が低いという問題がある。また、上記プラズマ生成装置においては、予備放電領域の隙間が狭いためプラズマ処理空間に十分なプラズマガスを供給することができない場合もありプラズマ処理空間を広く形成することが困難であるという問題もある。
 本発明は上記問題に対処するためなされたもので、その目的は、予備放電領域の設計の自由度を広げるとともにプラズマによる処理空間を広げることもできるプラズマ生成装置を提供することにある。
 上記目的を達成するため、本発明の特徴は、長尺に延びる導体を誘電体で覆った予備放電電極と、予備放電電極に隣接配置されて同予備放電電極に沿って延びる共通放電電極と、予備放電電極と共通放電電極との間に交流電圧を印加して予備プラズマを発生させるための予備放電電源と、共通放電電極に対して予備放電電極よりも離れた位置に共通放電電極および予備放電電極にそれぞれ対向した状態で延びる主放電電極と、主放電電極と予備放電電極および共通放電電極との間に配置されて予備放電電極、共通放電電極および主放電電極に沿って延びる誘電体からなる主放電用誘電体と、主放電電極と共通放電電極との間に交流電圧を印加して主プラズマを発生させるための主放電電源とを備え、共通放電電極は、予備放電電極に隣接する位置に同予備放電電極の延びる方向に沿ってプラズマガスを出力させるプラズマガス出力口を備えることにある。
 このように構成した本発明の特徴によれば、プラズマ生成装置は、プラズマガスを出力させるプラズマガス出力口が予備放電電極に隣接する共通放電電極に同予備放電電極に沿って形成されているため予備放電電極と共通放電電極との間の予備プラズマを生じさせる領域の設計の自由度を広げることができる。このことは、予備プラズマの発生のし易さのみに着目して予備放電電極と共通放電電極との間の予備プラズマを生じさせる領域を設定できることを意味しており、予備プラズマを効果的に発生させることができることを意味している。また、本発明に係るプラズマ生成装置は、予備放電電極と共通放電電極との間の予備プラズマを生じさせる領域の幅を狭く形成してもプラズマガスの流量を自由に設定することができ主プラズマによる処理空間を広げることもできる。
 また、本発明の他の特徴は、前記プラズマ生成装置において、プラズマガス出力口は、予備放電電極の両側にそれぞれ形成されていることにある。
 このように構成した本発明の他の特徴によれば、プラズマ生成装置は、プラズマガス出力口が予備放電電極の両側にそれぞれ形成されているため、より広範で均一なプラズマガス雰囲気を形成することができ効果的に主プラズマによる処理空間を広げることができる。
 また、本発明の他の特徴は、前記プラズマ生成装置において、プラズマガス出力口は、予備放電電極の延びる方向に沿って形成された複数の孔で構成されていることにある。
 このように構成した本発明の他の特徴によれば、プラズマ生成装置は、プラズマガス出力口が予備放電電極の延びる方向に沿って形成された複数の孔で構成されているため、共通放電電極の剛性を確保し易いとともにプラズマガス出力口への異物の侵入を防止することができる。
 また、本発明の他の特徴は、前記プラズマ生成装置において、プラズマガス出力口は、予備放電電極の両側にそれぞれ形成されているとともに、前記両側のうちの一方側のプラズマガス出力口を構成する各孔は他方側のプラズマガス出力口を構成する各孔に対してずれた位置にそれぞれ形成されていることにある。
 このように構成した本発明の他の特徴によれば、プラズマ生成装置は、プラズマガス出力口が予備放電電極の両側にそれぞれ形成されるとともに、これらの両側のうちの一方側のプラズマガス出力口を構成する各孔と他方側のプラズマガス出力口を構成する各孔とが互いにずれた位置にそれぞれ形成されているため、出力されたプラズマガスのムラを抑制して均一な主プラズマを生成することができる。
 また、本発明の他の特徴は、前記プラズマ生成装置において、さらに、プラズマガス出力口に面した状態で同プラズマガス出力口に供給されるプラズマガスを一時的に貯留するプラズマガスジャケットを備えることにある。
 このように構成した本発明の他の特徴によれば、プラズマ生成装置は、プラズマガス出力口に面した状態で同プラズマガス出力口に供給されるプラズマガスを一時的に貯留するプラズマガスジャケットを備えているため、プラズマガス出力口を構成する一つの孔内においてまたは複数の孔同士間でムラのないプラズマガスを出力させることができる。
 また、本発明の他の特徴は、前記プラズマ生成装置において、さらに、プラズマガスジャケットは、多数の貫通孔を有した多孔体を有しており、プラズマガスを多孔体を介してプラズマガス出力口に導くことにある。
 このように構成した本発明の他の特徴によれば、プラズマ生成装置は、プラズマガスジャケットが多数の貫通孔を有した多孔体を有しておりプラズマガスをこの多孔体を介してプラズマガス出力口に導くため、プラズマガス出力口を構成する一つの孔内または複数の孔間でムラのないプラズマガスを出力させることができる。この場合、多孔体としては、板状体に多数の貫通孔を形成したパンチングプレートのほか、無数の空洞を有したスポンジまたは繊維の集合体などの多孔質体で構成することができる。
 また、本発明の他の特徴は、前記プラズマ生成装置において、さらに、プラズマガスジャケットに隣接して設けられて同プラズマガスジャケット内のプラズマガスを冷却する冷却器を備えることにある。
 このように構成した本発明の他の特徴によれば、プラズマ生成装置は、プラズマガスジャケットに隣接して設けられて同プラズマガスジャケット内のプラズマガスを冷却する冷却器を備えているため、プラズマガスを介して予備放電電極、共通放電電極および主放電電極を冷却することができるとともに被処理物の加熱も防止することができる。
 また、本発明の他の特徴は、前記プラズマ生成装置において、主放電電極は、主放電用誘電体に向けてプラズマガスを出力させる第2プラズマガス出力口を備えることにある。
 このように構成した本発明の他の特徴によれば、プラズマ生成装置は、主放電電極は、主放電用誘電体に向けてプラズマガスを出力させる第2プラズマガス出力口を備えているため、主放電用誘電体に対して主放電電極側にプラズマガスを供給することができ主プラズマを早期にかつ広範な範囲で発生および維持させることができる。
本発明に係るプラズマ生成装置の構成の概略を模式的に示した側面断面図である。 図1に示すプラズマ生成装置の構成の概略を模式的に示した正面断面図である。 図1に示すプラズマ生成装置における予備放電電極を備えた共通放電電極の外観構成を模式的に示した平面図である。 図1に示すプラズマ生成装置における共通電極の外観構成を模式的に示した底面図である。 図1に示すプラズマ生成装置におけるジャケット覆い体の外観構成を模式的に示した底面図である。 図2に示すプラズマ生成装置における予備放電電極と共通放電電極との間に交流電圧を印加して予備プラズマを生成した状態を模式的に示す正面図である。 図2に示すプラズマ生成装置における予備放電電極と共通放電電極との間および主放電電極および共通放電電極との間にそれぞれ交流電圧を印加して主プラズマを生成した状態を模式的に示す正面図である。 本発明の変形例に係るプラズマ生成装置における予備放電電極を備えた共通放電電極の外観構成を模式的に示した平面図である。 本発明の変形例に係るプラズマ生成装置の構成の概略を模式的に示した側面断面図である。
 以下、本発明に係るプラズマ生成装置の一実施形態について図面を参照しながら説明する。図1は、本発明に係るプラズマ生成装置100の構成の概略を模式的に示した側面断面図である。また、図2は、図1に示すプラズマ生成装置100の構成の概略を模式的に示した正面断面図である。また、図3は、図1に示すプラズマ生成装置100における予備放電電極101を備えた共通放電電極104の外観構成を模式的に示した平面図である。なお、本明細書において参照する図は、本発明の理解を容易にするために一部の構成要素を誇張して表わすなど模式的に表している。このため、各構成要素間の寸法や比率などは異なっていることがある。このプラズマ生成装置100は、標準大気圧の大気に開放された環境下でプラズマを生成して食品からなる被処理物WKに照射して殺菌する機械装置である。
(プラズマ生成装置100の構成)
 プラズマ生成装置100は、4つの予備放電電極101を備えている。各予備放電電極101は、予備プラズマPを発生させるための部品であり、それぞれ長尺に延びる棒状に形成されている。これらの各予備放電電極101は、主として、導体102および予備放電用誘電体103をそれぞれ備えて構成されている。
 導体102は、後述する共通放電電極104と対を構成する電極であり、導電性を有する材料を長尺に延ばして形成されている。本実施形態においては、導体102は、直径1.8mmで長さが250mmの銅線で構成されている。なお、導体102は、導電性を有する材料であれば良く、例えば、銀、金、チタンまたはアルミニウム材など銅以外の材料で構成することもできる。この導体102は、後述する予備放電電源150に電気的に接続されているとともにアース151を介して接地されている。
 予備放電用誘電体103は、導体102を覆うとともに導体102と共通放電電極104との間で両者を電気的に絶縁するための部品であり、導体102を覆う大きさの不導体で構成されている。本実施形態においては、予備放電用誘電体103は、石英材を直径が4mm、内径が2mmおよび長さが230mmの有底円筒状に形成した透明な石英管で構成されている。
 なお、予備放電用誘電体103は、導体102を覆う不導電体であれば良く、例えば、半透明または不透明のガラス、ガラス以外のセラミック材、樹脂材またはゴム材などで構成することもできる。また、導体102および予備放電用誘電体103からなる予備放電電極101の大きさは、予備プラズマPを生成する必要性に応じて適宜設計されるものであり、本実施形態に限定されるものではないことは当然である。この予備放電用誘電体103は、導体102における予備放電電源150に接続される端部を露出させた状態で同端部以外の部分を収容して共通放電電極104に支持されている。
 共通放電電極104は、予備放電電極101と対を構成して予備プラズマPを発生させるとともに主放電電極120と対を構成して主プラズマPを発生させるための部品であり、導電性を有する材料を長尺に延ばして形成されている。より具体的には、共通放電電極104は、予備放電電極101に沿って長尺に延びるとともに主放電電極120に対して対向する板状体で構成されている。本実施形態においては、共通放電電極104は、アルミニウム材を長さが200mm、幅が60mmおよび厚さが15mmの板状体に形成して構成されている。なお、共通放電電極104は、導電性を有する材料であれば良く、例えば、銀、金、チタンまたは銅などアルミニウム材以外の材料で構成することもできる。
 この共通放電電極104には、主放電電極120に対向する主電極対向面104aに電極収容部105が形成されているとともにこの電極収容部105に沿ってプラズマガス出力口106が形成されている。また、共通放電電極104には、主電極対向面104aおよび電極収容部105の裏側にプラズマガスジャケット110が形成されている。
 主電極対向面104aは、主放電電極120に面して主プラズマPを発生させるための部分であり、主放電電極120と平行な平面状に形成されている。この場合、主電極対向面104aは、共通放電電極104の長手方向および同長手方向に直交する幅方向の各端部および電極収容部105が開口する縁部分がそれぞれ丸みを帯びた曲面形状に形成されて局所的な放電が発生すること防止している。
 電極収容部105は、4つの予備放電電極101をそれぞれ収容する部分であり、各予備放電電極101に沿って凹状に窪んで延びる溝状に形成されている。より具体的には、電極収容部105は、予備放電電極101における主放電電極120側の外表面を露出させた状態でその他の部分を覆う深さの溝状に形成されている。この場合、電極収容部105は、予備放電電極101の両側面に対して僅かな空隙を介して収容する形状に形成されている。本実施形態においては、電極収容部105は、深さが3mm、幅が4.1mmで主放電電極120の長手方向に沿って貫通した状態で形成されている。
 また、電極収容部105は、共通放電電極104の長手方向に直交する幅方向に4つ形成されている。この場合、4つの電極収容部105は、主プラズマPが均一に生成されるように共通放電電極104の幅方向に等間隔でかつ互いに平行に延びて形成されている。そして、各電極収容部105内には、4つの予備放電電極101がそれぞれセラミック接着剤105aによって固着された状態で収容され支持されている。
 プラズマガス出力口106は、予備プラズマPを発生し易くさせるとともに発生させた予備プラズマPを主放電電極120側に導いて主プラズマPを発生および維持させるためのプラズマガスを噴出させる部分であり、一方の端部(図示下端部)がプラズマガスジャケット110に連通するとともに他方の端部(図示上端部)が主電極対向面104aに開口する貫通孔で形成されている。このプラズマガス出力口106は、電極収容部105内に収容される予備放電電極101に隣接する位置に同予備放電電極101が延びる長手方向に沿って複数の貫通孔が等間隔に配置されて構成されている。
 この場合、プラズマガス出力口106は、予備放電電極101を挟むように予備放電電極101の両側にそれぞれ一列に並んで形成されている。ここで、予備放電電極101の両側とは、主電極対向面104a上において予備放電電極101が延びる長手方向に直交する幅方向である。また、この場合、主電極対向面104aの幅方向に互いに隣接する2つのプラズマガス出力口106をそれぞれ構成する一列の貫通孔は、幅方向において互いに隣接し合わないように予備放電電極101の長手方向にずれて配置されている。
 このプラズマガス出力口106は、本実施形態においては、直径1mmの円筒形に形成されているが、直径、ピッチ、形状および数はプラズマ生成装置100の仕様に応じて適宜設定されることは当然である。なお、図1~図4においては、プラズマガス出力口106の大きさを誇張して示している。
 このプラズマガス出力口106から噴出されるプラズマガスは、予備プラズマPを発生させ易くするとともに生成された予備プラズマPを主放電電極120側に導いて主プラズマPを発生および維持させるための気体であり、窒素、アルゴンおよびヘリウムなどの空気よりも電離電圧の低い気体を単体でまたはこれらを混合して、さらには、これらに水蒸気またはアンモニアなどのガスを添加して構成されている。このプラズマガスは、ポンプまたはタンクからなるプラズマガス供給設備(図示せず)からプラズマガスジャケット110を介してプラズマガス出力口106に供給される。
 プラズマガスジャケット110は、図4に示すように、プラズマガス出力口106から噴射させるプラズマガスを一時的に貯留するための部分であり、共通放電電極104の裏面側を凹状に切り欠いた空洞部で構成されている。本実施形態においては、プラズマガスジャケット110は、共通放電電極104の裏面側から見た平面視で略長方形状に形成されている。このプラズマガスジャケット110内には、多孔体111,112およびスペーサ113がそれぞれ設けられている。
 この共通放電電極104は、ジャケット覆い体114を介して予備放電電源150に電気的に接続されているとともにこの予備放電電源150を介して主放電電源152に電気的に接続された状態で主放電電極120に対して所定の距離を介した位置に電極支持体130によって支持されている。
 多孔体111,112は、前記したプラズマガス供給設備からプラズマガスジャケット110内に導入されたプラズマガスの流れを緩衝するための部品であり、金属製、樹脂製またはセラミック製の板状体でそれぞれ構成されている。これらの多孔体111,112は、板面の全体に多数の貫通孔111a,112aが形成された所謂パンチングプレートである。
 この場合、多孔体111の貫通孔111aと多孔体112の貫通孔112aとは、多孔体111と多孔体112とが図示上下方向に互いに対向配置された際に貫通孔111aと貫通孔112aとが互いに重ならないように互いにずれた位置に形成されている。これらの多孔体111,112は、互いの板面が隙間を介して対向するように重ねられてプラズマガスジャケット110内に配置されている。
 スペーサ113は、多孔体111,112が互いに密着して重なること防止するとともに、多孔体111,112の各板面がプラズマガスジャケット110およびジャケット覆い体114にそれぞれ密着することを防止してこれらの各間に隙間を形成するための部品である。このスペーサ113は、金属材、樹脂材またはセラミック材を平板リング状に形成して構成されている。
 本実施形態においては、スペーサ113は、プラズマガスジャケット110の天井部分と多孔体111との間、多孔体111と多孔体112との間、多孔体112とジャケット覆い体114の図示上面との間にそれぞれ配置されている。なお、図2においては、プラズマガスジャケット110を破線で示しているが多孔体111,112およびスペーサ113の図示を省略している。
 ジャケット覆い体114は、図5に示すように、プラズマガスジャケット110の図示下方に向かって開口する開口部を覆ってプラズマガスジャケット110内を密閉するとともにプラズマガスジャケット110内にプラズマガスを導くための部品であり、導電性を有する金属材料を平面視で共通放電電極104と同じ大きさの方形の板状に形成して構成されている。
 この場合、ジャケット覆い体114は、導電性を有する金属材料で構成されているが、共通放電電極104が直接予備放電電源150に電気的に接続される場合には必ずしも導電性を有する材料で構成する必要はなく樹脂材またはセラミック材で構成することもできる。このジャケット覆い体114には、導入路115、冷却器取付部116、第1取付孔117aおよび第2取付孔117bがそれぞれ形成されている。
 導入路115は、前記したプラズマガス供給設備から供給されるプラズマガスをプラズマガスジャケット110に導くための流路であり、ジャケット覆い体114の厚み方向に貫通する貫通孔で構成されている。この導入路115は、プラズマガスジャケット110に対向する複数(本実施形態においては6つ)の位置に略均等に配置されて形成されている。そして、各導入路115は、前記プラズマガス供給設備に対して図示しない配管を介して接続されている。なお、図5においては、プラズマガスジャケット110を二点鎖線で示している。
 冷却器取付部116は、冷却器118を取り付ける部分であり、ジャケット覆い体114における図示下面に凹状に切り欠かれて形成されている。この場合、冷却器取付部116は、プラズマガスジャケット110に対向する部分に形成されているとともに、前記導入路115に隣接する位置に形成されている。本実施形態においては、冷却器取付部116は、2つの冷却器118に対応して2つ形成されている。
 第1取付孔117aは、ジャケット覆い体114を共通放電電極104に取り付けるためのボルト(図示せず)が貫通する貫通孔であり、本実施形態においては6つ形成されている。また、第2取付孔117bは、ジャケット覆い体114を電極支持体130に取り付けるためのボルト(図示せず)がネジ嵌合する貫通する有底の孔部であり、本実施形態においては4つ形成されている。
 冷却器118は、プラズマガスを冷却するための装置であり、熱伝導率の高い銅などの金属製の板状体内に冷却液が流通する配管118aが埋め込まれて構成されている。この冷却器118は、ジャケット覆い体114における図示下面に形成された2つの冷却器取付部116内にそれぞれ嵌め込まれた状態で取り付けられている。これら2つの冷却器118は、互いの配管118aが図示しないホースを介して直列的に連結されており、図示しないポンプなどからなる冷却液供給設備によって水などからなる冷却液が供給される。
 主放電電極120は、共通放電電極104と対を構成して主プラズマPを発生させるための部品であり、導電性を有する材料を長尺に延ばして形成されている。より具体的には、主放電電極120は、共通放電電極104の主電極対向面104aに主放電用誘電体140を介して対向する共通電極対向面120aを有した板状体で構成されており、共通放電電極104に対して予備放電電極101よりも離れた位置に配置されている。本実施形態においては、主放電電極120は、アルミニウム材を長さが200mm、幅が60mmおよび厚さが15mmの板状体に形成して構成されている。この主放電電極120は、共通放電電極104に対して所定の距離を介した位置に電極支持体130によって支持された状態で主放電電源152に電気的に接続されている。
 共通電極対向面120aは、共通放電電極104に面して主プラズマPを発生させるための部分であり、主電極対向面104aと平行な平面に形成されている。この場合、共通電極対向面120aは、主放電電極120の長手方向および同長手方向に直交する幅方向の各端部がそれぞれ丸みを帯びた曲面形状に形成されて局所的な放電が発生することを防止している。なお、主放電電極120は、導電性を有する材料であれば良く、例えば、銀、金、チタンまたは銅などアルミニウム材以外の材料で構成することもできる。
 電極支持体130は、共通放電電極104と主放電電極120とを互いに所定の距離を介した離隔した位置にそれぞれ保持する部品であり、共通放電電極104および主放電電極120をこれら以外の物品から電気的に絶縁する不導体で構成されている。本実施形態においては、電極支持体130は、フッ素樹脂材で構成されている。この電極支持体130は、主として、共通電極支持体131、主電極支持体132および支柱133をそれぞれ備えて構成されている。
 共通電極支持体131は、共通放電電極104をジャケット覆い体114を介して図示下方から支持する部品であり、平面視でジャケット覆い体114よりも大きな面積の方形の板状体で構成されている。この場合、共通電極支持体131には、ジャケット覆い体114の各導入路115にそれぞれ連結されるプラズマガスの配管(図示せず)が貫通する貫通孔131aが形成されている。この共通電極支持体131は、図示しないボルトが第2取付孔117bにネジ嵌合することでジャケット覆い体114を図示下方から固定的に支持している。
 主電極支持体132は、主放電電極120を共通放電電極104に対向した状態で図示上方から支持する部品であり、平面視で主放電電極120よりも大きな面積の方形の板状体で構成されている。この主電極支持体132は、図示しないボルトを介して主放電電極120を図示上方から固定的に支持している。
 支柱133は、共通電極支持体131に対して所定の距離を介して対向した状態で主電極支持体132を支持することで主放電電極120を共通放電電極104に対して所定の空隙を介した位置に対向配置するための部品であり、丸棒状に形成されている。この支柱133は、共通電極支持体131および主電極支持体132の各四隅に設けられた図示しないボルトを介して共通電極支持体131および主電極支持体132にそれぞれ固定的に連結されている。なお、図1、図2、図6および図7においては、支柱133の中央部分の図示を省略している。
 本実施形態においては、支柱133は、共通放電電極104の主電極対向面104aに対して主放電電極120の共通電極対向面120aを10mmだけ離隔した位置に対向配置する長さに形成されている。なお、この電極支持体130は、共通放電電極104と主放電電極120とを互いに所定の距離を介した位置で互いに電気的に絶縁した状態で支持することができれば本実施形態に限定されるものでないことは当然である。また、図1~図3、図6および図7においては、電極支持体130を二点鎖線で示している。
 主放電用誘電体140は、予備放電電極101および共通放電電極104と主放電電極120との間で両者を電気的に絶縁するとともに被処理物WKを支持するための部品であり、主電極対向面104aと共通電極対向面120aとの間で両者を覆う大きさの不導体で構成されている。より具体的には、主放電用誘電体140は、主電極対向面104aおよび共通電極対向面120aの各長手方向および各幅方向の長さよりも長い長さのフッ素樹脂製のシート材を環状の無端ベルト状に形成して構成されている。本実施形態においては、主放電用誘電体140は、厚さが1mmのフッ素樹脂製のシートを用いている。
 この主放電用誘電体140は、図示しない駆動ローラと従動ローラとの間に水平方向に張られた状態で架設されて駆動ローラの回転駆動によって無限軌道状に送られる。すなわち、主放電用誘電体140は、ベルトコンベアにおける搬送ベルトを構成している。なお、本実施形態における主放電用誘電体140は、無端ベルトの周方向に沿って柔軟に屈曲する不導体で構成されていればよく、フッ素樹脂材以外の樹脂材(例えば、ポリアミド樹脂材など)からなるシート材であってもよい。
 予備放電電源150は、予備放電電極101と共通放電電極104とに対して交流電圧を印加するための電気機器である。本実施形態においては、予備放電電源150は、一般家庭用電源(100V)から電力供給を受けて予備放電電極101および共通放電電極104に対して電圧が±1kV~±20kVの範囲でかつ周波数が100Hz~30kHzの範囲で所望の電圧および周波数の交流電圧を印加することができる。この場合、予備放電電源150は、出力電圧の位相を変化させる図示しない移相器を備えている。また、予備放電電源150は、矩形波、正弦波、台形波および三角波のうちのいずれの交流電圧を連続的または間欠的に出力するものであってもよい。
 アース151は、予備放電電極101と共通放電電極104との間に交流電圧を印加する電気回路である予備放電回路および主放電電極120と共通放電電極104との間で交流電圧を印加する電気回路である主放電電気回路についてそれぞれ接地するための電気回路である。本実施形態においては、予備放電電源150および主放電電源152にそれぞれ電気的に接続された予備放電電極101に設けられている。
 なお、アース151は、予備放電電源150および主放電電源152にそれぞれ電気的に接続された共通放電電極104に設けられていてもよい(図5参照)。また、アース151は、予備放電電気回路および主放電電気回路に対して共通に設けてもよいし、予備放電電気回路および主放電電気回路に対してそれぞれ別々に設けてもよい。さらに、アース151は、省略してもよい。
 主放電電源152は、主放電電極120と共通放電電極104とに対して交流電圧を印加するための電気機器である。本実施形態においては、主放電電源152は、一般家庭用電源(100V)から電力供給を受けて主放電電極120および共通放電電極104に対して電圧が±1kV~±20kVの範囲でかつ周波数が100Hz~30kHzの範囲で所望の電圧および周波数の交流電圧を印加することができる。この場合、主放電電源152は、出力電圧の位相を変化させる図示しない移相器を備えている。また、主放電電源152は、矩形波、正弦波、台形波および三角波のうちのいずれの交流電圧を連続的にまたは間欠的に出力するものであってもよいが、予備放電電源150と同じ波形を逆位相で出力することが好ましい。
 なお、これらの予備放電電源150および主放電電源152の出力電圧および周波数は、生成する予備プラズマPおよび主プラズマPに応じて適宜設定されるものであって本実施形態に限定されるものでないことは当然である。また、このプラズマ生成装置100は、被処理物WKにプラズマを照射する作業を行う屋内または屋外の作業台上に直接載置または取り付けて設けられるほか、被処理物WKにプラズマを照射する作業を含む被処理物WKの加工装置や搬送装置の一部に組み込んで設けられる。
(プラズマ生成装置100の作動)
 次に、上記のように構成したプラズマ生成装置100の作動について説明する。本実施形態においては、プラズマ生成装置100は、豆、小麦、ゴマ、胡椒または茶葉(碾茶や抹茶を含む)などの粉状または粒状の食品の製造加工ラインに組み込まれてこれらを被処理物WKとして殺菌消毒処理を行う場合について説明する。この場合、プラズマ生成装置100は、標準大気圧の大気中に直接露出した状態で設置される。
 プラズマ生成装置100を使用して被処理物WKにプラズマ照射を行う作業者は、まず、プラズマ生成装置100における予備放電電極101と共通放電電極104との間に予備プラズマPを発生させる。具体的には、作業者は、プラズマ生成装置100における予備放電電源150を操作して予備放電電極101と共通放電電極104との間に交流電圧を印加する。この場合、作業者は、予備放電電源150を操作して主プラズマPを発生させるために必要な予備プラズマPを発生させるための電圧および周波数の交流電圧を出力する。
 本実施形態においては、予備放電電源150は、電圧が±5kV、電流が20mAおよび周波数が10kHzの交流電圧を出力する。この場合、予備放電電源150が出力する交流電圧および周波数は、発生させる主プラズマPに応じて予め実験的に求めることができる。これにより、プラズマ生成装置100における予備放電電極101と共通放電電極104との間では、図6に示すように、両者間に存在する大気の一部が電離するとともに活性化されて予備プラズマPが発生する。
 この場合、予備プラズマPは、4つの予備放電電極101にそれぞれ沿って4つの線状に生成される。すなわち、予備プラズマPは、大気圧下における誘電体バリア放電によって生成される。なお、図6においては、予備プラズマPを薄いハッチングで示している。
 また、この予備プラズマPの生成に際して作業者は、プラズマガス出力口106からプラズマガスを出力させることができる。具体的には、作業者は、プラズマガス供給設備(図示せず)を操作してプラズマガスジャケット110にプラズマガスの供給を開始させる。プラズマガスジャケット110内に導入されたプラズマガスは、2つの多孔体111,112に遮られながら通過して蛇行しながらプラズマガス出力口106に達した後、このプラズマガス出力口106によって主電極対向面104a上に噴射される。この場合、プラズマガス出力口106から噴射されたプラズマガスは、その一部が予備放電電極101側に直接または主放電用誘電体140などを介して間接的に導かれる。
 これにより、予備プラズマPの発生および成長が促進される。この場合、主電極対向面104a上においては、複数のプラズマガス出力口106間でプラズマガスの噴出量のムラが抑えられることで噴出されたプラズマガスの雰囲気内におけるプラズマガスの濃度のムラが抑えられるため、予備放電電極101の長さ方向に沿って均一な予備プラズマPの発生および成長が促進される。なお、均一な予備プラズマPとは、少なくとも人が目視で均一と確認できるレベルである。また、図1および図6においては、プラズマガスの流れを破線矢印で示している。
 また、プラズマガス出力口106からプラズマガスを噴出させる場合には、作業者は、プラズマガスを冷却することができる。具体的には、作業者は、冷却水供給設備(図示せず)を操作して2つの冷却器118に対してそれぞれ冷却水の供給を開始させる。これにより、プラズマガスジャケット110内のプラズマガスは冷却器118によって冷却されてプラズマガス出力口106から主電極対向面104a上に噴出される。この場合、プラズマガスジャケット110内に供給されたプラズマガスは、多孔体112および多孔体111によって流動が妨げられているため効果的に冷却される。これにより、プラズマガスは、予備放電電極101および共通放電電極104の加熱を防止する。
 次に、作業者は、主放電電極120と共通放電電極104との間に主プラズマPを発生させる。具体的には、作業者は、プラズマ生成装置100における主放電電源152を操作して主放電電極120と共通放電電極104との間に交流電圧を印加する。この場合、作業者は、主放電電源152を操作して主プラズマPを発生させるために必要な電圧および周波数の交流電圧を出力する。
 本実施形態においては、主放電電源152は、電圧が±9kV、電流が20mAおよび周波数が10kHzで予備放電電源150の出力電圧とは逆位相の交流電圧を出力する。この場合、主放電電源152が出力する交流電圧および周波数は、被処理物WKに必要なプラズマ処理内容に応じて予め実験的に求めることができる。これにより、プラズマ生成装置100における主放電電極120と共通放電電極104との間では、図7に示すように、両者間に存在する大気の一部が前記予備プラズマPによって発生した電子または活性種をトリガとして電離するとともに活性化されて主プラズマPが発生する。
 この場合、主電極対向面104a上においては、前記したように、プラズマガスの雰囲気内におけるプラズマガスの濃度のムラが抑えられる。これにより、主プラズマPは、4つの線状に形成された予備プラズマPのうちの外側に形成された2つの予備プラズマP間における方形の面状の領域内で放電が一様で柱状に延びて形成される。すなわち、本発明に係るプラズマ生成装置100は、主放電電極120と共通放電電極104との間で均一な放電が面状に広がって柱状に立ち上る主プラズマPを形成することができる。また、この場合、作業者は、プラズマガス供給設備(図示せず)を操作してプラズマガスの供給量を増加させて主プラズマPの生成を促進させて主プラズマPが生成される領域を広げることができる。なお、図7においては、プラズマガスの流れを破線矢印で示している。
 また、この場合、主電極対向面104a上においては、前記したように、冷却器118によって冷却されたプラズマガスが供給される。これにより、プラズマガスは、予備放電電極101および共通放電電極104に加えて主放電電極120および主放電用誘電体140上の被処理物WKの加熱を防止する。また、この場合、作業者は、冷却水供給設備(図示せず)を操作して冷却器118に対する冷却水の供給量を増加させることで予備放電電極101、共通放電電極104および主放電電極120に対する冷却能力を向上させることで主プラズマPが生成される領域を広げることができる。
 なお、図7においては、主プラズマPを予備プラズマPよりも濃いハッチングで示している。また、主放電電極120と共通放電電極104との間で均一な放電が面状に広がって柱状に立ち上る主プラズマPとは、少なくとも人が目視で均一と確認できるレベルである。
 次に、作業者は、主放電用誘電体140を回転駆動させる。具体的には、作業者は、図示しないベルトコンベアの制御装置を操作することで主放電用誘電体140を回転駆動させる(図7における破線矢印参照)。
 次に、作業者は、被処理物WKへのプラズマ照射処理を行う。具体的には、作業者は、主放電用誘電体140上に被処理物WKを連続的に供給する供給装置(図示せず)の作動を開始させることによって主放電用誘電体140上に被処理物WKを連続的に供給する。これにより、主放電用誘電体140上に載置された被処理物WKは、主放電電極120と共通放電電極104との間に形成された主プラズマP中を通過することでプラズマ照射されて殺菌処理が行なわれる。そして、主プラズマPが照射された被処理物WKは、図示しない被処理物WKの回収装置によって回収される。この場合においても、主放電用誘電体140上の被処理物WKは、プラズマガス出力口106から出力されるプラズマガスによって予備放電電極101、共通放電電極104および主放電電極120による加熱が防止される。
 なお、本発明者らは、プラズマ生成装置100を用いて豆に大腸菌を付着させた被処理物WKに対して主プラズマPを照射する実験を行ったところ、主放電用誘電体140の載置場所に因らず均一な殺菌効果が発揮されたことを確認した。また、本発明者らは、セルロースの繊維でできた短冊に芽胞菌(例えば、Geobacillus Stearothermophilus)を浸み込ませたものをグラシン紙で包装したバイオロジカルインディケータに対してプラズマ生成装置100を用いて約30秒~約120秒の範囲のプラズマ照射したところ、この芽胞菌を死滅させることができることを確認した。
 次に、作業者は、被処理物WKへのプラズマ照射処理を終了する場合には、予備放電電源150および主放電電源152の作動を停止させて予備放電電極101、共通放電電極104および主放電電極120への交流電圧の印加を停止させる。これにより、プラズマ生成装置100は、予備プラズマPおよび主プラズマPが消滅するため、被処理物WKへのプラズマ照射処理を終了することができる。
 なお、この場合、プラズマ生成装置100は、主放電電源152の作動を停止させることで主プラズマPを消滅させて被処理物WKへのプラズマ照射処理を終了することができるが、予備放電電源150の作動を停止させることでも主プラズマPを消滅させて被処理物WKへのプラズマ照射処理を終了させることができる。すなわち、作業者は、予備放電電源150および主放電電源152のうちの一方の作動を停止させることで主プラズマPを消滅させて被処理物WKへのプラズマ照射処理を終了することができる。この場合、作業者は、予備放電電源150および主放電電源152のうちの一方の作動を停止させた後、他方の作動を停止させることになる。
 また、作業者は、プラズマガス供給設備(図示せず)を操作してプラズマガスの供給を停止させることによっても予備プラズマPおよび主プラズマPを消滅させることができる。これの場合、作業者は、予備プラズマPおよび主プラズマPの消滅とともに、主放電用誘電体140への被処理物WKの供給、主放電用誘電体140の回転駆動および冷却器118への冷却水の供給もそれぞれ停止させる。
 上記作動説明からも理解できるように、上記実施形態によれば、プラズマ生成装置100は、プラズマガスを出力させるプラズマガス出力口106が予備放電電極101に隣接する共通放電電極104に同予備放電電極101に沿って形成されているため予備放電電極101と共通放電電極104との間の予備プラズマPを生じさせる領域の設計の自由度を広げることができる。このことは、予備プラズマPの発生のし易さのみに着目して予備放電電極101と共通放電電極104との間の予備プラズマPを生じさせる領域を設定できることを意味して予備プラズマPを効果的に発生させることができることを意味している。また、本発明に係るプラズマ生成装置100は、予備放電電極101と共通放電電極104との間の予備プラズマPを生じさせる領域の幅を狭く形成してもプラズマガスの流量を自由に設定することができ主プラズマPによる処理空間を広げることもできる。
 さらに、本発明の実施にあたっては、上記実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。なお、下記変形例の説明においては、参照する各図における上記実施形態と同様の構成部分に同じ符号または対応する符号を付すとともに直接関わらない部分については一部の構成を適宜省略して示して、それらの説明も省略する。
 例えば、上記実施形態においては、プラズマガス出力口106は、予備放電電極101の両側にそれぞれ一列ずつ設けて構成した。しかし、プラズマガス出力口106は、予備放電電極101に隣接して設けられていればよい。したがって、プラズマガス出力口106は、予備放電電極101の片側に一列または2列以上設けて構成することもできる。また、プラズマガス出力口106は、予備放電電極101の両側にそれぞれ2列以上ずつ設けて構成することもできる。
 また、上記実施形態においては、プラズマガス出力口106は、共通放電電極104の幅方向に互いに隣接するプラズマガス出力口106を構成する各貫通孔が幅方向において互いに隣接し合わないように予備放電用誘電体103の長手方向にずれて配置されている。これにより、プラズマ生成装置100は、噴出されたプラズマガスのムラを抑制して均一な予備プラズマPおよび主プラズマPを生成することができる。しかし、プラズマガス出力口106は、共通放電電極104の幅方向に互いに隣接する一列のプラズマガス出力口106を構成する各貫通孔が幅方向において互いに隣接し合うように配置することもできる。
 また、上記実施形態においては、プラズマガス出力口106は、予備放電電極101の長手方向に沿って一列に並ぶ複数の円筒形の貫通孔で構成した。これにより、プラズマ生成装置100は、共通放電電極104の剛性を確保し易いとともにプラズマガス出力口106への異物の侵入を防止することができる。しかし、プラズマガス出力口106は、図8に示すように、予備放電用誘電体103の長手方向に沿って延びる1つまたは複数の長孔状のスリットで構成することもできる。
 また、上記実施形態においては、プラズマ生成装置100は、プラズマガス出力口106に供給されるプラズマガスを一時的に貯留するプラズマガスジャケット110を有して構成した。これにより、プラズマ生成装置100は、プラズマガス出力口106を構成する一つの孔内または複数の孔間でムラのないプラズマガスを出力させることができる。しかし、プラズマ生成装置100は、プラズマガス出力口106に導入路115またはプラズマガス供給設備(図示せず)を直結してプラズマガスジャケット110を省略して構成することもできる。この場合、プラズマ生成装置100は、ジャケット覆い体114を省略して構成することができる。
 また、上記実施形態においては、プラズマ生成装置100は、プラズマガスジャケット110内に多孔体111,112を備えて構成した。これにより、プラズマ生成装置100は、プラズマガス出力口106を構成する一つの孔内または複数の孔間でムラのないプラズマガスを出力させることができる。しかし、プラズマ生成装置100は、プラズマガスジャケット110内に多孔体111,112を省略して構成することもできる。
 また、上記実施形態においては、多孔体111,112は、2つのパンチングプレートで構成した。しかし、多孔体111,112は、1つまたは3つ以上のパンチングプレートで構成することができる。この場合、多孔体を2つ以上で構成する場合には、各多孔体における孔部同士が重ならないように位置をずらして形成するとよい。また、多孔体は、ブロック体内に無数の空洞を有したスポンジまたは繊維の集合体などの多孔質体で構成することもできる。
 また、上記実施形態においては、プラズマ生成装置100は、水冷方式の冷却器118を備えて構成した。これにより、プラズマ生成装置100は、プラズマガスを介して予備放電電極101、共通放電電極104および主放電電極120を冷却することができるとともに被処理物WKの加熱も防止することができる。しかし、プラズマ生成装置100は、水冷方式以外の冷却器118を備えて構成することもできる。例えば、プラズマ生成装置100は、ジャケット覆い体114における冷却器取付部116に対してファン(図示せず)によって冷却風を送るように構成してもよいし、冷却器取付部116に代えてヒダ状のヒートシンクを形成して構成することもできる。また、プラズマ生成装置100は、冷却器118を省略して構成することもできる。
 また、上記実施形態においては、プラズマ生成装置100は、共通放電電極104にのみプラズマガス出力口106を設けて構成した。しかし、プラズマ生成装置100は、図9に示すように、共通放電電極104に対向する主放電電極120にプラズマガス出力口106と同様の第2プラズマガス出力口121を設けて構成することができる。
 この場合、第2プラズマガス出力口121は、プラズマガス出力口106と対向する位置またはプラズマガス出力口106に対してずれた位置に形成することができるほか、主放電電極120における共通電極対向面120aの前面に均等配置して形成することもできる。また、主放電電極120には、プラズマガスジャケット110と同様の第2プラズマガスジャケット122を設けるとともに、この第2プラズマガスジャケット122内に多孔体111,112と同様に多数の貫通孔123a,124aを有した第2多孔体123,124がスペーサ113と同様のスペーサ125を介してそれぞれ設けることができる。また、この場合、主放電電極120は、第2プラズマガスジャケット122に連通する導入路127を備えた板状の第2ジャケット覆い体126によって第2プラズマガスジャケット122内が気密的に塞がれている。
 このように構成したプラズマ生成装置100は、主電極支持体132に設けられた貫通孔132aを介してプラズマガス供給設備(図示せず)から供給されるプラズマガスが第2プラズマガスジャケット122および第2プラズマガス出力口121を介して主放電用誘電体140に向けて噴射される(破線矢印参照)。これにより、プラズマ生成装置100は、主放電用誘電体140に対して主放電電極120側にプラズマガスを供給することができ主プラズマPを早期にかつ広範な範囲で発生および維持させることができる。なお、プラズマ生成装置100は、第2プラズマガスジャケット122および第2ジャケット覆い体126をそれぞれ省略して構成することができることは当然である。
 また、上記実施形態においては、作業者は、予備放電電源150は電圧が±5kVで周波数が10kHzの交流電圧を出力するとともに、主放電電源152は電圧が±9kVで周波数が10kHzの交流電圧を出力するように調整した。しかし、予備放電電源150および主放電電源152の各出力の仕様は、被処理物WKに対して必要な主プラズマPの量および強さに応じて適宜設定されるものであり、上記実施形態に限定されるものではない。したがって、予備放電電源150から出力される交流電圧が主放電電源152から出力される交流電圧よりも高電圧、高周波数、低電圧、低周波、同電圧および同周波数のうちのいずれかであることは当然に生じ得ることである。なお、プラズマ生成装置100は、予備放電電源150および主放電電源152を1つの電源設備で構成することもできる。
 また、予備放電電極101、共通放電電極104および主放電電極120にそれぞれ印加する交流電圧の電圧および周波数についても被処理物WKに対して必要な主プラズマPの量および強さに応じて適宜設定されるものであり、上記実施形態に限定されるものではない。したがって、予備放電電極101、共通放電電極104および主放電電極120にそれぞれ印加する交流電圧の電圧値および周波数は、±1kV以下または±20kV以上の電圧値であってもよいし、100Hz以下または10kHz以上の周波数であってもよい。
 また、上記実施形態においては、主放電電源152は、共通放電電極104に対して予備放電電源150を介して接続した。しかし、主放電電源152は、主放電電極120と共通放電電極104との間に交流電圧を印加できるように接続されていれば、必ずしも上記実施形態に限定されるものではない。したがって、主放電電源152は、例えば、共通放電電極104に対して予備放電電源150を介することなく直接接続することもできる。なお、予備放電電源150についても同様に、予備放電電極101と共通放電電極104との間に交流電圧を印加できるように接続されていれば、必ずしも上記実施形態に限定されるものではない。
 また、上記実施形態においては、プラズマ生成装置100は、4つの予備放電電極101を備えて構成した。この場合、4つの予備放電電極101は、主放電電極120と共通放電電極104との間で主プラズマPが面状に形成される間隔で配置した。これにより、プラズマ生成装置100は、予備放電電極101の長手方向に直交する幅方向にも幅広な面状の主プラズマPを生成することができる。なお、この場合、予備放電電極101の配置間隔は、印加電圧や電極間距離に応じて予め実験的に求められる。しかし、プラズマ生成装置100は、少なくとも1つの予備放電電極101を備えて構成することができるものであり、必ずしも上記実施形態に限定されるものではない。したがって、プラズマ生成装置100は、5つ以上の予備放電電極101を備えて構成することもできる。
 また、複数の予備放電電極101を設ける場合、予備放電電極101の配置間隔を主放電電極120と共通放電電極104との間で主プラズマPが幅広な面状に形成されない間隔、すなわち、各予備放電電極101が単独で線状または帯状の主プラズマPを形成する間隔で配置することもできる。
 また、上記実施形態においては、予備放電電極101は、導体102の外周面と予備放電用誘電体103の内周面との間に空気を介した僅かな空隙を設けて構成されている。しかし、予備放電電極101は、導体102の外周面と予備放電用誘電体103の内周面とを密着、または両者の間の空間を真空または不導体(例えば、セラミック接着剤)で塞いで構成することもできる。これによれば、導体102の外周面と予備放電用誘電体103の内周面との間の空間内で放電が生じることを防止することができる。
 また、上記実施形態においては、プラズマ生成装置100は、導体102をガラス管製の予備放電用誘電体103内に配置した予備放電電極101を共通放電電極104に形成した電極収容部105内に配置して構成した。しかし、予備放電電極101は、長尺に延びる導体102を誘電体で覆って構成されていればよい。この場合、予備放電電極101は、棒状または板状に形成することができる。また、共通放電電極104は、予備放電電極101に隣接配置されて同予備放電電極101に沿って延びて形成されていればよい。
 また、上記実施形態においては、予備放電電極101は、共通放電電極104の主電極対向面104aに溝状に形成した電極収容部105内に主放電電極120側を露出させた状態で配置した。これにより、予備放電電極101は、開口した電極収容部105に容易に嵌め込んで取り付けることができるとともに向きも正確に配置することができる。また、予備放電電極101は、電極収容部105の溝自身や溝内に塗布した接着剤によって安定的に保持されるとともに、予備放電電極101の周囲に存在する主放電用誘電体140や被処理物WKなどとの物理的接触による破損および予備放電電極101の破損時における飛散を防止することができる。さらに、予備放電電極101は、共通放電電極104で囲まれることで予備プラズマPを発生させ易くできるとともに発生させた予備プラズマPを安定的に持続させることができる。
 この場合、電極収容部105は、予備放電電極101の径方向の半分以上、より好ましくは2/3以上を覆う深さに形成するとともに、深さ方向に直交する溝幅を対向する予備放電電極101の両側面に対して僅かな空隙を介して収容する溝幅に形成するとよい。しかし、電極収容部105は、予備放電電極101の径方向の半分以下を覆う深さに形成すること、および溝幅を予備放電電極101の両側面に接触する溝幅、すなわち、予備放電電極101の外径と同じ溝幅に形成することを排除するものではない。また、電極収容部105は、予備放電電極101を完全に覆う筒状、例えば、共通放電電極104の側面に貫通孔状または止り穴状に形成した横孔状または横穴状に形成することもできる。
 一方で、予備放電電極101は、共通放電電極104との間で予備プラズマPを生成することができるように配置されていればよい。したがって、予備放電電極101は、例えば、電極収容部105が形成されていない平面状の主電極対向面104a上に直接配置することもできる。
 また、上記実施形態においては、主放電用誘電体140は、無端ベルト状に形成した。しかし、主放電用誘電体140は、主放電電極120と予備放電電極101および共通放電電極104との間に配置されて予備放電電極101、共通放電電極104および主放電電極120に沿って延びる誘電体で構成されていればよい。したがって、主放電用誘電体140は、例えば、図9に示すように、ガラスを含むセラミック材、樹脂材またはゴム材などの不導体を環状に形成されていない単なる平面状のシート状または板状に形成して構成することができる。この場合、主放電用誘電体140は、支柱133で支持することができる。
 また、上記実施形態においては、主放電用誘電体140は、被処理物WKを支持するように構成した。しかし、主放電用誘電体140は、他の支持部材で被処理物WKを支持するように構成すれば、必ずしも被処理物WKを支持するように構成する必要はない。
 また、上記実施形態においては、プラズマ生成装置100は、食品からなる被処理物WKに対して主プラズマPを照射して殺菌消毒するように構成した。しかし、プラズマ生成装置100は、食品以外の被処理物WK(例えば、医療器具など)に対して主プラズマPを照射して殺菌消毒するように構成してもよいし、殺菌挿毒以外の目的で被処理物WKに対して主プラズマPを照射してもよい。プラズマ生成装置100は、例えば、アッシング、エッチングまたは被膜形成などの表面処理、接着性や濡れ性の改善または表面硬化などの表面改質に用いることができる。
WK…被処理物、P…予備プラズマ、P…主プラズマ、
100…プラズマ生成装置、
101…予備放電電極、102…導体、103…予備放電用誘電体、104…共通放電電極、104a…主電極対向面、105…電極収容部、105a…セラミック接着剤、106…プラズマガス出力口、
110…プラズマガスジャケット、111,112…多孔体、111a,112a…貫通孔、113…スペーサ、114…ジャケット覆い体、115…導入路、116…冷却器取付部、117a…第1取付孔、117b…第2取付孔、118…冷却器、118a…配管、
120…主放電電極、120a…共通電極対向面、121…第2プラズマガス出力口、122…第2プラズマガスジャケット、123,124…第2多孔体、123a,124a…貫通孔、125…スペーサ、126…第2ジャケット覆い体、127…導入路、
130…電極支持体、131…共通電極支持体、131a…貫通孔、132…主電極支持体、132a…貫通孔、133…支柱、
140…主放電用誘電体、
150…予備放電電源、151…アース、152…主放電電源。

Claims (8)

  1.  長尺に延びる導体を誘電体で覆った予備放電電極と、
     前記予備放電電極に隣接配置されて同予備放電電極に沿って延びる共通放電電極と、
     前記予備放電電極と前記共通放電電極との間に交流電圧を印加して予備プラズマを発生させるための予備放電電源と、
     前記共通放電電極に対して前記予備放電電極よりも離れた位置に前記共通放電電極および前記予備放電電極にそれぞれ対向した状態で延びる主放電電極と、
     前記主放電電極と前記予備放電電極および前記共通放電電極との間に配置されて前記予備放電電極、前記共通放電電極および前記主放電電極に沿って延びる誘電体からなる主放電用誘電体と、
     前記主放電電極と前記共通放電電極との間に交流電圧を印加して主プラズマを発生させるための主放電電源とを備え、
     前記共通放電電極は、
     前記予備放電電極に隣接する位置に同予備放電電極の延びる方向に沿ってプラズマガスを出力させるプラズマガス出力口を備えることを特徴とするプラズマ生成装置。
  2.  請求項1に記載したプラズマ生成装置において、
     前記プラズマガス出力口は、
     前記予備放電電極の両側にそれぞれ形成されていることを特徴とするプラズマ生成装置。
  3.  請求項1または請求項2に記載したプラズマ生成装置において、
     前記プラズマガス出力口は、
     前記予備放電電極の延びる方向に沿って形成された複数の孔で構成されていることを特徴とするプラズマ生成装置。
  4.  請求項3に記載したプラズマ生成装置において、
     前記プラズマガス出力口は、
     前記予備放電電極の両側にそれぞれ形成されているとともに、前記両側のうちの一方側の前記プラズマガス出力口を構成する各孔は他方側の前記プラズマガス出力口を構成する各孔に対してずれた位置にそれぞれ形成されていることを特徴とするプラズマ生成装置。
  5.  請求項1ないし請求項4のうちのいずれか1つに記載したプラズマ生成装置において、さらに、
     前記プラズマガス出力口に面した状態で同プラズマガス出力口に供給される前記プラズマガスを一時的に貯留するプラズマガスジャケットを備えることを特徴とするプラズマ生成装置。
  6.  請求項5に記載したプラズマ生成装置において、さらに、
     前記プラズマガスジャケットは、
     多数の貫通孔を有した多孔体を有しており、前記プラズマガスを前記多孔体を介して前記プラズマガス出力口に導くことを特徴とするプラズマ生成装置。
  7.  請求項1ないし請求項6のうちのいずれか1つに記載したプラズマ生成装置において、さらに、
     前記プラズマガスジャケットに隣接して設けられて同プラズマガスジャケット内の前記プラズマガスを冷却する冷却器を備えることを特徴とするプラズマ生成装置。
  8.  請求項1ないし請求項7のうちのいずれか1つに記載したプラズマ生成装置において、
     前記主放電電極は、
     前記主放電用誘電体に向けて前記プラズマガスを出力させる第2プラズマガス出力口を備えることを特徴とするプラズマ生成装置。
PCT/JP2020/017916 2019-05-08 2020-04-27 プラズマ生成装置 WO2020226086A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020541606A JP6782952B1 (ja) 2019-05-08 2020-04-27 プラズマ生成装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-087983 2019-05-08
JP2019087983 2019-05-08

Publications (1)

Publication Number Publication Date
WO2020226086A1 true WO2020226086A1 (ja) 2020-11-12

Family

ID=73050600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/017916 WO2020226086A1 (ja) 2019-05-08 2020-04-27 プラズマ生成装置

Country Status (1)

Country Link
WO (1) WO2020226086A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167336A (ja) * 1998-12-04 2000-06-20 Fuji Electric Co Ltd パルスコロナ放電による排ガス中の有機物分解方法とその装置
JP2002151295A (ja) * 2000-11-13 2002-05-24 Yaskawa Electric Corp 放電発生装置
JP2007294414A (ja) * 2006-04-24 2007-11-08 New Power Plasma Co Ltd 多重マグネチックコアが結合された誘導結合プラズマ反応器
JP2007317501A (ja) * 2006-05-25 2007-12-06 Sharp Corp 大気圧プラズマ処理装置
JP2013089285A (ja) * 2011-10-13 2013-05-13 Hitachi Ltd プラズマ処理装置およびプラズマ処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000167336A (ja) * 1998-12-04 2000-06-20 Fuji Electric Co Ltd パルスコロナ放電による排ガス中の有機物分解方法とその装置
JP2002151295A (ja) * 2000-11-13 2002-05-24 Yaskawa Electric Corp 放電発生装置
JP2007294414A (ja) * 2006-04-24 2007-11-08 New Power Plasma Co Ltd 多重マグネチックコアが結合された誘導結合プラズマ反応器
JP2007317501A (ja) * 2006-05-25 2007-12-06 Sharp Corp 大気圧プラズマ処理装置
JP2013089285A (ja) * 2011-10-13 2013-05-13 Hitachi Ltd プラズマ処理装置およびプラズマ処理方法

Similar Documents

Publication Publication Date Title
JP5926775B2 (ja) プラズマ発生装置、プラズマ発生装置を備える殺菌装置およびプラズマ発生装置の使用
CN103619712B (zh) 包装物品的消毒
KR101824805B1 (ko) 플라즈마 멸균장치
KR101948063B1 (ko) 플라즈마 멸균장치
US20130064710A1 (en) Plasma apparatus for biological decontamination and sterilization and method for use
US9849202B2 (en) Plasma pouch
JP6998806B2 (ja) ガスプラズマ殺菌設備
JP6621036B2 (ja) プラズマ生成装置
JP6782952B1 (ja) プラズマ生成装置
WO2020226086A1 (ja) プラズマ生成装置
WO2021261286A1 (ja) プラズマ生成装置
KR20220016857A (ko) 플라즈마 표면 살균기 및 관련 방법
JP7058032B1 (ja) プラズマ生成装置
WO2021059784A1 (ja) プラズマ生成装置
WO2022091730A1 (ja) プラズマ生成装置
US20050019025A1 (en) Product stream heater
CN110572924B (zh) 一种滚动果蔬表面微生物控制的等离子体系统
JP2004248989A (ja) プラズマ滅菌装置
WO2020250787A1 (ja) プラズマ生成装置
JP2005278809A (ja) 高電圧を利用した殺菌装置
CN113117109A (zh) 阵列射流等离子体快速消杀表面病原微生物系统与方法
JP2006239230A (ja) バリア放電を用いた殺菌装置及び殺菌方法
KR20190083116A (ko) 플라즈마를 이용한 살균 장치 및 이를 위한 플라즈마 발생기
WO2022070347A1 (ja) 鮮度保持装置およびパネル取付け構造
WO2023127836A1 (ja) 気体処理装置、及び気体処理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020541606

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20802449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20802449

Country of ref document: EP

Kind code of ref document: A1